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der Morgenstelle 8, D-72076, Tübingen, Germany; 3Department of Chemistry and Applied Biosciences, Swiss
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Abstract

Tin dioxide nanoparticles of different sizes and platinum doping contents were synthesized in one step using
the flame spray pyrolysis (FSP) technique. The particles were used to fabricate semiconducting gas sensors
for low level CO detection, i.e. with a CO gas concentration as low as 5 ppm in the absence and presence of
water. Post treatment of the SnO2 nanoparticles was not needed enabling the investigation of the metal
oxide particle size effect. Gas sensors based on tin dioxide with a primary particle size of 10 nm showed
signals one order of magnitude higher than the ones corresponding to the primary particle size of 330 nm.
In situ platinum functionalization of the SnO2 during FSP synthesis resulted in higher sensor responses for
the 0.2 wt% Pt-content than for the 2.0 wt% Pt. The effect is mainly attributed to catalytic consumption of
CO and to the associated reduced sensor response. Pure and functionalized tin dioxide nanoparticles have
been characterized by Brunauer, Emmett and Teller (BET) surface area determination, X-ray diffraction
(XRD), high resolution transmission electron microscopy (HRTEM) and scanning transmission electron
microscopy (STEM) while the platinum oxidation state and dispersion have been investigated by X-ray
photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS). The sensors
showed high stability (up to 20 days) and are suitable for low level CO detection: <10 ppm according to
European and 50 ppm according to US legislation, respectively.

Introduction

Gas sensors based on semiconducting metal oxides
are one of the most investigated group of gas sen-
sors (Pearce et al., 2004). For them, the conduc-
tance G or electrical resistance R is monitored as a
function of the concentration of target gases and
subjected to further data treatment and processing.

SnO2-based sensors are the best-understood
prototype of oxide-based gas sensors and, in par-
ticular, have been used widely in gas sensing under
atmospheric conditions (Barsan et al., 1999; Bar-
san & Weimar 2003; Eranna et al., 2004).
One of today’s challenges in carbon monoxide

(CO)monitoring is the low concentration range (i.e.
below 50 ppm) because of the fact that it is a toxic
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gas accompanying nearly all combustion processes.
The US Occupational Safety and Health Adminis-
tration (OSHA) has set a general industry Permis-
sible Exposure Level (PEL) for CO of 50 ppm
averaged over an 8 h work shift (http://www.osh-
a.com). The American Conference of Governmen-
tal Industrial Hygienists (ACGIH), a private
professional organization, has adopted a threshold
limit value (TLV) of 25 ppm. In Europe, the limit
value of CO (maximum daily 8 h mean) for the
protection of human health to be met in 2005 is set
at 10 mg/m3 (�8.75 ppm) (EN, 2000). At present,
for example, in Germany, there are two kinds of
occupational exposure limits (OELs) for air in the
workplace: Technische Richtkonzentrationen
(TRKs), which are technical guidance concentra-
tions, andMaximale Arbeitsplatz Konzentrationen
(MAKs), which give the maximum concentration
of a chemical substance in the workplace (the
MAK-values are daily 8 h time-weighed average
values and apply to healthy adults). InGermany the
MAK value for CO is set at 30 ppm.
For CO detection on metal-oxide (i.e. SnO2)

based gas sensors, it is well known and generally
accepted that the CO reacts with the adsorbed
oxygen ions (like O�2 or O)) getting oxidized to
CO2 and the released electrons (sensing step) can
therefore return to the conduction band (CB)
according to the scheme:

COðgasÞ þO�ðsÞ ! CO2 ðgasÞ þ e (CB)

Water has a similar reaction path way with the
absorbed oxygen radical and therefore the effect of
CO is often shielded by water (Sahm et al., 2005). To
enhance the sensing properties, SnO2 is often func-
tionalizedwith different noblemetals (i.e. usually Pd,
Pt, Au). In general, this decreases the response and
recovery times, and increases the sensitivity, selec-
tivity, reproducibility and stability of the sensors
(Yamazoe, 1991; Sweizer-Berberich et al., 1996).
However, in each particular case – depending on the
amount, chemical state, aggregation and localization
of the atoms – the noble metal can influence the
sensingproperties in completely differentmanner; no
generalization can be made even for the same base
material (i.e. SnO2) (Matsushima et al., 1988; Yam-
azoe, 1991; Gaidi et al., 1998; Kappler et al., 1998;
Matko et al., 1999, 2002; Cabot et al., 2000, 2001,
2002; Dieguez et al., 2000). Usually, surface func-
tionalization leads to an improvement of the sensing

properties, while the doping with higher
concentrations results in materials with poorer
sensing properties (Grandjean et al., 2004). More-
over, the situation will be different if the noble metal
forms isolated metallic nanoparticles of a few na-
nometers (‘‘metallic clusters’’) or is getting oxidized
and diffusing into the lattice of base material (SnO2)
forming solid-solutions (this is especially favorable
for platinum because PtO2 has the crystalline struc-
ture of rutile – the same as cassiterite structure of
SnO2).
The production of homogenous SnO2 nanopar-

ticles by flame spray pyrolysis (FSP) for gas sens-
ing has been demonstrated successfully for sensing
of NO2 and propanal (Sahm et al., 2004). In gen-
eral, FSP has the ability to control particle size,
produce highly single crystalline nanoparticles
(Mädler et al., 2002a), and functionalize metal
oxides within on step, often called in situ, with
noble metals (Mädler et al., 2003; Strobel et al.,
2003). Therefore, FSP is well suited to address the
effects of tin dioxide nanoparticle properties such
as size, crystallinity and platinum functionaliza-
tion with regard to gas sensing performance and in
particular CO detection. The resulting high exter-
nal surface area, high noble metal dispersion and
the absence of a powder post-calcinations step are
further advantages of the FSP with regard to
sensor manufacture.

Experimental

Nanoparticle synthesis

An aerosol reactor was used to produce SnO2 and
Pt/SnO2 nanoparticles by FSP (Mädler et al.,
2002b). The liquid precursor was prepared by
diluting tin(II) 2-ethylhexanoic acid (Sigma-
Aldrich, purity >98%) in toluene (Fluka, purity
>99.5%) to obtain a 0.5 M precursor solution.
For Pt/SnO2 synthesis, appropriate amounts of
platinum acetylacetonate (Pt(acac)2, Strem, purity
>98%) were added to the solution to obtain a
platinum loading of 0.0, 0.2 and 2.0 wt%,
respectively. The liquid precursor was fed by a
syringe pump (Inotech R232) with a constant feed
rate of 5 and 8 ml/min through a capillary of an
outside-mixing two-phase nozzle. The liquid was
dispersed into fine droplets with 3 and 5 l/min
oxygen (Pan Gas, 99.95%) maintaining a pressure
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drop of 1.5 bar at the nozzle exit. All gas flow rates
were controlled by calibrated mass flow controllers
(Bronkhorst). In particular, the flame spray was
operated at two different sets of flow rates: 5 ml/
min liquid precursor feed rate with 5 l/min oxygen
dispersion gas (defined as 5/5) and 8 ml/min liquid
precursor feed rate with 3 l/min oxygen dispersion
gas (defined as 8/3). The liquid spray was ignited
by a premixed methane/oxygen (1.5 l/min/3.2 l/
min, respectively) flame ring surrounding the
nozzle exit (Mädler et al., 2002b). A sintered metal
plate ring (8 mm wide, at inner radius of 9 mm
from the center of nozzle) issued additional 5 l/min
of oxygen as a shield gas. The powder was col-
lected with the aid of a vacuum pump on a glass
fiber filter (GF/D Whatman, 257 mm in diameter).
During the experiment, the filter was placed in a
water-cooled holder, 400 mm above the nozzle,
keeping the off-gas temperature below 200�C.

Powder characterization

X-ray diffraction patterns were recorded with
Bruker AXS D8 Advance (40 kV, 40 mA) and
used to obtain the crystallite size (dXRD) based on
the fundamental parameter approach and the
Rietveld method (Cheary & Coelho, 1998) with the
structural parameters of cassiterite (ICSD Coll.
Code: 084576; Bolzan et al., 1997). A linear
background was used when matching the XRD
patterns while microstrain was not considered. The
BET powder specific surface area (SSA), was
measured by nitrogen adsorption at 77 K (Mi-
cromeritics Gemini 2375) after degassing the
sample, at least, for 1 h at 150�C in nitrogen.
Assuming monodisperse spherical primary parti-
cles within an aggregate, the equivalent average
primary particle diameter dBET was calculated by
dBET=6/(SSA qp), where qp is the density of SnO2

(6.85 g/cm3). Transmission electron microscopy
analysis was carried out with a Phillips CM30ST
microscope (LaB6 cathode, 300 kV). Scanning
transmission electron microscopy (STEM) images
were obtained with a high-angle annular dark-field
(HAADF) detector (Z contrast).
X-ray photoelectron spectroscopy (XPS) mea-

surements were performed on a Leybold Heraeus
LHS11 MCD instrument using MgKa (1253.6 eV)
radiation (Grunwaldt et al., 1997). The analyzer
was operated at 150 eV pass energy. The sample
was fixed on a sample holder on top of a graphite

foil and transferred to a load lock chamber where it
was evacuated at room temperature for 2 h down
to 10)6 mbar. Finally, it was transferred to the
analysis chamber at a typical pressure of
10)9 mbar. For quantification of the composition
the following peaks were used: O1s, C1s, Pt4f (both
Pt4f5/2 and Pt4f7/2), and Sn3d5/2. The Shirley-type
background subtraction and quantification of the
surface concentration were performed using the
SPECSLAB software package (SPECSLAB, Pro-
gram software for XPS, ISS, and UPS, Specs.,
Berlin, Germany). Sensitivity factors used for cal-
culation of the surface composition were taken
from the SPECSLAB program (SPECSLAB, Pro-
gram software for XPS, ISS, and UPS, Specs.,
Berlin, Germany). The spectra were not corrected
for the shift since only for the SnO2 sample partial
charging was observed. The 2.0 wt% Pt/SnO2

sample was not charged at all, while the 0.2 wt%
Pt/SnO2 sample showed a small fraction (ca. 5%)
that was charged. Note that the Pt to Sn surface
ratio was determined by acquiring separate spectra
over about 24 h in case of 0.2 wt% Pt/SnO2 to
obtain a sufficient signal-to-noise ratio.
In order to gain further insight into the structure

of the Pt dopants, additionally, EXAFS spectra at
the Pt L3-edge were taken of as-prepared powder
0.2 wt% Pt/SnO2 and 2.0 wt% Pt/SnO2 samples.
Note that the low loading of Pt on a strongly X-
ray absorbing support requires detection in the
fluorescence mode (Iwasawa, 1996; Kappen et al.,
2002). This was achieved with a 5-element solid
state detector (Canberra) at ANKA-XAS in Kar-
lsruhe (Forschungszentrum Karlsruhe, Germany).
The as-prepared samples were monitored after
pressing them to self supporting discs/pellets. Data
were collected between 11.45 and 12.3 keV in the
step-scanning mode using a Si(111) double crystal
for monochromatization of the X-rays (typically
detuned to 60% of the intensity to remove higher
harmonics). The raw data were energy-calibrated
with the Pt metal foil (Pt L3-edge), background
corrected, and normalized using the WINXAS 3.1
program package (Ressler, 1998). Fourier trans-
formation was applied in the range 2.5–12 Å)1.

Sensor characterization

DC electrical measurements (sensor tests) have been
performed to monitor the response to CO in syn-
thetic air with 0% (dry), 10% and 50% relative
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humidity (r.h.) at 20�C. The sensing layers were
fabricated by classical thick film deposition tech-
nology (i.e. screen printing or drop-coating, see
Sahm et al., submitted) of a suspension of the FSP-
made nanoparticles on the alumina substrates with
interdigitated Pt electrodes on the front side and a
heater on the back side (Barsan & Weimar, 2003).
For the comparison tests, commercially available
SnO2 powder (Sigma-Aldrich, mesh 325,
d�330 nm) was also used. After the deposition of
the sensing layer, the as-obtained sensors were fired
in air in a moving belt oven (CentrothermCentronic
DO 1600-60-D5) with four individually operated
heating zones. The velocity of the moving belt was
adjusted to allow the sensors to stay in themaximum
temperature zone (actually, at 500�C) for 10 min.
The conventional sensor tests were performed

with a set of four sensors placed in a teflon-made
test chamber and operated in the same conditions.
The operating temperature of the sensors was
adjusted between 200 and 400�C for individual
sensor tests. A computer driven gas-mixing system
provided the analyte gas for sensing evaluation
(Kappler, 2001). CO catalytic conversion mea-
surements have been performed for 0.2 and
2.0 wt% Pt doped sensors by the use of eight
identical sensors, respectively. These sensors have
been placed into two test-chambers that were
connected in series. The first one contained a single
sensor, whereas in the second one seven sensors
were arranged along the gas flow with always two
sensors opposing each other. For stability tests, a
set of four sensors (two sensors with 0 wt% Pt and
two with 0.2 wt% Pt) has been exposed to a test
cycle of three different CO concentrations (10, 240
and 50 ppm) repeating every second day for a
period of 20 days. The sensing properties were
assessed through sensor signal S, reported as the
resistance ratio Rair/Rgas, where Rgas and Rair

denote the sensors’ resistances in the presence and
absence of CO, respectively (please note that the
sensor signal has units of ohm/ohm).

Results and discussion

Effect of nanoparticle size on sensing properties

Characterization of tin dioxide nanoparticles
Pure SnO2 nanoparticles were produced at two
conditions: flame 5/5 or 8/3. These conditions

correspond to relatively low temperatures and
dilute aerosols or high temperatures and dense
aerosols, respectively (Mädler & Pratsinis, 2002).
In general, increasing the ratio of the precursor
liquid to dispersion gas flow rate increased the
average primary particle size as determined by
BET from about 9.9 (88.1 m2/g) to 19.4 nm
(45.2 m2/g). Figure 1 shows the corresponding
X-ray diffraction patterns of these powders which
were present in the cassiterite phase of tin dioxide.
Applying fundamental parameter and Rietveld
analysis on SnO2 (Sahm et al., 2004) resulted in
average crystallite sizes of 10.7 and 19.8 nm for the
particles made with flames 5/5 and 8/3, respec-
tively. The excellent agreement between the corre-
sponding BET and XRD average size of the
powders indicates the presence of monocrystalline
particles. The high crystallinity and the presence of
single crystalline primary particles was confirmed
by the high resolution transmission electron anal-
ysis and the corresponding electron diffraction
pattern of a powder produced with the 5/5 con-
figuration (figure 2). Furthermore, the average size
of the individual primary particles in the HRTEM
image is in good qualitative agreement with the
reported dBET and dXRD. The precise control of

Figure 1. X-ray diffraction patterns of pure SnO2 powders
made at different flame conditions. Increasing the precursor
to oxygen feed ratio increases the tin dioxide grain size and
therefore narrows the peak width. Excellent agreement be-
tween XRD and BET analysis indicates the presence of
monocrystalline SnO2 particles. Numbers in brackets
identify lattice planes.
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particle size and the high crystallinity of the FSP
products have been demonstrated previously for
various single oxide powders such as silica, ceria,
bismuth oxide and zinc oxide (Mädler et al., 2002a,
b; Mädler & Pratsinis, 2002; Tani et al., 2002).

Characterization of sensors made from pure
tin dioxide
For benchmarking reason, sensors based on sens-
ing materials obtained by FSP were compared to
sensors based on commercially available tin diox-
ide (Figure 3). For the case of a commercial
powder from Sigma-Aldrich, with an average
diameter of 330 nm, one records two orders of
magnitude lower total resistance; this might be an
advantage in practical applications because of the
possibility of using simple read out electronics.
However, the sensor signal (at 500 ppm; this high
CO concentration was chosen due to the low
sensitivity of sensors based on commercial SnO2

powder) is drastically increased for the FSP
materials with primary particle size 10 nm (where
it reaches a maximum). The reasons for the
increase, corresponding to the lowest grain size
value, could be: the higher specific surface area
within the sensing layer, the larger influence of the
surface phenomena (the relative increase of
depletion layer in comparison with the particle size
itself), a different surface microstructure that
induces a different reactivity, a different concen-
tration of bulk defects that results in a different
availability of free charge carriers, etc.
A detailed study of the grain size effects on

sensors with reasonable good sensor response is

limited at the moment; the fabrication of particles
smaller than 10 nm is possible by FSP but their
processing into sensing layers by conventional film
deposition techniques (here screen printing) is very
difficult. In general, the effect of grain size on
sensing performance is still under debate since the
work and models of Xu et al. (1991) and Roths-
child and Komem (2004). It is difficult to compare
results and estimate the influence of the particle
size on gas sensing properties because other
parameters which influence the electrical properties

Figure 2. High resolution TEM and the electron diffraction pattern of particles produced in the flame 5/5. The tin dioxide
powder shows high crystallinity and individual particles are mostly monocrystalline.

Figure 3. Resistance (left axis, open symbols) and sensor
signal (right axis, filled squares) for pure SnO2 sensors of
different particle sizes. With increasing particle diameter the
resistance in air (s), in 500 ppm CO (h) and in 1000 ppm
CO (n) decreases. Also the sensor signal for 500 ppm CO
(n) decreases with increasing particle size. The measure-
ments have been performed on drop-coated sensors at
350�C (flame 8/3 and commercial powders) and screen-
printed sensors at 400�C (flame 5/5 powder) in dry air.
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of SnO2 gas sensor were not reported in most of
the previous experiments. The change in grain size
was for example accompanied by variations in
other microstructural features; therefore the con-
clusion about size dependence of gas sensitivity
could be misleading.
As the highest sensor signals came from the

smallest tin dioxide grain size (flame 5/5) these
particles were investigated in detail. Figure 4 pre-
sents the sensor response when tested at very low
CO concentrations in the range from 5 to 50 ppm
at different operating temperatures. In general, the
sensor shows high signal values and its perfor-
mance is best at an operating temperature of
300�C.

Effect of SnO2 nanoparticle functionalization
with Pt

Characterization of platinum doping
Platinum doping of tin dioxide is performed in situ
with the FSP process by dissolving the corre-
sponding components in the liquid precursor/fuel.
The first in situ functionalization of metal oxides
with platinum in a flame process was demon-
strated by Johannessen and Koutsopoulos (2002)
while the highly efficient platinum doping by the
FSP process was outlined for a Pt/Al2O3 catalyst
by Strobel et al. (2003). In their study it was
additionally demonstrated that platinum is present
as highly dispersed clusters and the nominal mass
loading is preserved in the final product.

Figure 5 shows a scanning transmission electron
microscopy (STEM) image in Z-contrast of tin
dioxide with a 2.0 wt% platinum doping made
with at the flame 5/5. The inherent Z-contrast
difference between tin and platinum is not very
high, resulting in a rather blurred image. However,
the picture reveals clearly the absence of particle
inhomogeneities and proofs the presence of the
platinum by the corresponding EDX analysis of

Figure 4. Temperature dependence of the sensor signal of
pure SnO2 sensors for different CO concentrations in dry
air. A power law dependence has been observed for all
examined temperatures.

Figure 5. Left: Scanning transmission electron microscopy (STEM) image in Z-contrast of tin dioxide with a 2.0 wt% plat-
inum doping (flame 5/5) indicating the absence of particle inhomogeneities. Right: Corresponding EDX analysis. The presence
of the copper and carbon signals in the EDX spectrum resulted from the carbon coated copper TEM grid used.
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that section (Figure 4). The presence of the copper
and carbon signals in the EDX spectrum resulted
from the carbon coated copper TEM grid used.
Figure 6 shows the tin dioxide XRD patterns

for different platinum loadings of 0.0, 0.2 and
2.0 wt% (flame 5/5). The highly crystalline cassit-
erite structure and the tin dioxide crystallite size
were not influenced by the addition of platinum
resulting in an unchanged BET surface area. The
employed small platinum loadings at these FSP
conditions could not be detected by XRD indi-
cating the absence of large (10 nm and larger)
crystalline platinum particles. Detailed informa-
tion about the platinum can only be obtained from
surface sensitive or element-specific analysis
methods. The XPS analysis resulted in a theoreti-
cal Pt/Sn ratio of 0.016:1 in 2.0 wt% Pt/SnO2

which is somewhat lower than the observed
0.006:1 ratio but may be explained with incorpo-
ration of Pt into the SnO2-lattice (Table 1). Note
also that the relative surface composition is more
straightforward to interpret than the absolute
surface composition. The relative Pt/Sn ratio evi-
dences that the 0.2 wt% Pt/SnO2 sample is better
dispersed (Table 1). Interestingly, both platinum
doped samples show hardly any charging in XPS,
while the SnO2 sample does (Table 1).

The binding energies observed for tin dioxide
are typical for those reported for SnIV (Muilen-
berg, 1979). The analysis of the Pt 4f peaks shows
only one dominant species which is significantly
higher in binding energy than that reported for
Pt0. It has been reported that Pt foil has Pt 4f7/2
and Pt 4f5/2 peaks at 70.7–70.9 and 74.0–
74.15 eV, respectively (Kim et al., 1971; Muilen-
berg, 1979; Yang et al., 1997). The Pt 4f5/2 peaks
of Pt2+ and Pt4+ species are located around 72.5
and 73.5–74.0 eV, respectively (Kappler et al.,
1998; Muilenberg, 1979). The Pt 4f peaks
observed in the two Pt-doped SnO2 samples are
closely related to Pt2+-species. However, the
slight shift to lower binding energies may indicate
some reduced species or loss of oxygen. No PtO2

species as in Dieguez et al. (2000) were detected.
Only one dominant species was found and a
partially reduced Pt-species may be correlated to
the semiconducting properties of SnO2 (note also
that charging was observed). Furthermore,
pumping in ultrahigh vacuum may result in a
partial reduction of the platinum, leading to
smaller shifts than expected for Pt2+. Therefore,
EXAFS spectra were recorded under ambient
conditions without evacuation (see results further
below).
At normal conditions under air, Pt is in oxidized

state as revealed both by fl-XANES (X-ray
Absorption Near Edge Structure in the fluores-
cence mode) and by fl-EXAFS (Figure 7) for the
sensors made from FSP nanoparticles. The strong
whiteline in XANES indicates that the Pt-species
are well oxidized in the SnO2 lattice (Gaidi et al.,
1998, 2000; Bazin et al., 1999; Kappen et al.,
2002). Hence, these results show that already
under vacuum or during X-ray irradiation in the
XPS chamber loss of oxygen occurs leading to
slightly shifted Pt 4f-peaks in XPS. Also the
Fourier-transformed EXAFS data (Figure 7b)
show that platinum is in oxidized state in ambient
air. Further, both XANES and EXAFS indicate a
high dispersion of the Pt inside the support since
Pt is strongly oxidized (Figure 7a) and hardly any
Pt backscatters are found in the fl-EXAFS data of
as-prepared Pt/SnO2 powders (Figure 7b). These
results are similar to recent data by in situ EXAFS
on 3.0–12.0 wt% Pt-doped SnO2 prepared by
submicronic aerosol pyrolysis (Gaidi et al., 1998,
2000). However, no Pt-aggregates are found in our
as-prepared samples.

Figure 6. Tin oxide crystal structure for platinum loadings
of 0.0, 0.2 and 2.0 wt% (flame 5/5). The highly crystalline
cassiterite structure and the tin oxide crystallite size were
not influenced by the addition of platinum. The small
platinum loadings of 0.2 and 2.0 wt% cannot be detected
(e.g. at about 46�).
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Characterization of sensor made from platinum
doped tin dioxide
Figure 8 shows the response to small concentra-
tions of CO (5–50 ppm) of sensors which had been
in situ functionalized with 0.2 (on the left) and
2.0 wt% platinum (on the right). Doping the tin
dioxide with 0.2 wt% platinum results in a much
steeper calibration curve and the highest sensor
signals compared to pure tin dioxide (see Fig-
ure 4). The higher sensor signal and especially the
higher sensitivity (i.e. the steeper response curve)
increase sensor performance. Also in the case of
platinum doping the best performance is achieved
at a sensor operating temperature of 300�C.

However, the situation is completely different
when adding more platinum. Here, 2.0 wt%
reduces the performance drastically and only at
the highest concentration of 50 ppm the sensor
starts to respond to CO. Note, that these tests were
performed with a set of four sensors placed in a
teflon-made chamber.
This is in agreement with the general findings on

the influence of Pt-doping (i.e. functionalization)
on the CO sensing properties of SnO2. The low
concentrations of platinum increases the signals to
CO whereas increase in platinum concentration
leads to the decrease in sensing properties. This
was reported also for the sol-gel (or precipitated)

Table 1. Surface composition determined from XPS-analysis and the binding energies of the different peaks

Sample SnO2 0.2 wt% Pt–SnO2 2.0 wt% Pt–SnO2

Shift 6 eV for most of the sample No shifta No shift
C1s [at%] 22.7 41.3b 29.3b

O1s [at%] 58.6 42.6 51.5
Sn3d5/2 [at%] 18.6 16.0 19.0
Pt 4f [at%] – 0.02 0.1
Pt/Sn-ratioc – 0.0010:1 0.0058:1
O1s/eV 537.9 531.0 531.1
Pt 4f 7/2/eV – 71.9 72.2
Pt 4f 5/2/eV 75.5 75.4
Sn3d5/2/eV 487.1 (19.5%) 487.0 (57.1%) 487.1

493.9 (39.7)
Sn3d3/2/eV 495.5 (12.9%) 495.4 (40.5%) 495.5

502.3 (27.8%) 502.3 (2.4%)d

aFor a small fraction some shift was found (see at the Sn3d3/2 peak).
bNote that the carbon stems from graphite below the sample (small sample size).
cDetermined by additional longer recording time of the Pt 4f and Sn 3d region.
dNote that this small fraction of Sn3d3/2 is due to partial charging of the sample which amounts to about 5%.

Figure 7. (a) XAS-spectra taken in the fluorescence mode around the Pt L3-edge of 0.2 wt% Pt/SnO2 and 2.0 wt% Pt/SnO2

and (b) corresponding Fourier transformed spectra (not phase corrected).
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SnO2 with 0.2 wt% (Pt/Sn ratio is 0.0016) and
2.0 wt% Pt (Pt/Sn ratio: 0.016). In this case the
platinum was introduced either by impregnation
of the pre-calcined SnO2 with a platinum chloride
precursor or by precipitating it in solution before
the thermal treatment (Kappler et al., 1998, 2001;
Cabot et al., 2000, 2001, 2002; Cabot, 2004).
Similar findings were reported for pyrosol co-
deposited Pt/SnO2 (Pt/Sn ratio: between 0.019 and
0.200) (Matko et al., 2002). In the wet phase
method the 0.2 wt% Pt doping increases signifi-
cantly the sensor signal to CO both in dry and
especially in humid (50% r.h at 20�C) air, in
contrast to 3.0 wt% Pt which decreases this
property (Kappler, 2001). In both cases (for 0.2
and 2.0%) for the wet phase method Pt was found
to be present in oxidized form (as Pt2+ or Pt4+)
and the formation of clusters or isolated metallic
nanoparticles was not observed (Kappler, 1998,
2001; Cabot et al., 2000). In the aerosol pyrolysis
method Pt is found to be present as Pt clusters
either in a metallic or in an oxidized state on the
surface of SnO2 particles (Matko et al., 1999,
2002). In this case the best signals were observed
for a Pt/Sn ratio close to 0.019 (Matko et al.,
1999).
The drastic effect of the amount of platinum

doping on sensing properties was investigated fur-
ther at CO concentrations up to 1000 ppm (Fig-
ure 9, to eliminate consumption effects these tests
were performed with one sensor in a chamber).

Also here doping with 0.2 wt% platinum results in
the highest sensor signals compared to pure tin
dioxide followed by the sensor with a doping of
2.0 wt%. However, the sensor with 2.0 wt%

Figure 8. Signal of SnO2 sensors doped with 0.2 wt% Pt (left) and 2.0 wt% Pt (right) as a function of CO concentrations in
dry air at four temperatures. The signal increases with increasing CO concentration and decreasing sensor temperature. A
power law dependence has been observed for all examined temperatures.

Figure 9. Sensor signal of differently doped sensors for
different CO concentrations in dry air and at 400�C. SnO2

with 0.2 wt% Pt (h, calibration function
S=1+1.245�C 0.56) shows higher sensor signals than pure
SnO2 (s, calibration function S=1+0.918�C 0.49). SnO2

with 2.0 wt% Pt (n, calibration function
S=1+0.038�C 0.88) shows the lowest sensor signals. This
effect becomes smaller with increasing CO concentration.
The measurements were performed with one sensor in the
chamber.
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platinum is becoming more and more sensitive and
the large difference in sensitivity becomes less at
higher concentrations. The sensor signal can be
approximated by a power law with respect to the
CO concentration, i.e. S=1+aC b

CO. However,
Figure 9 clearly indicates a different behavior for
2.0 wt% platinum doping compared to pure tin
oxide and 0.2 wt% Pt doping, respectively. This
can be quantified by: the pre-factor (i.e. a in
S=1+aC b

CO) of the power law fit which is 0.918,
1.245, and 0.038 for 0.0, 0.2, and 2.0 wt%,
respectively, and by the power law exponent (i.e. b
in S=1+aC b

CO) of the power law fit which is 0.49,
0.56, and 0.88 for 0.0, 0.2, and 2.0 wt%, respec-
tively. The pre-factor is more than one order of
magnitude different for the 2.0 wt% platinum
doping compared to the other sensors and the
power law exponent also significantly changes. The
latter fact indicates a change in the type of reactive
oxygen species involved in the reaction with CO
(Barsan & Weimar, 2001). At the operation tem-
perature more than one oxygen species can be
present at the surface and their relative concen-
tration could depend on the presence and amount
of noble metal.
Although the effect of the amount of platinum

doping on SnO2 sensing properties is large, no
significant difference in oxidation/chemical state of
platinum on SnO2 has been observed for 0.2 and
2.0 wt% Pt, respectively. To summarize, only
surface sensitive or element-specific methods such
as XPS and EXAFS reveal information about the
platinum functionalization. These methods
revealed in both cases the presence of an oxidized
form of platinum but show also a higher disper-
sion in the case of 0.2 wt% Pt (smaller clusters).
The absence of charging effects for the platinum
doped samples further indicates an embedding of
the platinum within the tin dioxide lattice (see also
the comparison of the resistance measurements in
Figure 11).
The detailed mechanism of CO detection by tin

dioxide in the presence of platinum on its surface
has not been clarified yet. The effect of platinum
doping on sensor sensitivity is usually described by
two mechanisms; the spill-over or catalytic effect
and Fermi energy control. In case of spill-over
effect, CO oxidation can be accelerated because of
the activation, i.e. dissociation, of oxygen on
platinum. Then the activated oxygen species reach
the SnO2, where the final reaction with CO takes

place. This results in shorter response time and
larger sensitivity. This mechanism is generally
accepted for Pt-doped SnO2 gas sensors (Yamazoe,
1991). However, in the literature on catalytic low-
temperature CO oxidation on 0.2–2.0 wt% Pt-
impregnated SnO2, a different mechanism, i.e.
dissociative adsorption of oxygen on SnO2 fol-
lowed by oxygen reverse spillover from the SnO2

onto Pt sites in isolated Pt-clusters and reaction
with the CO chemisorbed on the Pt metal, is gen-
erally accepted since the works of Boulahouache
et al. (1992) and Grass and Lintz (1995, 1997a, b).
In this case (Fermi energy control) the electronic
contact between SnO2 and the noble metal particle
influences the electrical resistance (conductance) of
the sensors (Matsushima et al., 1988; Yamazoe,
1991). At equilibrium, the Fermi level of the cat-
alyst and the semiconductor are at the same
energy. The stoichiometry of the catalytically
active noble metal particle/center (i.e. Pt or PtO2-X)
hereby depends on the composition of the ambient
gas atmosphere and so does the position of its
Fermi level. Consequently, the position of the
Fermi level of SnO2 and therefore the concentra-
tion of charge carriers (i.e. electrical resistance or
conductance) will be influenced by surface reac-
tions on the catalyst. This effect, i.e. change in
stoichiometry and chemical state of the platinum
center (i.e. Pt or PtO2-X) on SnO2 sensors, has been
recently observed and proved by in situ EXAFS
analysis (Gaidi et al., 1998, 2000).
The low signals to CO of the sensors with the

high platinum loading (2.0 wt%) may result from
‘‘localized’’ CO consumption without electron
transfer to the conduction band of SnO2. In this
case Pt acts as a ‘‘good catalyst’’ and catalytic
oxidation of carbon monoxide takes place locally
on platinum. In this case the charge transfer occurs
only in a localized manner and has no direct
impact on the electrical conduction of SnO2. In
order to validate this hypothesis, the analyte gas
containing CO was introduced first to an isolated
sensor in a confined measuring volume (position
#1) and subsequently to a second measuring vol-
ume where the sensors were arranged in sub-
sequent directions of the flow (position #2 to #5)
with two sensors opposing each other (a, b). For
this experiment 8 identical sensors were fabricated
and simultaneously tested. Figure 10 shows the
sensor response for 0.2 wt% platinum doping
(left) and 2.0 wt% platinum doping (right). The
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first sensor (position #1) shows the highest signals
followed by the sensors in the second chamber. In
the second chamber a decrease of sensor signal at
increasing downstream position is evident (Fig-
ure 10, left). All sensors with 0.2 wt% platinum
doping have a remarkable sensitivity for CO even
at a reduced CO concentration because of its
consumption at upstream sensors. Please note in
comparison to previous data, that the consump-
tion measurements were performed at 50% r.h.
and therefore show slightly smaller signals towards
CO. The situation is rather different when
increasing the platinum doping from 0.2 to
2.0 wt% (figure 10, right). In this case only the
first sensor is responding to CO, however, with
much lower signals as for 0.2 wt% platinum
doping. All other downstream sensors are almost
not sensitive towards CO even at high CO con-
centrations.
The drastic reduction in CO signal for ‘‘down-

stream’’ sensors with high platinum loading
(2.0 wt%) indicates higher CO consumption on
them. It leads to the decrease in effective CO
concentration (which is seen by sensors), and
therefore to the drastic decrease in the sensor sig-
nals because of the non-linear sensor response (i.e.
power law dependence on the CO concentration,
e.g. see Figures 4, 8 and 9). It should be noted that
higher platinum loadings resulted in low platinum
dispersion (XPS, Table 1) and usually, flame-made

materials with higher Pt-content result in an easier
reduction of platinum at higher loading (evidenced
by EXAFS (Stark et al., 2005)). Therefore, the
‘‘localized’’ CO consumption without electron
transfer to the conduction band of SnO2 is likely.
However, this can be regarded only as a hypothesis
and additional investigations are necessary. In
general, a direct correlation between the sensing
properties of Pt doped SnO2 with their catalytic
(i.e. ‘‘CO consumption’’) properties is desirable
but rather difficult. Recent studies also indicated
that the influence of the substrate, heater (on the
back side of the sensor substrate) and boundaries
between oxide, Pt-electrodes and sensor substrate
cannot be neglected making the situation even
more complex (Kappler, 2001; Kappler et al.,
2001; Barsan & Weimar, 2003).

Stability of gas sensors

The sensors were tested for 20 days while every
second day the sensors were exposed to three dif-
ferent CO concentrations (i.e. to 10, 240 and
50 ppm) which were separated by 3 h. These tests
were performed on two identical sensor pairs of
pure SnO2 and doped with 0.2 wt% Pt placed
symmetrically into two chambers each. Figure 11
shows the response of all four sensors. Identical
sensors showed nearly identical resistance which
indicates the high reproducibility. The platinum

Figure 10. Sensor signal of SnO2 with 0.2 wt% Pt (left) and SnO2 with 2.0 wt% Pt (right) for different CO concentrations. In
both measurements, two test chambers are connected in series, the first one containing a single sensor (#1) and the second one
containing seven sensors (#2a to #5a). For 0.2 wt% Pt, the Sensor signal decreases subsequently in the direction of the gas
flow. For 2.0 wt% Pt, only the single sensor (#1) shows sensor signals, whereas all sensors in the second chamber show almost
no sensor signals. The measurements have been performed at 450�C and in 50% relative humidity.
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doped SnO2 sensors have lower resistance than
pure SnO2 which might be beneficial for the final
device. These results are corroborated by the XPS
analysis which showed a higher charging of the
pure SnO2 sample. All sensors recover to their
initial resistance once the CO concentration is

back to zero. However, a small increase of the
overall resistance at 0 ppm CO over time is
observed. This small drift is less pronounced for
the platinum doped sensor because of the surface
stabilization effect of platinum in the presence of
CO. The stability of the platinum doped sensors is
better than the undoped tin dioxide because the
absorption/desorption equilibrium is reached fas-
ter. This is further corroborated by the fact that
essentially no drift has been observed at the pres-
ence of CO (Figure 12). The high stability of the
sensors derived from flame-made powders
becomes evident when comparing with sol-gel
derived powders under the same conditions. This
may be because of the high dispersion in the
matrix and the well-crystalline nature of the flame-
made materials. The sol-gel-made powder drifts
steadily over the entire time period which was
evaluated (20 days) (Kappler, 2001).

Summary and Conclusions

Gas sensors made from tin dioxide nanoparticles
have been investigated for CO detection. Sensor
characteristics were directly controlled by adjust-
ing nanoparticle properties such as grain size and
platinum functionalization. Here, flame spray
pyrolysis (FSP) was used to synthesize in one step
SnO2 nanoparticles pure or Pt-doped with con-
trolled particle size and platinum content. Sensors
made from SnO2 particles with a grain size of
10 nm show a 5 times higher sensor signal than
particles of 20 nm and more than one order higher
sensor signal than sensors made from 330 nm
particles. The particle size control afforded by
FSP can be directly used to tune sensor perfor-
mance without post-treatment of the sensing
material. In situ functionalization (one-step) by
doping with platinum during FSP synthesis
resulted in more sensitive sensors when containing
0.2 wt% Pt rather than 2.0 wt%. The latter
showed a detrimental effect because of the cata-
lytic conversion of CO without electron transfer.
CO consumption measurements and detailed
structural analysis using XPS and EXAFS showed
that Pt is incorporated as oxidized clusters. These
oxidized platinum clusters were slightly reduced in
vacuum during the XPS analysis. Furthermore, a
low Pt concentration (0.2 wt%) seems to lead to a
higher dispersion of Pt. The stability of the

Figure 11. Resistance of two identical pairs of SnO2 sensors
(a) and (b) with 0.2 wt% Pt during exposure to three dif-
ferent CO concentrations (10, 240 and 50 ppm) shown for
the 4th day of a 20 days period. All sensors return to zero
setting upon end of the exposure showing excellent repro-
ducibility and stability.

Figure 12. Resistance of SnO2/0.2 wt% Pt sensors over
20 days in air and in 10, 50 and 240 ppm CO. The mea-
surement was performed at 400�C and in 10% relative
humidity. Excellent reproducibility and stability is observed
over that period and CO concentration.
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sensors was tested and found suitable for low level
CO detection: <10 ppm according to European
legislation and 50 according to US.
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Tani T., L. Mädler & S.E. Pratsinis, 2002. Homogeneous ZnO

nanoparticles by flame spray pyrolysis. J. Nanoparticle Res.

4(4), 337–343.

Xu C., J. Tamaki, N. Miura & N. Yamazoe, 1991. Grain-size

effects on gas sensitivity of porous SnO2-based elements.

Sensors Actuators B – Chemical 3(2), 147–155.

Yamazoe N., 1991. New approaches for improving semicon-

ductor gas sensors. Sensors Actuators, B: Chemical B 5(1–4),

7–19.

Yang J.C., Y.C. Kim, Y.G. Shul, C.H. Shin & T.K. Lee, 1997.

Characterization of photoreduced Pt/TiO2 and decomposi-

tion of dichloroacetic acid over photoreduced Pt/TiO2

catalysts. Appl. Surf. Sci. 121, 525–529.

796



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


