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Abstract We extend the results given by Colbois, Dryden and El Soufi on the relationships
between the eigenvalues of the Laplacian and an extrinsic invariant called intersection index,
in two directions. First, we replace this intersection index by invariants of the same nature
which are stable under small perturbations. Second, we consider complex submanifolds of the
complex projective space CP N instead of submanifolds of R

N and we obtain an eigenvalue
upper bound depending only on the dimension of the submanifold which is sharp for the first
non-zero eigenvalue.
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1 Introduction and statement of the results

For a compact manifold without boundary, the spectrum of the Laplace-Beltrami operator �

consists of an unbounded non-decreasing sequence of non-negative real numbers

0 = λ1 < λ2 ≤ · · · ≤ λk ≤ · · · ↗ ∞,

where each eigenvalue λk has finite multiplicity. The study of the relationship between the
extrinsic geometry of submanifolds and the spectrum of the Laplace-Beltrami operator is an
important topic of spectral geometry. One of the well-known extrinsic invariants is the mean
curvature vector field of a submanifold. In this regard, we can mention the Reilly inequality
[11] for an immersed m-dimensional submanifold M of R

N
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λ2(M) ≤ m

Vol(M)
‖H(M)‖2

2,

where ‖H(M)‖2 is the L2-norm of the mean curvature vector field of M . For higher eigen-
values, it follows from results of El Soufi et al. [9] that for every k ∈ N

∗,

λk(M) ≤ R(m)‖H(M)‖2∞ k2/m,

where ‖H(M)‖∞ is the L∞-norm of H(M) and R(m) is a constant depending only on m.
Since the variational characterization of eigenvalues do not depend on derivatives of the
metric, we are interested in extrinsic invariants which do not depend on metric derivatives,
excluding for instance curvature. The intersection index (see below for the definition) is an
important example of such intrinsic invariants. Colbois et al. [6] studied the relationship
between the intersection index, and the eigenvalues of the Laplace-Beltrami operator. In this
paper, we review and extend their results.

For a compact m-dimensional immersed submanifold M of R
N = R

m+p , p > 0, the
intersection index is given by

i(M) = sup
�

�(M ∩ �),

where � runs over the set of all p-planes that are transverse to M ; if M is not embedded, we
count multiple points of M according to their multiplicity. We remark that the intersection
index was also investigated by Thom [3] where it was called the degree of M . Colbois et al. [6]
show that there is a positive constant c(m), depending only on m, such that for every compact
m-dimensional immersed submanifold M of R

m+p , we have the following inequality:

λk(M)Vol(M)2/m ≤ c(m)i(M)2/mk2/m . (1)

Moreover, the intersection index in the above inequality is not replaceable with a constant
depending only on the dimension m. Even for hypersurfaces, the first positive eigenvalue
cannot be controlled only in terms of the volume and the dimension (see [6, Theorem 1.4]).
As an immediate consequence of Inequality (1), the normalized eigenvalues on convex hyper-
surfaces are bounded above only in terms of the dimension. Another remarkable consequence
of Inequality (1) concerns algebraic submanifolds [6, Corollary 4.1]: Let M be a compact
real algebraic manifold, i.e. M is a zero locus of p real polynomials in m + p variables of
degrees N1, . . . , Np . Then,

λk(M)Vol(M)2/m ≤ c(m)N 2/m
1 · · · N 2/m

p k2/m . (2)

Note that Inequalities (1) and (2) are not stable under “small” perturbations, since the inter-
section index might dramatically change.

We extend the work of Colbois, Dryden and El Soufi in two directions. The first one
consists in replacing the intersection index i(M) by invariants of the same nature which are
stable under small perturbations. The second direction concerns complex submanifolds of the
complex projective space CP N . Here we obtain an eigenvalue upper bound for submanifolds
of CP N depending only on the dimension. Below we describe the main results of this paper.

1.1 First part

Let ε < 1 be a positive number. By an ε-small perturbation, we mean any perturbation
in a region D ⊂ M whose measure is at most equal to εVol(M). To avoid any technical
complexity, we assume that M \ D is a smooth manifold with smooth boundary. Here, we
define new notions of intersection indices which are stable under any ε-small perturbation. Let
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G be the Grassmannian of all m-vector spaces in R
m+p endowed with the O(m+ p)- invariant

Haar measure of total measure 1. Let 0 < ε < 1 and D be any open subdomain of M such
that M \ D is a smooth manifold with smooth boundary and Vol(D) ≤ εVol(M). We denote
M \ D by M D

ε . Let H be an m-vector space in G. We define iH (M D
ε ) := supP⊥H �(M D

ε ∩ P),
where P runs over affine p-planes orthogonal to H . We now define the ε-mean intersection
index as follows:

ı̄ε(M) := inf
D

∫

G

iH (M D
ε )d H,

where D runs over regions whose measure is smaller than εVol(M) and M \ D is a smooth
manifold with smooth boundary.

Similarly, for r > 0, we define the (r, ε)-local intersection index as:

ı̄εr (M) := inf
D

sup
x∈M D

ε

∫

G

iH (M D
ε ∩ B(x, r))d H,

where B(x, r) ⊂ R
m+p is an Euclidean ball centered at x and of radius r and D runs over

regions whose measure is smaller than εVol(M) and M \ D is a smooth manifold with smooth
boundary.

We can now state our theorem.

Theorem 1.1 There exist positive constants cm, αm and βm depending only on m such that
for every compact m-dimensional immersed submanifold M of R

m+p, every r > 0, k ∈ N
∗,

and 0 < ε < 1, we have

λk(M)V ol(M)2/m ≤ cm
ı̄ε(M)2/m

(1 − ε)1+2/m k2/m, (3)

and

λk(M) ≤ αm
1

(1 − ε)r2 + βm
ı̄εr (M)2/m

(1 − ε)1+2/m

(
k

V ol(M)

)2/m

. (4)

The main feature of the inequalities (3) and (4) is that the upper bounds are not considerably
affected by the presence of a large intersection index in a “small” part of M (i.e. a subdomain
with small volume). In particular, for a compact hypersurface of R

m+1 which is convex
outside a region1 D of measure at most εVol(M), one has ı̄ε(M) ≤ i(M D

ε ) and then

λk(M)Vol(M)2/m ≤ cm
22/m

(1 − ε)1+2/m k2/m .

We also note that one has Inequality (2) not only for compact algebraic submanifolds of R
N ,

but also for every ε-perturbation of those algebraic submanifolds, where the constant c(m)

in (2) depends only on m and on ε.

1.2 Second part

We study another natural context where algebraic submanifolds can be considered which is
the complex projective space CP N . According to Chow’s Theorem ([10]), every complex

1 We say that M is convex outside of D, if after a perturbation of M which is the identity outside of D we get
a convex compact hypersurface.
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submanifold M of CP N is a smooth algebraic variety, i.e. it is a zero locus of a family of
complex polynomials. We obtain the following upper bound for complex submanifolds of
CP N endowed with Fubini-Study metric gF S .

Theorem 1.2 Let Mm be an m-dimensional complex manifold admitting a holomorphic
immersion φ : M → CP N . Then for every k ∈ N

∗ we have

λk+1(M, φ∗gF S ) ≤ 2(m + 1)(m + 2)k
1
m − 2m(m + 1). (5)

In particular, one has Inequality (5) for every complex submanifold of CP N . Note that the
power of k is compatible with the Weyl law. Under the assumption of Theorem 1.2, for k = 1,
one has

λ2(M, φ∗gF S ) ≤ 4(m + 1), (6)

which is a sharp inequality since the equality holds for CPm . Inequality (6) is obtained by
Bourguignon et al. [2, page 200], and also by Arezzo et al. [1]. Note that the results in [1]
and [2] are for the first non-zero eigenvalue of Laplacian on a larger family of complex
manifolds (see page 527). However, Theorem 1.2 gives an upper bound for higher eigenvalues
in addition to a sharp upper bound for λ2, when we consider the complex submanifolds of
CP N endowed with the Fubini-Study metric. For a complex submanifold M of CPm+p of
the complex dimension m, we have

Vol(M) = deg(M)Vol(CPm), (7)

where deg(M) is the intersection number of M with a projective p-plane in a generic position
(see for example [10, pages 171–172]). Multiplying Inequality (5) by (7), we get

λk+1(M, gF S )Vol(M)
1
m ≤ C(m) deg(M)

1
m k

1
m . (8)

Moreover, one can describe M as a zero locus of a family of irreducible homogenous poly-
nomials and then deg(M) is bounded by the multiplication of degrees of the irreducible
polynomials describing M . One can now compare Inequality (8) with Inequality (2).

This paper is organized as follows. In Sect. 2, we recall one of the main methods to estimate
the eigenvalues in the abstract setting of metric measure spaces introduced by Colbois and
Maerten [8]. We use this method to prove Theorem 1.1 in Sect. 3. In Sect. 4, we consider
algebraic submanifolds of CP N and we prove Theorem 1.2. The method which is used in
Sect. 4 to show Theorem 1.2 is independent from what we introduce in Sects. 2 and 3.

2 A general preliminary result

A classical way to estimate the eigenvalues of the Laplacian is to construct a family of
disjoint domains and then, to estimate the Rayleigh quotients of the test functions supported
on these domains. Colbois and Maerten [8] introduce a method to construct an elaborated
family of disjoint domains in the general setting of metric-measure (m − m) spaces. This
method shows that eigenvalue upper bounds and controlling the local volume concentration of
balls are linked. Here, for an m-dimensional Riemannian submanifold M of R

N , controlling
the local volume concentration of balls means to control the constant C in the following
inequality for some ρ > 0

Vol(M ∩ B(x, r)) ≤ Crm ∀x ∈ M, 0 < r ≤ ρ,

where B(x, r) is a ball of radius r centered at x in R
N .
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This section is devoted to recall this construction for metric measure spaces. Throughout
this section the triple (X, d, μ) will designate a complete locally compact m − m space with
a distance d and a finite, positive, non-atomic Borel measure μ. We also assume that balls
in (X, d) are pre-compact. Each pair (F, G) of Borel sets in X such that F ⊂ G is called a
capacitor. For F ⊆ X and r > 0, we denote the r -neighborhood of F by Fr , that is

Fr = {x ∈ X : d(x, F) ≤ r}.
Definition 2.1 Given κ > 1, ρ > 0 and N ∈ N

∗, we say that a metric space (X, d) satisfies
the (κ, N ; ρ)-covering property if each ball of radius 0 < r ≤ ρ can be covered by N balls
of radius r

κ
.

Note that when ρ = ∞, we simply say that the metric space (X, d) satisfies the (κ, N )-
covering property. It is clear that (κ, N ; ρ)-covering property implies (κ, N ; λ)-covering
property for any 0 < λ ≤ ρ.

Lemma 2.1 ([8, Corollary 2.3] and [7, Lemma 2.1]) Let (X, d, μ) be an m − m space
satisfying the (4, N ; ρ)-covering property. For every n ∈ N

∗, let 0 < r ≤ ρ be such that for
each x ∈ X, μ(B(x, r)) ≤ μ(X)

4N 2n
. Then there exists a family A = {(Ai , Ar

i )}n
i=1 of capacitors

in X such that

(a) for each i , μ(Ai ) ≥ μ(X)
2Nn , and

(b) the subsets {Ar
i }n

i=1 are mutually disjoint.

We define the dilatation of a function f : (X, d) → R as

dil( f ) = sup
x �=y

| f (x) − f (y)|
d(x, y)

,

and the local dilatation at x ∈ X as

dilx ( f ) = limε→0dil( f |B(x,ε)
).

When different distance functions are considered, dild( f ) and dild,x ( f ) stand for the dilata-
tion and local dilatation at x associated with the distance d , respectively. A map f is called
Lipschitz if dil( f ) < ∞. Let (M, g) be a Riemannian manifold and dg be the distance asso-
ciated to the Riemannian metric g. A Lipschitz function on a Riemannian manifold M is
differentiable almost everywhere and |∇g f (x)| coincides with dilx ( f ) almost everywhere.
Hence, |∇g f (x)| ≤ dil( f ) almost everywhere.

The following theorem relies on the construction given in the above lemma. It gives
a construction of a family of disjointly supported functions with a nice control on their
dilatations. Before stating the theorem we need to define the following notation. Given a
capacitor (F, G), let T (F, G) be the set of all compactly supported real valued functions
on X such that for every ϕ ∈ T (F, G) we have supp ϕ ⊂ G◦ = G \ ∂G and ϕ ≡ 1 in a
neighborhood of F .

Theorem 2.1 Let positive constants p, ρ, L and N be given and (X, d, μ) be an m − m
space satisfying the (4, N ; ρ)-covering property and

μ(B(x, r)) ≤ Lr p, for every x ∈ X and 0 < r ≤ ρ.

Then for every n ∈ N
∗ and every r ≤ min{ρ,

(
μ(X)

4N 2 Ln

)1/p}, there is a family of n mutually

disjoint bounded capacitors {(Ai , Ar
i )}n

i=1, of X and a family { fi } of n Lipschitz functions

with fi ∈ T (Ai , Ar
i ) such that μ(Ai ) ≥ μ(X)

2Nn and
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dild( fi ) ≤ 1

ρ
+ (4N 2 L)1/p

(
n

μ(X)

)1/p

. (9)

If the condition μ(B(x, r)) ≤ Lr p is satisfied for every r > 0 then we take ρ = ∞. Hence,
the first term on the right-hand side of the above inequality vanishes.

Proof of Theorem 2.1 According to Lemma 2.1, if the m − m space (X, d, μ) satisfies
(4, N ; ρ)-covering property, then for every r ≤ ρ such that

μ(B(x, r)) ≤ μ(X)

4N 2n
, ∀x ∈ X, (10)

we have a family {(Ai , Ar
i )} of mutually disjoint capacitors of X with the desired property

mentioned in the theorem. We claim that when r ≤ min{ρ,
(

μ(X)

4N 2 Ln

)1/p}, the Inequality (10)

is automatically satisfied. Indeed, according to the assumptions we have

μ(B(x, r)) ≤ Lr p ≤ min{Lρ p,
μ(X)

4N 2n
} ≤ μ(X)

4N 2n
.

We now consider Lipschitz functions fi supported on Ar
i with fi (x) = 1− d(x,Ai )

r on Ar
i \ Ai ,

fi (x) = 1 on Ai and zero outside of Ar
i . One can easily check that dild( fi ) ≤ 1

r . Hence, we
obtain

dild( fi ) ≤ 1

ρ
+ (4N 2 L)1/p

(
n

μ(X)

)1/p

.

This completes the proof. ��
Let (M, g, μ) be a Riemannian manifold endowed with a finite non-atomic Borel measure

μ. We define the following quantity that coincides with the eigenvalues of the Laplace-
Beltrami operator when μ coincides with the Riemannian measure μg .

λk(M, g, μ) := inf
L

sup{R( f ) : f ∈ L},
where L is a k-dimensional vector space of Lipschitz functions and

R( f ) =
∫

M |∇g f |2dμ∫
M f 2dμ

The following corollary is a straightforward consequence of Theorem 2.1 and it is the key
result that we use in the next section.

Corollary 2.1 Let (M, g, μ) be a Riemannian manifold with a finite non-atomic Borel mea-
sure μ and the distance dg associated to the Riemannian metric g. If there exists a measure
ν and a distance d so that

d(x, y) ≤ dg(x, y), ∀x, y ∈ M; (11)

ν(A) ≤ μ(A) for all measurable subsets A of M, (12)

and moreover, there exist positive constants p, ρ, N and L so that (M, d, ν) satisfies the
assumptions of Theorem 2.1, then, for every k ∈ N

∗ we have

λk(M, g, μ) ≤ 16N

ρ2

μ(M)

ν(M)
+ 16N (8N 2 L)2/p

(
μ(M)

ν(M)

)1+2/p (
k

μ(M)

)2/p

. (13)
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Proof Take (M, d, ν) as an m − m space. According to Theorem 2.1, for every 2k ∈ N
∗

and every r ≤ min{ρ,
(

ν(X)

4N 2 Ln

)1/p}, we have a family of 2k mutually disjoint capacitors

{(Ai , Ar
i )}2k

i=1 and 2k Lipschitz functions fi such that for every 1 ≤ i ≤ 2k, ν(Ai ) ≥ ν(M)
4Nk

and the following inequality satisfies almost everywhere.

|∇g fi | ≤ dildg ( fi ) ≤ dild( fi ) ≤ 1

ρ
+ (4N 2 L)1/p

(
2k

ν(M)

)1/p

,

where the last inequality comes form Inequality (9). Since μ ≥ ν, one has

μ(Ai ) ≥ ν(Ai ) ≥ ν(M)

4Nk
. (14)

Supports of the fi are disjoint and
∑2k

i=1μ(Ar
i ) ≤ μ(M); therefore, at least k of them have

measure smaller than μ(M)
k . Up to re-ordering, we assume that for the first k of the Ar

i , we
have

μ(Ar
i ) ≤ μ(M)

k
. (15)

Therefore,

λk(M, g, μ) ≤ max
i

R( fi ) ≤ max
i

(
1

ρ
+ (4N 2 L)1/p

(
2k

ν(M)

)1/p
)2

μ(Ar
i )

μ(Ai )

≤ 16N

(
1

ρ2 + (4N 2 L)2/p
(

2k

ν(M)

)2/p
)

μ(M)

ν(M)
.

The last inequality comes from applying Inequalities 14 and 15, together with using the
following inequality.

(a + b)2 ≤ 4(a2 + b2) ∀a, b ∈ R.

In conclusion, we obtain Inequality (13). ��

3 Eigenvalues of immersed submanifolds of R
N

In this section, we prove Theorem 1.1. Let S be an m-dimensional immersed submanifold
of R

m+p (with or without boundary). We recall that G is the Grassmannian of all m-vector
spaces in R

m+p endowed with the O(m + p)- invariant Haar measure with total measure 1.
Let H be an m-vector space in G and iH (S) := supP⊥H �(S ∩ P), where P runs over affine
p-planes orthogonal to H . We define the mean intersection index of S as follows:

ı̄(S) :=
∫

G

iH (S)d H.

Similarly, for every r > 0, we define the r-local intersection index of S by

ı̄r (S) := sup
x∈S

∫

G

iH (S ∩ B(x, r))d H,

where B(x, r) ⊂ R
m+p is an Euclidean ball of radius r centered at x .

123



524 Ann Glob Anal Geom (2013) 44:517–527

Let H ∈ G and πH : S → H be the orthogonal projection of S on H . The following
lemma is an extension of [6, Lemma 2.1].

Lemma 3.1 Let S be an m-dimensional immersed submanifold of R
m+p, (not necessarily

without boundary). Then there exists H0 ∈ G such that the following inequality satisfies

Vol(S) ≤ Cmı̄(S)Vol(πH0(S)), (16)

where Cm is a constant depending only on m.

Proof Since for almost all H ∈ G, a point in πH (S) has finite number of preimages, one can
take a generic H and get∫

S

π∗
H vH =

∫

S

|θH (x)|vS ≤
∫

πH (S)

iH (S)vH = iH (S)Vol(πH (S)),

where vS and vH are volume elements of S and H , respectively, and

|θH (x)|vS = π∗
H vH .

Now, by integrating over G we get∫

G

iH (S)Vol(πH(S))dH ≥
∫

G

d H
∫

S

|θH (x)|vS

=
∫

S

⎛
⎝

∫

G

|θH (x)|d H

⎞
⎠ vS

= I (G)Vol(S), (17)

where I (G) := ∫
G |θH (x)|d H . The last equality comes from the fact that I (G) does not

depend on the point x (see [6, page 101]). We also have∫

G

iH (S)Vol(πH(S))dH ≤ sup
H

Vol(πH (S))ı̄(S)

≤ 2Vol(πH0(S))ı̄(S), (18)

where H0 is an m-plane such that 2Vol(πH0(S)) ≥ supH Vol(πH (S)). By Inequalities (17)
and (18), we get the following inequality:

Vol(πH0(S)) ≥ I (G)Vol(S)

2ı̄(S)
.

This proves Inequality (16) with Cm = 2
I (G)

. ��
Let M be an m-dimensional immersed submanifold of R

m+p . Throughout the rest of this
section, for every ε ≥ 0, M D

ε stands for M \ D, where D is any open subdomain of M such
that M \ D is a smooth manifold with smooth boundary and Vol(D) ≤ εVol(M).

Corollary 3.1 For all x ∈ R
m+p and ε ≥ 0, we have

Vol
(
M D

ε ∩ B(x, s)
) ≤ 2Vol(Bm)

I (G)
ı̄r (M D

ε )sm, ∀ 0 < s ≤ r; (19)

Vol
(
M D

ε ∩ B(x, r)
) ≤ 2Vol(Bm)

I (G)
ı̄(M D

ε )rm, ∀r > 0, (20)

where Bm is the m-dimensional Euclidean unit ball.
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Proof Replacing S by M D
ε ∩ B(x, s) in Lemma 3.1, we obtain

Vol
(

M D
ε ∩ B(x, s)

)
≤ 2

I (G)
ı̄
(

M D
ε ∩ B(x, s)

)
Vol

(
πH0

(
M D

ε ∩ B(x, s)
))

≤ 2Vol(Bm)

I (G)
ı̄s

(
M D

ε

)
sm,

where Bm is the m-dimensional Euclidean unit ball. The last inequality comes from

Vol
(
πH0

(
M D

ε ∩ B(x, s)
))

≤ Vol
(
πH0 (B(x, s))

) ≤ Vol(Bm)sm

Since ı̄s
(
M D

ε

) ≤ ı̄r
(
M D

ε

)
for all 0 < s ≤ r and ı̄s

(
M D

ε

) ≤ ı̄
(
M D

ε

)
for all s > 0, therefore,

we derive Inequalities (19) and (20). ��
Remark 3.1 For ε = 0, we have M D

ε = M . Hence, we have the Inequalities (19) and (20)
for M D

ε replaced by M .

Proof of Theorem 1.1 This theorem is a straightforward consequence of Corollary 2.1. Here,
M with the induced metric from R

m+p and the riemannian measure associated to this metric is
our metric measure space. We begin with giving candidates for the distance d and the measure
ν appeared in the statement of Corollary 2.1, such that the assumptions of Corollary 2.1 are
satisfied. Let d = deu be the Euclidean distance in R

m+p and ν = μD
ε , where μD

ε (A) is
the Riemannian volume of A ∩ M D

ε . One can easily check that (M, deu ) has the (4, N )-
covering property where N depends only on the dimension of the ambient space R

m+p .
Moreover, one can consider N as a function depending only on the dimension m according
to the Nash embedding theorem (see [6, page 106]). There also exists L > 0 such that
μD

ε (B(x, s)) ≤ Lsm for s ≤ ρ. We now consider the two following cases:

• Take ρ = r . According to Corollary 3.1, one can take L = 2Vol(Bm )
I (G)

ı̄r (M D
ε ). Therefore,

Corollary 2.1 implies

λk(M) ≤ αm
1

(1 − ε)r2 + βm
ı̄r (M D

ε )2/m

(1 − ε)1+2/m

(
k

Vol(M)

)2/m

. (21)

• Take ρ = ∞. According to Corollary 3.1, one can take L = 2Vol(Bm )
I (G)

ı̄(M D
ε ). Therefore,

Corollary 2.1 implies

λk(M) ≤ βm
ı̄(M D

ε )2/m

(1 − ε)1+2/m

(
k

Vol(M)

)2/m

. (22)

Note that here we replace ν(M) and μ(M) in Corollary 2.1 by μD
ε (M) and Vol(M), respec-

tively. The left hand-sides of Inequalities (21) and (22) do not depend on D. Hence, taking
the infimum over D, we get Inequalities (3) and (4). ��

4 Eigenvalues of complex submanifolds of CP N

In this section, we provide the proof of Theorem 1.2. Before going into the proof, we need to
recall the universal inequality proved by El Soufi, Harrell and Ilias which is the key idea of
the proof. The following lemma is a special case of that universal inequality [9, Theorem 3.1]
(see also [5]):
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Lemma 4.1 Let Mm be a compact complex manifold of complex dimension m and φ : M →
CP N be a holomorphic immersion. Then the eigenvalues of the Laplace-Beltrami operator
on (M, φ∗gF S ) satisfy the following inequality:

k∑
i=1

(λk+1 − λi )
2 ≤ 2

m

k∑
i=1

(λk+1 − λi )(λi + cm), (23)

where cm = 2m(m + 1).

Another useful result is the following recursion formula given by Cheng and Yang:

Lemma 4.2 [4, Corollary 2.1] If a positive sequence of numbers μ1 ≤ μ2 ≤ · · · ≤ μk+1

satisfies the following inequality

k∑
i=1

(μk+1 − μi )
2 ≤ 4

n

k∑
i=1

μi (μk+1 − μi ), (24)

then,

μk+1 ≤
(

1 + 4

n

)
k2/nμ1.

Theorem 4.1 Let Mm be a compact complex manifold of complex dimension m admitting a
holomorphic immersion φ : M → CP N . Then for every k ∈ N

∗ we have

λk+1(M, φ∗gF S ) ≤ 2(m + 1)(m + 2)k
1
m − 2m(m + 1). (25)

Proof of Theorem 4.1 According to Lemma 4.1, the eigenvalues of the Laplace operator on
M satisfy universal Inequality (23). We replace λi by μi := λi + cm in Inequality (23) and
we obtain,

k∑
i=1

(μk+1 − μi )
2 ≤ 2

m

k∑
i=1

μi (μk+1 − μi ).

One now has a positive sequence of numbers μ1 ≤ μ2 ≤ · · · ≤ μk+1 that satisfies Inequality
(24) with n = 2m. Applying the recursion formula of Cheng and Yang, we get the following
inequality:

μk+1 ≤
(

1 + 4

2m

)
k2/2mμ1. (26)

By replacing μi by λi + cm in Inequality (26), we obtain:

λk+1(M, φ∗gF S ) ≤ (1 + 2

m
)(λ1(M, φ∗gF S ) + cm)k1/m − cm .

Since M is a compact manifold, λ1(M, φ∗(gF S ) = 0. Therefore,

λk+1(M, φ∗gF S ) ≤
(

1 + 2

m

)
cmk1/m − cm = 2(m + 1)(m + 2)k1/m − 2m(m + 1),

which completes the proof. ��
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As we mentioned in the introduction, for k = 1 we get a sharp upper bound:

λ2(M, φ∗gF S ) ≤ λ2(CPm, gF S ) = 4(m + 1). (27)

Bourguignon et al. [2] obtained an upper bound for the first non-zero eigenvalue of a complex
manifold (M, ω) which admits a full holomorphic immersion (i.e. �(M) is not contained in
any hyperplane of CP N ) into CP N .

λ2(M, ω) ≤ 4m
N + 1

N
d([�], [ω]). (28)

Here, d([�], [ω]) is the holomorphic immersion degree—a homological invariant—defined
as

d([�], [ω]) =
∫

M �∗(ωF S ) ∧ ωm−1∫
M ωm

,

where ωF S is the Kähler form of CP N with respect to the Fubini-Study metric and ω is Kähler
form on M . If one takes ω = �∗(ωF S ), then d([�], [ω]) = 1 and Inequality (27) becomes
a corollary of Inequality (28). Theorem 4.1 gives another proof of this sharp inequality.
Moreover, it gives upper bounds for higher eigenvalues of complex submanifolds of CP N

endowed with the Fubini-Study metric.
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