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Abstract.

The preservation of intrinsic or inherent constraints, like divergence-conditions, has
gained increasing interest in numerical simulations of various physical evolution equa-
tions. In Torrilhon and Fey, SIAM J. Numer. Anal. (42/4) 2004, a general framework
is presented how to incorporate the preservation of a discrete constraint into upwind
finite volume methods. This paper applies this framework to the wave equation system
and the system of shallow water equations. For the wave equation a curl-preservation
for the momentum variable is present and easily identified. The preservation in case of
the shallow water system is more involved due to the presence of convection. It leads
to the vorticity evolution as generalized curl-constraint. The mechanisms of vorticity
generation are discussed.
For the numerical discretization special curl-preserving flux distributions are dis-
cussed and their incorporation into a finite volume scheme described. This leads to
numerical discretizations which are exactly curl-preserving for a specific class of dis-
crete curl-operators.
The numerical experiments for the wave equation show a significant improvement
of the new method against classical schemes. The extension of the curl-free numerical
discretization to the shallow water case is possible after isolating the pressure flux. Sim-
ulation examples demonstrate the influence of the modification. The vortex structure
is more clearly resolved.

AMS subject classification (2000): 65M06, 74S10.

Key words: finite volume methods, vorticity, shallow water equations, constraint
preservation.

1 Introduction.

The partial differential equations of electromagnetism and shallow water flows
describe fundamentally different physical processes. Mathematically, however,
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both systems of equation show an interesting structural similarity: an intrin-
sic constraint equation which follows from a vector-differential identity of the
evolution operator. In electromagnetism the divergence of the magnetic field is
preserved, while shallow water flows provide a preservation of the curl of velocity,
that is, vorticity.
Indeed, many evolution equations in physics and engineering come along
as partial differential equations with intrinsic constraints. These constraints
are characterize by local differential relations for the variables which follow
solely from the evolution equation and do not form an independent equation.
Thus, they are inherent or intrinsic to the evolution operator. Dafermos refers
to those constraints as involutions in [3]. While the constraints are exactly
satisfied at the analytical level, constraint violation is a major issue in nu-
merical calculations. Both from a theoretical and practical point of view it is
preferable to design numerical method that obey intrinsic constraint on a dis-
crete level. However, such constraints challenge numerical methods since dis-
crete preservation properties are not easily established. Special methods are
needed.

The introduction mixed finite elements in [16] provides the possibility to han-
dle solenoidal or curl-free fields in finite elements simulations and is widely used.
Also, so-called mimetic finite difference discretizations have been developed in [8]
which are used mainly for electromagnetism. However, most fluid dynamics sim-
ulations require finite volume methods, which deal with piece-wise constant data
and upwind directions. This makes it necessary to use additional approaches to
assure constraint preservation. Most severe problems occur in simulations of
magnetohydrodynamics where the magnetic field has to be kept divergence-free,
see [1]. Hence, many specialized finite volume methods have been proposed, see
e.g., [4] or [19].
A general numerical constraint preserving framework for finite volume schemes
has been developed in [18] and applied to magnetohydrodynamics, see [17]. This
paper transfers the results and methods to the case of vorticity preservation in
shallow water flows. Section 3 of this paper gives a brief introduction into the
flux distribution concept of [18]. In contrast to the divergence-free condition of
the magnetic field, the vorticity preservation is a non-linear constraint since it
follows only from the Lagrangian form of the equations. It is also not a pure
preservation but super-imposed by advection. Details are given in Section 2.
The shallow water equations are related to the non-linear wave equation system
and, hence, Section 4 presents numerical results for curl-preserving methods for
the wave equation system. In Section 5 these numerical methods are extended
to the shallow water case.

2 Constrained partial differential equations.

We will briefly introduce the generic form of intrinsic constraints and discuss
physical examples of fluid-type equations with focus on the shallow water equa-
tions.
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2.1 Generic cases.

In the generic case we consider a time dependent vector field u : RD × R+ →
R
D in D-space. Two intrinsically constrained evolution equations together with
the constraints itself are then given by

(A) ∂tu+ curlFA (u) = 0 divu = const
(B) ∂tu+ gradFB (u) = 0 curlu = const,

(2.1)

where FA and FB are appropriate flux functions. The evolution operators are
formed such that they exactly vanish under the application of the constraints
due to vector-differential identities. Hence, any initial distribution of divu or
curlu respectively, is perfectly preserved during the entire evolution. Constrained
evolutions of both types, (A) and (B), can be found in physics.

2.2 Wave equation system.

The first numerical part of this paper will consider the wave equation as a first
order system which is found to have a constrained evolution of type (B). The
variables are then given by U = {ρ,m} ∈ R1+D, with a density ρ and a momen-
tum variable m. The wave equation system reads

∂tρ+ divm = 0

∂tm+ div (p(ρ)I) = 0,
(2.2)

where the pressure function p(ρ) with p′(ρ) > 0 must be given as a function of
the density in order to close the system. The linear wave equation is recovered
by choosing p(ρ) = ρ and eliminating m in (2.2).
Since div (p(ρ)I) = gradp(ρ) the wave equation system has the constraint
curlm = const for the vorticity curlm. The system (2.2) can be viewed as
model for the Euler equations or shallow water equations if the inertial terms
of the momentum are neglected in these models. Indeed, both systems exhibit
a kind of vorticity constraint superimposed by a pure advection, see e.g., [14].

2.3 Shallow water equations.

The wave equation system (2.2) can be considered as a simple model for in-
viscid fluid flow when convection is neglected. The remaining phenomenon are
sound waves. Accordingly, the constraint properties of the wave equation system
can be found in the equations of fluid dynamics as well. However, the presence
of convection complicates the issue considerably. The second numerical part of
the paper will investigate the shallow water equations which form a special case
of inviscid fluid dynamics.
In the following the fluid variables of interest are the density ρ and velocity v
in one, two or three space dimensions. The field equations are given by the
conservation laws of mass and momentum. They read

∂tρ+ div ρv = 0(2.3a)

∂t(ρv) + div(ρv·v
T + p I) = 0(2.3b)
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with a general pressure law

p = p(ρ, T ).(2.4)

The temperature T follows from an energy equation. The case T = const, hence,
p = p(ρ) produces a closed system (2.3) which represents various basic fluid mod-
els. For example, p(ρ) = c2 ρ generates the isothermal Euler equations where the
constant c is the sound speed. The case of shallow water equations is introduced
by choosing p(ρ) = 1

2gρ
2 where g is the gravitational constant.

As in the case of the wave equation system the momentum variable m = ρv
and its curl can be considered. However, due to the convection in (2.3b) no
proper preservation property of curlm can be found. Instead of the momentum
it is more interesting to consider the vorticity

Ω = curlv(2.5)

of the velocity v alone. Note, that for the wave equation system also the vorticity
for the velocity m/ρ is preserved.
For smooth solutions it is easy to derive well known evolution equations which
replace the curl-preservation of the wave equation system. If the momentum
balance (2.3b) is written in Lagrangian form with help of the mass balance and
the convection expression is substituted by v· gradv = grad 12v

2−v× curlv we
obtain

∂tv+ grad
1

2
v2 +

1

ρ
gradp = v×Ω(2.6)

for the velocity. Taking the curl leads to

∂tΩ+ curl (Ω× v) =
1

ρ2
gradρ× grad p,(2.7)

an evolution equation for vorticity. In the context of constraints, Equation (2.7)
represents a generalized constraint. The equation follows from the system (2.3)
alone and is not an independent equation. Hence, it is reasonable to ask if it is
satisfied in numerical simulations. However, it is an evolution equation and not
a local equation as in the generic setting (2.1). This makes it difficult to verify
numerically.
In the case p = p(ρ) the right hand side of (2.7) vanishes and it follows an
advection equation for vorticity. The curl-type advection operator is discussed
in [18]. In such a setting the vorticity is preserved but advected. Furthermore, if it
is zero initially, Ω|t=0 ≡ 0, it vanishes for all times in an inviscid solution as long
as the solution remains smooth. Viscous terms and boundaries lead to additional
vorticity sources proportional to gradρ×∆v which will not be discussed here.
For the shallow water case (2.6) can be written nicely as

∂tv+ grad

(
1

2
v2 + g ρ

)
= v×Ω.(2.8)
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From here the advective preservation of the vorticity is obvious. Hence, in nu-
merical meteorology, where vorticity preservation is crucial, the form (2.8) is
commonly used in discretizations, see [14]. However, (2.8) is not in conservation
form and numerical models using this equation will fail to produce correct shal-
low water shock waves and shock speeds. In meteorological calculations shock
waves do not occur.
In two dimensions we consider v = (v(x), v(y), 0)T and the vorticity has only
a single non-vanishing entry

ω = (Ω)z = ∂xv
(y) − ∂yv

(x).(2.9)

From (2.7) for the shallow water equations we obtain

∂tω + div (ω v) = 0(2.10)

for the scalar vorticity. This is the constraint equation which corresponds to
curlm = const in the wave equation case. We note, that for smooth solutions
vorticity can not be generated. Existing vorticity distributions are not frozen
but only advected.
In the presence of discontinuous solutions things change for the vorticity. In
fact, shocks can generate vorticity when interacting with a density gradient. This
is true for any fluid model. Here, we consider only the shallow water equation
but the expressions derived for the vorticity generation across a shock are more
general.
The Rankine–Hugoniot jump conditions are given by

[
ρv(x)

]
= 0(2.11) [

ρv(x)v(x) +
1

2
gρ2
]
= 0(2.12)

[
v(y)
]
= 0(2.13)

for a shock wave with ρv(x) �= 0. From them we derive the relations for the
quantities before and after the shock, viz.

ρ1/ρ0 =
1

2

(√
1 + 8M2 − 1

)
, v

(x)
1 /v

(x)
0 = 2

(√
1 + 8M2 − 1

)−1
(2.14)

with the Froude or Mach number M = v
(x)
0 /
√
gρ0. The jump of the vorticity is

denoted by

∆ω =
[
∂xv

(y) − ∂yv
(x)
]
.(2.15)

In special situations it may occur that the vorticity is vanishing on one side of
the shock but non-zero on the other. This is the most obvious case of vorticity
generation.
In order to derive an expression for ∆ω we consider a shock wave propagating
in x-direction in a non-homogeneous two-dimensional environment. The calcula-
tion follows the work [12] which relies on [20]. After transforming the observation
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frame to a stationary infinitesimal vicinity of a point on the shock wave we con-
sider the momentum equation in Lagrangian form in the smooth regions left and
right to the shock wave. For the y-component it follows

ρv · gradv+ grad p = 0 ⇒ ρv(x)∂xv
(y) + ρv(y)∂yv

(y) + ∂yp = 0.(2.16)

Taking the jump over the discontinuity and using the Rankine-Hugoniot condi-
tions we derive

ρv(x)
[
∂xv

(y)
]
+ [ρ] v(y)∂yv

(y) + [∂yp] = 0,(2.17)

which is an expression for the first part of ∆ω, i.e.,
[
∂xv

(y)
]
. The second part

follows from differentiating the Rankine-Hugoniot condition itself yielding

0 = ∂y
[
ρv(x)v(x) + p

]
= ∂y

(
ρv(x)

)[
v(x)
]
+ ρv(x)

[
∂yv

(x)
]
+
[
∂yp
]

(2.18)

where
[
ρv(x)

]
= 0 was used. Subtracting both equations leads to

∆ω =
∂y(ρv

(x))

ρv(x)

[
v(x)
]
−
v(y)∂yv

(y)

ρv(x)
[ρ](2.19)

which is an expression for the jump of vorticity through a shock in dependence
of tangential gradients and jumps of density and velocity. As long as the field
in front of the shock are homogeneous no vorticity will by generated. Assuming
a non-varying velocity in front of the shock we find the compact relation

∆ω =
∂yρ0

ρ0

[
v(x)
]
.(2.20)

This is the well-known result that a shock wave which hits a tangential density
gradient component will generate vorticity.

3 Constraint-preserving finite-volume methods.

The idea of constraint preserving numerical methods originated to a consid-
erable extent in the context of magnetohydrodynamics where the divergence
constraint produces severe numerical problems, see [1, 4] and the review [19].
Recently, a general framework for constraint preserving finite volume methods
have been presented in [18], see also [5]. It has been successfully applied to the
MHD system in [17]. In the following we will discuss the application of the frame-
work to curl-preservation in order to use it for the wave equation system (2.2)
and shallow water system (2.3). Vorticity-preserving finite difference methods
for the wave equation system are also discussed in [15].

3.1 Flux distributions.

Following the presentation in [18] we consider a generic vector field u ∈ RD →
R
D. It is approximated on a finite volume grid T = {Ki}i∈N consisting of non-
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overlapping cells Ki by a cell-wise constant vector-valued grid function ũ ∈
V =

{
g : T → RD

}
. For the numerical evolution of the vector field a certain

finite volume update should be given in which generally each cell contributes
to neighboring cells by fluxes during one time step. In order to identify the
constraint preserving properties of such an update we need to introduce a special
formulation based on so-called flux distributions.

Definition 3.1 (Flux distribution). We define a “flux distribution” ΦK :
V → V which is attached to a grid cell K. It maps the grid function ũ into
another grid function, that is ΦK(ũ) ∈ V with supp(ΦK(ũ)) = K∪

⋃
̂K∈N (K) K̂.

The evaluation ΦK(ũ)| ̂K gives the change of ũ at cell K̂ caused by cell K during
a time step, that is the flux.

Any finite volume scheme can be written in the form

ũm+1
∣∣
K
= ũm|K +

∑
̂K∈{K}∪N (K)

Φ
̂K(ũ

m)
∣∣
K

(3.1)

once the specific flux distributions have been identified. Here N (K) defines the
neighboring cells of K. The flux distribution represents a special shape of the
change of ũ associated with a generic cell during one time step. The formulation
(3.1) requires the decomposition of the total change of ũ into a superposition of
flux distributions associated to neighboring cells.
The object ΦK(ũ) is a grid function which we assume to be decomposed into
linear combinations with scalar factors ϕ(g) which carries the dependence on u

and a skeleton or shape function Φ̂
(g)
, thus we write

ΦK(ũ) =
∑

g
ϕ
(g)
K (ũ)Φ̂

(g)

K ,(3.2)

where the sum runs over a finite number of shape functions. The shape functions
will be responsible for constraint preservation.
If we define a generic discrete constraint C̃K · u ≈ C(u)|K where C is the
analytic expression for the constraint, we can state the following lemma about
constraint preservation.

Lemma 3.1 (Constraint preservation). If the condition

C̃K · Φ̂
(g)
̂K = 0 ∀K, K̂(3.3)

holds for the shape functions Φ
(g)
K , g = 1, 2, ... of the flux distribution, then the

resulting scheme (3.1) is locally constraint preserving.

The condition (3.3) represents the discrete analog of the respective vector-

differential identity. If the shape function Φ
(g)
K is assumed to be unknown, the

evaluation of (3.3) on several grid cells K gives a homogeneous linear system
whose nullspace provides constraint-preserving flux distributions. For details of
the procedure see [18].



S42 R. JELTSCH AND M. TORRILHON

3.2 curl-constraints on 2d cartesian grids.

We continue to present the results of the condition (3.3) in the case of a curl-
constraint. We restrict ourselves to the two-dimensional Cartesian case and con-
sider only the z-component of the curl when defining curlu = ∂xu

(y) − ∂yu(x).
The resulting flux distribution depends strongly on the choice of the constraint
discretization. Similar to the case of a div-constraint the choice of central dif-
ferences turned out to be not very fruitful, [18]. Instead we choose the extended
operator

c̃url
(�)
u
∣∣∣
i,j
=

{
u
(y)
i+1,j

}
y
−
{
u
(y)
i−1,j

}
y

2∆x
+

{
u
(x)
i,j−1

}
x
−
{
u
(x)
i,j+1

}
x

2∆y
(3.4)

whose averaging

{ψi,j}y =
1
4 (ψi,j+1 + 2ψi,j + ψi,j−1)

{ψi,j}x =
1
4 (ψi+1,j + 2ψi,j + ψi−1,j)

(3.5)

introduce a multi-dimensional appearance. Neglecting the details we just present
the results of the evaluation of the condition (3.3). Up to a factor the first element

of the resulting nullspace represents a grid function Φ̂
(1)

i,j with mostly vanishing
entries in the grid except for

Φ̂
(1)

i,j

∣∣∣
i+1,j+1

= (∆y,∆x)T , Φ̂
(1)

i,j

∣∣∣
i,j+1

= (−∆y,∆x)T ,

Φ̂
(1)

i,j

∣∣∣
i,j
= (−∆y,−∆x)T , Φ̂

(1)

i,j

∣∣∣
i+1,j

= (∆y,−∆x)T .
(3.6)

The nullspace is 4-dimensional and the elements Φ̂
(2,3,4)

i,j result from shifting of
(3.6) around the center cell (i, j). The upper right two sketches of Figure 3.1 show

the structure of the flux distributions Φ̂
(1)

i,j and Φ̂
(2)

i,j . Any scheme that is built
from these flux distributions assembled as in (3.2) and plugged into (3.1) will
exactly preserve the discrete curl-operator (3.4) during the entire calculation.

Figure 3.1: Discrete constraints coefficients and corresponding flux distributions for
curl- and div-preservation, upper and lower row, respectively.
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3.3 Dual flux distributions.

The discrete curl-constraint (3.4) can be written in the general form

∣∣c̃urlu∣∣
i,j
=

∑
−1≤k,l≤1

ck,l · ui+k,j+l(3.7)

with appropriate vector-valued coefficients ck,l in a 3×3 block around cell (i, j).
These coefficients are shown in the upper left corner of Figure 3.1. These vectors
shall not be confused with the values of the flux distribution. Indeed, since the

operator c̃urli,j is a functional on the space V of vector valued grid functions
the set ck,l forms a representative of an element of the dual space V

�. It is
interesting to mention the result for the div-preservation in 2 dimensions in this
context. The respective discrete operator and its flux distributions are depicted
in the lower row of Figure 3.1. To some extent the objects have changed their
role between the actual space and its dual. This relation may also be found on
the analytic level.

4 Curl-free methods for the wave equation system.

Equipped with the curl-preserving flux distributions we are able to formulate
a vorticity-preserving upwind finite volume scheme. We follow the ideas of [17].

4.1 Flux formulation.

Crucial for the vorticity preservation is the evolution of the momentum in (2.2).
We assume a classical finite volume scheme based on intercell fluxes is given for
(2.2), see [7]. Due to the gradient structure the update for the momentum has
the form

mn+1i,j =m
n
i,j +

∆t

∆x

(
pi− 12 ,j − pi+ 12 ,j

)( 1
0

)
+
∆t

∆y

(
pi,j− 12 − pi,j+ 12

)( 0
1

)
,

(4.1)

where pi+ 12 ,j and pi,j+
1
2
are momentum components of the intercell flux, i.e., the

pressure. They may be obtained using any approximate or exact Riemann solver
for the wave equation system. With the definitions of the flux distributions

Φ
(class)

i,j+ 12

∣∣∣
i,j
=
∆t

∆y
pi,j+ 12

(
0
−1

)
Φ
(class)

i,j+ 12

∣∣∣
i,j+1

=
∆t

∆y
pi,j+ 12

(
0
1

)
(4.2)

and analogous expressions for Φ
(class)

i+ 12 ,j
the classical scheme (4.1) can be equiva-

lently written in the form (3.1). However, the flux distributions in (4.2) are not
curl-preserving since they are no linear combinations of (3.6).
We modify the update in the following way in order to obtain an exactly curl-
preserving numerical method. Instead of using (4.2) we utilize the curl-preserving
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flux distributions (3.6) for a full flux distribution in the form

Φ
(curl-free)

i,j+ 12
=

∆t

8∆x∆y
pi,j+ 12

(
Φ
(1)
i,j +Φ

(2)
i,j

)
.(4.3)

The distribution Φ
(curl-free)

i+ 12 ,j
is analogously formed from Φ

(1)
i,j ,Φ

(4)
i,j and pi+ 12 ,j.

The new flux distribution Φ
(curl-free)

i,j+ 12
is shown in Figure 4.1 together with its

classical counterpart. Both distributions shown correspond to the update in
y-direction. In the program the update denoted by “+ =” according to this
distribution reads

mn+1i,j + =
∆t
4∆xpi,j+ 12 (0,−1)

T
, mn+1i,j+1+ =

∆t
4∆xpi,j+ 12 (0, 1)

T

mn+1i+1,j+ =
∆t
8∆xpi,j+ 12

(1,−1)T , mn+1i+1,j+1+ =
∆t
8∆xpi,j+ 12

(1, 1)
T

(4.4)

mn+1i−1,j+ =
∆t
8∆xpi,j+ 12 (−1,−1)

T
, mn+1i−1,j+1+ =

∆t
8∆xpi,j+ 12 (−1, 1)

T

for a single y-flux calculated at the edge (i, j + 1
2 ). The analogous update is

performed for all other edges of a cell. We implemented the scheme based on
a Roe-solver as approximate Riemann solver. The input values for the numerical
flux are obtained from a linear reconstruction using van-Leers limiter. The time
integration followed a second order improved Euler method and a dimensional
splitting.

Figure 4.1: Flux distributions for the update of the momentum in the wave equation
system. Left: a classical finite volume scheme. Right: vorticity-preserving flux distribu-
tion.

4.2 2D Riemann problem.

The abilities of the new vorticity preserving scheme are demonstrated with the
simulation of a 2d Riemann problem. We write m = (m,n) and use f(ρ) = ρ2

in the equations. The initial conditions are given by

(ρ,m, n)
T
∣∣
t=0
=

{
(1, 0, 0)

T
x ≥ 0 and y ≥ 0

(ρmax,mmax, nmax) else
(4.5)

with ρmax > 1 and

mmax = nmax = (ρmax − 1)
√
(1 + ρmax)/2.(4.6)
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This Riemann problem is considered in [11] in the context of existence of solu-

tions, see also [2]. Here, the computational domain is chosen to be [−1, 1]2, the
end time t = 0.12, CFL = 0.9 and the initial maximal density ρmax = 9.

In the initial conditions the momentum vector drops to zero along the positive
coordinate axes producing a singularity in the vorticity distribution. Analyti-
cally, this singularity is perfectly preserved since curlm = const. However, the
density jump together with a vorticity-free momentum discontinuity propagates
across the computational domain. See Figure 4.2 for a plot of the initial condi-
tions and a sketch of the solution at t = 0.12.

Figure 4.2: Left: initial conditions for the Riemann problem (4.5). Right: sketch of the
density contours of the solution at t = 0.12. The dotted lines indicate the position of
the vorticity singularity.

Figure 4.3 shows the numerical result for the new curl-preserving fluxes (left)
in comparison with the classical fluxes (right). The figure shows the contours of
the magnitude of the momentum

√
m2 + n2. The grid used 200×200 grid cells

on [−1, 1]2 but the plot shows only the section [−0.2, 1]2 covered by 120×120
cells.

Both calculations are clearly different. The non-curl-preserving fluxes pro-
duce spurious oscillations along the diagonal path of the corner discontinu-
ity. Furthermore, at the origin the classical method shows an unphysical non-
symmetric behavior which is cured by the use of the curl-preserving method.
The deviations of both results are reflected in the vorticity distribution which
is perturbed in the classical case but exactly preserving when using the new
method. Figure 4.4 shows the contours of curlm obtained with the extended op-
erator (3.4) for the solution of the classical and curl-free method. The classical
scheme shows vorticity contamination along the path of the shock wave corner
with values around ≈ ±100. In the curl-free case only the vorticity singularities
with values ≈ ±800 are present. These are exactly preserved from the initial
conditions, but influence the computational domain in the classical case.
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Figure 4.3: Contour plots for the magnitude of the momentum
√
m2 + n2 in the so-

lution of the Riemann problem (4.5) at time t = 0.12. Left: Calculation with the
curl-preserving method. Right: Result for a classical method.

Figure 4.4: Contour plots for the value of the curl of momentum curlm in the solution of
the Riemann problem (4.5) at time t = 0.12. Left: Calculation with the curl-preserving
method. Only the initial vorticity singularities are present. Right: Result for a classical
method. The domain is spoiled by wrongly generated curlm.

5 Curl-free discretization for shallow water equations.

The system of shallow water equations

∂tρ+ div(ρv) = 0(5.1a)

∂t(ρv) + div(ρvv
T ) + grad p = 0(5.1b)

with p(ρ) = 1
2gρ

2 has exactly the same form as the wave equations system up to
the convective term in the second equation. However, this convective term makes
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the constraint preservation, i.e., the vorticity evolution, very hard to control. The
main difficulty is the non-linear operation when deriving the vorticity equation,
namely the transformation to Lagrangian form and division by density before
taking the curl. A numerical discretization of the system (5.1) which reproduces
a precise numerical counterpart of the vorticity evolution is work in progress.
However, the above results for the wave equation system suggest that a proper
discretization of the pressure gradient will have an influence on the behavior of
the vorticity evolution.
Some numerical method use the velocity equation (2.8) to incorporate vor-
ticity preservation, see [14]. Here, however, we concentrate on the conservative
formulation (5.1) in order to handle shock waves correctly.

5.1 Discretization.

We proceed by extending the curl-free numerical method of the wave equation
system to the shallow water equations. The equations have the form

∂tU + ∂xF (U) + ∂yG(U) = 0(5.2)

with the variable vector U =
(
ρ, ρv(x), ρv(y)

)T
and flux functions

F (U) =

⎛
⎝ ρv

(x)

ρv(x)v(x)

ρv(x)v(y)

⎞
⎠+

⎛
⎝ 0p
0

⎞
⎠, G (U) =

⎛
⎝ ρv

(y)

ρv(y)v(x)

ρv(y)v(y)

⎞
⎠+

⎛
⎝ 00
p

⎞
⎠.(5.3)

These functions have been written such as to emphasise the two distinct influ-
ences, convection and pressure. The aim is to separate these influences also in
the numerical method in order to apply the special curl-free flux distribution to
the pressure gradient alone. Note, that such a separation has also been proved
useful in the CUSP scheme of [9, 10].
Usually, in a standard finite volume update

Un+1i,j = U
n
i,j +

∆t

∆x

(
F̃i− 12 ,j

− F̃i+ 12 ,j
)
+
∆t

∆x

(
G̃i− 12 ,j

− G̃i+ 12 ,j
)

(5.4)

the numerical flux functions F̃i+ 12 ,j and G̃i,j+
1
2
are highly involved. To gain

margin for the modification of the discretization we consider the simple numerical
flux

F̃i+ 12 ,j =
1

2
(F (Ui+1,j) + F (Ui,j))−

1

2
c
(max)

i+ 12 ,j
(Ui+1,j − Ui,j),(5.5)

which is the local Lax–Friedrichs flux. The diffusive part is multiplied with the
maximal modulus of the local propagation speed. Obviously, this numerical flux

decomposes into a true flux part and a diffusion part, F̃i+ 12 ,j = F̃
(F )

i+ 12 ,j
+ F̃

(D)

i+ 12 ,j
.

Accordingly inside the flux part the pressure influence can be identified as

F̃
(F )

i+ 12 ,j
=

⎛
⎝ ρv

(x)

ρv(x)v(x)

ρv(x)v(y)

⎞
⎠
i+ 12 ,j

+ pi+ 12 ,j

⎛
⎝ 01
0

⎞
⎠,(5.6)
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where the values at (i+ 12 , j) are evaluated as arithmetic average of the adjacent
values as in the flux (5.5).
After isolating the pressure expression in the numerical flux (5.5) on one cell
interface according to (5.6) it is easy to treat this part separately. Indeed this
pressure expression enters the update exactly as the pressure of the wave equa-
tion system in (4.1). Hence, the same successful curl-free flux distribution as in
(4.4) can be applied.
An extension to other numerical flux functions is possible once the numerical
flux is written in the form (5.5) with an arithmetic average of the flux and
a diffusive central difference part. Especially for numerical fluxes based on Roe
solvers this is always possible. The basic assumption behind this approach is
that the diffusive part does not influence the vorticity generation too much.
This needs to be investigated in the future.
The numerical method described above for the shallow water equations was
implemented based on the local Lax–Friedrichs flux, linear reconstruction and
a Heun time integration method. Both linear reconstruction and time integration
do not interfere with the special pressure flux distribution. The two dimensional
operator was realized by an additive splitting in which both dimensions are
updated during one step.

5.2 Numerical example.

The generation and evolution of vorticity in the shallow water case is difficult
to check numerically. First, any vorticity is not frozen locally but is advected,
hence, any vorticity pattern change with time. Furthermore, due to numerical
viscosity, vorticity is generated even in smooth regions for a perfectly curl-free
discretization. This viscous vorticity generation is as unavoidable as the viscous
smearing of the shock wave in a inviscid calculation. However, this vorticity is
of order of the grid size and vanishes in the limit of fine grids.
The vorticity generation of a shock wave is much stronger than viscous gen-
eration of a smooth solution due to the strong gradients. In the following we
consider a shock wave running over a dense cloud and investigate the evolution
of the vorticity field.
The initial condition for the density are depicted in the left hand side plot of
Figure 5.1. It consists of a shock wave

ρ (x, y) =

{
1.0 x > xs
8.0 x < xs

, v(x) (x, y) =

{
0.0 x > xs
42.0 x < xs

(5.7)

at xs = −0.7 which propagates with Mach numberM = 6 in x-direction. The val-
ues are derived from the Rankine–Hugoniot conditions (2.14). The y-component
of the velocity vanishes entirely, v(y) ≡ 0. The domain in front of the shock
wave is disturbed by a circular density cloud around the origin. We choose an
exponential decay, that is, the density difference

∆ρ (x, y) = 2 exp

(
−
x2 + y2

ε

)
(5.8)
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Figure 5.1: Shock wave interaction with a density cloud for the shallow water equations.
Left: initial conditions for the density with shock wave and exponentially decaying
density bump. Right: Contours of ‖v‖ at time t = 0.35 after the shock passed through
the cloud. The black box indicates the section shown in Figures 5.3 and 5.4.

with ε = 1/20 is added to the initial conditions. When the shock hits the cloud
a weaker shock wave is reflected and the shock slows down and bends back inside
the cloud. The contours of the velocity magnitude ‖v‖ are shown in the right
hand side plot of Figure 5.1 at time t = 0.35. Two straight contours at the left
edge stem from the initial conditions. The cloud itself is compressed and swept
behind the shock wave.
The process is simulated in the domain x ∈ [−0.8, 2.2] × [−1.5, 1.5], up to
a time t = 0.35. We used the second order scheme based on the local Lax–
Friedrichs flux with both the classical and curl-free pressure discretization. The
CFL number was CFL = 0.95 in all cases. We show the results for the grid sizes
200× 200 with ∆x = 0.015 and 400× 400 with ∆x = 0.0075.
Due to the two-dimensional character of the simulation the vorticity is a scalar
ω = ∂xv

(y) − ∂yv(x). The time evolution of the maximal value and the in-
tegral of |ω| give some insight in the vorticity generation of the process. We
calculate the values of ‖ω‖∞ and ‖ω‖1 from the simulation results at t =
0.05, 0.1, 0.15, 0.2, 0.25, 0.3, and 0.35 and plot their evolution as piecewise lin-
ear curve in Figure 5.2. The figure shows the results of the classical and the
curl-free scheme both for grids with N = 200 and N = 400.
The maximal value of |ω| becomes stationary once the shock has passed
through the cloud at t ≈ 0.2. However, the value is 60% higher for the case
N = 400 due to higher resolution and less numerical diffusion. The curve for
the integral of |ω| shows a non-monotone behavior. The difference between the
different resolutions is less pronounced. Both schemes, classical and curl-free,
exhibit approximately the same behavior for the overall generation of vorticity.
The difference of the schemes becomes evident in the details of the vorticity
structure as discussed below.
The expression for the vorticity generation across a shock wave (2.20) allows
to derive a rough estimate how much vorticity is to expect in the present process
following the presentation in [12]. The shock wave constantly generates vorticity
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Figure 5.2: Time evolution of the maximal value (left) and the integral (right) of
vorticity |ω| for the shock wave cloud interaction. The plots show the results for the
classical and curl-free scheme at two different resolutions.

according to the value of ∂yρ while it is running over the density cloud. If we
assume that the velocity jump across the shock does not change during the
passage the vorticity gain is simply given by

ω (x, y) =
∂yρ(x, y)

ρ(x, y)
[v(x)],(5.9)

where the density distribution is given by (5.8). This is based on the additional
assumption that the vorticity does not change after it is created by the shock
which is not true due to advection. However, the result enables us to give the
rough estimates ‖ω‖∞ ≈ 19.8 and ‖ω‖1 ≈ 5.2 for the current process. These
values are in approximate correspondence with the results of the numerical simu-
lations.
Let us consider the vorticity structure in more detail. The vorticity generated
by the shock performs a complicated movement behind the shock due to com-
pression and advection. The vorticity patterns are symmetric with respect to the
x-axis. At time t = 0.35 they are concentrated in the area [1.0, 1.5]× [−1.0, 1.0].
Due to symmetry we restrict ourselves to Ω = [1.0, 1.5]× [0.0, 1.0]. In the right
hand side plot of Figure 5.1 this area is indicated by a black box.
Figure 5.3 shows the contours of vorticity ω at time t = 0.35 inside the section
Ω based on the curl-free (left) and classical (right) numerical method. Both plots
were obtained from a simulation with N = 200. The shock wave cuts both plots
on the left half bending towards the middle in the lower half. The strong vorticity
generation along the shock line is visible. The overall patterns of the vorticity
look the same for both calculations. However, the result differ in many details.
The difference is more pronounced than in the results for density or velocity. This
shows that the vorticity is highly sensible to the way of discretization inside the
numerical method.
The curl-free method leads to more distinct features along the shock line.
Figure 5.3 shows more clear vortex patterns, i.e., more isolated vorticity extrema.
This phenomenon is even more visible in the high resolution result in Figure 5.4
which shows the same section Ω for both schemes at t = 0.35 but based on a
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Figure 5.3: Vorticity contours in the section Ω = [1.0, 1.5] × [0.0, 1.0] at time t = 0.35
for the shock wave interaction with a dense cloud. Left: curl-free discretization. Right:
classical discretization. Both results used x = 0.015 which leads to a 33×66 grid for
the section shown. Again, the curl-free result shows a more detailed structure.

Figure 5.4: Vorticity contours in the section Ω = [1.0, 1.5] × [0.0, 1.0] at time t = 0.35
for the shock wave interaction with a dense cloud. Left: curl-free discretization. Right:
classical discretization. Both results used x = 0.0075 which leads to a 66×133 grid for
the section shown. Again, the curl-free result shows a more detailed structure.
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N = 400 calculation. Here the classical result shows a smeared vorticity along
the lower part of the shock line, while the curl-free calculation gives distinct
vertexes.

6 Conclusion.

The intrinsic constraints of the wave equation system and the system of inviscid
shallow water equations have been discussed and specialized curl-free numerical
method have been derived and investigated for these systems.

The pure gradient operator in the moment equation of the wave equation sys-
tem leads to a curl-constraint in the sense that the curl of the moment variable
does not change during any evolution. In the inviscid shallow water system the
moment equation is supplemented by a convection term which spoils the clear
curl-constraint. Instead, a generalized constraint based on vorticity can be de-
rived. In smooth solutions vorticity can not be created and any vorticity is only
advected. However, shock waves can create vorticity.

In the numerical method the pressure gradient flux of the equations require
a special treatment based on the flux distribution method derived in [18]. In
order to apply the method to the shallow water system, the pressure flux needs
to be isolated by rearranging the numerical flux. The constraint-preserving flux
distribution provides a conservative finite volume update which exactly preserves
the value of a discrete constraint operator. The flux modification is easily im-
plemented in any finite volume frame work and does not interfere with data
reconstruction or time integration.

The curl-free discretization of the wave equation system leads to the reduc-
tion of spurious oscillations and an asymmetric solution. Due to the generalized
character of the vorticity constraint in the shallow water system the influence
of the curl-free discretization is more difficult to detect. Nevertheless, it could
be shown that vortex pattern are more clearly resolved with the new curl-free
discretization.
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