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Abstract For d-dimensional exponential Lévy models, variational formulations of
the Kolmogorov equations arising in asset pricing are derived. Well-posedness of
these equations is verified. Particular attention is paid to pure jump, d-variate Lévy
processes built from parametric, copula dependence models in their jump structure.
The domains of the associated Dirichlet forms are shown to be certain anisotropic
Sobolev spaces. Singularity-free representations of the Dirichlet forms are given
which remain bounded for piecewise polynomial, continuous functions of finite el-
ement type. We prove that the variational problem can be localized to a bounded
domain with explicit localization error bounds. Furthermore, we collect several ana-
lytical tools for further numerical analysis.
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1 Introduction

Consider a basket of d > 1 risky assets whose log returns X, at time ¢ > 0 are mod-
eled by a Lévy process X = {X,};>0 with state space R?. By the fundamental theorem
of asset pricing [17], arbitrage-free prices u of European contingent claims on such
baskets with “reasonable” payoffs g(-) and maturity 7 are given by the conditional
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expectation
u(t,x) =E(e """ Vg(X7)| X, = x). (1.1)

Here, the expectation is taken with respect to an a priori chosen martingale measure
equivalent to the historical measure (see, e.g., [18, 19] for some measure selection
criteria).

It is well known that the family {7;};>0 of maps 7; : g(-) — u(t,-) is a one-
parameter semigroup. We denote by A its associated infinitesimal generator, i.e.,

o1
Au = lim —(Tyu — u) (1.2)
t—0+ ¢

for all functions u € D(A) in the domain

1

D(A) := {u € COO(Rd) : li%l ;(T,u — u) exists as strong limit},
t—0+4+

where Coo(R?) is the space of continuous functions vanishing at infinity (see,

e.g., [22]). Sufficiently smooth value functions « in (1.1) can be obtained as classical

solutions of a partial integro-differential equation (PIDE), the Kolmogorov equation

8—u+./4u—ru=0, (1.3)

ot
where A is the infinitesimal generator of the process X defined by (1.2). Among
several possible notions of solution (classical, variational, and viscosity solutions, to
name the most frequently employed), we opt for variational solutions which are the
basis for variational discretization methods such as finite element discretizations. To
convert (1.3) into variational form, we formally integrate against a test function v and
obtain (assuming r = 0 for convenience)

d
— W, v)+Ew,v)=0. (1.4)
dt S———

(Au,v)

Here, the bilinear expression & (1, v) denotes the extension of the L?(R?) inner prod-
uct (Au,v) corresponding to X from u,v € C{° (R?) by continuity to the domain
D(E). For the class of Lévy processes considered, we show in this paper that £(-, -)
is in fact a Dirichlet form.

In the univariate case, i.e., for a Lévy process X with state space R, (1.3), (1.4)
and methods for their numerical solution have been studied by several authors, see,
e.g., [7, 12, 28, 29] and the references therein. The numerical methods investigated
were either finite difference methods [7, 12] approximating viscosity solutions or
variational methods [28, 29] approximating weak (or variational) solutions. Both
solution concepts coincide for sufficiently smooth solutions, but the resulting nu-
merical schemes have essentially different properties. In [20], the univariate varia-
tional setting was extended to d > 1 dimensions for pure jump processes built from
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Anisotropic multivariate Lévy processes 529

1-homogeneous Lévy copulas and univariate marginal Lévy processes with symmet-
ric tempered stable margins. The domain of the infinitesimal generator A was char-
acterized, and it was shown that the corresponding variational problem is well posed.
Under these processes, option pricing using Fourier methods as in [8] is generally not
possible since the characteristic functions are not given in closed form.

The goal of this work is twofold. First, we extend [20] to the multivariate, nonsym-
metric case, i.e., where the univariate marginal Lévy processes are tempered stable
but with possibly nonsymmetric margins. Second, we provide further analytical re-
sults that are required for an efficient numerical implementation of (1.4). We show
that in the pure jump case the domain D(E) of the Dirichlet form £(-, ) of X be-
longs to a certain class of anisotropic Sobolev spaces and £(-, -) satisfies a Garding
inequality on these spaces. In addition, £(-, -) is cast into several forms which are
equivalent on Cgo(Rd ) and which are well defined for piecewise polynomial, glob-
ally Lipschitz-continuous arguments. We show that these forms naturally compen-
sate the singularity of the jump measure near zero arising from the square-summable
small jumps. There is no need to approximate the small jumps by a Brownian mo-
tion. These reformulations apply for any Lévy process with state space R? and are
the basis for a variational discretization of (1.3) by, e.g., finite element methods. Fur-
thermore, we derive the pricing PIDEs for d-dimensional Lévy models and obtain
the corresponding variational formulation with explicit Sobolev characterization of
the ansatz and test spaces. Extending [20], we establish sufficient conditions on X to
render the bilinear form £(-, ) a nonsymmetric Dirichlet form in the sense of Berg
and Forst [3]. We deduce the existence of a unique solution to the variational formu-
lation of the problem for a class of copulas and nonsymmetric marginal processes.
To allow the implementation of the variational problem, we furthermore localize it
to the bounded domain Gg = [—R, R]d and show that the solution of the localized
problem converges pointwise exponentially in R to the exact solution of the original
problem. We briefly describe the finite element discretization and study numerically
the quantitative effect on option prices of the diffusion approximation of small jumps
proposed, e.g., in [12, 13].

Throughout this work, we write x < y to express that x is bounded by a constant
multiple of y. For B C R?, by 15 : R? — {0, 1} we denote the indicator function of
the set 3.

2 Preliminaries

We recapitulate several tools needed subsequently. First, we present some classical
facts on Lévy processes and their generators and describe a class of parametric cop-
ula constructions for dependence in jumps of multivariate Lévy processes. Finally,
we collect some abstract results on variational parabolic evolution and inequality
problems.

2.1 Lévy processes

A cadlag stochastic process X = {X;},>( with state space R? such that Xo=0as.is
called a Lévy process if it has independent and stationary increments and is stochas-
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530 N. Reich et al.

tically continuous. The characteristic exponent ¥ : R — C of X is defined by
E(e X)) =V ®  teR? 120 @2.1)

It is a continuous, negative definite function for which we have the Lévy—Khinchin
representation (cf., e.g., [38, Theorem 8.1] or [22])

1 .
YE) =—ily.§)+ 5 Q0 + /Rd(l — & g, D) y<ny)v (), (22)

where Q € Rfyxnfl denotes the covariance matrix of the continuous part of X, y € R?

the drift of X, and v is the Lévy measure which satisfies

/ (1 A lz*)v (dz) < 0.
Rd

The triplet (Q, v, y) is called characteristic triplet of the process X.

No arbitrage considerations require Lévy processes employed in mathematical fi-
nance to be martingales. The following result gives conditions on the characteristic
triplet which ensure this.

Lemma 2.1 Let X = (X',..., X)) T € RY be a Lévy process with characteristic
triplet (Q, v, y). Assume f\z|>1 e%iv(dz) <oo, j=1,...,d. Then X’ is a martin-
gale with respect to the canonical filtration F of X if and only if

Qjj

—=+vy +/ (€77 —1—zjl{z1=1y)v (d2) = 0.
2 R4

Proof 1t is shown in [32, (2.30)] that Lemma 2.1 holds for general semimartingales
and therefore in particular for Lévy processes. g

Based on (&) in (2.1), it is well known that the infinitesimal generator A4 in
(1.2) corresponding to the Lévy process X is a pseudo-differential operator acting on
ueCgye (RY) by the (oscillatory) integral

(Au) (x) = (Y (D)u) (x) = 7)™ /R , e EN g ()a(E) dg,

where @(£) := (27) 7 [ 7% u(z) dz denotes the Fourier transform of u.
2.2 Lévy copulas

Since the law of a Lévy process X is time-homogeneous, it is completely character-
ized by its characteristic triplet (Q, v, y). The drift y has no effect on the dependence
structure between components of X. The dependence structure of the Brownian mo-
tion part of X is given by its covariance matrix Q. For the purposes of financial
modeling, it remains to specify a parametric dependence structure of the purely dis-
continuous part of X which can be done using Lévy copulas. Lévy copulas have
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Anisotropic multivariate Lévy processes 531

been introduced first by Tankov [43] and were further developed by Kallsen and
Tankov [25]. We refer to [25] for an introduction to Lévy copulas and just state one
of the main results, Sklar’s theorem for Lévy copulas. For this, we need to introduce
tail integrals of Lévy processes.

Definition 2.2 Let X be a Lévy process with state space R? and Lévy measure v.
The tail integral of X is the function U : R?\ {0} — R given by

d d
U(xy,...,xq) = nsgn(xj)v(l_[f(xj)>,

j=1 j=1
where

(x,00), for x >0,

IT(x)= {

(—o0,x], forx <O.

Furthermore, for I C {1, ..., d} nonempty, the I-marginal tail integral U Iof X is
the tail integral of the process X! := (X;)jes. If I = {i}, we write U; = Ut We also
use the notation x’ := (x;);c; and for x e R4, y e RII,

Xi, ifiél,
x—i—yI:zeRd withz; ={"" ¢
xi +yi, else.
The next result [25, Theorem 3.6] shows that essentially any Lévy process X with
values in R? can be built from univariate marginal processes X; and Lévy copulas.

Theorem 2.3 (Sklar’s theorem for Lévy copulas) For any Lévy process X with state
space RY, there exists a Lévy copula F such that the tail integrals of X satisfy

Ul (') = F((Urw0),.) @3

for any nonempty I C {1, ...,d} and any (x;);c; € RVI\{0}. The Lévy copula F is
unique on | [;_, Range U;.

Conversely, let F be a d-dimensional Lévy copula and U;, i =1, ...,d, tail inte-
grals of univariate Lévy processes. Then, there exists a d-dimensional Lévy process
X such that its components have tail integrals U; and its marginal tail integrals sat-
isfy (2.3). The Lévy measure v of X is uniquely determined by F and U;,i =1, ...,d.

Lévy copulas F allow parametric constructions of multivariate jump densities
from univariate ones.

Remark 2.4 Let Uy, ..., U; be one-dimensional tail integrals with Lévy densities
ki,...,kq, and F a Lévy copula such that 9; --- 94 F exists in the sense of distribu-
tions. Then

k(x1,...,xq) =01 04 Flg=v, (x),.... ca=Ug ey k1 (X1) - - kg (xq)

is the jump density of a d-variate Lévy measure with marginal Lévy densities
ki,.... kq.
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532 N. Reich et al.

Using partial integration, we can write the multidimensional Lévy density in terms
of the Lévy copula.

Lemma 2.5 Let f € C4(R?) be bounded and vanishing on a neighborhood of the
origin. Furthermore, let X be a d-dimensional Lévy process with Lévy measure v,
Lévy copula F, and marginal Lévy measures v;,i =1,...,d. Then

d
/ f(Z)U(dZ)ZZ/f(0+Zj)Vj(de)
Rd TR

+Z Z/ (042" F'(Uk(z0)) ;) d’

=2 =i
11< <I

Proof We proceed by induction with respect to the dimension d. For d = 1, integra-
tion by parts yields

/0 f@v(dz) = - lim FBW(Z®)+ agf(r)lJrf(a)v(I(a))
+/O E(Z)U(I(Z)) dz,
0
/ f@v(dz) = lim f@w(Z(@) - Jim fBW(Z®)

0
—/ %(z)v(I(z))dz,

—0o0

and since f is bounded,

0
/f(Z)v(dZ)=f(0) lim (U(I(a))JrV(I(—a)))Jr/ —f(Z)Sgn(Z)v(I(Z))dz
R a—0+ R 0z
Abusing notation, we write
vR) = lim (v(Z(@) +v(T(-a))).

With f vanishing on a neighborhood of 0 we therefore find f(0)v(R) = 0. For the
multidimensional case, we use that by [38, Proposition 11.10] the Lévy measure of
X! is given by

vI(B)=v({x eR?: (x)ies € B\{0}}), B eB(R.

We show by induction with respect to the dimension d that
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Anisotropic multivariate Lévy processes 533

/ f@vdz) = fO,...,0v(R,...,R)
R4

+2/ 320 ey Zis s 0) sEn(z)vi (Z(z0)) dz

+Z 2 f 9! O+ Lrentep! (HI(Zj))dzl.

= [T]=i jel jel
11< <l J J

With f(,...,0)v(R,...,R) = 0, the definition of the tail integrals, and Theo-
rem 2.3, we then have the required result.

For the induction step d — 1 — d, using integration by parts and the induction
hypothesis, we obtain

/ f@v (dz)=/ /f(z/,zd)v(dz’, dzy)
RE Ri-1 JR

= f(z O)v (dZ/, R)

/ /_(Z zq) sgn(za)v (dz', Z(z4) ) dzq
Ri-1 JR O
= £(0,...,0v(R, ..., R)

—i—Z/ 811 ©,....2i,...,0)sgn(z)vi (Z(zi)) dz;

+Z > / (0+2") ] Jsenzv’ <l_[I(Zj))dz

i=2 =i jel jeI

I <<l

/ —(0 .0,z sgn(z)v(R, ..., R, I(zq))

]R
_ 02

+ 5 ©,...,zi,...,0,z4) sgn(z;) sgn(zq)
— JrJr 9zi2a

x i.d(Z(zi). L(za)) dz; dza

i+1
+Z Z //R%(Z{Ld}) l‘[ sgn(z, vl

= |T1=i je{l,d
Il< <l; jE{ ’ }

X( I1 I(z;)) dz! dzg,

Jjell.d}

which is the claimed result. O
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Remark 2.6 The boundedness assumption on f in Lemma 2.5 can be weakened to
certain unbounded f € C¥(RY) if the Lévy measure v decays sufficiently fast.

Using Lemma 2.5, we immediately obtain the following:

Corollary 2.7 Let X = (X', ..., X*)T be a d-dimensional Lévy process with char-
acteristic triplet (0, v, y). Then,

Cov(X', x7) Z/dzl'z/v(dz)Z/ZF{i'j}(Ui(zi),U.,(z.,')) dzidzj, Vi# ],
R R
where F is the Lévy copula from Theorem 2.3.

We conclude this introductory section with examples of Lévy copulas.

Example 2.8 Examples of Lévy copulas are:

1. Independence Lévy copula,

d
Flur,...oug) =Y u; [ ] Lioo) (). (2.4)
i=1  j#i
2. Complete dependence Lévy copula,
d
Fur,....ug)=min(lu|,.... ugl) 1y, ... .uq) [ [ sgnu;.

j=1

where K :={x e R?: sgn(xy) =--- =sgn(xg)}.

3. Clayton Lévy copulas,

Tl—

. _
Flui,...,ug)=2"" (Z |ui|9> (110200 = (L= D) Ly g <0))

i=1
where 6 > 0 and n € [0, 1]. For n =1 and 6§ — 0, F converges to the indepen-
dence Lévy copula, for n = 1 and 6 — oo, to the complete dependence Lévy
copula.

An important class of Lévy copulas are so-called 1-homogeneous copulas.
Definition 2.9 A Lévy copula is called 1-homogeneous if for any r > 0, there holds
F(ruy,...,rug) =rFuy,...,ug)

forall (uy,...,ug)" € R9.

For further details and examples of Lévy copulas, we refer to [20, 25].
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Anisotropic multivariate Lévy processes 535

2.3 Variational parabolic problems

The bilinear form £(-, -) associated to X is the basis for the variational formulation of
the Kolmogorov equation (1.3), which we now describe. The variational formulation
is, in turn, the basis for Galerkin discretizations of the Kolmogorov equations.

To cover equations arising from optimal stopping (as, e.g., for American-style
contracts) and from optimal control problems (as, e.g., in portfolio optimization and
for options of game type), and in order to accommodate rough payoff functions, the
rather general variational framework from [5, 6, 21] is adopted. The variational set-
ting will be based on the real Gelfand triple with Hilbert space H, i.e.,

VCH=H"CV". (2.5)

For V, we have in mind the domain of £(-, -). For the infinitesimal generator 4 of X
and the corresponding bilinear form

Eu,v) :=(Au,v), wu,vel,

we assume that there exist constants Cy, C> > 0 and A > 0 such that forall u,v €V,
there holds
Vu,veV:  |Ew,v)| < Cillulylvlly, (2.6)
VueV: E@u,u)=Colulll, — Alul,. 2.7
Moreover, we denote by (-, -) the H inner product, which admits a unique extension
by continuity to V* x V in (2.5). For clarity, we denote this extension by (-, -) ).
As already illustrated in the introduction, prices of European-style contracts are

solutions of Kolmogorov equations. Their abstract variational formulation reads as
follows: Given an initial value ug € H and f € L?((0, T); V*),

find u € L*((0, 7); V) N H'((0, T); V*) such that

0
<—u, v> +E,v) =(f,v)y+xy YveV, ae.in(0,7T), (2.8)
" fyexy

u(Q)=ug inH. 2.9)

Theorem 2.10 Assume that the bilinear form E(-, -) satisfies (2.6) and (2.7). Then
the abstract parabolic problem (2.8)—(2.9) admits a unique solution.

Proof See, e.g., [27, Theorem 4.1]. O
Remark 2.11 If instead of a Lévy process X, one considers a general strong Markov
process with time-dependent infinitesimal generator A(¢) and corresponding bilinear

form E(t; u, v) = (A(t)u, v), then Theorem 2.10 remains valid, provided that for all
u,v €V, the mapping ¢t — E(¢, u, v) is measurable.
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536 N. Reich et al.

Remark 2.12 The initial condition u(0) = ug is required to hold in H, not in V. Due
to the embedding L2((0, T); V) N H((0, T); V*) c C°([0, T1; H), the initial condi-
tion (2.9) makes sense, and the parabolic evolution problem is well posed even for
initial data ug belonging to 7 but not to V. For example, this is the case in European
derivative contracts with discontinuous payoffs, such as binary options.

For the study of optimal stopping problems which arise, e.g., from American con-
tracts, we require variational formulations of parabolic variational inequalities. To
this end, let ¥ # K C V be a closed, nonempty, and convex subset of V with the
indicator function

0, ifvek,
o) =Ic() = (2.10)
+oo,

else.

This is a proper, convex, lower semicontinuous (l.s.c.) function ¢ : V — R with

domain D(¢) = {v € V : ¢(v) < oo}. We denote by EHOHH the closure of D(¢)
in H and consider the following variational problem: Given f e L*((0,T); V*),
uo e KM .

findu € L*((0, T); V) N H'((0, T); V*) such that u € D(¢) a.e. in (0, T) and

ot
u)=ug inH. (2.12)

<a—” +Au— fou— v> +¢W)—p()>0 YveD(@) ae.in (0,T), (2.11)
V*xV

Existence and uniqueness results for solutions u € L2((0,T); V) of (2.11)—(2.12)
can be obtained from, e.g., [21, Theorem 6.2.1] under rather strict conditions on the
data f(r). To derive the well-posedness of (2.11)—(2.12) under minimal regularity
conditions on f(¢), ug, and ¢, the problem needs to be replaced by a weak variational
formulation. To state it, introduce the integral functional @ on L2((0,T);V) given
by

T —2At : 1
o) = {fo d((r))e P dt, ifp(v) e LY, T),

+00, else,

with A > 0 as in (2.7). Note that @ (-) is proper, convex, and l.s.c. with domain
D(@)={ve L*((0,T); V) :¢(v) € L'(0, T)}.

Then the weak variational formulation of (2.11)—(2.12) reads (cf. [2, 39]) as follows:
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Anisotropic multivariate Lévy processes 537

Givenug e K" cH and  f e L2((0, T): V?),
find u € L*((0, T); H) N'D(P) such that u(0) =up in’H and

T
/ <z_l;(t) + A+ Nu() — (f(l) + )»U(t)), u(t) — U(t)>e2)‘t dt + @) — D (v)
0
1 2
=3 luo —v(O)]|3, o3

for all v € D(P) with ¢ € L2((0, T); V*).
The well-posedness of (2.13) is ensured by [39, Theorem 4.1]:

Theorem 2.13 Assume that the bilinear form £(-, ) satisfies (2.6)—(2.7). Then the
problem (2.13) admits a unique solution

ue L*((0,7); V) N L¥((0, T); ) such that t — ¢(u(t,-)) € L' (0, T).

Remark 2.14 As for the parabolic equality problem (2.8)—(2.9), also for (2.13), the
initial condition is only required to hold in . In addition, however, in (2.13) the data

uo must belong to the closure K11 of K in H.

Remark 2.15 Convergence rates for backward Euler time discretizations of the weak
variational problem (2.13) for American-style contracts under minimal regularity are
given in [2, 31, 39].

3 Properties of Lévy measures built from Lévy copulas

In the present section, we verify properties of Lévy measures corresponding to mul-
tivariate Lévy processes X with state space R? built from so-called tempered sta-
ble, univariate Lévy processes X’ by 1-homogeneous Lévy copulas as constructed
in Sect. 2.2. For the (in general nonsymmetric) bilinear form (-, -) corresponding
to the generator A of X, we verify the so-called sector condition. Due to a classical
result of Berg and Forst [3] (see also [22, Chap. 4.7]) this, in conjunction with the
translation invariance of X, implies that £(-, -) is a nonsymmetric Dirichlet form. It
also allows us to give an explicit characterization of the domains D(A) and D(E) of
A and £(-, -) in terms of anisotropic Sobolev spaces.

3.1 Semiheavy tails

At first, we show that the tails of the multivariate Lévy processes stemming from the
copula construction decay exponentially fast, provided that the one-dimensional mar-
ginal processes are of tempered stable type in the sense of [4], i.e., the corresponding
densities decay exponentially at infinity.

We use the following assumptions on the marginal Lévy measures v;,i =1, ...,d.
These are satisfied by a wide range of Lévy models [29].
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Assumption 3.1 Let X be a Lévy process with state space R?, characteristic triplet
(Q, v, ), and marginal Lévy measures v;, i = 1, ..., d, with densities k;. There are
constants G; >0, M; >0,i=1,...,d such that

e Gilll <1,
ki(z) S , (3.1
e Mz 5.

The tail behavior (3.1) carries over to the d-variate case.

Proposition 3.2 Let X be a Lévy process with state space R and Lévy measure v
such that the marginal measures v; satisfy (3.1). Then the Lévy measure v also decays
exponentially, i.e.,

d
f e"@v(dz) <00, withn(@) =Y (1] L0 + 47 Lz <o)z,
|z]>1

i=1

wher60<,uf<%,O<M;r<%,i=1,...,d.F0reachi=1,...,d,thereholds

f M@y (dz) <00,  withni(2) = (4] 1zi=0) + 15 iz <0y) |z,
|z|>1

where now 0 < u; < G; and 0 < ,ul.+ <M;,i=1,...,d. Furthermore, the density
p:(x) of the process X at time t > 0 also decays exponentially, independently of t,
ie.,

/ LM iy dx <00, with mi(2) = (1 0y + 47 Lg<0)) il (B.2)
R

wher60<ui_<GiandO<u;"<M,~,i:l,...,d.

Proof Using [38, Proposition 11.10] as in Lemma 2.5, we obtain

d

Z/ ednilzil,, (dz)
lz|>1

/ eZ?=1 /AiIZi\v (dz) S
IzI>1 i=1

d
S [ e <

where ; can be chosen as u; or y,l.*, i =1,...,d. Equation (3.2) follows from
Sato [38, Theorem 25.3]. [l

3.2 Sector condition

We verify here for the characteristic exponents of the Lévy processes the so-called
sector condition, i.e.,

3C > 0: [Qy (&) < CRY (§) forall & e RY. (3.3)
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Anisotropic multivariate Lévy processes 539

Since the bilinear form of the Lévy process is in general a nonsymmetric bilinear form
due to the asymmetric jump structure in financial models, this condition is necessary
for the bilinear form to be a Dirichlet form. Additionally, it allows us to give an
explicit characterization of the domains D(A) and D(E) of the infinitesimal generator
and bilinear form of X, cf. [3] and [22, Example 4.7.32].

Assumption 3.3 Let X be a Lévy process with state space R?, characteristic triplet

(Q, v, y), and marginal Lévy measures v;, i = 1, ..., d with densities k;. There are
constants 0 < Y; <2 and cl.+,cl.— >0, cl.Jr +c¢; >0,i=1,...,d, such that
1 1
k@26 Ty 0@ + ¢ oyl @, 0<ls1 G4
1 1
k@S¢ e @+ 6 o @. 0<lls1l 63

Example 3.4 Assumption 3.3 coincides with assumptions (Al), (A4) in [29,
Sect. 3.2]. It is shown that these are satisfied by a wide range of processes, includ-
ing the generalized hyperbolic, Meixner, and tempered stable processes. Here, we
just mention the nonsymmetric tempered stable (CGMY) processes as in [9] and
spectrally negative processes where the marginal densities are given by

—Gjlzl _G:lz
e=Gill eGilel
e 7 <0, el 7 <0,
ki(z) = s and k;(z) = z
2
Cl' eZlTyi’ > 0, 0, 7> O,
with G;, M; >0, i =1,...,d. An overview over different Lévy densities can be

found in [41].

The following proposition provides an upper bound for [ (£)| and hence for

RVACIE

Proposition 3.5 Let X be a Lévy process with state space R?, characteristic
triplet (Q, v, y), and characteristic exponent Y. Assume that @ =0 and y; =0,
i=1,...,d, and that the marginal Lévy measures v;, i = 1,...,d, satisfy (3.5).
Then for & |lco > 1, there holds

d
v @©[ <Y 1E17.
j=1

Proof For notational convenience, we assume without loss of generality that there
are only positive jumps. We distinguish the cases of ¥; smaller or larger than 1. After
possibly renumbering coordinates, let 0 < j < d be such that

Yi,....Y; <1, 1<Yji1,.... Y4 <2.
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Then the characteristic exponent i can be written as
‘ d J
V(&) = / =@ 4 3" igimlp< |vd2) +i ) Pike
RS, k=j+1 k=1

Without loss of generality, we set Y, k = 1,..., j, to zero. With the notation
B =0, ﬁ] x -+ x [0, ﬁ] we obtain

d
|¢(g)|§f 1= &9 4 3" igzi|v (dz) +1
(0.1} k=j+1
/ 1—e' 4 Z i&zi|v (d2)
k=j+1
d
+/ <1+ Z |§k1k|>v(dz)+1.
[0.11\B k=j+1
We estimate the first term via
_ d
/ 1 -3 4 Z i&zi|v (dz)
B k=j+1
/ (me Y& zi)v(dz)
k=j+1
‘k‘
<Z / |Exzi vk (dzx) + Z / E2zfvi (dze)
k=j+1
\5k\ \Sk\
<Z |kzkl o7 it dak + Z 8%y Y+1
k=j+1

d
Y
<D lEd™.
k=1

To estimate the second term, note that if z € [0, l]d \B with z; < d—ék‘ , there exists £
1
> =
such that z, EIEAR Hence,

d
1+ d
~/[0,1]d\3 < Z |§k1k|>v( 7)

k=j+1
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- Z/ / .../m(1+|§kz;c|)v(dz)

k=j+1 T -

/ / / /_Z(l + [&xzxl)v (dz)

< Z / (1 + I&zkl) v (dzx)

k=j+1
d\sk\ e 1
/ / / / 1+ v (dz)
k=j+1 -
d 1
S+ Z &M+ Z &l + > / v, (dzg,)
k=j+1 k=j+1 k=j+1" a1
<1+Z|§k|”+ Z |&|.

k=j+1

Therefore, we obtain, for [|§]s > 1,

d
2GS
k=1 O

In order to prove (3.3), we also require a lower bound on R (§). For this, we

need to make a few technical assumptions on the underlying copula F'. To state these
assumptions, we introduce some notation.

Definition 3.6 Let 7 C R. Two functions f, g : R — R are called equivalent on T if
there exists a constant ¢ > 0 such that

c|f] <|g@)| <7 fx)| forallxeZ.

We denote the equivalence of f and g by f ~ g.

eps . —d = . . ..
Definition 3.7 A function F : R — R is called equivalence preserving if, for any
two families of equivalent functions f; ~ g;, i = 1,...,d, on some Z C R, there
exists a constant C > 0 such that

F(fixD), ... faxa)) < F(g1(x1), ... 8a(xa)) < CT'F(fi(x), ..., fa(xa))

for all x € Z¢9.
We can now state the sufficient assumptions on the Lévy copula.
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Assumption 3.8 Let X be a Lévy process with state space R?. Assume that the

. . L —d = .
Lévy copula F is 1-homogeneous and that the derivative 91 --- 9z F : R° — R exists
in the sense of distributions (i.e., the multivariate process admits a Lévy kernel) and
is equivalence preserving.

One readily infers that, for instance, the independence copula (2.4) satisfies As-
sumption 3.8. Nonetheless, the equivalence-preserving property of 91 - - - 94 F is non-
trivial in general. We prove it for a wide class of Lévy copulas in Appendix, but first,
under Assumption 3.8, one obtains the required lower bound of Ny (§):

Proposition 3.9 Let X be a Lévy process with state space RY, characteristic triplet
(Q, v, y), and characteristic exponent . Assume that Q = 0 and that the marginal
Lévy measures v, i =1, ...,d, satisfy (3.4), and the Lévy copula F satisfies Assump-
tion 3.8. Then, for ||€ |l sufficiently large,

d
Ry &) 2y 1517
j=1

Proof First, let d = 1. Using 1 — cos(z) = 2(sin %)2 > 22 for |z| < 1, we obtain for
|€] > 1 that

&1

1
11
Ry (§) = f (1-cosG)k@ @) 2 | | &2k dz 2 151"
R
Now let d > 1 and suppose that Assumption 3.8 is satisfied. Consider the kernels
K@) = o —1 S i=1,....d
[ (@) =¢ SEs7 (z<0}(2) +¢; SEA 0<1(@), i=1,....d,
where Y;, cf, c; are the constants of (3.4). Denote by U; : R — R the marginal tail
integrals of X and let U[.0 be the tail integral corresponding to kl(.). From (3.4)—(3.5) one
infers k; ~ k? and U; ~ Ul.0 on[—1,1],i =1,...,d. By Assumption 3.8, Remark 2.4

yields that the Lévy measure v of X admits a kernel representation v (dx) = k(x) dx
with

k(xt,...,xq) = @104 F)(U(x))ki(x1) - ka(xq),

where we have set U(x) = (Uj(x1),...,Ug(xq)). Thus, using the equivalence-
preserving property of 9 - - - 97 F, one obtains

Ny (&) = /Rd(l — cos(&, x) )k(x) dx
> /B (0)(1 —COS(EaX>)(31 ...8dF)(Q(x))k1(x1)...kd(xd)dx

EC/B (0)(1 —cos(&, X))@ - - 34 F) (U ())kD (x1) - - kJ(xa) dx.  (3.6)
1
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Now define k%(xy,...,xq) := (313 F)U KD (x1) ... k(xq). Since F is
1-homogeneous and the marginal kernels k? satisfy the homogeneity condition

K(rz) =r~7Y0(z) forallr > 0,z € R\{0},

by [20, Theorem 3.2] there holds

1 _L Il L
ko(r 'xi,...,F ”af)cd)zr—h’l+ +de0(x1,...,xd)

for all » > 0 and x € R? such that x; = 0. Using [20, Theorem 3.3], one obtains
that wo(g) = fRd(l — cos(&, z))ko(x) dx is an anisotropic distance function of or-
der (1/Y1,...,1/Y4). Since all anisotropic distance functions of the same order are
equivalent (cf., e.g., [16, Lemma 2.2]), there exists some constant C; > O such that

YO = C (11" + -+ |E47)  forall € e RY.

Hence, by (3.6),

My (&) = CYOE) — C / (1 = cos(&, x))0(x) dr

RY\B1(0)

> Cy0E) - 2C / KO(x) d

R4\ B (0)
>CcylE) — ¢’

d
>CC )y &M - C.
i=1

Since ¥ is continuous, we immediately obtain the sector condition.

Theorem 3.10 Ler X be a Lévy process with state space R, characteristic triplet
(Q,v,y), and characteristic exponent . Assume that either Q > 0 or Q =0
and yi =0,i =1,...,d, and in the latter case that the marginal Lévy measures
vi, i =1,...,d, satisfy (3.4)—(3.5) and the Lévy copula F satisfies Assumption 3.8.
Then

|39 @©)| SRy @) VEeR?

Proof For Q = 0, the result follows with Propositions 3.5 and 3.9. For Q > 0, we
have

1
@) = 316 05 + [R (1~ cos(& )v (@)

Z D& 3.7)

j=1
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and for ||€]|e0 > 1,

QU

QIS |<y,§)|+<E,Qé>+/Rd|e"<s“”> —1—i(E. D)< |v ) S &7 (3.8)

Thus, the result follows from the continuity of . O

4 Option pricing
Assume that the risk-neutral dynamics of d > 1 assets are given by
Si=Siert X i=1,....d,

where X is a d-variate Lévy process with characteristic triplet (Q, vg, ¥) under a

risk-neutral measure Q such that ¢X' is a martingale with respect to the canoni-
cal filtration ]-'tO =0 (Xs,s <t), t >0, of the multivariate process X. As shown
in Lemma 2.1, this martingale condition implies

/ eflvg(dz) <oo, i=1,...,d.
lz|>1

This property holds for semiheavy tails satisfying (3.1) with M; > 1,i=1,...,d, as
shown in Proposition 3.2. We drop the subscript QQ in what follows.

Remark 4.1 Note that eX' is also a martingale with respect to the filtration
o (X}, s <t) associated to the ith marginal process X'.

4.1 Partial integro-differential equations (PIDEs) for European contracts

We consider a European option with maturity 7 < oo and payoff g(St), which is
assumed to be Lipschitz. The value V (¢, s) of this option is given by

V(t,s) =E(e " T Dg(S7)|S; =5). 4.1
It can be characterized as a solution of a PIDE.
Theorem 4.2 Let X be a Lévy process with state space R? and characteristic triplet
(Q, v, ). Assume that the function V (¢, s) in (4.1) satisfies
V(t,s) e (0, T) x R)) N CO([0, T1 x RL).

Then V (¢, s) is a classical solution of the backward Kolmogorov equation

A%
E(Z Z s,sz,]8 55, +r2s, (t s)—rVi(t,s)

l]— i=1
d

. v
+ /I‘Rd (V(t,sez) —V(t,s)— Zsi(ez’ — l)a—Si(t,s)>v (dz)=0 4.2

i=1
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on (0,T) x Rio’ where V (t,se%) .=V (t,s1€%, ..., s4e%?), and the terminal condi-
tion is given by

V(T,s)=g(s) VseR,

Proof We first need the risk-neutral dynamics of St Let X =(%; )1<i,j<d be given
such that ¥ X T = Q. With the Itd formula, for multidimensional Lévy processes and
the Lévy—Itd decomposition, we obtain

, , , , 1 , , i , .
ds; =rSjde +5;_dX; + 5 Q;iS; di + Si_eAX 8T AXIST

d

=rSidt+S_yidi+58_ ) Ty dwf +/

i 7 1 i
Si_z;J (dt,dz) + - Q;; S; dr
k=1 Izl <1 2

+ i (AN — 1= AX] + AX(ax,21))

—AX{1{jax,|<1)
i i i d k 1 i
=rSjdt+S_ydt+S_ ) Ty dwf + 5 Qi Si dt
k=1

+/ S,i—(ezi—l)f(dt,dz)+f Si- (€% =1 = zilyz<ny)v (d2) dr.
Rd R

i, .
X'isa martingale, we have

Since e
ds; =rS,dt + S,_ Z Yik dW,k +/ Si_ (ez" — 1)] (dt, dz).
Rd
k=1

We now apply the It6 formula for semimartingales [24, Theorem 4.57] to the dis-
counted values e~"" V;. This gives

oV 4 v
—rt _ —rt —rt i
de'V))=—re""Vdr+e (E(I,S,)dt—}—.Ela—Si(t,S,_)dSl
1=

d 2
1 %
+ 5 Z 3S,’8S,’
j=1 '

(t, Si—)d[S", ST+ V (1, S—eXr)

L,

: i (,AX! v
V(S =Y S (A - 1ot 50)
i=1 !

=a(t)dr + dM;,
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where

3%V
3S,’3Sj

d
av aVv 1 P

_ —rt i .l J
a(t)=—re "V e ( ” + _8s, rS;,_+ 3 i ;—1 QiiS;_S;_

+/Rd(V(t,St_e) V(t, Si— )—Zs' (e —1 —(t Si— ))v(dz)),

d
oV
dMm, :e‘”(Za—(t Si— )S’_ZEide,k

i=1
+/d(V(t, Si—e) = V(t, St))f(dt,dz)>.
R

Since g is Lipschitz, V also is Lipschitz with respect to s, and a—V is bounded,
i=1,...,d. With

T
E</ / (V(Z’S’_ez)_V(”St—))zv(dz)d)
0 Rd
! d i \2/ 2z
5E(fo /Rd;:(sr'—) (e +1)v(dz)dt>
T
<51 [ 5.70) <
0

1[4:(/;(5;')2 ov dt) §E</()T(Sf)2dt> <

ds;

fori =1,...,d, M is a square-integrable martingale by [11, Proposition 8.6]. There-
fore {e7"'V, — M,} is a martingale, and since e~ "'V, — M; = f(;a(‘t)d‘t is also
a continuous process with bounded variation, we have a(¢#) = 0 almost surely, by
[11, Proposition 8.9]. This yields the desired PIDE. g

and

(t’ ST*)

The PIDE (4.2) can further be transformed into a simpler form:

Corollary 4.3 Let X be a Lévy process with state space R?, characteristic triplet
(Q, v, y), and marginal Lévy measures v;, i =1, ...,d satisfying (3.1) with M; > 1,
G;>0,i=1,...,d. Furthermore, let

u(t,x) =€ V(T — 1,10t | grata=nT), 4.3)
where

Vi = % +/R(ezi — 1 —z;)vi (dzy).
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Then u satisfies the PIDE

ou

+ Apslu] + A;[u] =0
ot

in (0, T) x R? with initial condition u(0, x) := ug. The differential operator Ags is
defined for ¢ € CS(R"") by

d 2
1 )
A =—= i 4.4
BS[(P] ) = Qz] BXi ax] ( )

and the integro-differential operator Ay is given by

AJ[§0]=—/Rd(§0(X+Z) —9(x) — z- Vxp(x))v (dz). (4.5)
The initial condition is given by
up=g(e*) =g, ..., e"). (4.6)

Proof We proceed in several steps. To obtain constant coefficients, we set x; = logs;.
Furthermore, we change to time to maturity T = 7 — ¢ and set

u(t,x) = V(T —1,e", ...,ex").
The resulting differential operator is given by

1 < 2o L1 g
ABS[§0]=—§ IQijm-i—z;(EQii—”)——Fr(ﬂ,

ax,-

1,/‘: i=

and the integro-differential operator by

d
4 _ 1) 9%
Aile] = —A{d (ga(x +2) — ) — Z(e ‘- l)a—xi(x)>v(dz)-

i=1
The interest rate r can be set to zero by transforming u to & using
u(t,x)=e ""u(t,x +r1).
Furthermore, the integro-differential operator can be rewritten as
Aslpl = — fRd (P +2) = 9(x) = 2- Vxp(x))v (d2) + 7 - Vag(x),
where the coefficients of the drift vector y are given by

fi:/(ezi—l—zi)v,'(dzi), i=1,...,d.
R
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We remove the drift in the integro-differential and in the diffusion operator by setting
u(t,x) =u(t,x1 — Y1T, ..., X4 — YdT). O
4.2 Barrier contracts

In this section we derive the PIDE for knock-out barrier options (see, e.g., [11,
Sect. 12.1.2] for the one-dimensional case). The prices of the corresponding knock-in
and other barrier contracts with the same barrier can then be obtained using super-
position and linearity arguments (see, e.g., [4, Sect. 6]). Let G C R‘io be an open
subset, and let 75 = inf{t > 0|X; € G} be the first hitting time of the complement
set G =R\ G by X. Then the price of a knock-out barrier option with payoff g is
given by

Vo(t,s) =E(e" T g(S) (1<) | S =5). 4.7)
If Vi is sufficiently smooth, it can be computed as the solution of a PIDE.
Theorem 4.4 Assume that Vg (¢, s) in (4.7) satisfies
Vo(t,s) € CM2((0,T) x RE () N CO([0, T x RL). (4.8)

Then Vg (t, s) satisfies the PIDE

Ve 1< 2y,
_(t +§ Z sis/Q,Ja 5:05; +r Z (t s)—rVg(t,s)

ij=1

d
AV,
+/Rd<vc(t,se2)—VG(t,s)—Zs,-(eZi—1) a; , )v(dz)zO 4.9)

i=1

on (0, T) x G, where the terminal condition is given by
Vo(T,s)=g(s) Vseg,
and the “boundary” condition reads

Vo(t,s) =0, forall(t,s)€ (0,T)x G°.

Proof Define the deterministic function g(s) := g(s)1{sec) and consider the Euro-
pean vanilla-type price function

V(t,s) =E(e " TG (ST rzs)| St = 3).

Since S is a strong Markov process, we have Vg (t, S;) = \7(t, S;) forallt < T A 1g.
Thus, applying the It6 formula as in the proof of Theorem 4.2 one obtains that Vg
satisfies (4.9) on (0,7) x G. By definition there also holds Vg (¢, S;) = 0 for all
(t,8)€(0,T) x G. O
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Remark 4.5 Note that in contrast to plain European vanilla contracts, the price Vg
of a barrier contract does not satisfy the smoothness condition (4.8) for general Lévy
models. The validity of (4.8) can however be shown in case the process X admits a
nonvanishing diffusion component, i.e., @ > 0. Also for market models satisfying the
ACP condition of [38, Definition 41.11], Theorem 4.4 can be shown to hold, see [4].

4.3 American contracts

Using the notation of the previous sections, we now consider an American option with
maturity 7 < oo and Lipschitz-continuous payoff g(s). Its price Va(z, s) is given by
the optimal stopping problem

Va(t,s)= sup E(e T Dg(sy)|S =), (4.10)

‘L’E'Z;,T

where 7; 7 denotes the set of all stopping times with values between ¢ and T'.

In [33, 34] it is shown how the price Va (¢, s) can be characterized as the viscosity
solution of a corresponding Bellman equation (for details on viscosity solutions, we
refer to, e.g., [15] and the original sources [14, 40, 42]):

Theorem 4.6 The price Va(t, s) of an American option defined in (4.10) is a viscos-
ity solution of

. 2
rVa(t,s) — a%(hs) -3 Z?J:l SiSjQi,/% —FZ?ZISI'%(LS)
min gy Lo (Va(t, se%) = Va(t, s) = i si(e™ — DGA @ s)v (), =0

Va(t,s) — g(s)
4.1D)
If Va(t, s) is uniformly continuous and

<0

’

Val(t,s)
sup
[0,T]xR%, I+s

this solution is unique.

Proof The existence of the viscosity solution follows from [34, Theorem 3.1], and its
uniqueness is ensured by [34, Theorem 4.1] and [40]. Il

Analogously to Corollary 4.3, by setting
ua(t,x) = e”VA(T —z,etn-nr ex"+(}’d_r)r), 7€[0,T], x € RY,

Zo(x) = g(eNTTIT ¥t 0, T],x e RY,
4.12)

with y;, i =1,...,d, as in (4.3), the Bellman equation (4.11) can equivalently be
restated as the linear complementarity problem

0
%(r,x) + Aslual(z, x) + Aylual(z, x) <0,
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ua(z,x) —e*g:(x) >0, (4.13)

5 ~
(%(T, x) + Aps[ual(z, x) + Aslual(z, x)) (ua(z, x) — €& (z, %)) =0

on [0, T] x R? with Ags and Aj defined in (4.4) and (4.5). As in (4.6), the initial
condition is given by ua o = g(e¥), i.e., ua.0 = uo.

4.4 Variational formulation

Foru,v e C(‘)>o (Rd), we associate with Agg the bilinear form

1< du v
=Y 05| Fw—)dr.
Eps(u, v) 2fj:1QjA;<d ox; (x)axj (x)dx

To the jump part Ay we associate the bilinear canonical jump form

d
SJC(u,v)=—f/<M(X+Z)—M(X)—Zzia—u(x))v(x)dxv(dz) (4.14)
Re JRI = X

and set
E@u, v) = Eps(u, v) +EC (u, v).

We can now formulate the realization of the abstract problem (2.8) for European
contracts with V = D(€) and H = L2(R?) as

findu € L*((0, T); D(€)) N H'((0, T); D(E)*) such that

3

<—",v> L Ew,v)=0, 7€(0,T),YveDE), (4.15)
T [pEy pE)

u(0) = ug,

where ug is defined as in (4.6). Furthermore, if the solution u of (4.13) satisfies
ua € L*((0,7); DE)) N H' (0, T); DE)*),

it can be identified with the solution of the following realization of the abstract vari-
ational inequality (2.11)—(2.12):

find up € Lz((O, T); D(S)) N Hl((O, T); D(E)*) s.t.up € D(¢p;) ae.in (0, T),

at
for all v € D(¢;), a.e.in (0, T), and ua (0) = uy,

0
<ﬂ, v— uA> + Eua v — up) — e (1) + pr (v) > 0, (4.16)
DE*DE)

with ¢; := Ixc,_ as in (2.10) and convex sets

Ki:={veDE&) :v=e7g}CcDE), t€(0,7),
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where g; : R?Y > R is given by (4.12). As illustrated in Sect. 2.3, the variational
problem (4.16) in weak form reads

find up € L°°((O, T), D(S)) N Hl((O, T); D(é’)*) st.uy € D(@)ae.in (0,7T),
r dv —2AT
E(T) + (A+ Mua(t) — 2v(t), ua(r) —v(r) Je " dr + D (up) — @ (v)
0
ov
—||u0 — v(O)||H for all v € D(®) with — a7 € L0, T; V). 4.17)
Here @ and D(®) are depending on ¢, as defined in Sect. 2.3.

Remark 4.7 In (4.15)—(4.17), it is required that ug € H = L*(R?), which implies
a growth condition on the payoff g. In Sect. 4.5 we reformulate the problem on a
bounded domain where this condition can be weakened. The weaker growth condition
is given explicitly in (4.21).

The well-posedness of (4.15) and (4.17) is ensured by the following:

Theorem 4.8 Let X be a Lévy process with state space R?, characteristic triplet
(Q, v, y), and Dirichlet form E(-,-). Assume that either Q > 0 or Assumptions 3.3
and 3.8 hold in conjunction with y = 0. Then, the variational equation (4.15) and
the weak variational inequality (4.17) with ug € L*(R?) admit a unique solution in
D).

For Q > 0, we have D) = H'(R?), and for Q = 0, one obtains
D(E) = HY/2Ya/D(RY), where

d
HEts) (RY) = {ueLz (RY): / S+ 2 ae)|* s <oo}

R4

j=1

is an anisotropic Sobolev space.
Proof Since a Lévy process X is stationary, its infinitesimal generator is translation
invariant. We also have with Theorem 3.10 that the characteristic exponent v of X

satisfies the sector condition (3.3). Therefore, the bilinear form £ (u, v) is a Dirichlet
form and, by [22, Example 4.7.32], it can be written as

|E@u, v)| = 2m)¢

|RGCer

By Theorem 2.10, for the existence and uniqueness of a solution of (4.15), we need
to show that £(-, -) satisfies the continuity condition (2.6) and the Garding inequal-
ity (2.7).
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First, consider the case Q = 0. By Propositions 3.5 and 3.9, there exist some con-
stants C1, Cp, C3 > 0 such that

d
Ry ) =C1 Y 151" —Ca

j=1
(4.18)

[v (&) <C3 (Z &% + 1) for all £ € RY.

Jj=1

Therefore, the continuity of £(, -) is ensured by

€, v)| = ‘ / VERETE ds‘
Rd

d
<y /R<1 +Z|s,-|yf)ﬁ(s>@ds
i=1

IA

d
& /R (IR e T a
i=1

8

IA
w

d
L0+t P ae
i=1

d
« /Z(1+|si|2)“/2|ﬁ<s>|2ds
\ RS

where we used Zf:l (1+|&1H)Yi2 ~ 1+ Z;j:l |£i1¥i). Furthermore, for the Garding
inequality, one finds

Eu,u) = / oy (&) |7 (6)| de
]Rd
_ / (C1 + Co+ Ry (©) [7©) P d — (C1 + C) / @) [>de
R4 R4

and

d
/Rd(cl L Oy @) |aE) e = ¢ fR (1 + ; |s,»|yf> )| de

d
> & /R S0+ 16 P) P ace) | de.
i=1
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Theorem 2.10 therefore implies the existence and uniqueness of a solution
u € D) = HN/2.--Ya/D (R4 of (4.15). One obtains the existence and uniqueness
of the solution u 5 of (4.17) analogously from Theorem 2.13 in conjunction with, e.g.,
[6, Remark 3] (to account for the smooth time-dependence of the convex set ;).

If @ > 0, one obtains the required results using the same arguments. By (3.7)
and (3.8), instead of (4.18) in this case there holds

d d
W@ 2D IR [w@| <D g7 forall £l > 1.

j=1

and the result follows as above. O

Remark 4.9 We omitted the partially degenerate case Q # 0 but @ # 0 in Theo-
rem 4.8. Here, the domain D(£) can be obtained by writing

Q= (0i0}pij)i<i,j<ds
where p;; is the correlation of the Brownian motions W; and W;. Suppose that o; =0

foralli eZ C{l,...,d} and o; > O for all j ¢ Z. By [30, Sect. 9.2] the anisotropic
Sobolev spaces in Theorem 4.8 possess an intersection structure

U

HErs) (RY) = ﬂ T(RY),  (s1,...,50) €RY,
j=1

with
H/(RY) ={feS'R’): AN ey = 10+ 87 Fl 2oy < 00}

Using the above arguments, one obtains
Y
D(E) = m H? (RY)n ﬂ Hj(R?).
iel JjeT

Remark 4.10 For European contracts, Theorem 4.8 was already obtained in dimen-
sion d = 1 in Matache et al. [29]. For d > 1, Farkas et al. [20] proved Theorem 4.8
for symmetric tempered stable margins.

For the numerical implementation of (4.15), it is important to note that all integrals
in (4.14) exist in the Lebesgue sense even for functions u, v € H'(RY) with compact

supports.

Proposition 4.11 If u,v € H'(R?) with compact supports, then |5JC (u,v)| < oo,
where the bilinear form SJC(u, v) is given by (4.14).
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Proof Since [pa |z|>v (dz) < oo by Assumption 3.1, we need to show that

2
Szl el g1 ey 101 g1 ey -

d
‘/}Rd <u(x +2) —ux) — ;zig—;(x)>v(x)dx

Using integration by parts and the Cauchy—Schwarz inequality, we have

d
ou
‘/Rd <u(x +2) —ulx) — izZIZia—xi(x))v(x)dx‘

/JZ /_(xl,uwxi+9iZi7xi+1+Zi+ls~~-1xd+Za')d9iU(x)dx
R

0x;

d ou
—f D zic—(@)v(x)dx
R4 o1 8)6,‘

1 v
=20 [ w6 0 d
RE 0 0x;

d
ov
_ . ~ () d
fRd;zlm)ax{ (1) dx
f Z Z ZlZJ/ / u(xi, ..., xi +6izi, Xit+1,

i=1 j=i+1

v
W Xj1, X+ 02, Xj41 +Zi+1,'-«,xd+Zd)d9jd9iE(x)dx
1

d 1
ov
+/ er(/ u(xl,--.,xi+9iZi""’xd)d9"_M(X)>_(X)dx
o 2 | 0x;
d
Z Z |zizjllull L2 ey 1V 1| g1 ey

i=1j=i+1

d 1
ou ov
2
- 1—-0;)— 1, ..., x;i +6izi,..., dg; — (x)d
+ /Rd ;:lzl/() ( l)axi (x1 x;i +06;z; Xq) e (x)dx

d d d
2
Sy X gl lvlgig + )z el g 1ol e
i=1 j=i+1 i=1
2
Szl llull g gay 101l g1 ay- O
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We can also convert the canonical form EJC (-, -) of (4.14) into the integrated jump
form €] (-, -) by using Lemma 2.5, to get

d
gun==3[ [ (u(x Tz — ) - a%(x))v(x)/q () dr dz;
i=1 !

d .
al
R /R" /Rd BxI; (x+ZI)U(x)FI((Uj(Zj))jeI)dxdzl.
=2 =i
Iy <<l

(4.19)

For the integrals in (4.19) to exist, it is sufficient that ¥ has compact support and
ueH! . RH)=H'(R)®---® H'(R). Note that tensor products of one-dimensional

mix
continuous, piecewise linear finite element basis functions satisfy these requirements.

Proposition 4.12 For u,v € Hrlnix (RY) with compact support, |EJI (u, v)| < o0.
Proof Analogously to Proposition 4.11, for u, v € H' (R?) with compact support, we

have

du
/ <u(x +zi) —ulx) — z,-—(x))v(x)dx‘ < Z,'2||M||H1(Rd)||v||H1(Rd)
Rd 3)6,’

fori=1,...,d. With

allly
[ G e unas

< lullyg @aolgige YzeRLICHL,....d)

and

/ F'((U; @))ies) dz’
RII

we obtain the asserted result. O

<oo YICI{L,... d}

Finally, one may also split the canonical jump form EJC(-, -) defined in (4.14) into
its symmetric part SJS YM(.,.) and its antisymmetric part SJa Y (., .), which are defined
by

sym 1 S
&7, v) = E/Rd /Rd(u(x +2) —u)) (v(x +2) —v(x)) dxk¥™M(2) dz,

sﬁsymw,v):/ / <M(X+Z)_M(X_Z) —z-vxu(x>>v(x)dxkasym(z)dz,
R JRA

2
with k™(2) := 3 (k(2) + k(—2)) and k*Y™(2) := 5 (k(2) — k(=2)).
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Lemma 4.13 Under the assumptions of Theorem 4.8, for u, v € C§° (RY), there holds
EF u,v) =&, v) + & (u, v).

Proof The bilinear form £JC is a translation invariant Dirichlet form. Hence, by [22,
Example 4.7.32], it can be written as

€€, v) = 2y fR U ORETE) d
=(Q2n)? /ﬂ; , Ry (E)A(E)D(E) dE +i2n)? /R S E)UE)0(E) dg, (4.20)

where ¥y(€) = [pa(1 — "% 4+ i(£,2))v (dz) denotes the jump part of the Lévy
symbol ¢ in (2.2). Recall the convolution theorem

AEVE) = 2m)uxv(E), £eRY,

where U(-) := v(—-). Denoting by B, (0) the ball of radius & > 0 around the origin
and using Plancherel’s theorem, one obtains

/ Ry (&) (E)TE) de
Rd

e—>0+

= lim / / (1 —cos(&, 2))u(§)v (&) dEA™™ (2) dz
R4\ B, (0) JR?

lim 7)™ / / (u(x)v(x) —u(x + 2)v(x)) dxk¥™(z) dz
§—>0+ R4\B (0) JR?
= (277)_d/ / (u(x) —u(x +2))v(x) dxk¥™(z) dz
Rd JRd
= l(271)751/ / (u(x) —u(x + z))v(x)dxksym(z) dz
2 Rd Rd
+ l(271)_‘1/ / (u(x —z) —u(0))v(x — 2) dxk™™(2) dz
2 R4 JRA
= l(27'[)7‘1/ / (u(x) —u(x + z))v(x)dxksym(z) dz
2 ]Rd Rd
1 —d sym
+ —(2m) / / (u(x +2) — u(x))v(x 4 2) dxk™™(z) dz
2 Rd ]Rd

= l(271)‘C’f f (u(x) —u(x +2))(v(x) — v(x +2)) dxk™™(2) dz,
2 R4 JR4

where we have used that Y™ is symmetric with respect to each coordinate axis. With
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analogous arguments, one also obtains
[ smenene e
R4
= [, [ (6.2 = sinte. ) 5 ek
R4 JRd

= lim [/Rd(é,z)ﬁ(é)ﬁTS)dS

e—>0+ Rd\Bg (0)

g e _mied 7
—iQ2m) /Rd fu(é)v(é)dé}k Y(2)dz

d
= lim [i(zn)d fRd iz_;z,-s—;(x)v(x)dx

=0+ JRA\B, (0)

_ i(2n)_df M(x +Z) - M(X _Z)v(x)dx}kasym(z)dz
R4 2

d

_ Z(Zn)_d \/Rd \/Rd (M(.x — Z) ; M(.X +Z) + ZZ[g_Z(x))v(x) dxkasym(z) dZ-

i=1

Substituting these results back into (4.20), one obtains
EF(u,v) =&, v) + &7 (u, ). O
4.5 Formulation on a bounded domain

In this section we show how one may localize the unbounded log-price space domain
R¢ to a bounded domain. To analyze the effect of this localization procedure on the
option price, we require the following growth condition on the payoff function: There
exists some ¢ > 1 such that

d q
g(s) S (Zs,- + 1) for all s € RY,,. 4.21)

i=1
This condition is satisfied by all standard multiasset options like basket, maximum,
or best-of options.

4.5.1 Localization

The unbounded log-price domain R? of the variable x is truncated to a bounded
domain Gg 2O [—R, R]%. In terms of financial modeling, this corresponds to approx-
imating the solution V of the problem (4.2) by a barrier option Vg which is the
solution of the problem (4.9), similarly for American options. In log-price terms the
European and American barrier option prices are given by

ugr(t,x) = E(g(eXT)l{T<IGR}|Xt =x),
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ua R(t,x) = sup ]E(g(exr)l{t<rGR}|Xt =x)7

el 1

where, for notational convenience, we have set r = 0. We show that for semiheavy
tails the solution of the localized problem converges pointwise exponentially to the
solution of the original problem.

Theorem 4.14 Suppose the payoff function g : R? — R satisfies (4.21). Let X be a

Lévy process with state space RY and Lévy measure v such that the marginal mea-

sures v; satisfy 3.1) with M; > q, G; >q,i=1,...,d,with q asin (4.21). Then
Ju(t, ) = ur(t, )| + [ua(t, ) —ua, r(t, )| S e @ FHPIle,

with 0 < o < min; min(G;, M;) —qand B =a +q.

Proof We only consider the American case in detail. This also implies the case

of European contracts. Let n;(x) be as in (3.2) and M7 = sup,¢, 1 [| Xslloo- Then,

with (4.21),

|uA(t,x) —uA,R(t,x)i < sup E(g(exf)l{rszR”X, =x)
TE'Z,T

< sup E(e™M 1y, py| Xo = ).
el T

Using Sato [38, Theorem 25.18], it suffices to observe fort <t < T,

E (e 11 x, o> 1) | Xi = x)

:/Rd el b (2)dz

d
< e41xlloo Z /d quZ“e_”"(Z)1{|\z+x\|oo>R}e""(Z)pr—t(Z) dz
R
i=1
d . . + -
< 4l Z fd ef(mmj min(u ] p; )7q)(R*||X\|oo)eni(z)pt_t (z)dz
R
i=1

d

< o~ ¥RFBlIxlIoo Z/d e""(Z)pr_t(Z) dz.
£ R
i=1

Then the result follows from (3.2). O

The domain of integration R4 of the variable z in, e.g., (4.14) can also be trun-
cated to a bounded domain Ag = [—B, B]d. For this, consider the truncated Lévy
measure Vg = v1y|;.<B} and the corresponding Lévy process X g with characteris-

tic triplet (Q, vg, y). Here yp is defined such that eXbisa martingale, i =1,...,d.
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Denote by X=X — Xg the Lévy process with characteristic triplet (0, V, y), where
V= vl{jz|>B)}- Let up, ua p be the solution of

ug(t,x) = 7E(g(eXB’T)|XBJ =x),

uap(t,x) = sup E(g(e*s7)|Xp, =x),
TE'Z,T

where again for notational convenience, we have set r = 0.

Theorem 4.15 Let X be a Lévy process with state space R® and Lévy measure v
such that the marginal measures v; satisfy (3.1) with M; > 1,G; >0,i=1,...,d.
Then

|u(t,x) — uB(t,x)‘ + ‘uA(t,x) — uA,B(t,x)’ < g BHlxllo

with 0 < o < min; min(G;, M; — 1).

Proof Since g is Lipschitz and X p, X are independent, we have

|uA(t,x) — uA,B(t,x)| < sup |E(g(ex+x”’)) —E(g(ex+x3”*’))|

TE'ZI

d .
< sup Y E([ef e — Kb )

€l i)

d ) .
< sup Ze“xllmE(eXiB,rft ’exlzfz _ 1‘)

€l o

d ~.
S sup el S R (X 1)),

veTr i=1

For each summand, the desired estimate now follows from [12, Proposition 4.2], and
we obtain the required result. O

Remark 4.16 The localization in Theorem 4.14 and the localization in Theorem 4.15
are not equivalent. The localization of the log-price domain as in Theorem 4.14 is
done to obtain a bounded computational domain G g. Therefore, in the variational
formulation a Sobolev space over G is introduced which can be discretized by a
finite-dimensional finite element subspace. Depending on the Lévy density and the
numerical method, it may additionally be necessary to truncate the integration domain
as in Theorem 4.15. In these two approximations, the stochastic process X is not
modified—such a modification, e.g., by replacing X by a killed process X, would
change not only the domain G but also the operator A (see, e.g., [23, Chap. 7.2] and
the references therein).
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4.5.2 Variational formulation on the bounded domain

For any function u# with support in G g, we denote by u its extension by zero to all of
R? and define

Er(u,v) =EW, V).

Thus, we obtain continuity and a Garding inequality of Eg (u, v) on
D(Ex) = {iilu € CZ(Gr)}.

where the closure is taken with respect to the norm of D(E) as given explicitly in
Theorem 4.8. Now we can restate the problem (4.15) on a bounded domain as

find ug € L*((0, T); D(Eg)) N H'((0, T); D(ER)*) such that

a
(%,v) +Er(R,v)=0, Vre(0,T),YveD(ERr), (4.22)

ur(0) =uplcg,

where (-,-) denotes the LZ-inner product. By Theorem 4.8, the problem (4.22)
is well posed in the sense that there exists a unique solution ur in the space
L%((0, T); D(Er)) N C°([0, T1; L>(GR)). This solution can now be approximated
by a finite element Galerkin scheme.

5 Discretization and numerical examples

We briefly address the discretization of (4.22). For more details, we refer to [20, 28,
45] and the references therein.

5.1 Space discretization

Let Vj, be a one-parameter family of subspaces V;, C D(Eg) with finite dimension
Njp =dim V), < oo. For each t € (0, T), we approximate the solution ug(¢,x) of
(4.22) by a function uy(t) € Vj. Furthermore, let u, o € V;, be an approximation
of ug. Then the semidiscrete form of (4.22) is the initial-value problem

find uj, € C'([0, T1; V) such that

d
(% Uh) +Er(up,vp) =0, VT e(0,T),Yv, € Vp, 5.D
T
up(0) =up0,

for the approximate solution function uj (¢) : [0, T] — Vj,. Let V}, be generated by a
finite element basis @p := {¢p  : k € Ap} with index set Ay ={1, ..., N}. Efficient
computation depends on the choice of the basis functions ¢, . Here, wavelets have
three main advantages. First, they allow one to break the curse of dimension by using
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sparse tensor products to obtain essentially dimension-independent complexity [44].
Second, using a multiscale compression of the jump measure of X, the complexity of
jump models can asymptotically be reduced to Black—Scholes complexity [35-37].
Finally, wavelets provide norm equivalences in fractional-order spaces, which leads
to efficient preconditioning even for pure jump operators [20].

5.2 Time discretization

To realize the Galerkin finite element discretization, the Dirichlet form £y (A~, A-)
must be evaluated on the basis functions of Vj, resulting in the stiffness matrix A
given by A;; = Er(dn,i, ¢n,j), i, j € Ap. Furthermore, discretizing in time using
the backward Euler scheme with time step At = T/M and time points t,, = mAt,
m=0,...,M, M €N, we obtain in matrix notation the fully discrete form

find uf'*' € RVi such that form =0, ..., M — 1,

71M( m+1 _Zh ) +Aum+1 O, (52)

0 _
Up =4y 0>

where g;l” denotes the coefficient vector of uj (1, ), and M the mass matrix with
respect to @j,. Similarly we obtain for American options a system of matrix linear
complementarity problems, namely

ﬁndﬂz’"|r1 € K such that form =0,..., M — 1,
—IM( m+1 —ﬁh)—i-AMm-H 0,

(5.3)
(EZI+1 _gm+1) (AI 1M( m+1 _ )—i—Auer]) 0,

0_
Up =up 0

with K :={v e RV | v > g”’“} where g™ denotes the coefficient vector of e'myg,
with respect to @y,.

Remark 5.1 The main numerical problem is to calculate the stiffness matrix A since
the Lévy density is singular at the origin and possibly on each axis. For d = 1, the
entries can still be calculated analytically for tempered stable densities [28, 29]. For
d > 1, one has to use composite Gauss quadrature rules which combine elemen-
tary Gauss quadrature formulas on subdomains decreasing geometrically towards the
singular support of the integrand. A more detailed description and a computational
scheme to compute the stiffness matrix A can be found in [45].

5.3 Impact of diffusion approximation of small jumps

We consider a regularization of the multivariate Lévy measure where small jumps
are approximated by an artificial Brownian motion [1, 10]. This Gaussian approxi-
mation is used to simulate Lévy processes [1, 10] or to price options using finite dif-
ferences [13]. Our discretization (5.1)—(5.3) allows us to compare the error of these
approximations via accurate numerical solutions of the corresponding PIDEs.
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Let X be a d-dimensional Lévy process with characteristic triplet (0, v, y) where
the Lévy measure v satisfies (3.1). The drift y is chosen according to Lemma 2.1
such that eX’ , j=1,...,d, are martingales. The covariance matrix is given by Q =
fRd zz v (dz). For ¢ > 0, let v, be a measure such that v¢ = v — v, is a finite measure.
We can decompose X into its small and large jump parts, i.e.,

X, =yt + N +Xer =X+ Xes, 5.4)

where N°¢ is a compound Poisson process with jump measure v®. The small jump part
X is independent of the process N¢ and has covariance matrix Q, = _/]Rd 22" v (dz).
We assume that Q, is nonsingular. Let X', be a nonsingular matrix with ¥, ¥ ET =Q,.
X can be approximated by a d-dimensional standard Brownian motion W indepen-
dent of N¢. It is shown in [1, 10] that, under certain assumptions on Q,, the process
> -1X, converges in distribution to W as & — 0.

Thus, for any ¢ > 0, the process X can be approximated by replacing the small
jumps with a Brownian motion which yields a jump-diffusion process Z¢ given by

Z; =X:W: +yzt + N;. (5.5)
The characteristic triplet of Z¢ is (Q, v, y5) where y is again such that eze’j,
j=1,...,d, are martingales. Z® has the same covariance matrix as X. For ¢ — oo,

we obtain a diffusion process Z>® = X W; + yoot with covariance matrix Q= X X7
and drift Voo,j = —ij/Z, j=1,..., d.

There are two sources of error. We have a discretization error using a mesh width
h > 0 and a modeling error using ¢ > 0. To assess the impact of ¢ > 0, we use the
discretization (5.1)—(5.3) for ¢ = 0 and & > 0. Here, A is chosen so small that the
discretization error is negligible in comparison to the truncation error.

Remark 5.2 To obtain a converging scheme for finite difference methods, & > 0 was
chosen in [13] depending on the mesh width 4. For a fixed mesh width /& > 0, the
discretization error increases as € — 0, i.e., ¢ = 0 cannot be used.

Consider a basket option u(t, x) with payoff g(x) where the underlying log-price
processes are given by the pure jump process X = (X', ..., X%)T and correspond-
ingly u®(z, x) for the processes Z¢. We study the absolute error |u(T, x) — u®(T, x)|
versus €. For d = 1, it is shown in [13] that the error satisfies |u(T, x) —u®(T,x)| <&
for tempered stable densities. The estimate does not hold for barrier options since the
option price is not smooth at the boundary dG. In particular it is shown for d = 1 that,
for tempered stable densities with 1 <Y <2 and ¢* = ¢, the derivative of the op-
tion price behaves in log-prices like [x — log B|Y/>~! as x — log B (see, e.g., [26]).
Therefore, one obtains a large error at the boundary by approximating X with Z¢.
Similar comments apply for American options at spots close to the exercise bound-
ary.
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Fig. 1 European basket, barrier, and American option prices for d = 2 with barrier B = 80 and strike
K =100

Example 5.3 Let d =2 and consider a pure jump process (Q = 0) with two indepen-
dent tempered stable marginal densities

e —Gilz e Miz _
ki(z) = |1+Y 1{z<0} + i JIEs? 1{z>0}y i=1,2.

We compute the price of a European basket option with payoff

1 1
8(S81,8) = (K 251 252>+,

the price of a down-and-out barrier option with payoff g and barrier B = 80 and
the price of an American option again with payoff g. Let the maturity be 7 = 0.5,
strike K = 100, and interest rate r = 0.01. We set c; = ¢, =1, G = 10, M| =15,
G2 =9, M, =16, Y; =0.5, and Y» = 0.7. The option prices are shown in Fig. 1, and
the relative error for approximating X by Z¢ is plotted in Fig. 2. As expected, the
relative error is small for a European-style basket option. However, it is significantly
higher for, e.g., a barrier option close to the barrier or for an American-style option
close to the exercise boundary.
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Fig. 2 Relative errors for various values of € using Z¢ from (5.5) in place of X in (5.4) for a European
basket, barrier, and American option for d = 2 with barrier B = 80 and strike K = 100
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Appendix: Equivalence preserving copulas

In view of Assumption 3.8, there remains to show the equivalence preserving property
of H:=9;---93F for a large class of 1-homogeneous copulas F. The following
lemmas provide such a class.

_d J—
Lemma A.1 Suppose that Gi, G2 : R™ — Rsq are two equivalence preserving func-
tions. Then:

(1) Forany y >0, the power G{(-)" : Rd — @20 is equivalence preserving on @d.
(i) The product G1G7 : Kd — Ezo is equivalence preserving on Ed.
(iii) The quotient G1/G2 : @d — Rxq is equivalence preserving on any subset
J C RY such that J does not contain any poles of G1/G».

Proof The claims follow directly from Definition 3.7. O
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Lemma A.2 Consider any quasi-polynomial P : R? — Rxo of the form

P(xi,....xg)= Y ai_iglxPire o xg)Pa (A.1)
i15ee0yig=0
with coefficients o;, ... i, > 0 and B;, > 0. Then P is an equivalence-preserving func-

tion.

Proof Let 7 C R and consider two families of equivalent functions f; ~ g,
i=1,...,d,onZ. There exist constants c;, d; > 0 such that

alfi|<|a@|<d|fi)| forallxeZ,i=1,...,d.

Thus, for any x = (xq,...,x4) € 74, there holds

/3 B; ) .
P(gi(x1), ..., ga(xa)) = Z 4" --d, da”, da| LGPt fa(xg)Pia

i1yeenyig=0

B ﬁ'
<  max {dl.l‘- }(fl(m) - fa(xa))

0<iy,...,ig<Nj
=: DP(fi(x1),.... fa(xa)).

Analogously one obtains that there exists some C > 0 such that
CP(fi(xD),.... faxa)) < P(g1(x1), ..., ga(xa)). O

Corollary A.3 For any 6 > 0, the Clayton Lévy copula F of Example 2.8 satisfies
Assumption 3.8.

Proof Clearly, F is 1-homogeneous, and H := 91 - - - 95 F exists. There holds

Pi(xg, ..., xg"

Fxi,...,.20) = ————,
1 @ Py(xq, ..., xq)??

where y,y2 > 0, and P, P, : RY — R-o are two quasi-polynomials of the
form (A.1). Due to the polynomial structure, an analogous representation naturally
holds for H. Thus, by Lemma A.1, the derivative H is equivalence preserving. [
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