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Changing permafrost conditions caused by present atmospheric warming are expected to

affect the stability of steep rock walls in high mountain areas. The possible increase in

periglacial slope instabilities and the especially long potential run-out distances in glacial

environments require more awareness about the kind of events as well as robust models to

foresee areas affected and distances reached. A geographic information system-based flow-

routing model is introduced for modelling rock-ice avalanches on a regional scale. The

model application to three major historical events in the European Alps shows the basic use

for simulating such events for first-order assessments. By designating the path of steepest

descent while allowing lateral spreading from the fall track up to 45-, general flow patterns

as well as changes in the direction of progression are well reproduced. The run-out distances

are determined using empirically based models and suit well the case studies presented.

Keywords: rock-ice avalanche, rock fall, permafrost, topography-based models, hydrological

flow routing, modified single-flow direction, GIS

1. Introduction

Rock fall represents a relevant hazard in high mountain areas that is expected to

increase due to permafrost degradation caused by present atmospheric warming [1,2].

Warming and thawing of perennially frozen rock walls can affect their stability [3].

Rock-fall events that occur in high alpine environments may involve large volumes of

material and move over long distances of several kilometres [4,5]. Combined rock-ice

avalanches usually evolve from major rock falls in glacial environments that entrain

large volumes of ice and snow. It is of great importance for hazard assessment to

model areas possibly affected by such events and to forecast maximum distances that

might be reached.

This paper presents a model to calculate the areas affected by, and the travel

distance of, major rock-ice avalanches in high mountain areas. The model is imple-
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mented within a geographic information system (GIS) and is concerned with the initial

broad-scale characterization of the areas potentially affected by an event from a given

starting point.

When modelling mass movement processes, such as rock and ice avalanches or

debris flows within a GIS environment, usually two procedures are distinguished [6,7].

The first identifies potential source areas for a specific hazardous process in a region of

interest, and the second simulates the run-out paths and distances. Corresponding

models for the first process were presented by various authors for different kinds of

hazard events [8Y10]. At present, however, no such model exists to determine the

disposition and initiation zones for rock-fall hazards from permafrost slopes as the

knowledge on the conditions under which such instabilities develop still remains very

limited [1,11]. The most important processes governing the stability of perennially

frozen rock walls as related to permafrost degradation are briefly outlined in the

following section. For the model presented, potential rock fall source areas must be

defined by the user.

In this study, a model for the second procedure is presented. It is further

subclassified into a trajectory model part and a confinement model part. The former

determines the fall track and the affected areas and involves flow-routing algorithms.

The latter calculates the travel distance and stops the simulated movement on its path.

It is based on data of around 30 historical events that occurred in glacial environments

around the world. The model is then applied to three events and evaluated for

modelling and first-order assessment of hazard potentials on a regional scale (corr-

esponding to a hazard-indication map in Switzerland, covering an area of about 5 �
101 to 1 � 104 km2). All of the three events Y Triolet 1717, Fletschhorn 1901 and

Brenva 1997 (figure 1 and table 1) Y had a run-out distance of several kilometres and

Figure 1. The rock-ice avalanche from the Brenva spur in 1997 in the Aosta Valley seen from near the

entrance of Mont Blanc tunnel. The falling rock mobilized large volumes of ice and snow forming a powder

avalanche that run up the opposite valley side. Photograph taken by M. Fonte on January 18, 1997.
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are among the larger events that have occurred in the permafrost altitudinal belt of the

European Alps over the past centuries [11]. All three caused major damage and are

well documented in the scientific literature [4,12Y16].

2. Rock fall from permafrost areas

Permafrost is a temperature phenomenon defined as lithosphere material that

remains at or below 0-C continuously for more than 1 year [17]. A substantial part of

the permafrost area can be characterized as alpine permafrost, which is located in high

mountain environments. Over the past century, permafrost in the European Alps is

likely to have warmed by 0.5Y0.8-C in the top layers [18]. Besides other factors

promoting rock fall [19], such as weathering [20], geotechnical properties of the

bedrock material and slope morphology, changing permafrost conditions caused by

present atmospheric warming influence the stability of steep rock faces in high

mountain areas. A higher frequency of rock falls could be one of the consequences

[1Y3].

The thermal response of permafrost to atmospheric warming [1,2,21] generally

takes place at different scales of time and depth, which correspond to frequency and

magnitude of a possibly resulting destabilization (figure 2). Following increases in

mean annual air temperature, with a delay of only months or years (direct response),

the active layer thickens, and thus, new volumes of rock will be subject to critical

temperature ranges or thaw. This fast and immediate response has been observed in

the hot summer of 2003 [22], where exceptional rock-fall activity took place in the

European Alps [3]. As a delayed response, the temperature profile within the per-

mafrost becomes disturbed, and the lower permafrost boundary at up to hundred

metres depth will rise (final response), both possibly causing large and deep-seated

instabilities delayed by decades or centuries. The three events described in this paper

may be related to such deep-reaching and long-term changes of the thermal conditions

of the subsurface.

The stability of ice-bonded discontinuities in perennially frozen rock walls is

strongly influenced by the thermal regime and may be reduced due to melting of ice-

filled rock joints and subsequent built up of water pressure [1]. Additionally, it has

been shown in a series of direct shear box tests that a rise in ground temperature may

Table 1

Key parameters of the rock-ice avalanches presented in the case studies.

No. Name, location Year

Elevation

(m asl)

Volume

(106 m3) �H (m) �L (m)

Angle of

reach (-) Reference

1 Triolet Glacier 1717 3600 16Y20 1860 7200 14.5 [12,13]

2 Fletschhorn 1901 3780 0.5 2300 6200 20.3 [15,44]

3 Brenva 1997 3725 6Y7 2150 5500 21.6 [4,16]
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lead to a reduction in the shear strength of ice-bonded discontinuities and an

associated reduction in the factor of safety of the slope, which could result in slope

failure even while there is still ice in the joints at temperatures just below 0-C [23].

Therefore, slope stability might be very sensitive to changes in the thermal

environment, especially where unfrozen water is present in partially ice-filled bedrock

fissures [23,24]. Instabilities are, hence, expected to concentrate in warm permafrost

areas. A study on the starting zones of rock-fall events that occurred in the European

Alps over the 20th century corroborates these findings [11]. Transfer to the natural

environment requires knowledge about the spatial and temporal distribution of rock

temperatures and their evolution. To provide a basis for assessing the impact of

climatic change on rock-wall stability, understanding and modelling of the processes

that determine rock temperatures are crucial [3,25,26]. Although permafrost thaw may

affect rock walls equally or even more rapidly than debris-covered slopes, and con-

sequences as regards natural hazards may be as or even more serious, the influence of

permafrost thaw on the stability of rock faces is still a very young field of research.

Mass movements such as rock-ice avalanches can have considerably longer

travel distances in glacial than in non-glacial environments due to possible interactions

with and transformations of ice, snow and water [5,27]. The mobility of rock falls in

glacial environments has been observed to increase by about 25% [4,5] compared to

non-glacial environments. The run-out distance is enhanced due to rock-ice in-

teractions involving (1) travel on low friction surfaces (i.e., ice and snow), (2) gen-

eration of increased pore pressures at the base of the debris by frictional heating, (3)

fluidization of the debris by melting of included or subjacent ice and snow and (4)

Figure 2. Time and depth scales involved in slope stabilities in high mountain areas.
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channelling or air launching of the debris by neoglacial moraines [5]. For example, in

the Fletschhorn event in 1901 [15] or the Dzhimarai-Khokh rock-ice avalanche in the

Kazbek massif in 2002 [28Y30], the length of the run-out zone was significantly

enlarged by such processes.

3. Model

3.1. Model input data

A confined area identifying the starting zone, represented in a grid mask, and a

gridded digital elevation model (DEM) are necessary as input data for the model.

Gridded DEMs were chosen because of their wide availability and use. For the case

study of Fletschhorn, a 25-m gridded DEM was applied (DHM25 Level 2, Swiss

Federal Office of Topography [31]); for the two other events, DEMs have been gen-

erated from contours and reference points digitized from maps. For use in the model,

the DEM was corrected for possible sinks (fill algorithm according to [32]) that would

cause inconsistencies in the calculation of flow directions.

3.2. Trajectory model part

A rock-ice avalanche is considered here as a mass moving downslope largely

controlled by gravitational force and following the given topography. The flow-routing

algorithm used was originally developed for debris flow-type mass movements from

glacierized areas [33]. Flow-routing algorithms transfer flow sequentially to lower

points or areas and determine the way in which the outflow for a given element or cell

will be distributed according to mathematical equations representing processes [34]. A

variety of flow-routing algorithms have been proposed, and theoretical advantages and

disadvantages for different applications have been discussed [34Y36]. Similar GIS

models that take into account flow volume have been developed for lahars (volcanic

debris flows) [37].

One of the earliest and simplest routing methods for specifying flow directions is

to assign flow from each cell to one of its eight neighbours, either adjacent or di-

agonal, in the direction of the steepest descent. This method, designated D-8 (eight

possible flow directions) [38], is still one of the most frequently used [32,39]. It is

further implemented in the GIS software Arc/Info (Environmental Systems Research

Institute) as a standard for hydrological flow modelling [32].

The basic concept is to simulate the path of the avalanche downslope from the

point of initiation. The central flow line of the avalanche is assumed to follow the

direction of the steepest descent as calculated by the single-flow direction algorithm.

However, rock-ice avalanches usually deviate from the direction of the steepest de-

scent by lateral spreading (diverging flow), which a single-flow direction path cannot

model. For this reason, we have incorporated the spreading function Fd into the model,
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enabling diversion of the flow from the steepest descent of up to 45- on both sides

(figure 3). The model is thus capable of simulating better the different characteristics

of avalanches in confined channel sections (largely limited spread due to converging

flow) and on relatively flat or convex terrain (greater spread due to more diverging

flow).

Once the areas potentially affected by the rock-ice avalanche are determined, the

function Pqual(i) describes a relative likelihood of the cells for being affected. Pqual(i)

is related to the flow resistance function Fr(i) and the horizontal distance H(i) from a

cell (i) to the avalanche starting zone. Fr(i) yields a cell value that increases down

valley from the location of avalanche initiation (increasing distance) and laterally in an

angle of 45- from the steepest descent flow path (increasing flow resistance). Hence,

the more the flow diverts from the steepest descent direction and the source area, the

greater the resistance is and the larger the value of Fr(i). The ratio between Fr(i) and

the horizontal distance H(i) from each cell (i) to the avalanche starting zone is

interpreted as a function describing the likelihood of each cell being affected by the

avalanche [33]:

Pqual ið Þ ¼ H ið Þ=Fr ið Þ ð1Þ

Pqual(i) can also be interpreted in a way of qualitative probability (e.g., colour-coded

graphics).

3.3. Confinement model part

The trajectory model part as described above continues with the determination of

the rock-fall path until a stop condition is fulfilled.

Figure 3. The flow-model approach exemplified on a hypothetical DEM subset with elevation values.

General flow is from upper right to lower left. Arrows indicate the direction of flow as calculated

according to the modified single-flow direction algorithm. Shaded cells show areas that are affected by an

avalanche according to the flow model.
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Heim [40] introduced the empirical concept of the angle of reach � (also called

overall slope or Fahrböschung) as a characteristic value for the run-out distance of

mass movements such as rock falls and landslides. This concept describes the slope of

the connecting line between the uppermost point of the scarp and the lowest point

of the deposition zone. It is important that this line follows the fall track. The angle of

reach is defined as the ratio of vertical (�H) to horizontal (�L) displacement:

tan � ¼�H=�L ð2Þ
Despite the simplification involved in the approach, the angle of reach is still
widely used [41Y43]. The application is straightforward and is especially useful for
first estimations of the run-out distance of mass movement processes [27,42].

Hazard maps are often related to the farthest reach of a potentially dangerous mass.

Hence, for worst-case estimates, a minimum angle of reach can be found empirically

and then applied to derive maximum travel distances [44]. The minimum angle of reach

known for rock avalanches in Alpine glacial environments is 14- found in the Triolet

event in 1717 [11]. Larger rock avalanches in the European Alps usually travelled

distances equivalent to a minimum angle of reach of about 20- (e.g., Fletschhorn,

Switzerland, 1901: 20.3-; Brenva, Italy, 1920: 28.8-; Felik, Italy, 1936: 22.6-; Jung-

frau, Switzerland, 1937: 19.9-; Becca de Leseney, Italy, 1952: 23.5-; Brenva, Italy,

1997: 21.6-) [11]. In areas outside Europe, smaller values have been observed [5].

It has been demonstrated that the angle of reach is dependent on the volume of

the moving mass [41, 45Y47]. Hence, if the volume involved is known or can be

estimated, the travel distance can be determined more accurately. Evans and Clague

[5] describe the statistical relation between volume and angle of reach for events

located in glacial environments as an inverse logarithmic correlation:

log tan�ð Þ ¼ 0:140� 0:106 log V ð3Þ

It has been found for cases in the Italian Aosta Valley that equation (3) is best suited

[48]. For application in this study, the statistical relation has been extended by several

events in the Alps travelling over glacier surfaces [11] and recalculated (figure 4). The

following best-fit logarithmic regression was obtained:

log tan�ð Þ ¼ 0:165� 0:103 log V ð4Þ

The regression coefficient r could be improved from j0.491 to j0.617 for the new

model. Although the scatter is rather high and the sample is still small, the r value is

similar to that in relations published previously [41]. Some of the events included in

the Evans and Clague formula (3) and with it in equation (4) show larger volumes and

comparably lower angle of reach than the events observed in the Alps (figure 4). This

is partly because some of these events involve processes such as fluidization and/or

transformation into debris or mudflow (e.g., Huascaràn, Peru, 1962 and 1970 [49]),

which have seldom been documented in the Alps.
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It must be emphasized that the model from equation (4) represents an empirical

mean rather than maximum possible run-out distance. For calculating the maximum

possible length of the run-out zone based on the documented events, the regression

line can be shifted through the event showing the longest run-out distance in relation

to volume (figure 4):

log tan�ð Þ ¼ �0:040� 0:103 log V ð5Þ

4. Model application and results

Case study 1: Triolet 1717

On the night of September 12, 1717, a large mass of ice-clad granite rock fell

from warm permafrost (0 to j5-C) [11] in the crest of the Mont Blanc massif at

around 3600 m asl (Aiguille de l’Eboulement) onto Triolet Glacier in the upper Aosta

Valley, Northwest Italy, and moved rapidly into Ferret Valley where it buried two

small settlements, killing two inhabitants and their cattle [12,13] (figure 5). The

shattered rock mass descended 1860 m along a horizontal distance of around 5000 m

over the glacier and continued another 2000 m on the valley floor. With a total

Figure 4. Angle of reach (tan �) vs. volume for rock-fall events in glacial environments. Events located in

the Alps [11] are represented by black points; events outside Europe [4] are represented by grey points.

The dashed line corresponds to a shift of the new model to the outermost point and represents an

empirically deduced worst-case scenario. Numbers refer to those in table 1. The cross marks the position

of the Dzhimarai-Khokh event in the Russian Caucasus. This event is not included in the model.
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horizontal travel distance of 7200 m and its angle of reach of 14.5-, this is the largest

run-out distance of a historically documented rock avalanche in the European Alps

[11]. The accumulation volume has been estimated to 16 to 20 � 106 m3 and, for a

long time, was considered to be a glacial deposit [13].
The affected areas modelled correspond to the outlines of the 1717 event

(figure 6). The general path and the strong deflection to the right in the middle of the

run-out zone as well as the flow diversion are reproduced well. The left lateral areas

not modelled in the strong bend are caused by upward flow due to the superelevation

of the avalanche in this part. Only at the end of the run-out zone the modelled

avalanche width becomes too narrow due to the DEM used. According to equation (4)

and based on a volume of 20 � 106 m3, the simulated movement was stopped at an

angle of reach of 14.5-. Implementing equation (5) for worst-case scenarios would

overestimate the travel distance of the 1717 event by more than 2 km.

Case study 2: Fletschhorn 1901

The rock-ice avalanche with the longest known run-out distance in the Swiss

Alps occurred on March 19, 1901 in the Valais Alps [15,44]. A 3 � 105 m3 rock

mass detached from cold permafrost (j5 to j10-C) [11] in the north-east flank of

the Fletschhorn at 3780 m asl, carried away 5 � 105 m3 of the overlying glacier

and descended onto Rossboden Glacier. On its way, it was channelled by the

glacier’s lateral moraines, incorporated about 3 to 5 � 106 m3 of snow and produced

Figure 5. Oblique perspective view of the run-out area of the Triolet event with parts of the Triolet

Glacier in the upper right. The arrow points at the starting area of the 1717 rock avalanche. Photograph

taken by Ch. Huggel on July 10, 2004.
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an air blast in the Simplon Valley that destroyed forests and pasture and killed two

herdsmen and their cattle. Eventually, the avalanche stopped some 100 m before it

reached the village of Simplon. About halfway down, one lobe overflowed the left

lateral moraine and produced a major jump through the air. The total horizontal

run-out was approximately 6200 m with a total drop height of 2300 m; the angle of

reach was 20.3-.
The fall track as well as the lateral spreading modelled coincides well with

the areas affected by the 1901 rock-ice avalanche (figure 7). The reproduced av-

alanche correctly deflects to the right when entering the main valley and represents

well the spreading of the debris mass. However, the overflow over the left lateral

moraine in 1901 cannot be reproduced using this approach, as the model does not

simulate run-up. The run-out distance is overestimated by a maximum of 1 km using

an angle of reach of 16.5- according to equation (4) and a volume of 4 � 106 m3.

Equation (5) models a travel distance that is far too long compared to the historical

event.

Figure 6. Affected areas modelled for the Triolet event. In red are the outlines of the rock-ice avalanche in

1717. Map * swisstopo (BA056938).

170 J. Noetzli et al. / GIS-based modelling of rock-ice avalanches from Alpine permafrost areas



Figure 7. Affected areas modelled for the Fletschhorn event. In red are the outlines of the rock-ice

avalanche in 1901. Map and DHM25 * 2005 swisstopo (BA056938).

Figure 8. Right lateral moraine of the Brenva Glacier with the breach caused by the rock avalanche in

1997. Photograph taken by Ch. Huggel on July 11, 2004.
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Case study 3: Brenva 1997

A recent major event in the Alps occurred on January 18, 1997 in the upper

Aosta Valley, when a large mass of granite rock (2 to 3 � 106 m3) detached from

warm permafrost (0 to j5-C) [11] in the Mont Blanc east flank at 3725 m asl and

slid downward onto Brenva Glacier (figure 1). The mass movement mobilized a

large volume of ice and snow forming a powder avalanche of a total volume of 6 to

7 � 106 m3 [4,16]. The horizontal and vertical displacements were 5500 and 2150 m,

respectively, and the angle of reach was 21.6-. One lobe of the rock-ice avalanche

overflowed the right lateral moraine (figure 8). The other part was channelled by the

right lateral moraine and reached the glacier front. On the opposite valley side, trees

were thrown down by the air blast, and two skiers were killed.

This was the second time during the 20th century that the Brenva Glacier

experienced the impact of a large rock-ice avalanche. On the afternoon of November

14, 1920, a similar rock fall detached from the east face of the Mont Blanc at Grand

Pillier d’Angle, close to the 1997 scar, descended down the Brenva Glacier on a

similar track for about 5000 m and run up the opposite valley side [5].

The affected areas modelled qualitatively correspond well to the Brenva event of

1997. The wide lateral spreading in the middle stems from the convex morphology of

Figure 9. Affected areas modelled for the Brenva 1997 event. In red are the outlines of the rock-ice

avalanche in 1997; in dark grey are the outlines of the 1920 event. Map * swisstopo (BA056938).

172 J. Noetzli et al. / GIS-based modelling of rock-ice avalanches from Alpine permafrost areas



the glacier. However, the related probabilities show that the margins of the area

covered by the model in this section are less likely to be affected by a rock avalanche

(figure 9). Furthermore, the modelled spread is in close agreement with the flow of the

earlier event in 1920, which did not become channelled but spread over the entire

Brenva Glacier instead. The run-out length has been overestimated by around 2.5 km

using an angle of reach of 16.5- according to equation (4) and based on a total volume

of 6.5 � 106 m3. As what happened in the other two cases, the worst-case scenario

related to equation (5) reproduces a travel distance several kilometres longer than the

one observed.

5. Discussion

In contrast to simple single-flow direction models, the lateral spread of the rock-

ice avalanches can be reproduced well with the model presented. However, as can be

shown in the Fletschhorn study, overflow of moraines or opposite wall obstruction

(e.g., the Val Pola event in 1987 [50]) is not simulated. This is due to the restriction of

the model to downward motion that is controlled by gravitational force and follows the

topography of the DEM. This fact has to be kept in mind when interpreting model

results. Nevertheless, the degree of this obvious simplification, which ignores the full

range of energy exchange relevant for avalanche motion (involving friction,

momentum, etc.), is regarded feasible for first-order regional modelling and assess-

ment. The good overall correspondence between the observed paths and the results

of a topography-based flow model follows from the fact that the flow behaviour of

large rock-ice avalanches is largely controlled by topography.

The volume is a second important parameter influencing the extent of areas

affected. The trajectory model part presented assumes a maximum volume for defining

the areas affected by the avalanche, whereas the confinement model part is based on

the observed volumes of the case studies.

If the model overestimates the spread of the moving mass, the related likelihood

may help define the most likely avalanche path. This function can put exaggerated

spread of the falling mass, which is often the case for events involving less than the

maximum volume, into perspective.

Dealing with the complete modelling procedure within a GIS environment

facilitates model handling and application. The implementation of the D-8 algorithm

in a frequently used software system is one of the reasons why we chose this method,

since it greatly eases the application and reproduction of the model. The increase in

computational effort for a method capable of modelling more possible flow directions,

e.g., the D-16 method [7], does not outweigh the benefit gained by the less restricted

path calculation. Applying a finer gridded DEM can compensate for the effects gained

from flow direction methods using more than eight possible directions (scale effects).

The use of a 25-m gridded DEM based on digitizing of map contours and reference

points is qualified for modelling of major rock-ice avalanches on a regional scale. The
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main morphological structures influencing the avalanche flow behaviour (e.g.,

moraines, channels, convex/concave terrain morphology) are represented in such

DEMs. However, smaller rock-fall events might react more sensitively to smaller

morphological structures than major rock avalanches. Hence, for use of this model

with smaller events, a 25-m DEM of enhanced quality (e.g., DHM25 Level 2 [31]) is

required. Such high-quality DEMs have been found feasible for use in first-order

assessments for debris flow with the modified single-flow directions approach [33].

For the application of more sophisticated models of flow behaviour, even such DEMs

have limitations in providing the necessary details on flow and surface characteristics

in the run-out zone. For these models, a 10- or 5-m DEM may be used.

The slight overestimation of the travel distance in two case studies applying

regression equation (4) can be looked at as precautionary and useful for land-use

planning purposes. The considerable overestimation of the modelled run-out length of

the Brenva event may be explained by the energy loss of the moving mass due to the

run-up on the opposite valley side. On the other hand, this means that events such as

the Brenva event, although large, cannot be considered maximum or extreme events,

as the models applied suggest. Scenarios simulated with the shifted regression model

may be considered only for extreme events with particularly adverse conditions (e.g.,

flow transformation to mud/debris flow as in the 1987 event in Estero Parraguirre,

Chile [51]). In fact, in areas outside the European Alps, rock-ice avalanches have

reached remarkably higher travel distances. That some of these were included in

regression equation (4) may explain the slight overestimation of the modelled run-out

lengths. The rock-ice avalanche at Dzhimarai-Khokh in the Caucasus mentioned

above travelled around 18 km to the entrance of the Genaldon gorge with a respective

vertical displacement of 3 km [28,52] corresponding to an angle of reach of 9.5-.
When considering the total volume of 100 � 106 m3 (rock and glacier), an angle of

reach of 7.6- is obtained by equation (5). Part of the total avalanche mass then

continued as a mudflow for another 15 km down valley. The dimension of the

proportion of volume and angle of reach of this event, hence, corresponds to the most

far-reaching events of the past (figure 4). Prevalently, it is very difficult, if not

impossible, to obtain a valuable estimate of the mass volume involved in a rock

avalanche in advance, particularly in wintertime when large amounts of snow may be

entrained on the path. In addition, the model according to equation (4) is dependent on

the volume estimate. Therefore, for very first estimates, it may be feasible to apply an

empirically found minimum angle of reach. A combination with equations (4) and (5)

can be considered if a reasonable volume estimate is at hand.

The confinement model now includes data on the angle of reach of 28 rock-fall

events that occurred in glacial environment. By including more events, equations (4)

and (5) could be further refined. Additionally, testing the model on other events than

the three case studies is necessary to contribute to the confidence in the model.

In any case, a first assessment on a regional scale only forms the starting point for

more detailed investigations. Following a preliminary analysis as described above, it
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may be necessary to adopt a more detailed analysis at particularly sensitive locations

using more sophisticated models. This may provide more information on the rock

volume, snow or ice material involved or areas and structures potentially affected.

6. Conclusions

The modified single-flow direction algorithm proves robust and straightforward

in propagating the flow of rock-ice avalanches downward. The reasonable simulations

of the affected areas and run-out distances achieved in three case studies reveal the

suitability of this flow/friction model for simulating rock-ice avalanches on a regional

scale for initial broad-scale characterization. General flow patterns as well as changes

in the direction of progression are reproduced in a realistic way and show that a

topography-based flow-routing model simulates major rock-ice avalanches. A complete

modelling procedure within a GIS environment facilitates model handling and

application. The main restriction of the model, however, is the limitation of the

avalanche motion to downward flow only. Thus, upward motion related to obstacles

such as opposite wall obstruction cannot be simulated.

The empirical regression (4) for calculating run-out distances based on the

statistical relation of avalanche volume and angle of reach suits the case studies

presented. The worst-case scenario to cover all historically known cases based on the

shifted regression between volume and angle of reach [equation (5)] may often

overestimate real maximum run-out distances in the European Alps, but is likely a

good means to obtain conservative estimates of potential maximum run-out distances.

Nevertheless, in most cases, information on the volume involved is missing, and the

regression model is sensitive to changes in volume. Therefore, the most robust and

simple stop condition provides an empirical minimum of the angle of reach.
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