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Abstract We deal with the problem of minimizing the probability of ruin of an

insurer by optimal investment of parts of the surplus in the financial market,

modeled by geometric Brownian motion. In a diffusion framework the classical

solution to this problem is to hold a constant amount of money in stocks, which in

practice means continuous adaption of the investment position. In this paper, we

introduce both proportional and fixed transaction costs, which leads to a more

realistic scenario. In mathematical terms, the problem is now of impulse control

type. Its solution is characterized and calculated by iteration of associated optimal

stopping problems. Finally some numerical examples illustrate the resulting optimal

investment policy and its deviation from the optimal investment behaviour without

transaction costs.

1 Introduction

Over the last years the question of how to control the investment policy of an

insurance company has become more important because of the strong connections

between insurance and financial industries. In particular, an insurance company can

no longer isolate its sources of risk and needs to deal with them from a global point

of view. Therefore, setting up an appropriate—more realistic—model, the

identification of crucial quantities to be controlled and solving the resulting

mathematical problem is a demanding and interesting task. For example, interesting

quantities in this context can be the probability of ruin, the amount of expected

dividend payments, the necessary capital injections or certain risk measures such as

value at risk or expected shortfall. Whereas criteria based on expected dividend

payments valuate an insurance portfolio by its potential for profitability, ruin
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probabilities, capital injections and risk measures are a valuation of its safety.

Usually, in practice risk measures are computed on a periodic basis but they can lose

some clarity, when considered on larger time scales. Therefore, when looking at

long term horizons, the classical probability of ruin still serves as a useful measure

of solvency. In risk theory, continuous time models with stochastic return on

investments or facing a stochastic environment were introduced by Paulsen [26] and

Paulsen and Gjessing [27]. Following an arbitrary investment policy, Kalashnikov

and Norberg [19] and Frolova et al. [11] illustrated that an exponential decay of the

ruin probability (for increasing initial capital) for the portfolio without investment

may change to a polynomial decay in the presence of investment. Consequently, a

wrong choice of the investment policy can easily make the situation more risky.

This observation gives a good motivation to formulate the problem of minimizing

the probability of ruin by controlling the investment policy in the framework of

stochastic optimal control theory.

Whilst in mathematical finance techniques of optimal stochastic control for

solving portfolio optimization problems were introduced in the early 1970s by

Merton [22, 23] and were intensely developed thereafter, it took up to 1995 until

these techniques were used in an insurance context. Browne in [6] solves for the first

time the problem of minimizing the probability of ruin of an underlying surplus

process by means of optimal investment in a diffusion framework. Remarkable is

the fact that in this model it turns out that the optimal amount of money to be

invested is a constant in time, irrespective of the present level of surplus. As a

starting point for the present research there will be a short illustration of this

classical result in Sect. 2.

In the case of the classical compound Poisson risk model as the underlying surplus

process and Black–Scholes type investment opportunity, the problem of optimal

investment was solved by Hipp and Plum [14] and in a more general framework in

[15]. In the presence of jumps the optimal investment policy is no longer a constant

and turns out to be a function of wealth whose form depends on the type of the

involved claim amount distributions. Variants of this problem are studied by Azcue

and Muler [2], introducing short-selling constraints, Belkina et al. [5], under

proportional short-selling and leverage constraints, or Schmidli [28], who—in

addition to investment—considers the possibility of controlling through reinsurance.

There are also various results on the asymptotic behaviour of the probability of ruin

under an optimal investment policy, see Hipp and Schmidli [16], Gaier and Grandits

[12] or Gaier et al. [13]. For an overview on the concept of ruin probabilities and

various models used in risk theory the reader is referred to Asmussen and Albrecher

[1]. Results on minimizing capital injections by controlling investment and

reinsurance are exhibited in Eisenberg [8]. Several applications of stochastic control

in risk theory and life insurance can be found in Schmidli [30].

In the present manuscript we consider the problem of maximizing the survival

probability, that is one minus the probability of ruin, by controlling the investment policy

if each adaptation in the investment position is afflicted by proportional and fixed

transaction costs. The introduction of transaction costs is instrumental in overcoming

drawbacks of the previously mentioned results, where, independent of the underlying

risk model, optimal investment policies always enforce continuous trading activities.
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We are going to analyze this optimization problem in a diffusion framework. I.e., we

assume a diffusion approximation of the classical compound Poisson risk model and a

Black–Scholes type risky asset as the investment opportunity. This approach adds some

practical aspects to the result of Browne [6] and gives some insight how optimal policies

change if one can not continuously intervene anymore.

The manuscript is organized as follows: Sect. 2 introduces the considered model

in mathematical terms. In Sect. 3 the maximal survival probability is characterized

in terms of a limit of iterated optimal stopping problems. Furthermore the

connection to the so-called quasi-variational inequalities is formalized. This section

is closed with a so-called Verification Theorem. Numerical examples are given in

Sect. 4. A conclusion and interpretation of the results are stated in Sect. 5.

2 Mathematical model

Let ðX;F ; fF tgt� 0;PÞ be a filtered probability space, fF tgt� 0 being complete and

right-continuous. Furthermore let W(1) = (W(1))t C 0 and W(2) = (W(2))t C 0 be two

independent Brownian motions on this probability space. Throughout the paper we

will assume that the uncontrolled surplus process R = (Rt)t C 0 follows the

dynamics given by

dRt ¼ ldt þ rdW
ð1Þ
t ; for t� 0;

where the parameters l and r are positive real numbers. This type of surplus

process can be interpreted as a diffusion approximation of a classical compound

Poisson risk model, references for this procedure are for example Iglehart [17] or

Schmidli [29]. As an extension to the classical setting, the insurer is allowed to

invest some part of the surplus in a risky asset. The price process S = (St)t C 0 of

this asset follows the Black–Scholes model given by

dSt ¼ Stða dt þ b dW
ð2Þ
t Þ; for t� 0;

with some given initial price S0 = s [ 0 and parameters a, b [ 0. Furthermore we

assume that the risk free rate in the present financial market setting is equal to zero.

Now suppose that at time zero the insurer invests some amount A0 = A C 0 in the

risky asset and possibly improves in this way the performance of the surplus, where

the condition A0 C 0 represents a short-selling constraint in the considered model.

The surplus including investment TA = (Tt
A)t C 0 has some initial value T0

A = x [ 0

and follows:

dTA
t ¼ dRt þ dAt; for t� 0;

dAt ¼ Atða dt þ bdW
ð2Þ
t Þ; for t� 0:

Remark 2.1 The initial capital x is the virtual sum of initial capital from the pure

surplus process and the initial amount of money invested, i.e. x = R0 ? A0. Since it

is assumed that the risk-free rate is equal to zero, one does not need to split up the

dynamics of TA into a proportion invested in the risky asset and a proportion
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invested in a risk-free asset. This can be seen as follows, suppose a fraction

0 B p B 1 of the present wealth is invested in the risky asset and the fraction 1 - p

is invested in a bond with interest rate r. Then the wealth (Tt)t C 0 follows,

dTt ¼ dRt þ pTtða dt þ b dW
ð2Þ
t Þ þ ð1� pÞrTtdt; T0 ¼ x:

Since r = 0 we have that p Tt equals the amount of money invested at time t, which

is equal to At and evolves like dAt = At(a dt ? b dWt
(2)).

The initial investment is A = N S0, where N C 0 is the number of shares initially

bought, consequently at time t without any intervention At = N St. h

The time of ruin of TA is given by sA ¼ infft� 0 j TA
t \0g; because of the presence

of Brownian motions we have sA ¼ infft� 0 j TA
t � 0g with probability one.

The associated probability of survival is u0ðx;AÞ ¼ Px;AðsA ¼ 1Þ: A classical

result states that in this specific setting we have u0ðx; 0Þ ¼ 1� e
�2l

r2x; cf. [1]. In

addition we have the following (asymptotic) boundary conditions:

lim
x!1

u0ðx;AÞ ¼ 1; for fixed A� 0;

lim
A!1

u0ðx;AÞ ¼ 0; for fixed x [ 0;

the second one is due to the unbounded weight of the investment’s Brownian motion

part of the evolution of TA.

Up to now we defined the model to have a starting investment position (which

may be there due to some policies in the past). From now on we will allow the

insurer to modify the amount of money exposed to investment, but each change will

be subject to transaction costs:

a change A! Aþ DA leads to costs K þ kjDAj;

where K [ 0 is a fixed cost and k [ 0 represents a proportional cost factor. Since a

continuous change of the investment position would lead to unbounded transaction

costs it is natural to consider impulse controls as the class of admissible controls in

the resulting optimization problem. The set of admissible investment policies is

fixed in the following definition, see also Korn [20].

Definition 2.1 An admissible investment policy is of the form

p ¼ fðhn;AnÞgn2N: hi is an intervention time and Ai denotes the investment’s new

position,

1. 0 B hn B hn?1 a.s. for all n 2 N

2. hn is a stopping time w.r.t. the filtration rfðW ð1Þs ;W
ð2Þ
s Þ; s� t; ðhk;AkÞ; k\ng

and hn B sp for all n 2 N

3. An C 0 is measurable with respect to rfðW ð1Þs ;W
ð2Þ
s Þ; s� t; ðhk;AkÞ; k\ng

4. Pðflimn!1 hn� TgIfT\spgÞ ¼ 0 for all T [ 0 and limn!1 hn ¼ sp a.s.

The set of admissible investment policies is denoted by P:
The requirement hn B sp in (2) can also be found in Øksendal and Sulem [25],

here sp denotes the time of ruin for the controlled process. It says that if ruin occurs,
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the sequence becomes constant from that time onwards with no effect on the (then

stopped) process. In point (3), An C 0 specifically prohibits short-selling of the risky

asset. Point (4) gives that on bounded time intervals, before the event of ruin, there

are only finitely many interventions.

Let p ¼ fðhn;AnÞgn2N be an admissible policy, the controlled surplus process

Tp = (Tt
p)t C 0 is then given by

Tp
t ¼ xþ

Z t

0

dRs þ
X1
n¼1

Zhn^t

hn�1^t

Ap
s ða dsþ b dW ð2Þs Þ

�
X1
n¼1

ðK þ kjDAp
hn
jÞIfhn � tg

dAp
s ¼ Ap

s ða dsþ b dW ð2Þs Þ; for hn�1� s\hn

Ap
hn
¼ Ap

hn� þ DAp
hn
¼ An;

Ap
0 ¼ A: ð1Þ

Now formally we can define sp ¼ infft� 0 j Tp
t � 0g and

upðx;AÞ ¼ Px;Aðsp ¼ 1Þ ¼ Ex;AðIfsp¼1gÞ;

the associated survival probability. The value function is the maximal survival

probability which can be achieved by using an admissible investment policy,

uðx;AÞ ¼ sup
p2P

upðx;AÞ: ð2Þ

From the statement of the optimization problem and the structure of the transaction

costs, it is apparent that it is necessary to know the investment position when

deciding on an intervention.

Before going on with a characterization of the value function uðx;AÞ of the

optimization problem in Sect. 3, we review some results of Browne [6] and present

some analysis of u0ðx;AÞ:

2.1 The problem without transaction costs

The following results are due to Browne [6] and can also be found in Schmidli

[30]. In the setup without transaction costs, there is no need to remember the

investment’s position (i.e. the number of shares), and an admissible policy is

given by a càdlàg process A = (At)t C 0 which is adapted to the filtration

generated by the Brownian motions and allows the existence of a unique

solution to

dXA
t ¼ ðlþ aAtÞdt þ r dW

ð1Þ
t þ b AtdW

ð2Þ
t ; XA

0 ¼ x [ 0:

This stochastic differential equation describes the evolution of the surplus using

policy A. Let sA ¼ infft� 0 jXA
t � 0g denote the time of ruin within this model and

set
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uBðxÞ ¼ sup
A

PxðsA ¼ 1Þ;

to be the largest possible survival probability. Using the dynamic programming

approach one gets that

uBðxÞ ¼ 1� e�gx; x� 0;

where

g ¼ 1

r2b
ðlbþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2b2 þ a2r2

p
Þ:

The optimal investment policy A� turns out to be a constant

A� ¼ a

b2g
[ 0: ð3Þ

The fact that A� is constant has the effect that it is always optimal to hold exactly

an investment position of size A�, and because of the presence of Brownian motion

one needs to continuously buy and sell fractions of the risky asset to maintain this

position. From (3) we make the following observations:

• A� is increasing in r[ 0,

• A� is decreasing in b [ 0, with limb!0 A� ¼ 1:

We can interpret these facts as follows: one needs to invest more if the risk from

the insurance business is serious. On the other hand, if the asset’s risk is too large

one is well advised to reduce the position, which is quite natural for reducing the

probability of ruin. We will also observe this type of behaviour later for the problem

with transaction costs in Sect. 4.

2.2 Study of u0

In this section we are going to study the (bivariate) survival probability u0ðx;AÞ if

there are no changes in the investment position. The results will also serve as a

theoretical basis for an iteration procedure which is part of the control problem stated

in Sect. 3. As mentioned above, u0ðx;AÞ fulfills the following boundary conditions:

u0ð0;AÞ ¼ 0 A� 0;

u0ðx; 0Þ ¼ 1� e
�2l

r2x
x� 0;

limx!1 u0ðx;AÞ ¼ 1 for fixed A� 0;
limA!1 u0ðx;AÞ ¼ 0 for fixed x [ 0:

8>><
>>:

ð4Þ

Now assume that u0 2 C2ð½01Þ� ½0;1ÞÞ and set u0ðx;AÞ ¼ 0 if x B 0. A con-

ditioning argument on a small time interval and Itô’s formula suggest that u0ðx;AÞ
is a solution to the following partial differential equation:

0 ¼ Lwðx;AÞ :¼ ðlþ AaÞwxðx;AÞ þ
r2

2
þ A2b2

2

� �
wxxðx;AÞ

þ A2b2wxAðx;AÞ þ AawAðx;AÞ þ
A2b2

2
wAAðx;AÞ: ð5Þ
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Unfortunately it is very hard, if not impossible, to find an explicit expression

for u0: Therefore we have to use a numerical method for studying this survival

probability. At first we need to bound the domain of u0 and look at a related

problem.

Let �x [ 0 and �A [ 0; define s�x ¼ infft� 0 j TA
t ¼ �xg and s �A ¼ infft� 0 jAt ¼

�Ag: Introduce uðx;AÞ ¼ Px;Aðs�x\s �A ^ sAÞ; the probability when starting in (x, A) of

hitting �x before ruin or hitting �A:
From its definition we immediately get:

uð0; AÞ ¼ 0 A 2 ½0; �A�;

uðx; 0Þ ¼ 1�e
�2l

r2
x

1�e
�2l

r2
�x

x 2 ½0; �x�;

uð�x;AÞ ¼ 1 A 2 ½0; �A�;
uðx; �AÞ ¼ 0 x 2 ½0; �xÞ;

8>>>><
>>>>:

ð6Þ

and that uðx;AÞ ! u0 as A and x tend to infinity.

One may notice that from the definition we actually have that uð�x; �AÞ ¼ 1; which

gives that the boundary values are not continuous in the upper-right corner.

The basic idea is to first study u and then choose �x and �A large enough such that

it serves as an approximation of u0; cf. Proposition 2.3 and Corollary 2.4 from [1]

for the one-dimensional case.

The following Lemma states the connection to the equation Lwðx;AÞ ¼ 0:

Lemma 2.2 For given fixed x;A; the function u is the unique classical solution of

the partial differential equation Lwðx;AÞ ¼ 0 with the boundary conditions (6).

Proof At first we are going to prove that this differential equation has an unique

solution g, in a second step we show that g ¼ u:

We face an elliptic operator L; since the coefficients matrix is positive definite.

From Evans [9, p. 301 and p. 316] and observing that the involved coefficients are

polynomials, we get that there exists a unique solution to the problem which is at

least twice differentiable in all variables on ð0; �xÞ � ð0; �AÞ: Furthermore, cf. Jost

[18, p. 59] we can also obtain that the discretized version of the problem converges

uniformly to the correct solution if the grid size tends to zero.

Now for ðx;AÞ 2 ð0; �xÞ � ð0; �AÞ we apply Itô’s formula to gðTA
t^f;At^fÞ; with

f ¼ minfs�x; s �A; s
Ag the first exit time from ð0; �xÞ � ð0; �AÞ;

gðTA
t^f;At^fÞ ¼ gðx;AÞ þ

Zt^f

0

LgðTA
s ;AsÞds

þ
Zt^f

0

gxðTA
s ;AsÞr dW ð1Þs þ

Zt^f

0

gAðTA
s ;AsÞb As dW ð2Þs :

Since Lg ¼ 0 on ð0; �xÞ � ð0; �AÞ and the involved stochastic integrals are zero-mean

martingales, we can state that
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Ex;AðgðTA
t^f;At^fÞÞ ¼ gðx;AÞ: ð7Þ

Now we use Px;Aðf\1Þ ¼ 1 and exploit the stated boundary conditions, from

bounded convergence we can deduce the statement of the Lemma when t!1 in

Eq. (7),

gðx;AÞ ¼ Ex;AðgðTA
f ;AfÞÞ ¼ Ex;AðIfs�x\s �A^sAgÞ ¼ uðx;AÞ:

h

By the end of the section we collect properties of the survival probability

of the uncontrolled process (TA, A). From its definition we have that it

fulfills the boundary conditions given in (4). Assume two initial capital values

x [ x0 as starting points of paths of TA with the same investment component.

Naturally, because of the continuity of the paths, ruin occurs first for the one

starting in x0; therefore u0ðx;AÞ�u0ðx0;AÞ; i.e. u0 is increasing in the x-

component.

Because of the Markov property of the bivariate process (TA, A) the survival

probability u is a so-called (TA, A)-harmonic function, see [24, Definition 9.2.2.], as

a consequence we can state the following Lemma.

Lemma 2.3 On every compact subset M of ð0;1Þ � ð0;1Þ we have that for all

a\ 1, u0ðx;AÞ ¼ Px;AðsA ¼ 1Þ admits a-Hölder continuous second order deriv-

atives and Lu0 ¼ 0:

Proof We observe that due to the Markov property of (Tt
A, At)t C 0 we have

u0ðx;AÞ ¼ Ex;Aðu0ðTA
sU
;AsU
ÞÞ;

with sU ¼ infft� 0 j ðTA
t ;AtÞ 2 dUg; for all bounded open sets U � ð0;1Þ �

ð0;1Þ such that ðx;AÞ 2 U: Now we can conclude from the Hölder continuity of

the first exit distribution of (Tt
A, At) from an open ball, shown in the proof of Lemma

9.2.14. in Øksendal [24], that u0ðx;AÞ is Hölder continuous on compacts as well

(the above expectation can be written as an integral with respect to this special

measure).

The rest of the proof follows arguments used in the first part of the proof of

[Lemma 9.2.14., 24], which we will sketch in the following. Again on an open ball

B(x, A) we can look at the Dirichlet problem given by

Lw ¼ 0 on Bðx;AÞ and w ¼ u0 on dBðx;AÞ;

which allows for an unique classical solution u with Hölder continuous second

order derivatives on B(x, A). Applying Itô’s formula to u(Tt
A, At), as done in the

proof of Lemma 2.2, yields u0 ¼ u on B(x, A) and the statement of the Lemma

follows. h

Before going on with the optimization problem we give some numerical

examples for u: Figure 1 illustrates uðx;AÞ on [0, 5] 9 [0, 10] for the following

choice of parameters (Parameter set 1):
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l r a b A�

0.3 0.4 0.2 0.4 and 0.6 0.304 and 0.1415

The left-hand graphic shows u for the lower value of the risky asset’s volatility,

whereas the right-hand graphic shows u for the larger volatility. The two graphics in

Fig. 2 cover u for an increased volatility in the insurance business and again for

high and low asset’s volatility. Concretly we use the parameters (Parameter set 2):

l r a b A�

0.3 0.8 0.2 0.4 and 0.6 1 and 0.507

The choice of x ¼ 5 is justified by the observation that 1� e
�2l

r2x 	 1: The choice

of A ¼ 20 is reasonable, since it allows, compared with the magnitude of the initial

capital x, for a lot of different investment positions and is large enough to accept u
as an approximation of u0 for 0 B A B 12. Obviously for larger values of A the

boundary influence u0ðx;AÞ ¼ 0 is too dominant.

Comparing left-hand and right-hand side in Fig. 1, one can see that the increase

of b has a big influence on the survival probability approximated by u: In particular

when starting, under high volatility without any further intervention, in a position

(x, A) where the investment component is far away from A� one faces a large

disadvantage compared with initial investment positions close to the optimal one for

the problem without transaction costs.

Looking at Figs. 1 and 2, one gets that the second set of parameters creates a

riskier environment than the first set. In Fig. 2 the drawback of a wrong initial

investment position is even more apparent. Obviously increasing r, the insurer’s

volatility, has a severe negative effect on the survival probability such that

determining an approriate investment position becomes much more important. All

of the four graphics illustrate the results from Kalashnikov and Norberg [19] in a

very clear way, i.e. away from the optimal investment position A� the rate of

increase as a function in x reduces considerably.

3 Solution approach

In this section we shall prepare the theoretical basis for the construction of the value

function (2). One way to characterize uðx;AÞ is to view it as a limit of a sequence of

solutions to optimal stopping problems, as done in Sect. 3.1. Another way of

characterization is to derive first in a heuristic way the associated quasi-variational

inequalities and then to prove that u is (in some sense) a solution to them. The
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combination of these two approaches will be helpful to derive an approximation for

the value function. In the same way as for the value function itself, one can get

quasi-variational inequalities for the involved optimal stopping problems. An

iteration procedure then generates an approximation of u:

3.1 Iterated optimal stopping

As mentioned above, we will start with characterizing u through a sequence of

optimal stopping problems.

Suppose a function f : ½0;1Þ � ½0;1Þ ! ½0; 1� measures the outcome of an

intervention. If it would be optimal to intervene at a point (x, A) we would choose

the new investment position such that the continuation value, measured by f, is

maximized, i.e.

sup
fDA2Dðx;AÞg

ff ðx� K � kjDAj;Aþ DAÞg ¼: Mf ðx;AÞ;

Fig. 1 u0 for Parameter set 1

Fig. 2 u0 for Parameter set 2
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where Dðx;AÞ ¼ fDA j x� K � kjDAj � 0 ^ Aþ DA� 0g is the set of admissible

interventions at the position (x, A). If Dðx;AÞ ¼ ; we define Mf(x, A) = 0, in

particular for x \ 0 and 0 B x \ K there is no admissible intervention.

Lemma 3.1 Suppose f : ½0;1Þ � ½0;1Þ ! ½0; 1� is increasing in x, continuous,

limx!1 f ðx;AÞ ¼ 1 and limA!1 f ðx;AÞ ¼ 0; then all these properties translate to

Mf as a function in (x, A).

Proof From 0 B f B 1 we have immediately 0 B Mf B 1. For fixed A we can

choose for large enough x, some DA 2 Dðx;AÞ; and we have

f ðx� K � kjDAj;Aþ DAÞ�Mf ðx;AÞ� 1:

Since the lower bound tends to one for x!1 we derive the statement for Mf.

On the other hand fix x such that Dðx;AÞ 6¼ ; and choose DAe such that

0�Mf ðx;AÞ� f ðx� K � kjDAej;Aþ DAeÞ þ e; ð8Þ

for some e [ 0: Since for an admissible intervention we have x�K
k
� jDAj; a large

investment position A can not be switched off. Therefore because of continuity and

the limiting behaviour of f we can take A large such that the right-hand side in (8)

becomes arbitrarily small. This yields limA!1Mf ðx;AÞ ¼ 0:
Now let x [ y [ 0,

Mf ðx;AÞ �Mf ðy;AÞ
¼ sup
fDA2Dðx;AÞg

f ðx�K � kjDAj;AþDAÞ � sup
fDA02Dðy;AÞg

f ðy�K � kjDA0j;AþDA0Þ;

from x [ y we have Dðx;AÞ 
 Dðy;AÞ: Therefore, by choosing DAe; some

e�optimal intervention for (y, A), we arrive at

Mf ðx;AÞ �Mf ðy;AÞ
� f ðx� K � kjDAej;Aþ DAeÞ � f ðy� K � kjDAej;Aþ DAeÞ � e:

Since f is assumed to be monotone increasing in x, the result follows.

For proving continuity we first assume that for ðx;AÞ; ðx0;A0Þ we have Dðx;AÞ ¼
Dðx0;A0Þ ¼ ;; then Mf ðx;AÞ ¼ Mf ðx0;A0ÞÞ ¼ 0:

Now assume that both sets are non-empty. Take an e=2�optimal intervention

DAe for (x, A) and an admissible DeA; to be specified below, for ðx0;A0Þ: We get

Mf ðx;AÞ �Mf ðx0;A0Þ

� f ðx� K � kjDAej;Aþ DAeÞ � f ðx0 � K � kjDeAj;A0 þ DeAÞ þ e
2
:

Looking at the structure of reachable points by an intervention ðx� K � kjDAj;Aþ
DAÞ for DA 2 Dðx;AÞ; one observes that these are linear translations of the starting

point (x, A). Therefore, for a fixed choice of DAe; one can choose a DeA such that if

dððx;AÞ; ðx0;A0ÞÞ\d for a suitable d[ 0 we have dððx� K � kjDAej;Aþ
DAeÞ; ðx0 � K � kjDeAj;A0 þ DeAÞÞ is small enough to get by continuity of f
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jf ðx� K � kjDAej;Aþ DAeÞ � f ðx0 � K � kjDeAj;A0 þ DeAÞj\ e
2
:

Changing the role of the two points shows continuity.

Now suppose Dðx;AÞ 6¼ ; and Dðx0;A0Þ ¼ ;; as the points should be close they

need to be of the form (K ? d, A, ) and ðK;A0Þ; for some d[ 0. This implies that an

intervention at the first point shifts the x argument to a value smaller than d. Since

f(0,A) = 0 for any A C 0 we get by continuity of f that 0 B Mf(x,A) becomes

arbitrarily small for d! 0; limd!0 Mf ðK þ d;AÞ ¼ 0: h

The next step towards a characterization of u is the definition of an appropriate

operator, which, repeatedly applied to u0; generates a sequence of functions which

tends to u:
Suppose it is never optimal to adapt the investment position part of TA, which

happens if h1 = s, then the corresponding survival probability is equal to u0: If it is

optimal to intervene before the event of ruin, one would choose the intervention

time such that Ex;AðMf ðTA
h ;AhÞÞ is maximized. Therefore define

Gf ðx;AÞ :¼ maxfu0ðx;AÞ; sup
h\s

Ex;AðMf ðTA
h ;AhÞÞg; ð9Þ

where f is a function with properties as used in Lemma 3.1. For staying in the same

class of functions it is important that properties of f translate to properties of Gf :

Lemma 3.2 Suppose f : ½0;1Þ � ½0;1Þ ! ½0; 1� is increasing in x, continuous

and limx!1 f ðx;AÞ ¼ 1; then all these properties translate to Gf as a function in

(x, A).

Proof Because both terms in the maximum in (9) are between zero and one we

have 0�Gf � 1:

Take x� x0; at first observe u0ðx;AÞ�u0ðx0;AÞ for every A C 0. For the second

part we have that every path of TA starting in (x, A) is bigger or equal to the path

starting in ðx0;AÞ; since the investment component is the same. Therefore the choice

of an e�optimal intervention and stopping time for suph\s Ex0;AðMf ðTA
h ;AhÞ; which

is also admissible for suph\s Ex;AðMf ðTA
h ;AhÞ; leads to Gf ðx;AÞ�Gf ðx0;AÞ because

of the monotonicity in the x component of Mf.

The limit limx!1 Gf ðx;AÞ ¼ 1 follows immediately from limx!1 u0ðx;AÞ ¼ 1

and suph\s Ex;AðMf ðTA
h ;AhÞ� 1:

The continuity of Gf can be deduced by Theorem 8 and Lemma 5 of Krylov [21,

p. 133 and p. 156]. It can also be seen by the following explicit construction, cf.

Øksendal [24, Lemma 8.1.4] or Korn [20]. Let

h0ðx;AÞ ¼ Mf ðx;AÞ:

Define Sn :¼ fk2�n; 0� k� 4ng for n 2 N and

hnðx;AÞ ¼ max
t2Sn

Ex;Aðhn�1ðTA;AtÞÞ:

Since h0 is continuous, also h1 is continuous, as it is a maximum out of finitely many

continuous functions. By induction it follows that hn is continuous as well. From
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[24] we have v C hn C hn-1 and limn!1 hnðx;AÞ ¼ vðx;AÞ :¼ suph� s Ex;A

ðMf ðTA
h ;AhÞÞ with v(x,A) = 0 for x B 0. Since on {h = s} we face the basic sur-

vival probability, it will not play any role to use h\ s below.

Now suppose that Gf ðx;AÞ�Gf ðx0;A0Þ; then

0�Gf ðx;AÞ � Gf ðx0;A0Þ � maxfu0ðx;AÞ; vðx;AÞg �maxfu0ðx0;A0Þ; vðx0;A0Þg
eþmaxfu0ðx;AÞ; hnðx;AÞg �maxfu0ðx0;A0Þ; hnðx0;A0Þg

with n such that vðx;AÞ � hnðx;AÞ� e for some e [ 0: Since both functions in the

maximum are continuous, the difference tends to e as ðx;AÞ ! ðx0;A0Þ: Inter-

changing the role of the two points when using the approximation then gives

continuity. h

Now we are ready to define the iteration procedure. Define a sequence of

functions fungn2N with un : ½0;1Þ� ½0;1Þ ! ½0; 1� by the following recursion,

unðx;AÞ :¼ maxfu0ðx;AÞ; sup
h\s

Ex;AðMun�1ðTA
h ;AhÞÞg ¼ Gun�1ðx;AÞ; ð10Þ

where the starting point is given by u0 ¼ u0: Let Pn � P be the set of admissible

policies with at most n 2 N interventions. Notice that from Lemma 3.2 and an

induction argument we have that un has the same properties as u0:
We can state the first characterization of u as a limit of iterated optimal stopping

problems.

Theorem 3.3 For the sequence defined above we have:

unðx;AÞ ¼ sup
p2Pn

upðx;AÞ and lim
n!1

un ¼ u: ð11Þ

Proof From its definition we have that

u1ðx;AÞ ¼ Gu0ðx;AÞ�u0:

Since in Gu0 at most one intervention is done and in the case of an intervention it is

carried out in a maximizing way, we get

u1ðx;AÞ ¼ sup
p2P1

upðx;AÞ:

Now assume

un�1ðx;AÞ ¼ sup
p2Pn�1

upðx;AÞ ¼: vn�1ðx;AÞ:

Since Pn�1 � Pn we have un�1 ¼ vn�1� vn�u and because when calculating un

at most n interventions appear un� vn holds.

Now let p ¼ fðh1;A1Þ; . . .; ðhn;AnÞÞg 2 Pn; for the associated survival proba-

bility we have

upðx;AÞ ¼ Ex;AðPT�;A1
ðTp

t [ 0 for all t� h1ÞIfh1\sg þ u0ðx;AÞIfh1¼sgÞ;
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where T� ¼ Th1� � K � kjAh1� � A1j; i.e. the starting point after the first inter-

vention. Observe that from now on only n - 1 interventions are possible, therefore

PT�; A1
ðTp

t > 0 for all t� h1Þ� vn�1ðT�;A1Þ: In particular maximizing over h1 and

A1 shows

upðx;AÞ�Gun�1ðx;AÞ ¼ unðx;AÞ:

So we end up with un ¼ supp2Pn
upðx;AÞ and un�un�1 for all n 2 N:

Since we face an increasing sequence of functions which is bounded by the

constant function equal to 1 we have that there exists a point-wise limit,

lim
n!1

unðx;AÞ ¼ vðx;AÞ for ðx;AÞ 2 ½0;1Þ� ½0;1Þ:

From the definition of the sequence we have, together with bounded convergence,

that

vðx;AÞ ¼ lim
n!1
Gun�1ðx;AÞ ¼ Gvðx;AÞ:

It remains to show that v ¼ u: Because un�u for all n 2 N we have v�u: For

the opposite inequality we look at an e=2-optimal policy pe ¼ fðhn;AnÞgn2N such

that uðx;AÞ�upeðx;AÞ þ e=2: If pe consists of finitely many interventions only, we

are done. Therefore, assume it consists of infinitely many ones in the following.

Define pn 2 Pn to be the policy using the first n interventions of pe only. Then we

have

Tpe

t ¼ Tpn

t for 0� t� hn;

and from the Markov property of ðTpe

t ;A
pe

t Þ between interventions that

upnðx;AÞ ¼ Px;Aðspe
[ hnÞEx;Aðu0ðTpe

hn
;AnÞÞ: ð12Þ

Observe that on the set fse ¼ 1g there appear infinitely many jumps of size at

least K in the reserve process Tpe
defined in (1). From an argument part of the proof

of Lemma 5 in Gaier et al. [13], we can deduce that Tpe

t !1 as t!1 on

fspe ¼ 1g and also that the sequence Tpe

hn
can not be bounded as hn ! spe

: We get

from (12)

lim
n!1

upnðx;AÞ ¼ upeðx;AÞ:

Choosing n large enough such that jupnðx;AÞ � upeðx;AÞj � e=2 we arrive at

uðx;AÞ�unðx;AÞ þ e;

by replacing upn

by un: We obtain v ¼ u: h

Remark 3.1 For the operator G we also have the property limA!1 Gf ðx;AÞ ¼ 0;
which follows from the same arguments as for Mf. When calculating u; this

asymptotic boundary condition is just of theoretical importance, since for large but

fixed A one would always try to get rid of some part of the investment position, as

much as one can afford, through an immediate intervention. h

372 S. Thonhauser

123



Remark 3.2 The characterization, stated in Theorem 3.3, gives also a guidance for

calculating u: Nevertheless this procedure would involve the solution of an optimal

stopping problem at each step. In the next section we derive another characterization

of u in terms of quasi-variational inequalities, which itself bears some difficulties

since one would need to solve an associated free boundary value problem. In Sect. 4

we are going to illustrate that the combination of these two methods will lead to an

efficient numerical procedure for approximating u: h

3.2 Quasi-variational inequalities

We start with deriving, for the moment heuristically, the so called quasi-variational

inequalities (QVI) associated to our optimization problem given by (2). These

inequalities can be seen as counterpart to the familiar Hamilton–Jacobi–Bellman

equation in classical stochastic control theory.

Suppose that at (x, A) with Dðx;AÞ 6¼ ; it is optimal to intervene, at such points

we should have Muðx;AÞ ¼ uðx;AÞ: Since immediate stopping may not be optimal

in general, we have that Mu�u on ½0;1Þ � ½0;1Þ:
Now suppose that it is not optimal to intervene in some neighborhood of a point

(x, A), then as for u0 assuming twice differentiability in x and A we shall have

Luðx;AÞ ¼ 0: Combining the two observations we get

maxfLuðx;AÞ;Muðx;AÞ � uðx;AÞg ¼ 0: ð13Þ

Formally, together with the boundary conditions, the QVI associated to u are

given by

Lw� 0;
w�Mw;
ðw�MwÞLw ¼ 0;
limx!1 wðx;AÞ ¼ 1;
limA!1 wðx;AÞ ¼ 0;
wð0;AÞ ¼ 0;

8>>>>>><
>>>>>>:

where w denotes some suitable function and L is given by (5).

Since we can not expect that u 2 C2ð½0;1Þ � ½0;1ÞÞ; we have to use a weaker

concept of solution. The concept of viscosity solutions will be suited to characterize

u in terms of the QVI (13). For an introduction to this concept see for example

Fleming and Soner [10].

Definition 3.4

• A continuous function v is a viscosity subsolution of (13) if for all w 2 C2 such

that w - v attains a minimum equal to zero in ðx0;A0Þ we have

maxfLwðx0;A0Þ;Mvðx0;A0Þ � vðx0;A0Þg� 0:

• A continuous function u is a viscosity supersolution of (13) if for all w 2 C2 such

that w - u attains a maximum equal to zero in ðx0;A0Þ we have
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maxfLwðx0;A0Þ;Muðx0;A0Þ � uðx0;A0Þg� 0:

• A function is a viscosity solution if it is a viscosity supersolution and a viscosity

subsolution.

From [25, Lemma 7.3], or Krylov [21, p. 134], we have validity of the dynamic-

programming principle, which says that for a finite stopping time b we have

uðx;AÞ ¼ sup
h� s

Ex;AðMuðTA
h ;AhÞIfh� bg þ uðTA

b ;AbÞIfb\hgÞ: ð14Þ

Theorem 3.5 The maximal survival probability u is a viscosity solution to (13).

Proof From Theorem 3.3 or (14) we have that u�Mu for all (x, A).

Look at the subsolution property first and let w be an appropriate test function.

We need to prove the statement just on the set

A :¼ fðx;AÞ juðx;AÞ[ Muðx;AÞg:

Suppose uðx0;A0Þ �Muðx0;A0Þ ¼ g [ 0 and define

Ag :¼ ðx;AÞ
��uðx;AÞ �Muðx;AÞ[ g

2

n o

and set sg ¼ infft� 0jðTA0

t ;AtÞ 62 Agg; the first time leaving the set Ag when

starting in ðx0;A0Þ: We have that for 0 B t B sg an intervention is not optimal and

from (14) together with the assumptions on w that

wðx0;A0Þ ¼ uðx0;A0Þ ¼ Ex0;A0 ðuðTA0

sg ;AsgÞÞ�Ex0;A0 ðwðTA0

sg ;AsgÞÞ:

Applying Itô’s formula to w gives

0�Ex0;A0

Zsg

0

LwðTA0

s ;AsÞds

0
@

1
A;

to see that the involved stochastic integrals are martingales and that ruin does not

play a role here, one can cut off everything by stopping if the distance between

ðx0;A0Þ and ðTA0
t ;AtÞ becomes too large such that the (then modified) function w has

compact support, cf. Theorem 2.1 of [25]. Now use h^sg for h [ 0 and divide the

above inequality by 0\Ex0;A0 ðh ^ sgÞ� h and let h ? 0. By continuity of Lw we get

0�Lwðx0;A0Þ:

The supersolution property follows from the same ideas. From (14) we get (by

taking h = s)

w ¼ ðx0;A0Þ ¼ uðx0;A0Þ �Ex0;A0 ðuðTA0

b ;AbÞÞ�Ex0;A0 ðwðTA0

b ;AbÞÞ;

where w is a suitable test function for the supersolution property. Now one can

proceed as before using the stopping time
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bn ¼ inf t� 0
�� d½ðx0;A0Þ; ðTA0

t ;AtÞ��
1

n

� �
^ 1

n
;

instead of b in the inequality above. Finally one gets

Lwðx0;A0Þ � 0;

which together with Mu� u� 0 proofs the supersolution property. h

Finally, we state a Verification Theorem linking a viscosity solution of (13) to u:

Define /ðx; yÞ ¼ 1
p e�ðx

2þy2Þ and let u be a continuous, almost everywhere twice

differentiable function, then for n 2 N

vnðx; yÞ ¼ n2

Z1

�1

Z1

�1

uðx� s; y� tÞ/ðns; ntÞds dt;

we have that vn is twice differentiable, limn!1 vn ¼ u and also Lvnðx; yÞ ! Lu a.e.,

cf. [31].

Theorem 3.6 If u : ½0;1Þ � ½0;1Þ ! ½0; 1� is a continuous viscosity supersolu-

tion with limx!1 uðx;AÞ ¼ 1; limA!1 uðx;AÞ ¼ 0; u(x, A) = 0 for x B 0 and is

a.e. twice differentiable, then

u�u:

Proof Let p ¼ fhi;Aigi2N be an arbitrary admissible policy. Since it can not be

optimal to have two interventions at the same time we assume hn [ hn-1 if sp [ hn.

We have for fixed t [ 0,

vnðTp
t^sp ;Ap

t^spÞ � vnðx;AÞ ¼
X

hn � t^sp

vnðTp
hn�;A

p
hn�Þ � vnðTp

hn�1
;Ap

hn�1
Þ

þ
X

hn � t^sp

vnðTp
hn
;Ap

hn
Þ � vnðTp

hn�;A
p
hn�Þ

�
X

hn � t^sp

vnðTp
hn�;A

p
hn�Þ � vnðTp

hn�1
;Ap

hn�1
Þ

þ
X

hn � t^sp

MvnðTp
hn�;A

p
hn�Þ � vnðTp

hn�;A
p
hn�Þ:

Taking expectations in the above inequality, using Itô’s formula for the parts in the

first sum and possibly a localization argument for the involved stochastic integrals

and bounded convergence, we get

Ex;AðvnðTp
t^sp ;Ap

t^spÞÞ� vnðx;AÞ þ Ex;A

X
hn � t^sp

Zhn^t^sp

hn�1^t^sp

LvnðTp
s ;A

p
s Þds

0
B@

þ
X

hn � t^sp

MvnðTp
hn�;A

p
hn�Þ � vnðTp

hn�;A
p
hn�Þ

!
:
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Using bounded convergence and the properties of the sequence {vn} we arrive at

Ex;AðuðTp
t^sp ;Ap

t^spÞÞ� uðx;AÞ þ Ex;A

X
hn � t^sp

Zhn^t^sp

hn�1^t^sp

LuðTp
s ;A

p
s Þds

0
B@

þ
X

hn � t^sp

MuðTp
hn�;A

p
hn�Þ � uðTp

hn�;A
p
hn�Þ

!
:

Observe that in the present situation v fulfills maxfLu;Mu� ug� 0 a.e.

Now we let t!1 and use that Tp either gets ruined or tends to infinity, which is

based on the observations done in the proof of Theorem 3.3, to obtain

Px;Aðsp ¼ 1Þ� vðx;AÞ:

Since the policy was arbitrary the result follows. h

The next Corollary follows immediately.

Corollary 3.7 If an admissible policy p� generates an associated survival

probability u� which is an a.e. twice differentiable solution to (13), then u ¼ u�:

Remark 3.3 In Sect. 4 we are going to construct a sequence of admissible policies such

that the associated survival probabilities form an increasing sequence. From step to step

these survival probabilities are a.e. twice differentiable and approximate a solution to the

QVI (13). Therefore using Corollary 3.7 we obtain an approximation of u:

The asymptotic boundary condition limA!1 uðx;AÞ ¼ 0 for fixed x, which for

the approximation is translated to uðx;AÞ ¼ 0 for x 2 ½0; xÞ is just important for

0 B x B K. For x [ K and A close to A; one always would do an immediate

intervention to get away from the upper boundary for the investment position. h

4 Numerical approach

We start with presenting the QVI linked to the sequence fungn2N: Remember that

the starting point is given by the pure survival probability u0 ¼ u0 and

unðx;AÞ ¼ Gun�1ðx;AÞ ¼ maxfu0ðx;AÞ; sup
h\s

Ex;AðMun�1ðTA
h ;AhÞÞg:

Since one knows un�1; we now face an optimal stopping problem with a given

payoff function. By the same means as used in Sect. 3.2 one can show that un is (at

least) a viscosity solution to

Lw� 0;
w�Mun�1;
ðw�Mun�1ÞLw ¼ 0;
limx!1 wðx;AÞ ¼ 1;
limA!1 wðx;AÞ ¼ 0;
wð0;AÞ ¼ 0:

8>>>>>><
>>>>>>:
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The exact calculation of un for several n 2 N is an elaborate and time-consuming

procedure. We therefore propose the usage of a so-called policy iteration procedure,

see Chancellier et al. [7] or Bäuerle & Rieder [3] for applications in finance. For

discrete-time Markov models this method is also known as Howard’s policy

improvement algorithm, see Bäuerle and Rieder [4].

The idea of the method is explained in a few words: one proposes an admissible

policy p and calculates the corresponding survival probability up: The second step

generates an improved policy p0 out of policy p. Using the new policy p0, an

immediate intervention in the point (x, A) is carried out, if the difference

Mupðx;AÞ � upðx;AÞ is positive. If the difference is negative, there will be no

immediate intervention. In this way we generate two sets, an action (intervention)

set A and a non-action (non-intervention) set B:
The updated survival probability can now be calculated by solving numerically

Lup0 on B and by setting up0 ¼ Mup on A:
We are going to implement this procedure on a bounded domain ½0; x� � ½0;A�:

The boundary points x and A are chosen sufficiently large, such that u; defined in

Sect. 2.2, serves as a suitable approximation of u0:
The starting policy is given by choosing no intervention, the corresponding

survival probability on ½0; x� � ½0;A� is given by u: From the proof of Lemma 2.2,

we can compute it numerically by using a discretization of the domain and by

replacing the derivatives part of the operator L by appropriate finite differences.

Now we introduce the action set A1 and the non-action set B1 by

A1 :¼ fðx;AÞ 2 ½0; x� � ½0;A� jMuðx;AÞ[uðx;AÞg;
B1 :¼ ½0; x� � ½0;A� n A1:

The corresponding policy p1 consists of at most one intervention which is given by

h1 :¼ infft� 0 j ðTA
t ;AtÞ 62 B1g;

A1 :¼ argmaxfMuðTA
h1�;Ah1�Þg;

It turns out that the sets A1 and B1 can be stylized as given in Fig. 3. The red area

corresponds to the non-action set and the dashed line corresponds to A�, the optimal

constant amount to hold in the risky asset for the problem without transaction costs.

Therefore the associated survival probability up1 can be computed by

up1ðx;AÞ ¼ Muðx;AÞ for ðx;AÞ 2 A1;

and by determining a solution to Lup1ðx;AÞ ¼ 0 for ðx;AÞ 2 B1 with the boundary

conditions given by

up1ð0; AÞ ¼ 0 A 2 ½0; �A�;

up1ðx; 0Þ ¼ 1�e
�2l

r2
x

1�e
�2l

r2
x1

Muðx1; 0Þ x 2 ½0; x1�;

up1ð�x;AÞ ¼ 1 A 2 ½0; �A�;
up1ðx; �AÞ ¼ 0 x 2 ½0; �xÞ:

8>>>><
>>>>:

The point x1 ¼ inffx� 0jðx; 0Þ 2 A1g�K is the smallest point on the x-axis which

lies in the action set.

Optimal investment under transaction costs for an insurer 377

123



Now one iterates this procedure by replacing u by upn�1 in the steps described

above, for generating upn out of upn�1 : The application of the proposed algorithm

generates a sequence of survival probabilities and admissible investment policies. It

is stopped if the improvement of upn over upn�1 becomes marginal.

Remark 4.1 For showing that the sequence fupngn2N is increasing and really

constitutes an improvement, we can follow the arguments given by Bäuerle and

Rieder [3]. We observe, when using a maximum principle [9, p. 332] for up1 on B1;
that up1 attains its maximum and minimum at the boundaries of the non-action set,

dB1: Note, because on fðx;AÞ; j0� x� xg \ dB1 there may still be a discontinuity in

the boundary condition, we need at first to approximate the boundary condition by a

continuous function to guarantee continuity of up1 at the boundary. But this changes

nothing in the line of argumentation, since one could replace a classical maximum

principle by one used for viscosity solutions.

Since up1ðx;AÞ ¼ Muðx;AÞ on dB1 we achieve a higher boundary value for up1

than for u; by construction of the action set A1: Therefore u1�u and an induction

argument shows that upn �upn�1 : h

Remark 4.2 At step n of the iteration at most n interventions are done, the policy

pn = {(hk, Ak)}k=1
n is given by

hk :¼ infft� hk�1 j ðTpn

t ;A
pn

t Þ 62 Bnþ1�kg;
Ak :¼ argmaxfMupn�kðTpn

hk�;A
pn

hk�Þg:

It says that the first intervention, which is going to be applied, is the one determined

in the last step of the iteration.

If upn �upn�1 ; one has approximately generated a fixed point of the operator G:
Therefore the policy p� corresponding to

hk :¼ infft� hk�1 j ðTp�
t ;A

p�
t Þ 62 Bng;

Ak :¼ argmaxfMupnðTp�
hk�;A

p�
hk�Þg;

suggests a reasonable approximation of the optimal policy. h

x

AFig. 3 Stylized action and non-
action sets
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As an illustration of the method we perform some iterations for the set of

parameters given in Table 1. The corresponding plots of step-wise improved

survival probabilities are given in Figs. 4 and 5. The associated investment policy,

expressed through their action (indicated as positive values equal to the optimal

intervention) and non-action (indicated as zero values) sets is displayed in the right

graphic of 5. A detailed interpretation of the numerical results will be given in the

following section.

5 Interpretation of results: conclusion

In the present manuscript we incorporated transaction costs into the problem of

maximizing an insurer’s survival probability by controlling the amount of money

invested in a risky asset. This is an additional step towards a practical application of

results on optimal investment for an insurer achieved from research in the context of

risk theory. The used diffusion model, irrespective of its simplicity, has the big

advantage that all involved parameters have a clear interpretation. In this way it is

possible to separate effects on the optimal investment policy and the associated

survival probability by cause, i.e. one can observe exactly which changes in the

behaviour of the risky asset generate changes in the survival probability and

investment policy. Modelling the survival probability as a bivariate function of the

total surplus and the amount of money invested allows to interpret the initial

investment position as the outcome of a previously used investment policy. Since

this old policy may not have been optimal, the first intervention can be used to

correct this misleading initial position. From the numerical results it is obvious that

this intervention, as calculated by the first intervention, has the biggest effect on

improving u0:
The complete theoretical characterization allows to describe a method to

compute the maximal survival probability quite easily by iteration. The used

extended solution concept in Sect. 3.2 for characterizing the survival probability as

a solution to the quasi-variational inequalities is just a technical issue, since a priori

one can hardly make any statement about the regularity of a solution to these

inequalities. When computing the maximal survival probability in Sect. 4, this

technical difficulty does not play a big role anymore; one can build up the solution

by iteratively calculating solutions to partial differential equations. However the

theoretical results are important to back up the numerical results.

Although the obtained results have some theoretical flavour, they nevertheless

point out some guidelines on how to behave in different situations faced in practice.

In the following we are going to summarize the results from qualitative points of

view.

Table 1 Parameters for iteration procedure

l r a b K k A�

0.1 0.4 0.15 0.25 0.1 0.02 1.067
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5.1 Optimal policy

When comparing the outcome of the numerical method for several parameter sets,

we obtained that the calculated results concerning the behaviour of the optimal

investment policy are very stable. This allows us to draw some quite general

conclusions on the form of the optimal investment policy.

The crucial quantity is still given by the optimal amount A� to be invested for the

problem without transaction costs. The optimal policy for the problem including

transaction costs is given by a certain action set A� and a certain non-action set B�:
Recall that, as long as the bivariate process (Tt

p*, At
p*) is in the set B� there is no

intervention, if it enters A� one immediately adapts the investment position. The

action set can be interpreted as the set of non-acceptable investment positions,

whereas the non-action set consists of acceptable positions.

Fig. 4 uðx;AÞ without (left) and with one intervention (right) for parameters from Table 1

Fig. 5 uðx;AÞ with 3 (left) interventions and policy (right) for parameters from Table 1
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A striking observation is the structure of the non-action set B�; as it is a

connected area, which is roughly symmetric around the constant A� and for large

x the lower and upper boundaries of B� converge to A�. The optimal new

investment positions are - as soon as on can afford this type of restructuring -

very close to the value A�, cf. Fig. 6, where arrows connect the pre- and post-

intervention positions for some points (x, A). For initial positions (x, A) with

small x, it is possible that the investment position can not be changed to A�

because of a too high value of transaction costs which would be equal to K þ
kjA� A�j: By the structure of B�; we get that for large x the maximal survival

probability with transaction costs u is quite close to uB; the classical survival

probability using optimal investment. This observation tells us that, instead of

continuously rebalancing the investment position, in the presence of transaction

costs one just intervenes if the investment position grows too far away from its

optimal position. Since for large initial capital the non-action set becomes very

narrow, there will be more interventions, in short time intervals than for small

initial capital, which keep the investment component close to A�. For small

initial capitals the positioning of the first intervention decides if investment is

advantageous or not.

Another observation is the stability of the optimal action and non-action sets

across the iterations. Actually it turns out that the optimal intervention set

computed in the first iteration almost matches the one from the second iteration

and also performing several steps of the iteration does not show any

substantial changes, cf. Fig. 6. Therefore, already the first determined action

and non-action sets yield an approximation of a reasonable investment policy at

later iterations.

5.2 Optimal solution u

The results of Sect. 4 show that in principle just a few adaptations are enough to

considerably improve the resulting survival probability. A convenient consequence

is that the execution of the investment policy can be done in a relaxed manner.

Just for small initial capital an accurate behaviour is really important, since wrong

investment positions have severe consequences.

x

AFig. 6 Stylized optimal
interventions for some
combinations of (x, A)
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5.3 Still need for investment

Actually, the results of the present paper also reflect an important aspect in the

present economic environment, that is, namely, the need of reduction (or even

liquidation) of the investment position. Nevertheless, optimal investment (possibly

on a smaller scale) still has a positive effect on an insurance portfolio’s safety. In the

presented model this fact is reflected in the behaviour of A�, which is always

positive but decreases with respect to the volatility of the asset. Since the non-action

set is centered by this constant, the optimal policy with transaction costs also takes

smaller investment positions in the presence of high risk in the financial market. The

importance of changing the investment position can be seen quite clearly by

comparing the plots in Fig. 4 and the plots in Fig. 5, even only one optimal

intervention shifts the survival probability to a much higher level.
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