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Abstract We consider a generalization of the unsplittable maximum two-commod-
ity flow problem on undirected graphs where each commodity i ∈ {1, 2} can be split
into a bounded number ki of equally-sized chunks that can be routed on different
paths. We show that in contrast to the single-commodity case this problem is NP-hard,
and hard to approximate to within a factor of α > 1/2. We present a polynomial time
1/2-approximation algorithm for the case of uniform chunk size over both commod-
ities and show that for even ki and a mild cut condition it can be modified to yield an
exact method. The uniform case can be used to derive a 1/4-approximation for the
maximum concurrent (k1, k2)-splittable flow without chunk size restrictions for fixed
demand ratios.

Keywords Splittable flow · 2-commodity flow · Approximation algorithm

1 Introduction

We consider a generalization of the unsplittable maximum two-commodity flow prob-
lem defined by Kleinberg (1996) on an undirected capacitated graph G = (V, E)

introduced by Baier et al. (2002) where each commodity i can be split into a bounded
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382 E. Eisenschmidt, U.-U. Haus

number ki of chunks (of potentially different size) which can be routed on different
paths (k-splittable flow problem). This problem is NP-hard even for one commodity
and k = 2, see Baier et al. (2005), unless extra restrictions are imposed.

In the following we will always work with an undirected graph G = (V, E), with
s1, s2 ∈ V the sources, and t1, t2 ∈ V the sinks of two commodities of flow.

Definition 1 (splittable flow) Let G = (V, E) be an undirected graph with edge
capacities ue (e ∈ E), and let s1, s2 ∈ V be the sources and t1, t2 ∈ V be the sinks of
two commodities of flow, and k1, k2 two nonnegative integers. A (k1, k2)-splittable
flow is a two-commodity flow respecting the edge capacities using k1 s1–t1-paths for
commodity 1 and k2 s2–t2-paths for commodity 2.

Since we allow that a path can be used multiple times and flow on certain paths
can be equal to 0, the notion of k1, k2-splittability includes the case where ‘at most ki

paths’ may be used for commodity i .
However, in many applications commodities cannot be split into arbitrarily sized

chunks, which puts restrictions on the allowable flow values of the splittable flow. One
reasonable restriction is to require that for each commodity the individual flows need
to have the same flow value. The paths in a splittable flow do not need to be different,
therefore integral multiples of such ‘chunk-sized’ transport can be accomodated on
the same path.

Definition 2 (bi-uniform splittable flow) A k1, k2-splittable flow is called bi-uniform
if the flow values of the paths for each commodity are the same.

Note that with uniformity restrictions, a 0-flow on some path will force all flows
for the respective commodity to be 0. Thus the problem reduces to a problem with one
commodity less.

In the single-commodity case Baier et al. (2005) show that assuming uniformity
makes the problem solvable in polynomial time. We will show that this is not the case
for two commodities, not even if we ask for uniformity across both commodities. The
latter restriction is also not artificial: Imagine that each commodity models a different
service level, but the underlying good is divisible only in the same fashion, e.g., into
packet size or base channel bandwidth in a telecommunication network.

Definition 3 (totally uniform splittable flow) A k1, k2-splittable flow is called totally
uniform if the flow values of all paths for all commodities are the same.

There are various notions of maximality for splittable flows that in general do not
yield the same solutions.

Definition 4 (maximality notions) Let ( f 1
1 , . . . , f 1

k1
, f 2

1 , . . . , f 2
k2

) be a k1, k2-split-
table two-commodity flow in a graph G. It is called

– maximal total flow if it is optimal for

max
k1∑

i=1

f 1
i +

k2∑

i=1

f 2
i ,
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Two-commodity splittable flow 383

– maximal concurrent flow if for some given demand parameters d1, d2 ∈ R≥0 it is
optimal for

max
f a k1, k2-splittable 2-c-f

min
i∈{1,2}

1
di

ki∑

j=1

f i
j ,

– maximal flow if it is optimal for
2∑

i=1

max
j∈{1,...,ki }

f j
i

among all feasible k1, k2-splittable two-commodity flows of G.

We will mostly be concerned with maximal totally uniform or bi-uniform flows,
except for Sect. 3, where we study maximal concurrent flow. In the former case the
objective function simplifies to max x + y where x and y are the flow values per path
for the two commodities (and x = y for totally uniform flows).

Lemma 1 The following problems are NP-hard:

– Find the maximal flow per path of a totally uniform k1, k2-splittable flow,
– Maximize the sum x + y where x (y) is the maximal flow per path of commodity 1

(of commodity 2) of a bi-uniform k1, k2-splittable flow,
– Maximize the total non-uniform k1, k2-splittable flow.

Proof The variant without any uniformity constraints was shown to be NP-hard by
Baier et al. (2005), as noted above.

We will show that the integral 2-commodity flow problem with unit capacities is
reducible to both the totally uniform and the bi-uniform k1, k2-splittable flow problem.

Let G = (V, E) with sources s1, s2 and sinks t1, t2, identical capacities of 1 on
each edge e ∈ E , and demands d1, d2 ∈ Z≥0 be given. Even et al. (1976) show that
asking whether there exists an integral 2-commodity flow satisfying the demands for
such a graph is NP-hard (even though the capacities are all 1).

Let k1 = d1 and k2 = d2. Solving the totally uniform (respectively, the bi-uniform)
k1, k2-splittable flow problem on G yields a solution composed of k1 paths for com-
modity 1 and k2 paths of commodity 2. All paths have the same flow value x (resp.: x
and y) for the commodities. If x = 1 (resp.: x + y = 2) then we have found an integral
two-commodity flow satisfying the demands. If x < 1 (resp.: x + y < 2) then there
exists no integral two-commodity flow satisfying the demands: Assume there were
an integral two-commodity flow satisfying d1 and d2, then without loss of generality
we can assume that it exactly satisfies the demands. Then it is, however, also a k1,

k2-splittable flow – since each edge carries an integral flow, i.e. a value of 0 or 1, we can
split it into exactly k1 and k2 paths for commodity 1 and 2, respectively. In particular,
the flow value of each of the paths is 1, contradicting x < 1 (resp.: x + y < 2). ��

Re-reading the proof we can see that the flow value x (resp.: x and y) on the paths
of an optimal k1, k2-splittable totally uniform (resp.: bi-uniform) flow solution on the
class of instances considered can never lie in the open interval (1/2, 1), since such
a flow can always be increased to 1. A flow value of 1/2 could be possible, if some
edge is used by two paths [this corresponds to fractional, and therefore half-integral,
solvability of the 2-commodity integral flow problem, see Hu (1963)]. Hence, any
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(a) (b)

(c) (d)

Fig. 1 Variants of splittable flows: a the graph, b a maximal unconstrained (2, 2)-splittable flow, c a
maximal bi-uniform (2, 2)-splittable flow, d a maximal totally uniform (2, 2)-splittable flow

Fig. 2 A graph with maximal
1, 1-splittable flows of different
values depending on the version
of uniformity: The maximal
totally uniform 1, 1-splittable
flow has a value x + x = 2;
the maximal bi-uniform 1,

1-splittable flow has a value
x + y = n + 1

α-approximation algorithm of the totally uniform k1, k2-splittable flow problem with
α > 1/2 will also answer solve the integral 2-commodity flow problem: approximate
solutions with flow x > 1/2 must correspond to “YES”-instances of the 2-commodity
integral multicommodity flow problem, and approximate solutions with flow x ≤ 1/2
to “NO”-instances. This yields the following:

Corollary 1 It is NP-hard to approximate the maximum totally uniform k1, k2-split-
table flow problem to within a factor of α > 1/2, even for graphs with unit capacities.

It would be tempting to try and use totally uniform splittable flows to approximate
bi-uniform splittable flows, but, as Fig. 2 shows, this is not possible.
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Two-commodity splittable flow 385

2 Bi-uniform and totally uniform splittable flows

From classical multicommodity flow theory we know that the maximum multicom-
modity flow is bounded by the minimum multicommodity cut. In the single-commodity
case this bound is tight, as asserted by the max-flow min-cut theorem. In
Baier et al. (2005) this was extended to the case of single-commodity uniform k-split-
table s–t-flows:

Definition 5 (minimum k-cut) Let S ⊆ V with s ∈ S and t ∈ V \ S be a cut in
G = (V, E), and define

ck(S) := max{x ∈ R≥0 :
∑

e∈δ(S)

n(e) = k, n(e) ∈ Z≥0 and

n(e)x ≤ ue for all e ∈ δ(S)} (1)

as the maximum item size such that k elements of equal size fractionally fit into the
bins created by the edge capacities of δ(S) := {(u, v) ∈ E : (u ∈ S ∧ v /∈ S) or (v ∈
S ∧ u /∈ S)}. Then

ck(G) = min{ck(S) : S ⊆ V, s ∈ S, t ∈ V \ S} (2)

is called minimum k-cut value of G.
Baier et al. (2005) show that the value of the maximum uniform k-splittable s–t-flow

in G equals the minimum k-cut value ck(G).
One can consider a similar approach for the two-commodity flow problem, i.e.

consider a similar packing problem for two different items:

max x + y
s.t. n1(e)x + n2(e)y ≤ ue ∀e ∈ δ(S)∑

e∈δ(S) n1(e) ≥ k1 if (s1 ∈ S, t1 ∈ V \ S) or (t1 ∈ S, s1 ∈ V \ S)∑
e∈δ(S) n2(e) ≥ k2 if (s2 ∈ S, t2 ∈ V \ S) or (t2 ∈ S, s2 ∈ V \ S)

n1(e), n2(e) ∈ Z≥0 ∀e ∈ δ(S)

x, y ∈ R≥0

(3)

Proposition 1 (cut bound) For a graph G = (V, E) and each cut S ⊆ V with
s1, s2 ∈ S and t1, t2 ∈ V \ S the two-commodity bin packing problem (3) provides an
upper bound for the value of a bi-uniform k1, k2-splittable flow on G, but this minimum
cut bound need not be tight.

Proof Clearly, the flow values (x∗, y∗) of a valid bi-flow which is split according to
n∗

1, n∗
2 have to satisfy the conditions of (3), hence the optimum of (3) provides an

upper bound.
The graph in Fig. 3 for k1 = 1 and k2 = 1 allows a maximal bi-uniform flow of

value x + y = 2, but minimizing (3) over all cuts only yields a bound of 4. ��
One might consider adding two independent sets of cut constraints to the system (3),

in an attempt to allow one cut to bound x well, and the other to bound y well, and thus
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386 E. Eisenschmidt, U.-U. Haus

Fig. 3 A two-commodity
digraph with maximum 1,

1-splittable flow of value 2 but
best 1-cut packing bound of 4
(realized by S) and best 2-cut
packing bound of 3 (realized by
S and T )

obtain a stronger cut bound. Clearly, such a formulation will not be weaker than (3),
but it still does not yield a tight cut bound in general, as we also illustrate in Figure 3:
All possible cuts have values of either 1, 4, 5 or more. The cuts S and T in the Figure
are therefore exemplary best cuts, and yield only a bound of 1 for y (cut T ), and 2 for
x (cut S), giving a joint bound of x + y ≤ 3. We therefore only consider system (3)
with one cut.

Note that (3) is a mixed-integer nonlinear optimization program which we cannot
expect to directly use for solving the problem. If, however, one assumes uniformity
across commodities, the bin-packing problem (3) turns out to be useful even in the
two-commodity case. Let {s1, s2, t1, t2} be the sources and destinations of the k1,

k2-splittable totally uniform two-commodity flow problem and consider a set of nodes
S ⊆ V . We define

dem(S) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k1 (s1 ∈ S ∧ {s2, t1, t2} �⊆ S) or (t1 ∈ S ∧ {s1, s2, t2} �⊆ S)

k2 (s2 ∈ S ∧ {s1, t1, t2} �⊆ S) or (t2 ∈ S ∧ {s1, s2, t1} �⊆ S)

k1 + k2 (s1, s2 ∈ S ∧ {t1, t2} �⊆ S) or (t1, t2 ∈ S ∧ {s1, s2} �⊆ S)

k1 + k2 (s1, t2 ∈ S ∧ {s2, t1} �⊆ S) or (s2, t1 ∈ S ∧ {s1, t2} �⊆ S)

0 otherwise

(4)

the demand necessarily crossing δ(S) in a feasible flow.
Then (3) can be rewritten as

ck1,k2(S) := max x
s.t. n(e)x ≤ ue ∀e ∈ δ(S)∑

e∈δ(S) n(e) ≥ dem(S)

n(e) ∈ Z≥0 ∀e ∈ δ(S)

x ∈ R≥0

(5)

We denote by ck1,k2(G) the minimum such cut value:

ck1,k2(G) := min
S⊆V,dem(S) �=0

ck1,k2(S) (6)

123



Two-commodity splittable flow 387

Fig. 4 Forbidden minor for
integrality of two-commodity
flow problems

Lemma 2 Let G = (V, E) be an undirected graph with edge capacities u ∈ Z|E |
≥0

and let k1, k2 ∈ Z≥0 \ {0}. Then there exists a 2k1, 2k2-splittable totally uniform flow
with value (k1 + k2)ck1,k2(G). Furthermore, if the graph in Fig. 4 is not a minor of G,
there exists a k1, k2-splittable totally uniform flow with this value.

Proof Let x = ck1,k2(G) be the minimum k1, k2-cut value as defined in (6) and let
n ∈ Z|E |

≥0 be the corresponding feasible solution. We construct an auxiliary graph
G ′ = (V, E) with edge capacities u′

e =  ue
x �.

Now consider the two-commodity flow problem on G ′ with demands d1 = k1 and
d2 = k2. As n(e)x ≤ ue for all e ∈ E , we have n(e) ≤ ue

x . As n(e) ∈ Z≥0 we can
round the right-hand side of this inequality. Therefore, n(e) ≤  ue

x � = u′
e.

In particular for every S ⊆ V,
∑

e∈δ(S) u′
e ≥ ∑

e∈δ(S) n(e) ≥ dem(S). According
to Hu’s two-commodity flow theorem, Hu (1963), there exists a half-integral solu-
tion for demands d1 = k1, d2 = k2. This half-integral solution can be constructed in
polynomial time, see e.g. Schrijver (2003, Theorem 71.1b). Regular flow-decompo-
sition techniques yield a solution with 2k1 paths for commodity 1 and 2k2 paths for
commodity 2, each carrying a flow of 1/2.

On the original graph G we assign these paths a flow of 1
2 x . We thus obtain a

feasible two-commodity flow on G with total flow of (k1 + k2)x .
If the graph in Fig. 4 is not a minor of G there even exists an integral two-com-

modity flow solution instead of a half-integral one [see e.g. Schrijver (2003, Theorem
71.2)], which directly yields a k1, k2-splittable solution with the same value. ��

The factor of 2 for the number of paths in Lemma 2 is sometimes best possible, as
the following example shows.

Example 1 Consider the graph in Fig. 4 with edge capacities ue = 1 for all edges, and
k1 = 1 = k2. Then clearly c1,1(G) = 1, but there is no 1, 1-splittable totally uniform
flow with a value of (k1 + k2)ck1,k2 = 2 ·1 = 2. However, there exists a 2, 2-splittable
totally uniform flow with the value (2 + 2) · (1/2) = 2.

For even k1 and k2 dividing these parameters by 2 and applying Lemma 2 obvi-
ously always yields a feasible solution of the k1, k2-splittable totally uniform flow
problem. One could hope that it would be possible to use Lemma 2 for k̄1 = k1/2 and
k̄2 = k2/2 when k1 and k2 are even to compute a maximum k1, k2-splittable flow. The
next example shows, however, that this is not possible in general.

Example 2 Let k1 = k2 = 2 and consider the graph in Fig. 5. Here c1,1(G) =
c1,1(S) = 4 and the corresponding auxiliary graph has precisely one integral solution.
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388 E. Eisenschmidt, U.-U. Haus

Fig. 5 A graph with optimal
2, 2-splittable totally uniform
flow of value 12, and optimal
1, 1-splittable totally uniform
flow of value 8

However, c2,2(G) = c2,2(S) = 3, and there is indeed a 2, 2-splittable totally uniform
solution yielding a total flow of 12.

It is easy to obtain the necessary condition for the flow obtained by Lemma 2 to be
maximal though. We start with the following observation.

Observation 1 For a graph G = (V, E) with edge capacities ue ∈ Z≥0 for all e ∈ E
and nonnegative integers k1, k2 it holds that

2c2k1,2k2(G) ≥ ck1,k2(G). (7)

This follows from the fact that a feasible flow x for ck1,k2 in (5) always yields a
feasible flow x/2 for c2k1,2k2 in (5). Hence 2c2k1,2k2(G) can not be smaller than ck1,k2 .
Tightness in (7) is the necessary condition for applicability of the following Lemma:

Lemma 3 Let k1, k2 ∈ 2Z≥0 be even integers, G = (V, E) with edge capacities
ue ∈ Z≥0 and assume 2ck1,k2(G) = ck1/2,k2/2(G). Then an optimal solution of the
k1, k2-splittable totally uniform flow problem can be obtained by applying Lemma 2
to G, k1/2, and k2/2.

Proof Using Lemma 2 for k1/2 and k2/2 yields a k1, k2-splittable totally uniform flow
where each path carries a flow of 1/2ck1/2,k2/2(G). Since 2ck1,k2(G) = ck1/2,k2/2(G)

by assumption and ck1,k2(G) is an upper bound by Proposition 1, the claim follows. ��
We will now show that the value of ck1,k2(G) can be computed in polynomial

time, allowing us to check whether (7) is satisfied. Furthermore, knowing the value of
ck1,k2(G) allows us to compute a factor 1/2-approximation for the maximum totally
uniform flow problem in the general case.

Lemma 4 The value ck1,k2(G) can be computed in polynomial time O((k1 +
k2)|E | log |E |).
Proof To compute ck1,k2(G) we have to find the minimum of ck1,k2(S) over all cuts S
in G with dem(S) �= 0.

We can distinguish four cases according to (4), depending on which subset of
{s1, s2, t1, t2} is contained in S, yielding four relevant values of dem(S):

1. dem(S) = k1. Then ck1,k2(S) = ck1(S).
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Fig. 6 The auxiliary graphs for determining a minimum k1, k2-cut on G. The auxiliary edges are displayed
as dotted lines and have capacity ∞

2. dem(S) = k2. Then ck1,k2(S) = ck2(S).
3. dem(S) = k1 + k2 because s1, s2 ∈ S and t1, t2 ∈ V \ S (or symmetrically

t1, t2 ∈ S and s1, s2 ∈ V \ S). Then ck1,k2(S) = ck1+k2(S).
4. dem(S) = k1 + k2 because s1, t2 ∈ S and s2, t1 ∈ V \ S (or symmetrically

s2, t1 ∈ S and s1, t2 ∈ V \ S). Then ck1,k2(S) = ck1+k2(S).

Determining the value ck1,k2(G) thus amounts to determining the minimum of three
single-commodity l-cut values (for l ∈ {k1, k2, k1+k2}) w.r.t. certain auxiliary graphs.
The auxiliary graphs are presented in Fig. 6. In each case we have to determine a l-cut
value for a s′–t ′-flow.

Computing an individual value ck can be done in time O(k|E | log |E |) using the
algorithm of Baier et al. (2005). ��

So far we have shown that in the special case where the graph in Fig. 4 is not a
minor of G and equality holds in (7) we can solve the maximum totally uniform flow
problem exactly using two calls to a single-commodity integral flow algorithm.

In the general case a factor 1/2 approximation is achievable in polynomial time.
Given Corollary 1 this is best possible unless P = NP.

Theorem 1 Consider the k1, k2-splittable totally uniform 2-commodity flow problem
on an undirected graph G = (V, E) with edge capacities ue ∈ Z≥0 for e ∈ E.
Then a 1/2-approximation for the maximal totally uniform flow can be computed in
polynomial time.
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390 E. Eisenschmidt, U.-U. Haus

Proof This is a direct consequence of Lemma 2: It yields a feasible two-commodity
flow composed of 2k1 and 2k2 paths with total flow value of (k1 + k2)ck1,k2 . Dropping
k1 paths carrying commodity 1 and dropping k2 paths carrying commodity 2 we obtain
a k1, k2-splittable solution with totally uniform path-flow across commodities and a
total flow of 1

2 (k1 + k2)ck1,k2 . This is at least a 1/2 approximation since ck1,k2 is an
upper bound on the path flow. ��

3 Approximating nonuniform concurrent flow

Finally we will show that a general k1, k2-splittable two-commodity flow can be
approximated with the help of uniform flows.

Theorem 2 Let G = (V, E) be an undirected graph with edge capacities ue ∈
Z≥0 for all e ∈ E. Let k1, k2 ∈ Z≥0 be integral parameters. A maximal totally
uniform k1, k2-splittable flow provides a 1

2 -approximation of a maximal concurrent k1,

k2-splittable flow for a demand ratio d1/d2 = k1/k2.

Proof Theorem 13 in Baier et al. (2005) states that every maximal bi-uniform k1,

k2-splittable flow is a 1
2 -approximation of a maximal k1, k2-splittable flow. We will

show that for d1/d2 = k1/k2, a maximal bi-uniform flow is in fact totally uniform.
Let Pi denote the set of si -ti paths of commodity i and consider the maximum

concurrent bi-uniform k1, k2-splittable flow problem for demands d1/d2 = k1/k2:

max λ

s.t.
∑

p∈P1,
e∈p

x δp +
∑

q∈P2,
e∈q

y δq ≤ ue ∀e ∈ E

∑

p∈P1

δp = k1

∑

q∈P2

δq = k2

λd1 = k1 x

λd2 = k2 y

δp, δq ∈ {0, 1} ∀p ∈ P1, ∀q ∈ P2

x, y, λ ∈ R≥0

(8)

The first set of inequalities ensures the edge capacities are respected. The second and
third set of equalities ensures that k1 paths for commodity 1 and k2 paths for commod-
ity 2 are used. The fourth and fifth set of inequalities finally relate the demands λdi ,
of commodity i , to the flow for commodity i, k1 x and k2 y, respectively. From these
last two equalities (and from d1/d2 = k1/k2), we obtain that x = y has to hold, and
thus a feasible k1, k2-splittable bi-uniform flow is in fact totally uniform.

Now we will show that a maximal totally uniform k1, k2-splittable flow provides
an optimal solution for the program (8). Let x be the flow value on the ki paths of
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Two-commodity splittable flow 391

commdity i . Then d̄1 := k1x is the total flow of commodity 1 and d̄2 := k2x is the
total flow of commodity 2. We will show that d̄1 = λd1 and d̄2 = λd2 for maximal λ.

We have d̄1 = k1x = d1k2
d2

x = d̄2
d2

d1 and thus d̄2 = d̄1
d1

d2. Therefore, we have to show

that d̄2
d2

= d̄1
d1

holds. But this follows directly from

d̄2

d2
= k2x

d2
= k1x

d1
= d̄1

d1
.

Therefore, λ = k1x
d1

= k2x
d2

. As di and ki are fix, it is clear that a maximum value of x
yields a maximal value of λ.

This concludes our proof: as a maximal k1, k2-splittable totally uniform flow is
a maximal concurrent k1, k2-splittable bi-uniform flow for demand ratios d1/d2 =
k1/k2, it provides a 1

2 approximation for the maximal concurrent k1, k2-splittable flow
for demand ratios d1/d2 = k1/k2. ��

As a direct consequence of applying both Theorems 2 and 1 consecutively we obtain

Corollary 2 Let G = (V, E) be an undirected graph with edge capacities ue ∈ Z≥0
for all e ∈ E. Let k1, k2 ∈ Z≥0 be integral parameters. A 1/4-approximation of a
maximal concurrent k1, k2-splittable flow can be computed in polynomial time for
demand-ratios d1/d2 = k1/k2.

It would be interesting to see whether polynomiality results for computing the maxi-
mal concurrent splittable flow where the demand ratios are not fixed, or at least not fixed
as a consequence of the splitting values k1, k2. Furthermore, it would be desirable to
identify suitable restrictions of multi-commodity flow problems that are still tractable.
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