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Abstract. Information reconciliation allows two parties knowing correlated random 
variables, such as a noisy version of the partner's random bit string, to agree on a 
shared string. Privacy amplification allows two parties sharing a partially secret string 
about which an opponent has some partial information, to distill a shorter but almost 
completely secret key by communicating only over an insecure channel, as long as 
an upper bound oll the opponent's knowledge about the string is known. The relation 
between these two techniques has not been well understood. In particular, it is important 
to understand the effect of side-information, obtained by the opponent through an initial 
reconciliation step, on the size of the secret key that can be distilled safely by subsequent 
privacy amplification. The purpose of this paper is to provide the missing link between 
these techniques by presenting bounds on the reduction of the R6nyi entropy of a random 
variable induced by side-information. We show that, except with negligible probability. 
each bit of side-information reduces the size of the key that can be safely distilled by 
at most two bits. Moreover, in the important special case of side-information and raw 
key data generated by many independent repetitions of a random experiment, each bit 
of side-information reduces the size of the secret key by only about one bit. The results 
have applications in unconditionally secure key agreement protocols and in quantum 
cryptography. 

Key words. Unconditional security, Reconciliation, Information reduction. Privacy 
amplitication, R6nyi entropy, Secret-key agreement, Quantum cryptography. 

1. Introduction 

One of the fundamental problems in cryptography is the generation of a shared secret 
key by two parties, Alice and Bob, not sharing a secret key initially, in the presence of 
an adversary Eve. One generally assumes that Eve can eavesdrop on the communication 

* This research was supported by the Swiss National Science Foundation. A preliminary version of this 
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between Alice and Bob who are connected only by a public channel. It is easy to see 
that if this public channel is not assumed to be authenticated, then such key agreement 
is impossible. We therefore assume that any modification or insertion of messages can 
be detected by Alice and Bob. 

This problem can be solved by applying public-key cryptography [9], where one 
assumes that Eve's computing power is limited and that certain problems are computa- 
tionally difficult. In the recent years, key agreement protocols have been developed that 
are secure against adversaries with unlimited computing power [1], [ 10]. The motivation 
for investigating such protocols is twofold. First, one avoids having to worry about the 
generality of a particular computational model, which is of some concern in view of 
the potential realizability of quantum computers [5], [ 13]. Second, no strong rigorous 
results on the difficulty of breaking a cryptosystem have been proved, and this problem 
continues to be among the most difficult ones in complexity theory. 

Unconditionally secure secret-key agreement [ 10], [ 11 ] takes place in a scenario where 
Alice, Bob, and Eve know the correlated random variables X, Y, and Z, respectively, 
distributed according to some joint probability distribution that may be under the partial 
control of Eve (as, for instance, in quantum cryptography [1]). One possible scenario 
considered by Maurer [10] is that X, Y, and Z result from a binary random string broad- 
cast by a satellite and received by Alice, Bob, and Eve over noisy channels. Secret-key 
agreement is possible even when Eve's channel is much more reliable than Alice's and 
Bob's channels. 

A key agreement protocol for such a scenario generally consists of three phases: 

Advantage Distillation [ 10]. The purpose of the first phase is to create a random variable 
W about which both Alice orBob have more information than Eve. Advantage distillation 
is only needed when such a W is not immediately available from X and Y, for instance, 
when Eve's channel is superior in the above satellite scenario. Alice and Bob create W 
by exchanging messages, summarized as the random variable C, over the public channel. 

Information Reconciliation [ 11, [6]. To agree on a string T with very high probability, 
Alice and Bob exchange redundant error-correction information U, such as a sequence 
of parity checks. After this phase, Eve's (incomplete) information about T consists of 
Z, C, and U. 

Privacy Amplification [2], [3]. In the final phase, Alice and Bob agree publicly on a 
compression function G to distill from T a shorter string S about which Eve has only a 
negligible amount of information. Therefore, S can subsequently be used as a secret key. 

Information reconciliation and privacy amplification are fundamental for uncondition- 
ally secure key agreement and quantum key distribution. Advantage distillation has not 
yet been used in quantum cryptography because the considered scenarios assume that 
Alice and Bob have an advantage compared to Eve. 

If after the first phase Alice knows a string about which Bob has more information than 
Eve, Alice and Bob can choose W to be this string. In other words, using information- 
theoretic terms, W is a random variable such that H(WIXC) = 0 and H(WJYC) < 
H ( W IZC). In such a case, Bob tries to determine W from Y and the reconciliation string 
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U. (Note that H (U) > H(WIYC) is a necessary condition,) Hence reconciliation serves 
to establish H (WIYCU) ~ 0 while Eve still has a substantial amount of uncertainty about 
W: H(WIZCU) > 0. After privacy amplification, H(S) should be as large as possible, 
and Eve's information about S should be arbitrarily close to zero: I (S; ZCUG) = H (S) - 
H(SIZCUG) ~ O. Note that Alice and Bob can both compute S, i.e., H(SI WG) = O. 

In the following, let V = [Z, C] summarize Eve's total knowledge about W before 
reconciliation. For deriving lower bounds on Eve's final information about the secret key 
S one can either consider a particular value V = v that Eve knows or one can average 
over all possible values of V. Note that results for a particular V = v, which will be 
considered in this paper, are stronger than averaging results because they are known to 
hold for the very instance of the protocol execution. In other words, Eve's information 
about W is modeled by the probability distribution Pwlv=~ about which Alice and Bob 
have some incomplete knowledge. In particular, they know a lower bound on the R6nyi 
entropy (see below) of the distribution Pwlv=v with high probability but they do not 
know v. 

It is known [2] that the R6nyi entropy after reconciliation with U = u (i.e., of the 
distribution PwI v=v, U=u) is a lower bound on the size of the secret key that can be distilled 
safely by privacy amplification. This paper is concerned with understanding the reduction 
of the R6nyi entropy induced by the side information U, either for a particular value 
U = u, or averaged over all values of U~ Although this question is fundamental for any 
proof in the area of key agreement protocols, it has previously not been well understood 
because the behavior of R6nyi entropy is different from that of Shannon entropy with 
respect to side-information, Existing proofs such as the ingenious Big Brother argument 
of [ 1 ] work only for particular probability distributions and reconciliation protocols. 

The paper is organized as follows. Section 2 reviews privacy amplification and the 
definition of R6nyi entropy. Section 3 presents upper bounds on the reduction of R6nyi 
entropy due to side-information for arbitrary probability distributions. Noninteractive 
reconciliation protocols with uniform and close-to-uniform probability distributions are 
investigated in Section 4. These results are applied in Section 5 to analyze the impor- 
tant class of scenarios in which a given random experiment is repeated many times 
independently. 

2. Review of Privacy Amplification and R6nyi Entropy 

We assume that the reader is familiar with the notion of entropy and the basic concepts 
of Shannon's information theory [4], [8]. [n privacy amplification, a different entropy 
measure, R~nyi entropy, is of central importance [2]. To distinguish R6nyi entropy from 
entropy in the sense of Shannon, we will always refer to the latter as Shannon entropy. 
All logarithms in this paper are to the base 2, and entropies are thus measured in bits. 

Privacy amplification was introduced by Bennett et al. [3] and investigated further 
in [2], and can be described as follows. Assume Alice and Bob share an n-bit string 
W about which an eavesdropper Eve has incomplete information characterized by a 
probability distribution Pwlv=~ over the n-bit strings, where v denotes the particular 
value taken on by the random variable V summarizing her side-information. For instance, 
Eve might have received some bits or parities of bits of W, she might have eavesdropped 
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on some of the bits of W through a binary symmetric channel, or have some more 
complicated type of information about W. Alice and Bob have some knowledge of the 
distribution Pwlv=~, but they do not know exactly what is compromised about their 
string. Using a public channel, which is totally susceptible to eavesdropping but immune 
to tampering, they wish to agree on a function g: {0, 1 }" ~ {0, 1 }r such that Eve, despite 
her partial knowledge about W and complete knowledge of g, almost certainly knows 
nearly nothing about g(W).  This process transforms a partially secret n-bit string W into 
a highly secret but shorter r-bit string g(W) which can be used as a secret key. 

The method for selecting the function g proposed in [3] is to choose it at random 
from a publicly known universal class of hash functions mapping n-bit strings to r-bit  
strings. Universal hash functions were introduced by Carter and Wegman [7]. A class G 
of functions ,,4. --+ /3 is called universal if, for any distinct xl and x2 in ,,4, the probability 
that g (xl) = g(x2) is at most 1 /IB1, when g is chosen at random with uniform distribution 
from G. 

Bennett et al. [2] showed that the Rrnyi entropy (defined below) of Eve's  distribution 
about W provides a lower bound on the size r of  the secret key distillable from W by 
privacy amplification with a universal hash function. 

Definition 1. Let X be a random variable with alphabet Pc' and distribution Px. The 
collision probability P,:(X) of X is defined as the probability that X takes on the same 
value twice in two independent experiments: 

Pc(X) = Z Px(x)2" 
.rEX 

The Rdnyi entropy of order m'o (or "'Rdnyi entropy" for short) of X [12], [2] is defined 
as the negative logarithm of the collision probability of  X: 

R(X) = - log Pc(X). 

For an event ,s the Rdnyi entropy of X conditioned on C, R(X I~'), is defined naturally as 
the Rrnyi entropy of the conditional distribution Px!c. The Rdnyi entropy conditioned 
on a random variable, R(XIY), is defined as the expected value of the conditional Rrnyi 
entropy: 

R(XBY) = y~  Py(y)R(XBY = y). 
Y 

Equivalently, R(X) can be expressed as R(X) --- - log E[ Px (X)], where E[.] denotes 
the expected value. Shannon entropy H(X) can be expressed similarly as H(X) = 
- E[log Px (X)I. It follows from Jensen's inequality (see [8 ]) that Rrnyi entropy is upper 
bounded by the Shannon entropy, a fact known to Rrnyi: 

R(X) < H(X), 

with equality if and only if Px is the uniform distribution over X" or a subset of X'. 
Similarly, we have H (X[Y) > R(XIY). Note that Rrnyi entropy (like Shannon entropy) 
is always positive. 

The following theorem is the main result of [2], 
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T h e o r e m  1. Let X be a random variable on alphabet 2( with probabil i~ distribution 

Px and Rdnyi entropy R(X) .  Further, let G be the random variable corresponding to 

the random choice (with uniform distribution) o f  a member o f  a universal class o f  hash 

functions from X --+ {0, 1} r. Then 

2r-R(X) 
H ( G ( X ) I G )  > R ( G ( X ) I G )  > r 

In2 

Note that G is a random variable and that the quantity H ( G ( X ) I G )  is an average over 
all choices of  the function g. It is possible that H ( G ( X ) I G  = g) ----- H ( g ( X ) )  differs 
from r by a nonnegligible amount for some g, but such a g can occur only with negligible 
probability. 

This theorem clearly applies also to conditional probability distributions such as 
Pwtv=~ discussed above. If  Eve's R6nyi entropy R ( W I V  = v) is known to be at least t 
and Alice and Bob choose S = G ( W )  as their secret key, then 

;" --t '  

R(SIG,  V = v) = R ( G ( W ) ] G ,  V = v) > r - - -  
In2 " 

The key S is indeed virtually secret because H(SIG,  V = v) >_ R(SIG,  V = v) and 
hence H(SIG,  V = v) is arbitrarily close to maximal. More precisely, if r < t, then 
Eve's total information about S decreases exponentially in the excess compression t - r. 

It should be pointed out that Theorem 1 cannot be generalized to R6nyi entropy 
conditioned on a random variable, i.e., R ( G ( W ) i G V )  > r - U-'~wlv) / [n  2 is false in 
general [2]. 

3. The Effect of Side Information on R~nyi Entropy 

As described above, the reconciliation step consists of  Alice and Bob exchanging suit- 
able error-correction information U over the public channel. This information decreases 
Eve's Shannon entropy and usually also her R6nyi entropy about W. For noninterac- 
tive reconciliation, Alice chooses an appropriate error-correction function f and sends 
U = f ( W )  to Bob who can then reconstruct W with high probability from U and his 
prior knowledge YC. 

The results of  this paper will be derived for an arbitrary random variable X with 
probability distribution Px and a side-information random variable U jointly distributed 
with X according to Pxu.  However, they can just as well be applied to conditional 
distributions; our intended application is the key agreement scenario mentioned in the 
introduction, i.e., when Px and Pxlu are replaced by Pw'v=~. and Pwlv=~..u, respectively. 

In general, giving side-information implies a reduction of entropy. Our goal is to derive 
upper bounds on the size of  this reduction. Giving as side-information the fact that U 
takes on a particular value u, it is possible for both, Shannon and R6nyi entropies, that 
the entropy increases or decreases. Moreover, the size of a reduction can be arbitrarily 
large. However, the expected reduction (for all values of U) of the Shannon entropy of 
X by giving U, called the mutual information between X and U, is bounded by H(U) :  

H ( X ) - H ( X F U )  = I ( X : U )  <_ H ( U ) ,  (1) 
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which follows from the symmetry of  1 (X; U) and the fact that Shannon entropy (con- 
ditional or not) is always positive. 

The example below illustrates two facts. First, the reduction of  R6nyi entropy implied 
by giving side-information U = u can exceed the reduction of Shannon entropy, i.e., 

R ( X )  - R ( X I U  = u) > H ( X )  - H ( X I U  = u) 

is possible. Second, it shows that the natural generalization of (1) to R6nyi entropy, 
namely R ( X )  - R ( X I U )  <_ R(U),  is not true in general. However, Theorem 2 demon- 
strates that the weaker inequality R ( X )  - R (X[U)  < H ( U )  is always satisfied. 

Example.  Let X be a random variable with alphabet A" = {az . . . . .  al0, bl . . . . .  bl0}, 
distributed according to Px(ai)  = 0.01 and Px(bi)  = 0.09 for i -- 1 . . . . .  10. We have 
H ( X )  ~ 3.79 and R(X)  ~ 3.61. Let f :  X ~ {0, 1} be defined as 

1~ if x 6 { a ,  . . . . .  a9, blo}, 
f ( x )  = if x c {alo, bl . . . . .  bo}, 

/ 

and let U = f ( X ) .  Then H ( X I U  = 0) ,~ 2.58 and R ( X I U  -= 0) ~ 1.85. The reduction 
of R6nyi entropy when given U = 0 exceeds the reduction of  Shannon entropy, i.e., 
R ( X )  - R ( X I U  = 0) ~ 1.76 whereas H ( X )  - H ( X I U  = 0) ~ 1.21. 

Because because f is deterministic, H ( U )  = H ( X )  - H ( X ] U )  ~ 0.69. The expected 
entropy reductions are H ( X )  - H ( X I U )  ,~ 0.69 and R ( X )  - R ( X I U )  ~ 0.65. Note 
that R(U)  ~ 0.50 and that R ( X )  - R ( X I U )  is indeed greater than R(U)  but less than 

H ( U ) .  

H ( U )  is not only the maximal expected decrease of  Shannon entropy, but H ( U )  is 
also an upper bound on the expected decrease of R6nyi entropy, as the following theorem 
demonstrates. 

Theorem 2. Let X and U be two random variables with alphabets R" and lg, respec- 

tively. The expected reduction o f  the Rdnyi entropy o f  X,  when given U, does not exceed 

the Shannon entropy o f  U, i.e., 

R ( X ) -  R ( X I U )  5 H(U) ,  

with equality i f  and only i f  U is defined uniquely f o r  each x E P( and Pu is the uniform 

distribution over Ll or a subset o f  Ll. 

Proos The collision probability of X can be written as 

P,,(X) = Z Px(X)2 
.rEX 

2 

>- E exu(x, ,,)2 
.r E,~{ uEL( 
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_ ~ ) 2  

u ( 14 ~ c ,.V 

= ~ Pt:(u)2P,.(XIU = u), 
uclg 
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(2) 

where the inequality follows from z-,i=l Pi )- > Y~-i=l P7 for nonnegatwe Pi (1 < i < n) 
and equality holds if and only if Pi = 0 for all but one i. Inserting (2) into the detinition 
of Rdnyi entropy gives 

R(X) = - l o g  P,.(X) 

_ < - . o g ( , e ~  u Pu(u)ZP,.(XlU = u ) )  

<- - Z Pu(u)Iog[Pu(u)P,.(XIU = u)] 
u E l J  

= - Z Pt:(u)[log Pu(u) + log P,.(XIU = u)] 
u(-bl 

-- Z P u ( u ) l o g P u ( u ) -  Z P u ( u ) l o g P , , ( X l U = u )  
u~lM uElg 

= H(U) + Z Pu(u) R(XIU = u) 
uEla t 

= H(U) + R(XIU),  

where the second inequality follows from Jensen's inequality [8] which holds with 
equality if and only if Pu is the uniform distribution over/ , /or a subset oflg. [] 

In contrast to Shannon entropy, the expected Rdnyi entropy can increase when side 
information is revealed, i.e., R(X) < R(XIU) is possible. This property is used in [2] 
and [ 11 ] to prove that a key larger than suggested by Theorem I can be obtained by 
privacy amplification. The proof makes use of a conceptual oracle that is assumed to 
provide special side-information U to Eve, called spoiling knowledge, which increases 
her R6nyi entropy. Of course, this extra information cannot harm her because she could 
always discard it. 

For example, if Eve has received V = v over a binary symmetric channel, her Rdnyi 
entropy of the distribution Pwlv=,: is considerably lower than her Shannon entropy. But 
the oracle can increase her Rdnyi entropy with high probability almost to the Shannon 
entropy by telling her the number d of bits in t, that she received incon'ectly. Then. all 
strings at distance d of v are equally likely and Eve's Rdnyi entropy increases to the 
(new) Shannon entropy. 

For a positive-valued random variable X, E[X] < t implies that P[X > kt] < I /k .  
Hence, according to Theorem 2, the probability that the leaking information U = u 
decreases R6nyi entropy by more than kH(U)  is at most l / k ,  i.e., P[R(X)  - R(XIU = 
u) >_ kH(U)] < l /k .  However, such a high probability of partially exposing the string 
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W is unacceptable in a key agreement scenario. The following theorem provides a much 
stronger result by showing that the above probability decreases in fact at most by 2 loglLr 
except with negligible probability. 

Theorem 3. Let X and U be random variables with alphabets X and l,t. respectively, 
and let s > 0 be an arbitrary securi O, parameter. With probability at least 1 - 2-", U 
takes on a value u f o r  which 

R ( X )  - R ( X I U  = u) 5 21oglLr + 2 s .  

Remark. The statement of the theorem is equivalent to 

Z 1 - 2 -s. Pu(u)  >_ 

u: R IXI -R(XIU=u)  5 21oglb/ +2s 

Proof. We can bound the reduction only for those values u for which Pu(u) is not 
too small. Let s be the event that U ~ {ulPu(u) >_ P,,,i,,} for some given p,,,in > 0 

and Pmin < I/lUl. There are lUl possible values u, and for at most lUl - 1 values u, 

PU(U) < Pmin can hold. Therefore we have P[,~] < lUI" Pmi,, and P[s > 1 - [UI" P,,,i,. 
If  the event ,f occurs we have 

P,.(XIU = u) = Z Px .u(x .  l l )  2 

V" 
~ ,  \ Pu(u) I 

Px (x )  e 

< Z Pu(u)2 
.rex 

x ~ X  Pmin 

Pc(X) 
2 " 

P ,nin 

where we have made use of the fact that P x u ( x , u ) = P x ( x ) Pu I x (u, x)  <_ P x ( x ) . If we 
set p,,,~, = 2-~/lUl, then Pu(u)  > P,,i,, with probability P[s > 1 - 2 -~. The theorem 
now follows by taking logarithms on both sides of 

P~(XIU = u) <_ IHI 2 22s Pc(X). [] 

Because of its importance we restate Theorem 3 for the key-generation scenario, 
replacing Px by Pwlv=,,, with the side-information consisting of  k bits, for instance k 
parity checks of  W when W is an n-bit string. 

Corol lary  4. Let W be a random variable with alphabet ~V, let v and u be particular 

values o f  the correlated random variables V and U with alphabets V andU, respectively, 
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with k = log[L/I, and let s > 0 be a given security parameter. Then, with probabil i~ at 

least 1 - 2 -~, U takes on a value u such that the decrease hi RFnyi entropy by giving u, 

R ( W I V  = v) - R ( W I V  = v, U = u), 

is at most 2k § 2s. 

4. Almost Uniform Distributions 

As shown above, giving side-information of the form U = u can reduce the Rdnyi en- 
tropy by an arbitrary amount, although the probability that this happens is bounded by 
Theorem 3. In this section and the next we derive better bounds on the reduction for non- 
interactive reconciliation and special probability distributions. For uniform distributions 
and deterministic side-information U = f ( W )  the reduction of Rdnyi entropy depends 
only on the size of  the preimage of  u = f ( x ) .  

L e m m a 5 .  Let X be a random variable with alphabet X ,  let f : X --+ H be an arbitrar3. ' 

function taking on values in a given set H, let U be defined as U = f ( X ) ,  and set 
X~ = {x ~ X : f ( x )  = u}. l f  X is distributed uniformly over 2(, then 

R ( X )  - R ( X I U  = u) = l o g - -  
Ixl 

In particular, i f  f is such that IXul is the same fo r  all u c Lt, knowledge o f  U = u 
reduces the Rgnyi entropy by loglL/I. 

Proof. Because Rdnyi entropy equals Shannon entropy for the uniform distribution, 
we have R ( X )  = loglXI and R ( X I U  = u) = loglX, I, from which the first claim 
immediately follows. To prove the second claim, note that in this case IA:'I/IX,,I = It41 
for all u E L/. [] 

Theorems 6 and 7 state bounds on the reduction of Rdnyi entropy for almost uni- 
form distributions. These results are applied in the next section to the analysis of the 
important class of  scenarios where a given random experiment is repeated many times 
independently. 

Theorem 6. kbr given u > 1 and fl > 1, let X be a random variable with alphabet X 

andprobabi l i~  distribution Px such that 1/(~lXI) _< Px(x )  <_ f l / l X I f o r  all x E X .  

Define f ,  U, and ~'~ as h7 Lemma 5. Then 

IXI 
R(X)  - R ( X I U  = u) < log-z~,,  + 4 1 o g ~  + 21og/4. 

I,%1 

In particular, i f  f is such that iX,,] is the same fo r  all u c H, then R ( X )  - R ( X i U  = 
u) _< loglHI + 4 1 o g ~  + 21og/4. 
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P r o o f .  We can bound P,.(X) as follows: 

1 1 
Pc(X) = ~ Px(X) 2 ~ IXI (o~lXi)~------- ~ - ~21X I 

xEP( 

(3) 

Using Pu(u) >_ IX,,l/(~lXI) we get a similar upper bound for P~.(XIU = u): 

P,.(XIU = u) = Z Px!v(x,a) 2 
r E X , ,  

1 
-- Pu(u)2 Z Px(x)2 

.l" E ,)C'u 

(4) 

Combining (3) and (4) gives 

P c ( X I U  = u) IXI .< 0 / 4 ~  2 ' 

P,.(X) - I & l  

and the theorem follows by taking logarithms on both sides. [] 

The following theorem provides a tighter bound for distributions that are very close 
to uniform. In particular, Theorem 7 is strictly tighter than Theorem 6 for y < 0.4563. 
For 0 < V < 0.3 it is about 30% tighter. 

I let X be a random variable with alphabet X and Theorem 7. For given y < 3' 
probabili~, distribution Px such that (1 - y)/I,-t'l _< ex(x) <_ (1 + y)/I,:t'l for all 
x c X. Define f, U, and Xu as in Lemma 5. Then 

IXl 
R ( X )  - R ( X I U  = u)  < log ~ + l o g - -  

(1 + y)2 

1 - 2 y  

Proof. For each x, define 6, as the deviation of  Px (x) from the uniform distribution: 
ex (x) = 1/12"1 + ~x. Hence we have 18, [ < Y/12'1, and Pc (XIU = u) can be expressed 
as follows: 

P A x I u  = u) = Z Pxlu(X, u) 2 
X E 'u 

( Pxu (2;, u)~2 
Z Pu(u) ] 

~-..ex,, Px( x)2 
Pu (u) 2 

~.,~X,, PX(X)2 
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~ x ~ x  ( I / IXI-{"-  S.r ) 2 

IX.I / IXI  2 + 2/IXI Z.~x,, &. 4- Z.~xo a.2. 

IA'.I2/IXl 2 4- 21X,,I/ IXI ~. , ex .  a~ 4- (E.,.ex,, ~x) 2 

Ix,,l / lXI 2 4- (2/I .~l)lX, , l(y/IXI) + I.:t'.l(y2/IX[ 2) 

IX,, I2/IXI 2 - 2(I.)c',,I/I.)c'l)lX,.,l(Y/I,'VI) 

I + 2 y  +),2 

IX,,I- 2yl~,l 

In the third step we have made use of the fact that U is a deterministic function of X and 
thus Pxv(x ,  u) = Px(x) .  Using P,(X) >_ I/IXI,  we get 

P, . (x Iu  = u) IXI (1 4- y)2 
< - -  

P.(X) - I & l  1 - 2 •  

from which the theorem follows. [] 

5. Independent Repetition of a Random Experiment 

In many practical scenarios, a certain random experiment is repeated independently a 
large number of times. For example, W could be the result of receiving independently 
generated bits over a memoryless channel, as in the satellite scenario mentioned earlier. 
A fundamental theorem of information theory states that in such a scenario all occurring 
sequences can be divided into a typical set and a nontypical set, where the probability 
that a randomly selected sequence of length n lies in the typical set approaches 1 for 
all sufficiently large n. Furthermore, all sequences in the typical set are almost equally 
probable. This allows us to bound the decrease of Rdnyi entropy by the results of  the last 
section. 

In the following we will make use of strongly typical sequences ]4]. Consider a 
probability distribution Px over some finite set X where we assume Px(x)  > 0 for all 
x ~ X. Let x" = [xl . . . . .  x,,] be a sequence of n digits of X and define N~ (x") to be the 
number of occurrences of the symbol a 6 X in the sequence x". A sequence x" E ?c '" 
is called e-strongly typical if and only if 

(1 - e)Px(a)  < - -  
Na(x") 

< (1 + e)Px(a)  

for all a E X. Let S"(e) be the set of all e-strongly typical sequences of  length n and 
define X" to be a sequence ofn  independent and identically distributed random variables 

n Xi with Px, -- Px for l < i < n. In other words, we have Px,(X n) = ]-Ii=l Px(xi).  
Let o(n) be any function o fn  such that lim,,~oc o(n) --- 0. The following lemma asserts 
that, for sufficiently large n, the probability that X" ~ S n(e) approaches l and that the 
cardinality of S" (e) is close to 2 "H{x). 
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Lemma 8 [4]. Let X ~ be a sequence o f  i.i.d, random variables distributed according 
to Px.  Then 

1. For ever)., ~ > 0, P[X"  E ,Sn(e)] > 1 - 3 / n , f o r s u f f i c i e n t l y  large n, 
2. For all x n c S"(e) :  Px,, (x") = 2 -'~H~x)+'~"). 

3. IS"(e)l = 2 "mx)' ' '~ ') .  

Because all sequences in S" (e) are almost equally probable for sufficiently large n, the 
reduction of R6nyi entropy is similar to the case of the uniform probability distribution 
where R6nyi entropy behaves like Shannon entropy. This observation is stated as the 
next theorem. 

Theorem 9. Let X n be a sequence o f  i.i.d, random variables distributed according to 

Px , let f :  X "  --+ Lt be an arbitrary function taking on values in a given set U, and define 

$'u'(e) = {x" E S" ( e )  : f ( x " )  = u} and U = f ( X " ) .  For any 6 > O and sufficiently 
large n, the fo l lowing holds with probabili~, at least 1 - 6 /n:  X '~ lies in ,Sn(e) and the 

reduction o f  R iny i  entropy by giving U = u is upper bounded by 

R ( X " )  - R ( X " I U  = u) < n i l ( X )  - loglS,'~(e)l + o(n).  

In particular, i f  f is such that I{x c 2( �9 f ( x )  = u}l is the same f o r  all u E ld and 

l/J] = 2 k, then knowledge o f  U = u reduces the R iny i  entropy by at most  k + o(n).  

Proof. By Lemma 8, Px,,(x") = 2 -''n<x)+~ for all x" 6 S"(e) ,  and IS~(e) 
2 nnlx)~-''<'~. Application of Theorem 6 with ~ = 2 ~ and fl = 2 "~') gives 

IS"(e)l 
R ( X " )  - R ( X " I U  = u) <_ log I,S,~(e)---~ + o(n) 

= n i l ( X )  - log ISj,~(e)l + o(n).  [] 

Note that the second part of the theorem applies in particular to all linear functions 
such as parity checks from linear error correcting codes. Due to their widespread use 
linear error correcting codes are most likely to be used during the reconciliation phase. 
Theorem 9 can replace the spoiling knowledge argument in Maurer 's proof [11 ] that the 
known results on secret-key rate [ 10] hold also for a much stronger notion of secrecy. 

Conclusions 

The described link between information reconciliation and privacy amplification for 
unconditionally secure secret-key agreement can be summarized as follows. Assume 
that Alice knows a random variable W and that Bob and Eve have partial knowledge 
about W, characterized by the random variables W' and V, respectively. These random 
variables could for instance result from the described satellite scenario with W and W' 
being functions of IX, C] and [Y, C], respectively, and with V --= [Z, C]. In order to 
state the results in the strongest possible form we consider a particular value V = v held 
by Eve rather than the average over all values of V. 
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When V gives less information than W' about W, i.e., H ( W I V )  > H ( W I W ' ) ,  and a 
lower bound t > 0 on the Rrnyi entropy of Eve's probability distribution of W is known, 
i.e., R(W I V = v) >_ t, then Alice and Bob can generate a shared secret key S as follows. 
Alice and Bob exchange error-correcting information U consisting of k > H ( W I W ' )  

bits over the public channel such that Bob can reconstruct W, i.e_, H ( W I W ' U )  ~ O. 

Eve gains additional knowledge about W by seeing U = u. However, Corollary 4 
shows that with probability at least 1 - 2 - '  (over all values of U) where the security 
parameter s can be chosen arbitrarily, her Rrnyi entropy is bounded from below by 
R ( W I V  = v ,  U = u)  >_ t - 2k  - 2s, Using privacy amplification, Alice and Bob can 
now generate an r-bit secret key S, where r has to be chosen smaller than t - 2k - 2s 
and Eve's total information about S is exponentially small in t - 2k - 2s - r, namely 
less than 2 r "-zk-z~/ln 2 bits. 

The main advantage of Theorem 3 is that it applies to any distribution and any reconcil- 
iation protocol whereas previously obtained results held only for particular distributions 
and protocols. However, as was demonstrated in Sections 4 and 5, a larger secret key than 
suggested by Theorem 3 can be obtained by Alice and Bob for special distributions, For 
instance, when Eve's information V consists of a long sequence of  independent random 
variables with identical distribution, then the term 2k + 2s above can be replaced es- 
sentially by k if noninteractive reconciliation is used. It is conceivable that the bound of  
Theorem 3 can be tightened for other special distributions than those treated in Sections 4 
and 5, and possibly even for general distributions. 
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