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Abstract

ERG components of negative polarity in the light-adapted and in the dark-adapted inner retina are
reviewed from a clinical perspective and include consideration of experimental research. Field potentials are
inherently complex including summating contributions from specialized neurons as well as from glial
elements. This property applies to the PERG, PhNR and to the STR. Experimental research can contribute
to identifying the sites/cells of origins i.e. by determining depth profiles and by pharmacological manip-
ulation. Intraretinal microelectrode-studies and pharmacological dissection of light-evoked responses have
elucidated the origin of field potentials from the retinal pigment epithelium to the retinal ganglion cells.
Thresholds for dark-adapted response components have been compared. Attenuation of the STR by
anesthesia was found in cats in vivo when compared to threshold intensities used in isolated eye prepara-
tions in vitro, suggestive of depression of inner retinal activity by anesthetics. Evidence has been presented
for antidromically elicited retinal responses of negative polarity that resemble the STR and summate with
the light-evoked retinal response. This observation supports the notion that negative field potentials and
components as recorded in the vitreous and at the cornea receive contributions from retinal ganglion cells.
The weight of this contribution appears to vary among species, at least concerning the STR. The ocular
negative reponses from the inner retina are compared to cortical excitatory mechanisms generating nega-
tivity in the baseline of the EEG.

In the light of an increasing interest in assess-
ing the function of the inner retinal layers, I shall
briefly review the responses and components of
negative polarity that are generated in the inner
retina. For a detailed background of these sig-
nals, which largely reflect various aspects of gan-
glion cell and amacrine cell activity, the reader is
referred to [1–3]. Clinically accessible signals of
this sort are shown in a cartoon (Figure 1) and,
together with experimentally characterized
responses listed in Table 1. I shall also review the
properties of the optic nerve action potential
including previously unpublished data obtained
by antidromic electrical stimulation, which gener-
ates retinal field potentials of negative polarity as
well.

Clinically accessible signals

Scotopic Threshold Response, STR

Among the clinically accessible signals embedded
as components in the electroretinogram (ERG), I
first address the scotopic threshold response,
STR (Figures 1–3). The STR is a rod-driven
response to very weak stimuli under full dark
adaptation [4]. The signal is sensitive to very dim
levels of background light [5, 36] appearing with
stimuli below the threshold intensity for the
b-wave, and generating measurable amplitudes
about 1.0 units above the psychophysical thresh-
old (summarized in Figure 5). In a recent study,
Jost found a difference of 0.99 log units between
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the STR recorded and the psychophysical thresh-
old using the same Ganzfeld stimulator for both
[6]. Due to processes of amplification from photo-

receptors to third order neurons [37] and mecha-
nisms of inner retinal network adaptation the
STR can reflect remaining sensitivity in advanced

Figure 1. Cartoon of mammalian retina, of selected signals from the retina and approximate sites of generation of ERG compo-
nents. Note that proximal negative responses (PNR) and optic nerve responses (ONR) are obtained in experimental situations. Ver-
tical arrows indicate the stimulus.

Table 1. Overview of signals of negative polarity from inner retina and optic nerve

Response/ERG component Abbreviation Species; stimulus conditions Characteristics References*

Clinically accessible

Scotopic threshold response STR cat, rat, mouse, monkey,

human full dark adaptation

rod-driven signal [4–11]

Pattern ERG, N 95

component

PERG cat, human. Light –adapted, spatially tuned [12–16]

Photopic negative response

in cone ERG

PhNR monkey, human presumed cone-driven

ganglion cell activity

[17]

Experimentally assessed

TTX-sensitive component

in multifocal ERG

mfERG monkey Presumed ganglion

cell-generated component

in mfERG

[18]

M-wave M-wave Amphibian (necturus), cat.

Light-adapted focal intraretinal

signal, extra cellular microelectrode

spatially tuned, presumed

glial response from

inner retina

[19, 20]

Proximal negative response PNR toad, pigeon, turtle dog, cat, monkey.

Light-adapted inner retinal spatially

tuned signal, extracellular

microelectrode

presumably amacrine

cell-driven signal

[21–23]

Optic nerve response ONR Cat, dog, rabbit. Compound action

potential of optic nerve in vitro,

perfused eye or superfused eye cup

rod and cone-driven composite

‘‘output’’ signal from

isolated eyes

[24–33]

Antidromic electrical retina

response

ERR Cat eye in vitro. Electrical stimulation

of optic nerve

antidromically elicited retinal

field potential resembling

and revealing summation

with the STR

[11, 28, 34]

*only selected references could be included in this brief overview.
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inherited degeneration of the retina [7] when the
a- and b-waves of the ERG have vanished. We
observed that the STR is sensitive to general
anesthesia (Figure 20 in [6]): the threshold in the
anaesthetized cat was on average 1.25 log units
above the threshold intensity for the STR in the
isolated perfused cat eye. Examples of human,
anesthetized rat and cat (in vitro) STRs are shown
in Figure 2. The STR thus represents an exqui-
sitely sensitive tool for selective monitoring of rod
function in clinical as well in research settings
[38–40].

The generation of the STR comprises the
complex rod circuit involving four classes of
amacrine cells [41] in addition to ganglion cells
and Müller cells. The reciprocal synapses of ama-
crine- to bipolar cells are likely to be sites of sig-
nal amplification in the inner retina [37]. The
multifold contributions to the STR can be de-
duced from two studies that addressed loss of the
ganglion cells: Sieving [38] reported only changes
in configuration and in timing of the STR in cats
up to 21 months after sectioning the optic nerve
with histologically identified loss of ganglion cells
and corresponding thinning of the nerve fiber
layer. In the same study a patient with long-

standing posttraumatic unilateral atrophy of the
optic nerve was examined electrophysiologically.
The STR in the affected eye still generated STRs
that, however deviated in configuration, ampli-
tude and timing from those recorded in the con-
trol eye of the patient. In macaque monkeys, in
contrast, loss of ganglion cells and severe visual
field defects induced by experimental glaucoma
led to attenuation or loss of the STR [40]. The
authors conclude that the balance of contributing
cells generating the signals in the proximal retina
varies greatly among species.

Photopic Negative Response, PhNR

Light-adapted components of negative polarity in
the clinical ERG include the Photopic negative
response, PhNR, and the N 95 component of the
pattern ERG (Figure 1). The single flash Ganz-
feld cone-driven (photopic) ERG recorded after
10 min of adaptation to a rod-suppressing back-
ground light is a fast signal with a brief a-wave
followed by a spike-like b-wave with rigid timing
[2]. Following the b-wave a broad trough below
the baseline can be seen under standard stimulus
conditions, but is best generated using red flashes

Figure 2. Typical traces of scotopic threshold responses. (a) human STR intensity series recorded with a DTL fibre electrode from
a 30 yr old volunteer, average of 4, with the STR appearing at an intensity of )5.19 log cd.s/m2 from [6]. (b) intensity series of
ERGs (right column) and optic nerve responses (left column) recorded from an in vitro arterially perfused mammalian eye (from
[5] by permission). For the ONR recordings longer pulses were used in order to analyze/observe the OFF-components. (c) Average
of STR recordings from 5 healthy fully dark adapted rats (R. Bush and G. Niemeyer, unpublished; [35]).
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presented on a blue background [17]. Experimen-
tal evidence [17] and clinical observation in glau-
coma and diseases compromising the optic nerve
unequivocally show that retinal ganglion cells
provide a major contribution to the PhNR.
Potentially broad clinical use of this photopic
component of the standard Ganzfeld ERG is
anticipated.

N 95 component of the pattern ERG

The first comprehensive description [12] and
recent reviews [13, 14] document the importance
of the pattern ERG (PERG) as a key instrument
in assessing the site of visual dysfunction in the
axis from photoreceptors to the visual cortex in
ophthalmology and neuro-ophthalmology. The

negative component ‘‘N95’’, a signal of particular
diagnostic value is understood to be generated by
retinal ganglion cells and related cells responding
to stimulation with higher spatial frequencies
[15].

Experimentally obtainable signals

TTX-sensitive component of the multifocal ERG

Experimental approaches were and will be nec-
essary to further elucidate the origin of the
components underlying the inherently complex
field potential, the ERG. A number of signals
of negative polarity have been recorded and
attributed to inner retinal structures. Using the
multifocal ERG (mfERG) in anesthetized mon-
keys, Hood et al. [18] recorded changes after
intravitreal application of micromolar concen-
trations of TTX, a sodium channel-blocking
compound. Comparison of the mfERG before
and after the action of TTX revealed a mainly
negative component, that could be attributed to
ganglion cell and perhaps also to amacrine cell
activity.

M-wave: A local ERG component of negative
polarity in the inner retina is the M-wave, first
recorded and analyzed by Karwoski and Proenza
[19] in the amphibian retina. It has been attrib-
uted mainly to changes in extracellular concen-
tration of potassium ([K+]o) as caused by
depolarization of the glial Müller cells [42]. The
signal was recorded extracellularly by microelec-
trodes in the inner retina and exhibited spatial
tuning. The relatively slow negative response ap-
peared at onset as well as at offset of a light
stimulus. Sieving, Frishman and Steinberg [20]
were the first to record M-waves in mammalian
retina. They used a small spot of light and a
white background centered on the tip of the
microelectrode at 25% retinal depth. The M-
wave could be clearly separated from the intrare-
tinal b-wave (P II) as well as from the faster
PNR and from the STR.

Proximal negative response (PNR)

Another experimentally well-established signal
in the inner retina is the proximal negative
response, PNR, recorded first by Burkhardt [21]

Figure 3. Proximal negative responses (PNR) at recorded by
means of a microelectrode in the toad retina at increasing
stimulus intensity (bottom to top), modified from [21] with
permission. Note that negative polarity is displayed upwards.
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in the amphibian retina (Figure 3). It is a signal
of negative polarity recordable near or within the
inner retina with spatially tuned flashes centered
around the microelectrode. The configuration of
the response resembles that of the negative, tem-
porally dispersed optic nerve response (see be-
low) with clear-cut ON- and OFF-components.
The signal has been attributed mainly to ama-
crine cells, which exhibit a synaptic network of
particularly high density in the amphibian retina.
Dowling and Ripps [22] found that in the skate
retina application of TTX failed to greatly affect
the PNR and concluded that the signal reflects a
depolarization of the resting membrane potential
rather than spike-responses of amacrine cells.
Ogden [23] reported PNR recordings from mon-
key and also from chicken, pigeon, turtle and
dog, revealing the PNR as a signal generated in
all species studied.

The optic nerve response recorded in vitro
in relation to the STR

Finally I shall discuss the summed action poten-
tial of the mammalian optic nerve as recorded

from the isolated arterially perfused feline eye
in vitro [24–27]. The in vitro perfused isolated
mammalian eye preparation affords the opportu-
nity to monitor the summed ganglion cell activity
as the output of retinal excitation via a simple
Ag–AgCl suction electrode at the severed end of
the optic nerve and a surface electrode

(Figure 4a). The typical configuration of the
light-evoked temporally dispersed compound
action potential at higher stimulus intensity
consists of a rapid ON-component, a variable
plateau- and a complex OFF-component (Fig-
ure 4b). The complexity of this field potential
with oscillations at higher stimulus intensities is
understood to arise from the integration of the
various firing patterns of the different classes of
the estimated 193000 axons of retinal ganglion
cells [28–31]. The configuration of the responses
shown in Figure 4 resembles in polarity, shape
and timing the compound action potentials re-
corded from the optic nerve as well as from
within the disc after stimulation of the optic
tract of rhesus monkeys [28]. The ONR has a
much faster time course than the changes in
[K+]o that are generated by slow Müller cell

Figure 4. Cartoon of the recording setup of an isolated, arterially perfused feline eye and typical in vitro recorded light evoked sig-
nals. (a) Setup in vitro perfused isolated mammalian eye. 1 and 4: dc electrodes [43], 2 and 3: AgAgCl reference electrodes, 5: PE
cannula tied to the ophthalmociliary artery for perfusion with oxygenated, serum-enriched tissue culture medium at 37.5 �C. (b)
Optic nerve response elicited by a submaximal stimulus intensity in dark adaptation, revealing the characteristic components of this
temporally dispersed negative compound action potential. (c) superimposed single traces of ERGs (top) and ONRs at increasing
intensity in response to pulses of 20 ms in duration under dark adaptation. Calibration bars: 200 lV for ERG, and 100 lV for the
optic nerve responses.
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activity [44]; Niemeyer and Steinberg, unpub-
lished results.

An optic nerve response of similar configura-
tion revealing the different conduction velocities
of ganglion cell classes can be elicited by antero-
grade electrical stimulation [27, 28]. Several
experimental studies have revealed the selective
sensitivity of ONR components to pharmacologi-
cal manipulations [reviewed in 29; 45–49].

ONRs generated by increasing intensities of
brief (20 ms) pulses can be compared to ERGs
recorded in the same preparation (Figure 4c). At
threshold intensities, the ONR was about 1 log
unit more sensitive than the STR (Figures 2b, 5),
[6, 11, 27].

Values reported for the absolute sensitivity of
the STR depend on noise levels as well as on the
criterion voltage chosen, and both differ among
studies. The relation between the threshold of the
ERG as represented by the STR and the ONR is
of interest since the signals share the primary
generating structure, the retinal ganglion cells.
The STR and the ONR both have the same
polarity and a similar shape as illustrated in Fig-
ure 6: responses to photic stimulation for 400 ms
duration have been scaled to the ONR and are
displayed with negativity downwards. Note that
the long stimulus duration elicited negative OFF

responses in both the ONR and in the STR tra-
ces. The latency consistently was found to be
longer for the STR than for the ONR. Much like
the b-wave, the STR thus is preceded by the
summed response of the axons of the retinal gan-
glion cells. ERG components as field potentials
are understood to reflect neuronal as well as
slower glial components. This difference in tim-
ing has been observed previously [24, 25, 32].

Antidromic electrical stimulation of the optic nerve
elicits a negative retinal retinal response

In an attempt to elucidate the negative polarity
of the signals discussed here, our laboratory
became interested in antidromic electrical stimu-
lation of the ganglion cells via the optic nerve
in vitro while recording the ERG channel without
photic stimulation. Pulses of 1 ms in duration
and of 5–15 V were applied to the optic nerve
using the electrode configuration described
above. Recordings in the ERG channel exhibited
a marked stimulus artifact with a barely detect-
able signal latency due to the short distance of
the stimulating electrodes. The artifact was fol-
lowed by a temporally dispersed signal of nega-
tive polarity that resembled the STR. The
electrically driven retinal response was saturable

Figure 5. Comparative graph of threshold intensities found to elicit the ERG, STR, and ONR from human, anaesthetized cats
(upper half) and from in vitro perfused cat eyes (lower half). §ONR, optic nerve response recorded in vitro. *from Robson and
Frishman [8]. **from Finkelstein and Gouras [50]. Inset: ONR traces near threshold recorded in a perfused mammalian eye. Rep-
rinted from [27] with permission from Elsevier.
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when increasing the stimulus strength to about
12 V. More importantly, combination of electri-
cal stimulation with sub maximal photic stimula-
tion revealed summation (Figure 7). These results
support the hypothesis that ganglion and ama-
crine cells in combination with and Müller cells
generate field potentials of negative polarity that
can be recorded in the vitreous and at the cornea
due to passive volume conduction.

An attempt to understand the electrical
evoked retinal potential recorded in the perfused
eye preparation has to consider the depolariza-
tion of Müller cells by stimulation of the optic
nerve: Miller, Dacheux and Proenza have shown
extra- and intracellular recordings from Müller
cells in axolotl following light as well as anti-
dromic electrical stimulation [42]. In fact, the
antidromic response recorded near the retinal sur-
face (Figure 2a in [42]) exhibits a configuration
similar to the electrically evoked vitreal signal re-
corded in the perfused cat eye (Figures 6 and 7).
The authors conclude that light evoked and anti-
dromically generated depolarizations interact in
Müller cells. The corresponding depth profile
(Figure 2c in [42]) indicates the origin of the neg-
ative field potential in the inner retina and shows
a change in polarity near the middle of axolotl
retina. This would be in keeping with earlier
experimental results of Ogden and Brown [51]
who described a ‘‘P wave’’, a positive response re-

corded intraretinally in cynamolgus monkey near
the fovea to transretinal or antidromic electrical
stimulation. The depth profile of the P wave
exhibits as well negative polarity in the innermost
retinal layers (see also review by Karwoski [34].

Gouras [52] analyzed graded negative poten-
tials in the optic nerve fiber layer of rhesus mon-
key in the course of identifying phasic and tonic
retinal ganglion cells that resemble the antidrom-
ically elicited vitreal potentials presented here.
Gouras proved the retinal origin of the P wave
as opposed to the previously postulated centrifu-
gal origin. Direct comparison of these intrareti-
nal field potentials to the vitreal signals of
negative polarity discussed in the present study
requires caution considering differences in
recording techniques such as position of the ref-
erence electrodes and filter bandwidths, as well as
species differences.

Depolarization of cells and axons in the inner
retina.

The components of negative polarity generated
in the proximal retina correspond to depolariza-
tion of dipole structures arranged predominantly
in layers parallel to the retinal surface (amacrine
cells, ganglion cells, axons of the ganglion cells).
The respective field potentials with contributions
from depolarization of Müller cells produce neg-

Figure 6. STR traces scaled to the simultaneously recorded ONR of a similar amplitude. The responses were recorded from dark
adapted perfused cat eye at very low stimulus intensity and are displayed at the same polarity. The calibration bar refers to the
ONR. Recordings were obtained near threshold (white light from xenon source, attenuated by 8.0 log neutral density filters). Aver-
age of 32 sweeps, photocell trace below the signals.
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ative waveforms. Depolarization of saggitally
oriented dipoles are understood to cause the neg-
ative a-wave and the positive polarity of the
b-wave, generated primarily by photoreceptor

cells and by ON-bipolar cells, respectively, and
probably by their interaction with Müller cells.
The negative polarity and configuration of the
retinal responses to antidromic electrical stimulation

Figure 7. Traces from the ERG channel in perfused cat eyes revealing the light evoked STR as well as retinal negative potentials
elicited by antidromic electrical stimulation of the optic nerve. (a) STRs elicited by the light pulse indicated by upward deflection
of the trace at the bottom and electrically responses elicited at increasing delays as marked by the arrows. (b) Detailed display
reveals the summation of the light evoked with the electrically elicited retinal signals [11].
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of the optic nerve reported above supports this
view: the generation of an STR-like field poten-
tial results from the activation of ganglion cells
and probably from the depolarization of Müller
cells [11].

Extensive electroencephalographic studies re-
lated to the issue of propagation of outspread
excitatory signals of negative polarity to a dis-
tant recording site have been reviewed by Bir-
baumer et al. [53]: Excitatory postsynaptic
potentials in cortical layer I exhibit current
sinks that generate negative baseline shifts to
the scalp. These slow potentials (latencies of
>200 ms) occur under a number of clinical and
experimental conditions may serve as an ana-
logue for our understanding of the inner retinal
excitatory signals of negative polarity as re-
corded from vitreous and cornea.

Summary

ERG components of negative polarity in the
light-adapted and in the dark-adapted inner ret-
ina are reviewed from a clinical perspective and
include consideration of experimental research.
Field potentials are inherently complex including
summating contributions from specialized neu-
rons as well as from glial elements. This property
applies to the PERG, PhNR and to the STR.
Experimental research can contribute to identify-
ing the sites/cells of origins i.e. by determining
depth profiles and by pharmacological manipula-
tion. Intraretinal microelectrode-studies and
pharmacological dissection of light-evoked re-
sponses have elucidated the origin of field poten-
tials from the retinal pigment epithelium to the
retinal ganglion cells.

Thresholds for dark-adapted response compo-
nents have been compared. Attenuation of the
STR by anesthesia was found in cats in vivo
when compared to threshold intensities used in
isolated eye preparations in vitro, suggestive of
depression of inner retinal activity by anesthetics.
Evidence has been presented for antidromically
elicited retinal responses of negative polarity that
resemble the STR and summate with the light-
evoked retinal response. This observation sup-
ports the notion that negative field potentials
and components as recorded in the vitreous and

at the cornea receive contributions from retinal
ganglion cells. The weight of this contribution
appears to vary among species, at least concern-
ing the STR. The ocular negative reponses from
the inner retina are compared to cortical excit-
atory mechanisms generating negativity in the
baseline of the EEG.
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