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Abstract There is an increasing appreciation of the
importance of gap junction proteins (connexins) in modu-
lating the severity of inflammatory diseases. Multiple
epidemiological gene association studies have detected a
link between a single nucleotide polymorphism in the
human connexin37 (Cx37) gene and coronary artery
disease or myocardial infarction in various populations.
This C1019T polymorphism causes a proline-to-serine
substitution (P319S) in the regulatory C terminal tail of
Cx37, a protein that is expressed in the vascular endothe-
lium as well as in monocytes and macrophages. Indeed,
these three cell types are key players in atherogenesis. In
the early phases of atherosclerosis, blood monocytes are
recruited to the sites of injury in response to chemotactic
factors. Monocytes adhere to the dysfunctional endothelium
and transmigrate across endothelial cells to penetrate the
arterial intima. In the intima, monocytes proliferate, mature,
and accumulate lipids to progress into macrophage foam
cells. This review focuses on Cx37 and its impact on the
cellular and molecular events underlying tissue function,
with particular emphasis of the contribution of the C1019T
polymorphism in atherosclerosis. We will also discuss
evidence for a potential mechanism by which allelic
variants of Cx37 are differentially predictive of increased
risk for inflammatory diseases.
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Connexins, connexons, and gap junctions

Connexins (Cx) are members of a family of proteins
encoded by at least 20 different mammalian genes that are
expressed in a wide variety of tissues [1, 2]. These genes
show 40% sequence identity and a common structure, the
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exon being interrupted by introns in only a few exceptions
[3]. Accordingly, the amino acid sequences of Cx proteins
are highly conserved. A connexin exhibits four α-helical
transmembrane domains (M1–M4), two extracellular loops
(E1 and E2), a short cytoplasmic loop (CL), and cytoplas-
mic NH2- and COOH-termini (NT and CT, respectively).
Connexins are classified in three-to-four groups, and the
most used nomenclature distinguishes Cx by their molecu-
lar mass deduced from their respective cDNAs. The CT,
which varies significantly in both length and composition,
is nearly unique to each Cx type. For most Cx studied so
far, the CT is a substrate for specific kinases and/or protein
partners, acting as a regulatory domain to modulate activity
of Cx channels in response to appropriate biochemical
stimuli [4–6].

The life cycle of connexins begins with the non-covalent
oligomerization of 6 Cx monomers into annular structures
called connexons [7, 8]. Connexons can be made of one
(homomeric) or several (heteromeric) Cx types. After their
assembly, connexons are delivered in vesicular carriers
traveling along microtubules from the Golgi to the plasma
membrane. These connexons at the plasma membrane
move laterally to reach the margins of channel clusters
and dock with their counterparts in the neighboring cells to
form intercellular channels, the gap junctions [9]. Thus, gap
junctions grow by accretion at their outer margins from
connexons to form plaques that can be resolved by electron
microscopy [10].

Connexins, connexons, and gap junctions are involved
in numerous processes contributing to the maintenance of
normal cell growth and differentiation [1, 11]. Particularly,
connexons can function as hemichannels in transmembrane
signaling, whereas gap junctions mediate the direct ex-
change of ions and small molecules (second messengers,
metabolites, linear peptides, mRNA) between cells in
contact [12, 13]. Experiments of functional replacement of
one connexin gene with another have revealed that cellular
homeostasis depends on the correct types of Cx expressed
[14]. This implies that the specific trafficking, permeability,
and interaction with protein partners and transduction
networks of each Cx type are contributing to tissue
response. Connexons and gap junctions are membrane
channels that are gated by chemicals and by membrane
potential (Vm). Whereas gap junction channels remain open
when Vm is identical between cells (Vm in cell 1 is equal to
Vm in cell 2, Vm1 = Vm2), they close with increasing
differences in transjunctional potential (Vj = Vm1 − Vm2). In
contrast, hemichannels seem to open with long Vm

depolarization [15, 16]. It is therefore not surprising that
mutations and polymorphisms of connexin genes would
affect Cx-made channel functions and, thus, are associated
with a variety of pathological conditions [17]. In this paper,
we will review the current knowledge on Cx37 function

and discuss evidence for a potential mechanism by which
allelic variants of Cx37 are differentially predictive of
increased risk for inflammatory diseases.

Specific expression of Cx37 and its role in tissue
physiology

Some Cx display a rather ubiquitous expression pattern,
whereas others show a more restricted expression to
certain organs or cell types where they exert a unique
role in tissue function. Cx37, which belongs to the latter
group, has been found in the ovary, the vasculature, and
inflammatory cells.

Ovary

In the developing ovarian follicle, the oocyte is separated
from the local blood supply by an increasing number of
granulosa cell layers. These cells, which form the theca
externa, are the only ones in direct contact with ovarian
capillaries [18]. In this avascular system, intercellular
communication via gap junctions between the oocyte and
the surrounding somatic cells is essential for correct
functioning and development of the follicle [19, 20]. Gap
junctions mediate metabolic cooperation between granu-
losa cells and the oocyte by transmitting endocrine,
paracrine, and growth factor effects [21, 22]. Consequent-
ly, it has been hypothesized that gap junctional intercel-
lular communication (GJIC) may play a role in the
coordination of follicular growth and steroid hormone
production [23] as well as in the maturation of the oocyte
[24]. Immunohistochemistry has revealed Cx37 in the gap
junctions between the oocyte and the granulosa cells of the
follicle [25, 26]. In addition, Cx43 has been identified as
the major component of gap junctions between granulosa
cells. Targeted disruption of the gene encoding Cx37 in
mice (Gja4) results in female infertility [25]. In fact,
Cx37-deficient mice lack mature Graaf follicles, fail to
ovulate, and develop numerous inappropriate corpora
lutea. These results suggest that in the normal Cx37-
expressing follicle, GJIC allows for bidirectional signal-
ing. On the one hand, the GJIC between the oocyte and
surrounding granulose cells are required for oocyte growth
and development during the pre-antral stages of the
follicle. On the other hand, an inhibitory signal is
transferred through gap junctions from the oocyte to the
granulosa cells that results in the prevention of luteiniza-
tion until ovulation has occurred [27]. An additional role
that has been proposed for follicular gap junctions is the
maintenance of meiotic arrest of the oocyte in a follicle via
low tonic amounts of cAMP signaling from the granulosa
to the oocyte [24, 28–30].
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Blood vessels

The vascular endothelium consists of a continuous mono-
layer of cells, lining the luminal surface of the entire
cardiovascular system, providing a non-thrombogenic bar-
rier between the blood and the underlying tissues. Four
connexins, namely Cx37, Cx40, Cx43, and Cx45, have
been described in the vascular wall, a tissue that contains
not only endothelial–endothelial and smooth muscle–
smooth muscle gap junctions but also endothelial–smooth
muscle transmembrane channels [31–36]. Although con-
nexin expression profiles have not yet been completely
described for all parts of the vascular tree, it is already clear
that Cx expression is not uniform in all blood vessels [37].
In addition, differences in Cx expression have been
reported in some vessels, like coronary arteries, when
comparing different species [38]. Most commonly, endo-
thelial cells (ECs) express Cx37 and Cx40, whereas smooth
muscle cells (SMCs) express Cx43 and Cx45. Cx43 has
also been found in a subset of ECs near branch points of
arteries and in other localizations subjected to oscillatory
flow [39, 40]. The replacement of the Cx43 gene by a LacZ
reporter gene has revealed the expression of this connexin
in ECs of capillaries [41]. Others have reported the
expression of Cx37 or Cx40 in SMCs of specific blood
vessels [42–44] or under specific conditions [40, 45–47].
Of note, Cx37 might be excluded form myoendothelial
junctions, as recently reported in an in vitro model [48].

Several physiological roles have been proposed for
vascular gap junctions. Arterioles within the microcircula-
tion span considerable distances, and coordination of
cellular behavior is required to allow for the synchronous
diameter changes over the entire length of the vessel that
are necessary for drastic changes in blood flow. GJIC
appeared crucial for the conduction of vasomotor responses
along arterioles and small arteries [49–51]. Moreover, ECs
are induced to migrate during the process of new capillary
sprout formation and during repair of the endothelial lining
after injury in large vessels. In a microvascular cell line in
which the expression of endothelial Cx was altered by
dominant negative connexin inhibitors, wound-induced
migration of ECs was found to be dependent on temporary
switches in Cx expression [52].

Connexin45, Cx43, Cx40, and Cx37 gene-targeted mice
have been created, each having a different vascular
phenotype. The complete deletion of Cx45 causes striking
abnormalities in vascular development, and mouse embryos
die early, between days 9.5 and 10.5 [53]. The deletion of
Cx43 causes dramatic cardiac defects, and these homozy-
gous knockout mice (Cx43−/−) die in the early postnatal
period [54]. To circumvent this problem, the Cre/loxP
system was used to inactivate Cx43 expression exclusively
in ECs. These conditional Cx43 knockout mice display

hypotension and bradycardia [55]. However, this observa-
tion remains to be confirmed because similar mice that
were developed by another laboratory do not display a
vascular phenotype [41]. Although the deletion of Cx37
(Cx37−/−) leads to female infertility, these animals survive
and do not show an obvious vascular phenotype [25, 56].
The removal of Cx40 (Cx40−/−) results in abnormal cardiac
conduction [57, 58] as well as in hypertension [59, 60].
More recently, connexin-deficient mice have been interbred
to enhance our understanding on the unique and redundant
roles of the Cx vascular genes. In contrast to the single
knockout animals, mice that completely lack both Cx37 and
Cx40 (Cx37−/−Cx40−/− double knockout mice) are not
viable beyond the first postnatal day and display severe
vascular abnormalities [61]. However, Cx37+/−Cx40−/−

mice appeared viable and may be used for studies towards
vascular function [62]. In contrast, Cx43+/−Cx40−/− mice
exhibit cardiac malformations and die neonatally [63].

Inflammatory cells

The establishment of GJIC between macrophages, based on
electrical coupling of adherent murine macrophages, was
first reported by Levy et al. [64]. Subsequently, gap
junctions were morphologically detected between various
types of macrophages and between macrophages and other
cell types by freeze fracture electron microscopy [65–68].
Further support for GJIC between macrophages and other
cells has come from dye transfer assays. Dye coupling was
observed between murine peritoneal macrophages as well
as between murine macrophages and intestinal epithelial
cells [69]. A low dye coupling was also observed at brain
stab wounds and in primary culture of murine microglia
[70]. This coupling was dramatically increased with the
treatment of IFN-γ and LPS or IFN-γ and TNF-α as well
as inhibited by a gap junction blocker. In addition, freshly
isolated human monocytes treated with LPS or TNF-α and
IFN-γ exhibited dye coupling [71]. However, these studies
are in conflict with others reporting lack of GJIC between
monocytes/macrophages and other cells. For example, dye
transfer was not observed in untreated human or mouse
monocytes/macrophages [72, 73], between human mono-
cytes/macrophages and ECs, or between human monocytes/
macrophages and SMCs [71, 72].

To date, the expression of two Cxs has been reported in
monocytes/macrophages. Cx43 was found in the mouse
macrophage cell line J774 [74], activated peritoneal macro-
phages from hamsters and mice [66, 73, 75], brain stab
wound and primary cultures of murine microglia [70], and
human monocytes/macrophages stimulated with TNF-α
and INF-γ or LPS and INF-γ [71]. Moreover, Cx43 mRNA
was detected in macrophage foam cells of human athero-
sclerotic carotid arteries [72]. In addition, we observed this

J Mol Med (2007) 85:787–795 789



connexin in peritoneal macrophages and in macrophages of
late atheromas [40, 75]. Finally, Cx37 was also detected in
peripheral blood monocytes from human or mice [76]. As
described in detail below, Cx37 plays a pivotal role in the
recruitment of monocytes and macrophages to atheroscle-
rotic lesions [76].

Epidemiology of Cx37 association with human
pathologies

GJIC is often impaired in cancers. When genes coding for
Cxs are transfected into cancerous cells, this restores not
only their GJIC, but normal growth control is often restored
as well [77], thus, identifying connexins as possible ‘tumor
suppressor genes’. Mutations in Cx proteins can have major
effects on GJIC. Interestingly, mutated Cx37 has been
reported to be a tumor-associated antigen in the murine
Lewis lung carcinoma (3LL-D122) cell line [78]. More-
over, vaccination with a synthetic peptide corresponding to
the mutated domain of Cx37 induced effective anti-tumor
cytotoxic T lymphocytes and protected mice from sponta-
neous metastases of 3LL-D122 tumors [79]. In addition,
these peptide vaccines reduced metastatic loads in mice
carrying pre-established micrometastases [79]. However,
genome screening of a set of human lung and breast cancers
revealed no somatic mutations in Cx37 in these samples.
Interestingly, these studies revealed polymorphisms in the
Cx37 gene, but the majority of these polymorphisms reside
outside of the open reading frame of the protein [80].

Genetic linkage studies in erythrokeratodermias (EKV),
a clinically heterogeneous group of rare autosomal domi-
nant disorders of cornification with hyperkeratosis and
erythema, revealed that these diseases map to the chromo-
somal region 1p34-35 [81]. Human Cx37 gene (GJA4)
maps to chromosome 1p35.1 by fluorescence in situ
hybridization and was thus considered an attractive candi-
date gene. By direct sequence analysis of GJA4 in control
samples, the authors detected a sequence variant (cytosine-
to-thymine) at position 1019, causing a substitution of
serine for proline at codon 319 in the regulatory cytoplas-
mic tail of Cx37. This point mutation creates a unique Sau
IIIA cleavage sequence that was used to screen all EKV
families and a series of unaffected controls for this
polymorphism. The serine variant was found in both
affected and unaffected EKV family members as well as
in a control group of unrelated Caucasians. Moreover,
extensive further screening of the EKV families for
mutations in GJA4 did not reveal a pathologic sequence
aberration in the coding region, thus, excluding Cx37 as a
candidate for this disease.

A few years later, a genome-wide linkage analysis for
premature myocardial infarction (MI) identified an almost

identical region on chromosome 1, i.e., 1p34-36, as novel
susceptibility locus for this disease [82]. Coronary artery
disease (CAD) is the most common cause of ischemic heart
disease resulting primarily from atherosclerosis. The devel-
opment and outcome of this progressive inflammatory
disease are known to depend on the interactions between
genetic, behavior, and environmental factors [83]. There are
ongoing searches for genes and proteins that influence the
development of CAD, with the aim to use these markers
along with established risk factors in screening tests for
patient risk stratification [84, 85]. These searches have
identified genetic polymorphisms in a number of human
genes that are associated with CAD and/or MI, including
the Cx37 gene.

To date, several gene polymorphism-association studies
have detected a link between the C1019T single nucleotide
polymorphism (SNP) in the human Cx37 gene and CAD as
well as MI in various populations. Surprisingly, the
published association studies appear contradictory, which
might have arisen in part from comparing different clinical
statuses, CAD versus MI. Whereas atherosclerotic plaque
development in carotid and coronary arteries seems
associated with the 1019C SNP coding for Cx37-319P
[86–88], increased risk for MI appeared associated to the
1019T SNP coding for Cx37-319S [89, 90]. This far, only
one study could not reveal an association between the
C1019T polymorphism in the Cx37 gene and the presence
of either CAD or MI [91]. The association between CAD
and the Cx37 polymorphism appeared particularly strong in
men with type 2 diabetes [92]. In contrast, the polymor-
phism appeared not associated with other vascular diseases
such as hypertension [93] and restenosis after balloon
angioplasty [94]. The relevance of Cx37 for MI is further
underlined by a report describing an association between
this condition and another polymorphism in the 3′-untrans-
lated region of the gene. This I1297D polymorphism may
be related to the stability of the mRNA [95].

Although the development of CAD and MI is dependent
on many of the same risk factors, the two clinical
conditions are considerably different especially regarding
features of the atherosclerotic plaques. The key process
underlying acute MI is atherothrombosis, which is the
rupturing of an unstable or “vulnerable” atherosclerotic
plaque followed by acute coronary thrombosis [96, 97].
Plaques that are most likely to break exhibit a thin fibrous
cap, a large lipid pool, and many macrophages. This plaque
phenotype is partially dependent on the activities of
macrophages. Macrophage foam cells secrete pro-inflam-
matory cytokines that amplify the local inflammatory
response in the lesion as well as reactive oxygen species
that further induce macrophage proliferation and lipid
uptake. In addition, the activated macrophages produce
matrix metalloproteinases that can degrade the extracel-
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lular matrix, thus, further weakening the plaque’s fibrous
cap.

Cx37 polymorphism modulates the severity
of atherosclerosis: possible mechanisms

The identification of the Cx37 C1019T polymorphism as a
prognostic marker for atherosclerosis suggests that se-
quence differences between the two Cx37 proteins (Cx37-
319S and Cx37-319P) account for the phenotype. How can
the two forms of Cx37 differently modulate the severity of
atherosclerosis? To address this question, we have first
evaluated the contribution of Cx37 in the development of
atherosclerosis in a mouse model of the disease. Thus,
Cx37-deficient mice were crossed with apoliprotein E-
deficient (ApoE−/−) mice to obtain double knockout
animals that were subjected to a high-cholesterol diet [76].
In these mice, the expression of Cx40 was not significantly
altered. Deletion of Cx37 accelerated atherogenesis in
Cx37−/−ApoE−/− mice as compared to the control group
(Cx37+/+ApoE−/−). This was demonstrated by the twofold
increase of Sudan IV-stained lipids in thoracic abdominal
aortas and in aortic sinuses after a 10-week diet. These
observations are indicative that Cx37 plays a protective role
against atherosclerosis in ApoE−/− mice.

Cx37 is normally expressed in endothelial and macro-
phage foam cells [40, 98], two cell types that are key
players in atherogenesis. In the early phases of atheroscle-
rosis, blood monocytes are recruited to the sites of injury in
response to chemotactic factors. Monocytes adhere to the
dysfunctional endothelium and transmigrate across ECs to
penetrate the arterial intima. In the intima, monocytes
proliferate, mature, and accumulate lipids to progress into
macrophage foam cells. Because monocytes appeared to
express Cx37, the possibility that Cx37 contributes to the
interaction between monocytes and endothelial cells was
investigated [76]. Indeed, there is evidence in the literature
for gap junction-mediated heterocellular communication
between leukocytes and ECs [98, 99]. To test for this
possibility, Cx37-deficient monocytes or macrophages were
introduced in hypercholesterolemic recipient mice by adop-
tive transfer and the number of adherent leukocytes to or
within atherosclerotic plaques determined. This was com-
pared with the number of normal leukocytes introduced to
Cx37-deficient recipient mice with atherosclerotic lesions.
Interestingly, these experiments revealed that deletion of
Cx37 in monocyte/macrophages, but not in ECs, did account
for higher number of leukocytes associated with atheroscle-
rotic plaques. These results indicate that heterocellular GJIC
does not contribute to the increased recruitment of leuko-
cytes to the atherosclerotic lesions but rather suggest a role
of Cx37 in monocytes/macrophage function.

Monocyte migration and accumulation of lipid-filled
macrophages are critical events in the progression of
atherosclerosis. It is currently unclear why macrophages that
enter atherosclerotic lesions do not depart with their lipid
loads. During their transmigration across the endothelium,
monocytes are subject to profound reorganization of their
actin cytoskeleton and plasma membrane receptors and
adhesion molecules [100]. These modifications enhanced
their adhesion properties and ability to migrate on a
substrate. In this context, we observed that adhesion of
Cx37-deficient monocyte/macrophages to either EC mono-
layers, plastic, or glass was enhanced as compared to
leukocytes normally expressing Cx37 [76]. The implication
of Cx37 in the regulation of monocyte/macrophage adhesion
was indicated by that connexin-channel blockers, including
α-glycyrrhetinic acid and connexin mimetic peptides, in-
creased leukocyte adhesion, and that expression of Cx37 in a
Cx-deficient macrophage cell line decreased its adhesiveness
to substrates. Because these assays were performed using
isolated leukocytes, it is likely that connexons, and not gap
junctions, are involved in the process of cell adhesion.

Extracellular purines (ATP, ADP, adenosine) are impor-
tant signaling molecules that mediate both inflammatory
and anti-inflammatory effects. ATP is also known to pass
through various types of gap junctions and hemichannels
[101]. Interestingly, a causal relationship was observed
between extracellular ATP release and decreased adhesion
in monocyte/macrophages expressing Cx37. Conversely,
absence of Cx37 or blockade of Cx37 hemichannels
reduced the release of ATP out of the cells and increased
their adhesion to substrates. Furthermore, the use of an
extracellular ATP scavenger increased adhesion of normal
monocyte/macrophages, whereas addition of extracellular
ATP equalized the adhesive properties of Cx37-deficient
leukocytes to that of Cx37-expressing leukocytes. Alto-
gether, these observations suggest that extracellular ATP
provides a link between Cx37 hemichannel activity and
leukocyte adhesiveness. It is hypothesized that Cx37
hemichannels release ATP, which in turn interferes with
leukocyte adhesion by a mechanism that remains to be
demonstrated (Fig. 1). According to this hypothesis,
absence of Cx37 would be associated with increased
adhesion of monocyte/macrophages to and within the
atherosclerotic plaques. A change in the adhesion properties
of these cells will also likely favor their accumulation in the
atherosclerotic lesions and worsen the phenotype. In this
context, the observation that expression of Cx37-319S or
Cx37-319P by transfection of a human macrophage cell
line revealed differential adhesiveness to substrates is of
particular importance [76]. This may be caused by
increased permeability of the Cx37-319P hemichannels
for ATP, thus, providing a potential mechanism by which
the Cx37-1019C variant protects against atherosclerosis.
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Speculative remarks and conclusion

Additional experiments are needed to determine whether
Cx37-319S and Cx37-319P hemichannels exhibit differen-
tial biophysical and permeability properties. However, one
can speculate on the mechanism underlying the regulation
of Cx37-319S and Cx37-319P hemichannels. One conse-
quence of the study by Wong et al. [76] is that leukocytes
may need to close Cx37 hemichannels to increase their
adhesive properties. It is long known that adherent macro-
phages showed a more negative membrane potential as
compared to macrophages in suspension [102–104]. One
consequence of more negative Vm would be to turn off
hemichannel activity. Thus, differences in Vm sensitivity
between Cx37-319S and Cx37-319P hemichannels could
account for the differential ATP transport by these
connexons. An alternative possibility is that elevated
macrophage plasma membrane cholesterol content may
differentially affect the regulation of Cx37-319S and Cx37-
319P hemichannels. There is indeed increasing evidence
that high cholesterol levels may alter plasma membrane and
actin cytoskeleton organization of macrophages during
atherosclerosis [105]. The presence of cholesterol in plasma
membranes is also known to affect the chemical regulation
of gap junction channels [106, 107]. Thus, a differential

sensitivity of Cx37-319S and Cx37-319P to cholesterol
increase may also account for the enhanced ATP leakage
through Cx37-319P hemichannels. Hence, Cx37-319P, by
releasing ATP, may reduce the adhesion of macrophages
and allow them to egress from the affected area. The
decreased adhesiveness of Cx37-319P-expressing leuko-
cytes may therefore serve as a “protector” mechanism that
prevents excessive monocyte recruitment in atherosclerosis.
Because the rupture of vulnerable atherosclerotic plaques, a
key process underlying acute MI, strongly depends on the
presence and the activity of macrophages in the lesions, our
study may provide a rationale for the epidemiological
association between increased risk for acute MI and the
Cx37-319S polymorphism. The generation of knock-in
mice for either Cx37 polymorph may help to resolve these
issues. Our improved understanding of the role of the Cx37
C1019T polymorphism may not only lead to the use of this
genetic variant in risk stratification for MI, but may also
have implications for other chronic inflammatory diseases
where monocytes and/or macrophages are involved.
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Fig. 1 Hypothetical model of the anti-adhesive function of Cx37 in
mouse monocytes. Rolling monocytes at the surface of the vessel slow
down and firmly adhere to ECs before extravasation. Cx37-hemi-
channels at the surface of monocytes allow for the release to the
extracellular space of ATP. Extracellular ATP negatively regulates the
adhesion of monocytes to ECs by a yet undetermined mechanism. In
the absence of functional Cx37 (by hemichannel blockade or Cx37
gene deletion), ATP is not released out of the cell, resulting in
enhanced adhesiveness of monocytes to the endothelium. Possibly,
ATP released by monocytes can be sequentially degraded by

ectoenzymes to AMP and then nucleosides and inosine. For instance,
ecto-5′ -nucleotidase (CD73) is up-regulated at the endothelium
surface during inflammation to convert AMP into adenosine (Ad).
Adenosine has an anti-inflammatory and cell-protective effect through
its binding to receptors localized on the cell surface of endothelial and
some inflammatory cells [108]. Absence of production of ATP by
Cx37-deficient monocytes may reduce adenosine production, which in
turn would accelerate atherogenesis in mice by favoring a pro-
inflammatory environment
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