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Abstract
Objective To evaluate the value of a dedicated interpreta-
tion of the CT images in the differential diagnosis of benign
vs. malignant primary bone lesions with 18fluorodeoxyglu-
cose-positron emission tomography/computed tomography
(18F-FDG-PET/CT).
Materials and methods In 50 consecutive patients (21
women, 29 men, mean age 36.9, age range 11–72) with
suspected primary bone neoplasm conventional radiographs
and 18F-FDG-PET/CT were performed. Differentiation of
benign and malignant lesions was separately performed on
conventional radiographs, PET alone (PET), and PET/CT
with specific evaluation of the CT part. Histology served as
the standard of reference in 46 cases, clinical, and imaging
follow-up in four cases.
Results According to the standard of reference, conven-
tional 17 lesions were benign and 33 malignant. Sensitivity,
specificity, and accuracy in assessment of malignancy was

85%, 65% and 78% for conventional radiographs, 85%,
35% and 68% for PET alone and 91%, 77% and 86% for
combined PET/CT. Median SUVmax was 3.5 for benign
lesions (range 1.6–8.0) and 5.7 (range 0.8–41.7) for
malignant lesions.

In eight patients with bone lesions with high FDG-uptake
(SUVmax≥2.5) dedicated CT interpretation led to the correct
diagnosis of a benign lesion (three fibrous dysplasias, two
osteomyelitis, one aneurysmatic bone cyst, one fibrous
cortical defect, 1 phosphaturic mesenchymal tumor). In four
patients with lesions with low FDG-uptake (SUVmax<2.5)
dedicated CT interpretation led to the correct diagnosis of a
malignant lesion (three chondrosarcomas and one leiomyo-
sarcoma). Combined PET/CT was significantly more accu-
rate in the differentiation of benign and malignant lesions
than PET alone (p=.039). There was no significant differ-
ence between PET/CT and conventional radiographs
(p=.625).
Conclusion Dedicated interpretation of the CT part signif-
icantly improved the performance of FDG-PET/CT in
differentiation of benign and malignant primary bone
lesions compared to PET alone. PET/CT more commonly
differentiated benign from malignant primary bone lesions
compared with conventional radiographs, but this differ-
ence was not significant.
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Introduction

Currently, the workup of primary bone neoplasms includes
conventional radiographs and typically magnetic resonance
imaging (MRI) for local staging as well as bone scintigra-
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phy (BS) and computed tomography (CT) for general
staging. If malignancy is suspected, bone biopsy has to be
performed. Fluorodeoxyglucose (FDG)-PET and FDG-
PET/CT are increasingly used for the differentiation of
malignant and benign tumors in many organ systems [1–5].
However, the role of PET/(CT) in the evaluation of bone
tumors is not well defined yet [6, 7]. Preliminary results
showed that PET/(CT) may play an important role in
biopsy guidance [8], grading [9, 10], staging [11], and
therapy response assessment [12, 13]. Differentiation
between benign and malignant primary bone lesions is
crucial and has an important impact on therapy. FDG
uptake measured by maximum standardized uptake value
(SUVmax) is not reliable enough because of a considerable
overlap between FDG uptake of benign and malignant
bone lesions. It is known that especially histiocytic or
giant cell containing benign lesions can have FDG uptake
>2.5 SUVmax [14]. Conventional PET scanners are
increasingly replaced by combined PET/CT. The CT part
can be used for attenuation correction and anatomic
correlation of FDG-positive lesions. In addition, a specific
interpretation of the CT part of the PET/CT study may
improve diagnostic performance [15]. The aim of this
study was to evaluate the additional value of such an
interpretation in the differential diagnosis of benign vs.
malignant primary bone lesions.

Materials and methods

Patients

Fifty consecutive patients (21 women, 29 male, mean age
36.9, age range 11–72) were prospectively included in this
study. In all patients, a primary bone tumor was suspected
because of clinical symptoms (pain, fracture; n=42) and/or
imaging findings (n=8). In all patients, conventional
radiographs and an 18F-FDG-PET/CT examination were
performed. The time interval between the radiographs and
PET/CT was <14 days in all cases. There was no
therapeutic intervention between conventional and PET/
CT imaging.

The study was conducted in accordance with the guide-
lines established by the local ethics committee.

PET/CT imaging protocol

All data were acquired on a combined PET/CT in-line
system (Discovery LS or Discovery STE, GE Healthcare,
Milwaukee, WI, USA).

Patients fasted for at least 4 h prior to scanning, which
started approximately 60 min (median 58 min; range 52–
77 min) after the injection of 350–400 MBq of 18F-FDG.

All patients were tested for a normal glucose level before
scanning. Patients with elevated glucose levels were
rescheduled and scanned with normal glucose levels. No
intravenous contrast agent was given. Initially, the CT scan
was acquired starting from the level of the head using the
following parameters: 40 mAs, 140 kV, 0.5 s/tube rotation,
slice thickness 4.25 mm, scan length 867 mm, data-
acquisition time 22.5 s. Breathhold CT in non-forced
expiration position was performed. In the patients with
primary tumors in the lower extremities, scanning of the
lower legs was added.

Immediately following CT acquisition, a PET emission
scan was acquired with an acquisition time of 3 min per bed
position with a one-slice overlap in 2D mode (matrix 128×
128). The eight to nine bed positions starting from the head
to the knees resulted in an acquisition time of approxi-
mately 24–27 min. CT data were used for the attenuation
correction, and the images were reconstructed using a
conventional iterative algorithm (OSEM). The acquired
images were viewed with a software providing multiplanar
reformatted images of PET alone, CT alone and fused PET/
CT with linked cursors (Advantage Windows workstation,
GE Healthcare, Milwaukee, WI, USA). PET/CT imaging
was performed according to the published “procedure
guideline for tumor imaging with 18F-FDG PET/CT 1.0”
[16].

Standard of reference

Histology, obtained by image-guided (ultrasound or CT) or
open biopsy or tumor resection served as the standard of
reference in 46 cases. The histopathological examination
were performed by a board certified pathologist (B.B). The
tumor diagnoses were done according to the criteria of the
World Health Organization and, if indicated, were con-
firmed by the appropriate molecular methods [fluorescence
in situ hybridization (FISH) and/or polymerase chain
reaction (PCR)]. Imaging and clinical follow-up for at least
12 months (mean 24 months, range 12–36) was used as the
standard of reference in the remaining four cases.

Interpretation of conventional radiographs

Conventional radiographs were analyzed by a radiologist
(J.H.). The reader was blinded to the results of other
imaging modalities and to the clinical history but aware
about the suspicion of a bone tumor. Differentiation of
benign and malignant lesions were based on the established
criteria described by Lodwick and several other authors
[17–19]. Signs of benignity were, for example, well-defined
lesions, rim sclerosis, ground glass appearance. Signs of
malignancy were, for example, ill-defined lesions, cortical
destruction, malignant periosteal reactions.
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PET/CT interpretation and measurement of SUVmax

Semiquantitative analysis of FDG uptake was performed by
measuring the SUVmax. In our institution, SUV is corrected
for lean body mass. A personal scale (Tanita, model 2001;
Tanita, Tokyo, Japan) with an integrated foot-to-foot
bioelectric impedance analyser was used to determine the
lean body mass (LBM) of the patients. The manufacturer
supplied a model including gender, weight, height, and a

measured impedance value for determination of the
percentage of body fat and for calculation of LBM. By
using attenuation-corrected PET data, SUVmax was calcu-
lated with the following equation based on a freehand
region of interest including the entire lesion on the fused
PET/CT image: SUVmax(lbm)=(LBM–CFDG)/Dose where
LBM is measured in grams, CFDG is the concentration of
18F-FDG in Becquerels per milliliter, and Dose is the
injected dose measured in Becquerels.

Physiological 18F-FDG uptake and uptake caused by
benign abnormalities for instance in muscles, brown fat, or
pulmonary infiltrates were excluded from the analysis.

For the evaluation with PET alone, a SUVmax cutoff of
2.5 was used for the differentiation of low FDG uptake
(<2.5 max) versus high FDG-uptake (≥2.5 SUVmax).
Lesions with low FDG uptake were interpreted as benign
and lesions with high FDG uptake as malignant The
SUVmax measurements were performed by a nuclear
physician (K.D.M.S.), again, blinded to the results of the
other imaging modalities and the clinical history but aware
about the suspicion of a bone tumor. For the combined
PET/CT evaluation, the CT part of the PET/CT study was
separately analyzed by a reader with double board
certification as a radiologist and a nuclear medicine

Fig. 1 Conventional X-ray images of the right knee of a 15-year-old
boy showing an osteolysis (arrows) in the epiphysis of the right
proximal tibia

Fig. 2 (same patient as Fig. 1)
Moderate FDG-uptake (SUVmax

4.0) of the lesion on PET images
(a, MIP). Axial PET (b) and
fused PET/CT (d) images dem-
onstrating that the tumor takes
up FDG in the periphery with a
FDG-negative centre. CT (c)
shows a well-defined eccentric
osteolysis without clear sclerotic
rim. No calcifications are seen
inside the lesion. So also in CT,
this lesion was difficult to assess
because clear signs of benignity
like a sclerotic rim are missing.
Biopsy and histological work-up
confirmed the diagnosis of a
chondroblastoma
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physician (K.S.). He was also blinded to the results of the
other imaging modalities and the clinical history. He was
only aware that a bone tumor was suspected [20–22]. Signs
of benignity were, for example, well-defined lesions, rim
sclerosis, ground glass appearance. Signs of malignancy
were, for example, ill-defined lesions, cortical destruction,
malignant periosteal reactions. Bone and soft tissue window
settings were used for the evaluation. In lesions with low
uptake but aggressive CT appearance, including aggressive
periosteal reactions and cortical destruction, the final PET/
CT interpretation was that of malignant lesion. In cases of
PET-positive lesions, indicating malignancy with benign
CT patterns such as a well-defined osteolysis with rim
sclerosis, the final interpretation was that of a benign lesion.

Statistical analysis

Data were analysed using SPSS 15 for Windows (SPSS).
Statistical significance was assessed with the sign test. p<
0.05 was considered to indicate a significant difference.

Results

Seventeen lesions were benign and 33 malignant. In the
benign group, there were seven benign bone tumors (Figs. 1,
2, 3 and 4), three fibrous dysplasias (Figs. 5 and 6), two
osteomyelitis, one insertion tendinopathy, one stress fracture,
one postoperative defect, one fibrous cortical defect, and one
bone infarction. Of the 33 malignant lesions, there were 18
sarcomas (Fig. 7), six lymphomas, three metastases, one
melanoma, one chordoma, one hemangioendothelioma, one
eosinophilic granuloma, one malignant peripheral nerve
sheath tumor, and one neuroendocrine tumor. Patient
characteristics are summarized in Table 1. Median SUVmax

of benign lesions was 3.5 (range 1.6–8.0) and 5.7 (range
0.8–41.7) for malignant lesions (Table 2). Sensitivity,
specificity, accuracy, PPV, and NPV regarding the diagnosis
of a malignant lesions was 85%, 65%, 78%, 82%, and 67%
for CI, 85%, 35%, 68%, 72%, and 55% for PET alone and
91%, 77%, 86%, 88%, and 81% for combined PET/CT
(Table 3).

In eight patients with a SUVmax>2.5, the dedicated CT
interpretation led to the correct diagnosis of a benign lesion
(three fibrous dysplasias, two osteomyelitis, one aneurys-
mal bone cyst, one fibrous cortical defect, one phosphaturic
mesenchymal tumor). In four patients with a SUVmax<2.5,
CT interpretation led to the correct diagnosis of a malignant
lesion (three chondrosarcoma, one leiomyosarcoma). Com-
bined PET/CT interpretation was significantly more accu-
rate compared to PET alone (p=0.039). The diagnostic
performance of PET/CTwas not significantly different from
conventional radiographs (p=0.63). Furthermore, no statis-

tically significant difference was found between PET alone
and conventional radiographs (p=0.18).

Discussion

Although malignant bone lesions have generally higher
FDG uptake than benign bone tumors, there is a consider-
able overlap regarding the amount of FDG uptake. Our
results confirm the findings of previously published studies
that many benign lesions can have moderate to high FDG-
uptake [14, 23]. This fact can lead to misinterpretation
because incidentally detected benign FDG-positive bone
lesions may mimic metastases if FDG-PET/CT is per-
formed for staging of extra-skeletal malignancies [23, 24].
Fibrous dysplasia is a good example where separate
interpretation of CT images with the pathognomonic
“ground glass” pattern and absence of bone destruction
overrules the positive PET result and leads to the correct
diagnosis of a “no-touch” benign lesion [25]. We found

Fig. 3 Conventional X-ray images of the left thigh in a 21-year-old
male patient with a calcified lesion in the upper third of the diaphysis
of the left tibia (arrows)
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SUVmax values>2.5 (range 2.9–8.0) in all four patients with
fibrous dysplasia. Aoki et al. published six cases with
fibrous dysplasia, of which only two presented with a
SUVmax>2.5 [14].

Low-grade chondrosarcomas are good examples in
which interpretation of the CT part with the typical
calcifications overrules a negative PET result and leads to
the correct diagnosis of a malignant lesion. Three of our
four chondrosarcomas had SUVmax values<2.5 which
confirms the results of other authors that especially low-
grade chondrosarcomas can be almost FDG-negative [26].

FDG uptake is not specific for the diagnosis of a
malignant neoplasm. Traumatic, inflammatory, and infec-
tious lesions like osteomyelitis can show significant FDG
uptake as shown in experimental and clinical studies [27,
28]. We observed SUVmax of 5.2 and 6.9 in both of our
patients with biopsy-proven osteomyelitis.

F-18 FDG PET/CT has been employed for differentia-
tion between malignant and benign fractures based on the
SUVmax and based on medullary uptake, which is charac-
teristic for malignant fractures [29, 30]. Fractures in two of
our patients were caused by benign lesions, one was PET
positive (SUVmax 3.9 in a patient with fibrous dysplasia)
and one PET negative (SUVmax 1.6 in a patient with a
stress fracture).

Our results underline that the CT part of the PET/CT
study can add important information. Those evaluating
PET/CT studies should be familiar with both the metabolic
and morphologic features of bone tumors and tumor-like
lesions.

Fig. 5 Conventional X-ray images (Fig. 5) of a 33-year-old female
patient with an inhomogeneous ground-glass like lesion (arrows) in
the left tibia

Fig. 4 (same patient as Fig. 3)
PET (MIP (a); axial PET (b);
fused PET/CT images (d) with
increased FDG-uptake
(SUVmax.3.5) of the lesion
(arrows) indicating malignancy.
CT (c) images demonstrating
calcifications (arrowheads)
without cortical destructions
typical for an enchondroma,
which was confirmed with
biopsy

2004 Eur J Nucl Med Mol Imaging (2008) 35:2000–2008



Similarly to previously published studies, our data indicate
the difficulty to define a reliable cutoff value for the
differentiation between benign and malignant lesions. Beside
the previously described cutoff value of SUVmax=2.5, also
values of 2.0 or 3.0 do not provide sufficient accuracy [14,
31, 32]. Since the SUV is a semiquantitative measurement,
there are various calculation variants, and reproducibility
suffers from influences such as blood glucose level, uptake
time, and several others. Therefore, the use of additional
criteria for diagnosing bone neoplasms is important [33].
Nevertheless, Dehdashti et al. have demonstrated that SUV
measurements were more effective than subjective interpre-
tation of FDG uptake in bone lesions [34]. We believe that a
combined interpretation of metabolic information and mor-
phologic information, both provided by a PET/CT examina-
tion should be implemented.

Conventional radiographs remain the first imaging
modality in the evaluation of suspected bone neoplasms.
A final diagnosis can often be made based on radiographs,
obviating additional imaging and biopsy. This is the case
for fibrous dysplasia, Paget’s disease, and nonossifying
fibroma. In equivocal cases and in aggressive tumors such
as osteosarcoma, MR imaging is typically employed as the
second imaging tool for grading and staging [35]. The
importance of bone scintigraphy for the evaluation of bone
tumors has decreased over the last years. However, this

Fig. 6 (same patient as Fig. 5)
FDG-PET (MIP (a); axial PET
(b), fused PET/CT images (d)
showing intense FDG-uptake
(SUVmax.7.7) of the lesion indi-
cating malignancy. CT (c) dem-
onstrating well-defined ground
glass lesions without cortical
destruction typical for fibrous
dysplasia. Biopsy confirmed the
diagnosis of fibrous dysplasia

Fig. 7 A 50 year-old female patient with a calcified lesion in the bone
marrow of the left proximal humerus. PET (Fig. 7 a, b, d) images
demonstrating low FDG-uptake (SUVmax 2.3) in the lesion (arrows)
indicating benignity. CT (arrow, Fig. 7c) shows calcifications inside
the lesion with cortical destructions (arrow, d) suspicious for
chondrosarcoma. Histology showed a grade I–II chondrosarcoma
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method still is valuable in staging of osteosarcoma. The
accuracy of a bone scan can be increased by using SPECT
and SPECT/CT [36, 37].

Because combined FDG-PET/CT did not improve
differentiation of bone lesions compared to conventional
radiographs, it cannot be recommended for this indication.
Another problem in clinical routine in most countries is the
fact that PET/CT is only reimbursed for staging of
confirmed malignant tumors but not for assessment of
malignancy in equivocal cases. PET/CT has a potential role
for the detection of transformation of a benign into a
malignant bone tumor and of development into more
aggressive patterns as observed in malignant lymphoma
[38]. We observed no proven transformation in our patients,
and studies with high numbers of patients with transforma-
tion are missing because such malignant transformations
are infrequent [39].

Our study has limitations. For the CT evaluation, only a
low-dose CT part of the combined PET/CT study was
available. Another approach would be to perform a thin-
slice conventional “high-dose” CT centered on the primary
bone lesions. This better CT quality may improve the

Table 1 Characteristics of 50 patients with benign and malignant
bone lesions

Patient no. SUVmax Final diagnosis

1 5.2 Brodie abscess
2 2.5 Lymphoma
3 11.3 Osteosarcoma
4 7.4 Leiomyosarcoma
5 3.6 Neuroendocrine tumor
6 5.1 Ewing sarcoma
7 6.2 Lymphoma
8 1.6 Stress fracture
9 2.9 Fibrous dysplasia
10 6.9 Osteomyelitis
11 3.5 Phosphaturic mesenchymal tumor
12 1.4 Chondrosarcoma
13 8.0 Fibrous dysplasia
14 3.9 fibrous dysplasia with Pathologic fracture
15 9.0 Leiomyosarcoma
16 4.6 Fibrous cortical defect
17 9.0 Lymphoma
18 8.8 Malignant peripheral nerve sheath tumor
19 0.8 Eosinophilic granuloma
20 2.0 Osteochondroma
21 3.0 Hemangioendothelioma
22 4.0 Chondroblastoma
23 41.7 Lymphoma
24 14.9 Osteosarcoma
25 5.9 Lymphoma
26 3.7 Aneurysmatic bone cyst
27 3.1 Chondrosarcoma
28 1.4 leiomyosarcoma
29 4.7 Clear cell renal carcinoma metastasis
30 7.7 Fibrous dysplasia
31 2.2 Bone infarction
32 2.1 Insertion tendinopathy
33 2.2 Hemangioma
34 3.5 Enchondroma
35 1.3 Postoperative defect
36 2.2 Chondrosarcoma
37 8.7 Osteosarcoma
38 5.3 Osteosarcoma
39 5.7 Osteosarcoma
40 11.3 Lymphoma
41 3.5 Ewing sarcoma
42 10.9 NSCLC metastasis
43 3.0 Chordoma
44 10.7 NSCLC metastasis
45 12.0 Melanoma
46 5.0 Ewing sarcoma
47 7.8 Osteosarcoma
48 5.4 Ewing sarcoma
49 2.3 Chondrosarcoma
50 13.2 Osteosarcoma

NSCLC Nonsmall cell lung cancer, SUV conventionalized uptake
value

Table 2 Polar plots showing the SUVmax of benign and malignant
bone lesions in 50 patients

Table 3 Performance of conventional X-rays (CI), PET alone (PET),
and combined PET/CT (PET/CT) in the differentiation of benign vs.
malignant primary bone lesions in 50 patients

Parameter CI (%) PET (%) PET/CT (%)

Sensitivity 85 85 91
Specificity 65 35 77
Accuracy 78 68 86
PPV 82 72 88
NPV 67 55 81

CI Conventional imaging, PPV positive predictive value, NPV
negative predictive value

2006 Eur J Nucl Med Mol Imaging (2008) 35:2000–2008



performance of the combined PET/CT. This study is
intentionally limited to the assessment of the dignity of
the primary lesion but does not assess additional informa-
tion provided by the PET/CT such as grading and staging of
a proven malignant tumor, or detection of multifocality,
second primaries, or metastases. These aspects have been
investigated before in other publications [7, 36, 40, 41].
Delayed images might help in the differentiation between
benign and malignant bone lesions like those observed in
soft tissue sarcomas [42]. Because of our busy schedule
with approximately 20 PET/CT scans per day, we were not
able to evaluate the additional value of delayed images.

In conclusion, dedicated interpretation of the CT part
significantly improved the performance of FDG-PET/CT in
differentiation of benign vs. malignant primary bone lesions
compared to PET alone. PET/CT more commonly differ-
entiated benign from malignant primary bone lesions
compared with conventional radiographs, but this differ-
ence was not significant.
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