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Abstract: Scattering in a model of a massive quantum-mechanical particle, an “elec-
tron”, interacting with massless, relativistic bosons, “photons”, is studied. The interaction
term in the Hamiltonian of our model describes emission and absorption of “photons”
by the “electron”; but “electron-positron” pair production is suppressed. An ultraviolet
cutoff and an (arbitrarily small, but fixed) infrared cutoff are imposed on the interac-
tion term. In a range of energies where the propagation speed of the dressed “electron”
is strictly smaller than the speed of light, unitarity of the scattering matrix is proven,
provided the coupling constant is small enough; (asymptotic completeness of Comp-
ton scattering). The proof combines a construction of dressed one–electron states with
propagation estimates for the “electron” and the “photons”.
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416 J. Fröhlich, M. Griesemer, B. Schlein

D. Spectral Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
E. Number–Energy Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 472
F. Commutator Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
G. Invariance of Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

1. Introduction

The study of collisions between photons, the field quanta of the electromagnetic field, and
freely moving charged particles, in particular electrons, at energies below the threshold
for electron-positron pair creation – commonly called Compton scattering – has played
a significant rôle in establishing the reality of Einstein’s photons, in the early days of
quantum theory. With the development of quantum electrodynamics (QED) it became
possible to calculate the cross section for Compton scattering perturbatively, using the
Feynman rules of relativistic QED. The agreement between theoretical predictions and
experiments is astounding.

Yet, a careful theoretical analysis of Compton scattering uncovers substantial diffi-
culties mainly related to the so-called infrared problem in QED, [BN37, PF38]: When,
in the course of a collision process, a charged particle, such as an electron, undergoes an
accelerated motion it emits infinitely many photons of finite total energy. Unless treated
carefully, a perturbative calculation of scattering amplitudes is therefore plagued by the
infamous infrared divergencies.

Infrared divergencies can be eliminated by giving the photon a small mass, or, alter-
natively, by introducing an infrared cutoff in the interaction term. Of course, after having
calculated suitable cross sections, one attempts to let the photon mass or the infrared
cutoff, respectively, tend to 0. This procedure, carefully implemented, is known to work
very well; see [YFS61].

If the total energy of the incoming particles, photons and an electron, is well below
the threshold for electron-positron pair creation it is a fairly good approximation to
neglect all terms in the Hamiltonian of relativistic QED describing pair creation- and
annihilation processes in a calculation of some cross section for Compton scattering. The
resulting model is a caricature of QED without positrons in which the number of elec-
trons is conserved. It is this simplified model of QED, regularized in the infrared region
by an infrared cutoff, which has inspired the analysis of Compton scattering presented
in this paper.

To further simplify matters, we consider a toy model involving “scalar photons” or
“phonons”, and we also impose an ultraviolet cutoff in the interaction Hamiltonian. But
the methods developed in this paper can be applied to the caricature of QED described
above if one works in the Coulomb gauge and introduces an ultraviolet and an infrared
cutoff in the interaction Hamiltonian.

The main results of this paper can be described as follows: For the toy model described
above, we establish asymptotic completeness (AC) for Compton scattering below some
threshold energy�, which depends on the kinematics of the electron and on the coupling
constant. The latter will have to be chosen sufficiently small. This means that, on the
subspace of physical state vectors containing one electron and arbitrarily many “scalar
photons” (massless bosons) of total energy≤ �, the scattering operator of our toy model
is unitary.

In a previous paper [FGS01], we have studied the scattering of massless bosons at an
electron bound to a static nucleus, below the ionization threshold, in a similar toy model
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with an infrared- and an ultraviolet cutoff. In other words, we have proven AC for Ray-
leigh scattering of “photons” at an atom, below the ionization threshold, in the presence
of an infrared- and ultraviolet cutoff. By combining the methods in [FGS01] with those
developed in this paper, we expect to be able to establish AC in our toy model of an elec-
tron interacting with massless bosons and with a static nucleus at energies below some
threshold energy� (depending on the kinematics of the electron), provided the coupling
constant is small enough. Such a result would apply to scattering processes encountered
in the analysis of the photoelectric effect (see [BKZ01]) and of Bremsstrahlung. Further
possible extensions of our results are described in Sect. 10.

As quite frequently the case in mathematical physics, our methods of proof are con-
siderably more interesting than the results we establish. We think that they illustrate
some of the many subtleties of scattering theory in quantum field theory in a fairly illu-
minating way. Before we are able to describe these methods and give an outline of the
strategy of our proof, we must define the model studied in this paper more precisely.

To describe the dynamics of a conserved, unbound particle, here called electron,
coupled to a quantized field of spin-0 massless bosons, we consider the Hamiltonian

Hg = �(p)+Hf + gφ(Gx)
acting on the Hilbert space of state vectors H = L2(R3)⊗ F , where F is the bosonic
Fock space over L2(R3, dk), k ∈ R

3 is the momentum of a boson, x ∈ R
3 the position

of the electron, p = −i∇x the momentum of the electron, and �(p) is the energy of
a non-interacting, free electron of momentum p. The operator Hf =

∫
dk|k|a∗(k)a(k)

is the Hamiltonian of the free bosons; a(k) and a∗(k) being the usual annihilation and
creation operators obeying the canonical commutation relations (CCR). The operator
φ(Gx) describes the interaction between an electron at position x and bosons. It is given
by

φ(Gx) =
∫
dk (Gx(k)a(k)+Gx(k)a∗(k)), with (1)

Gx(k) = e−ik·xκσ (k). (2)

We impose an infrared cutoff by requiring that

κσ (k) = 0 if |k| < σ,

where κσ ∈ C∞0 (R3) is a form factor. The constant σ must be positive but can be
arbitrarily small. The smoothness and the decay assumptions on κσ at |k| = ∞ are
technically convenient, but can be relaxed; see e.g. [Nel64, Amm00]. The parameter
g ∈ R is a coupling constant.

The Hamiltonian Hg is invariant under translations in physical space and thus ad-
mits a decomposition over the spectrum of the total momentum P = p + Pf , Pf =∫
dk ka∗(k)a(k), as a direct integral

Hg �
∫ ⊕

R3
Hg(P ) dP on H �

∫ ⊕

R3
F dP, with

Hg(P ) = �(P − Pf )+Hf + gφ(κσ ),
where � indicates unitary equivalence.

On the dispersion law, �(p), of the free electron we only impose minimal assump-
tions that are sufficient for our purpose and are satisfied in examples of physical interest.
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We assume that � ≥ 0, that � is twice continuously differentiable, and that ∂i∂j� and
|∇�|(� + 1)−1/2 are bounded functions. Most importantly, we assume that, given an
arbitrary β > 0, there exists a constant Oβ > inf �, such that

|∇�(p)| ≤ β, for all p with �(p) ≤ Oβ. (3)

Note that these assumptions are satisfied in the examples where

�(p) = p2

2M
(non-relativistic kinematics)

and

�(p) =
√
p2 +M2 (relativistic kinematics),

for some positive massM . [We could also study an electron in a crystal interacting with
phonons.]

Our assumptions on�(p) and the presence of an infrared cutoff σ > 0 guarantee that
the Hamiltonian Hg(P ) has a unique one-particle eigenstate ψP ∈ F corresponding to
the eigenvalue (energy) Eg(P ) = inf σ(Hg(P )), for each P with �(P ) ≤ Oβ , β < 1,
and for |g| sufficiently small, depending onβ. In fact, under these assumptions, condition
(3) allows us to show that

inf
|k|≥σ

(
Eg(P − k)+ |k| − Eg(P )

)
> 0 (4)

for all σ > 0. This is the key ingredient for proving thatHg(P ) has a one-particle eigen-
state of energy Eg(P ) (cf. [Frö74]). Uniqueness follows by standard Perron-Frobenius
type arguments or by a suitable positive commutator estimate.

Wave packets ψf , f ∈ L2(R3), of dressed one-particle states ψP are defined by

ψf (P ) = f (P )ψP , (5)

where supp f ⊂ {P : �(P ) ≤ Oβ}. They minimize the energy for a given distribution
|f |2 of the total momentum, and they propagate according to

e−iHgtψf = ψft , ft (P ) = e−iEg(P )tf (P ).
In nature, no excited one-electron states are observed, and, correspondingly, one

expects that every state e−iHgtψ eventually radiates off its excess energy and decays
into a dressed one-electron wave packet ψf . More precisely, for any given ψ , e−iHgtψ
should be well approximated, in the distant future, by a linear combination of states of
the form

a∗(h1,t ) · . . . · a∗(hn,t )e−iHgtψf , (6)

where hi,t = e−i|k|t hi , and ψf is given by (5). This is called asymptotic completeness
(AC) for Compton scattering. Mathematically more convenient characterizations of AC
may be given in terms of the asymptotic field operators a+(h) and a∗+(h). Let E�(Hg)
denote the spectral projection of Hg onto vectors of energy ≤ �. Let h ∈ L2(R3, (1+
|k|−1)dk) and let ϕ ∈ E�(Hg)H for some � < Oβ=1. Then the limit

a#
+(h)ϕ = lim

t→∞ e
iHgta#(ht )e

−iHgtϕ



Asymptotic Completeness 419

exists, and, moreover,

a∗+(h1) · . . . · a∗+(hn)ϕ = lim
t→∞ e

iHgta∗(h1,t ) · . . . · a∗(hn,t )e−iHgtϕ (7)

if hi ∈ L2(R3, (1 + |k|−1)dk), ϕ ∈ Eλ(Hg)H, and λ +∑i Mi ≤ �, where Mi :=
sup{|k| : hi(k) �= 0}. Let H+ denote the closure of the space spanned by vectors of the
form a∗+(h1) · . . . · a∗+(hn)ψf . From (6) and (7) it is clear that AC means that H+ = H.
AC in this form asserts, on the one hand, that the asymptotic dynamics of bosons which
are not bound to the electron corresponds to free motion, and, on the other hand, that
Hg(P ) has no eigenvalues above Eg(P ) = inf σ(Hg(P )).

The main purpose of this paper is to show that

H+ ⊃ E�(Hg)H,

for every � < Oβ=1/3 provided that |g| is sufficiently small depending on � (Theo-
rem 17).

We thus prove that all vectors in RanE�(Hg) decay into states of the form (6). While
the assumption � < Oβ=1/3 may appear very restrictive, it still allows for electrons
with speeds as high as one third of the speed of light (� 108 m/s)!

Dressed one-electron states for the model discussed here with relativistic and non-
relativistic electrons were first constructed in [Frö73, Frö74]. For similar results on the
related polaron model, see [Spo88] and references therein.

First steps towards a scattering theory (construction of the Møller operators) were
previously made in [Frö73], [Frö74] and, for σ = 0, very recently in [Piz00].

The scattering theory of a free electron in the framework of non-relativistic QED in
the dipole approximation has been studied in [Ara83]. This model is explicitly soluble
and is not translation–invariant. Arai proves asymptotic completeness after removing
the infrared cutoff.

Asymptotic completeness in non-trivial models of quantum field theory was previ-
ously established in [Spe74, SZ76, DG99, DG00 and FGS01]. The papers [DG99] and
[FGS01] are devoted to an analysis of scattering in a system of a fixed number of spatially
confined particles interacting with massive relativistic bosons. Confinement is enforced
by a confining (increasing) potential in [DG99] and by an energy cutoff in [FGS01]. In
[DG00] asymptotic completeness is proven for spatially cutoffP(φ)2-Hamiltonians. For
interesting results in the scattering theory of systems of massless bosons and confined
electrons without infrared cutoff see the papers [Spo97, Gér02]. In none of these papers
a translation invariant model is studied. But, such models have been analyzed in [Frö73,
Piz00].

We now present an outline of our paper and explain the key ideas underlying our
proof of asymptotic completeness.

In Sect. 2, we introduce notation and recall some well known facts about the formal-
ism of second quantization which will be used throughout our paper. The notations are
the same as in [FGS01] and many of them originate from [DG99].

In Sect. 3, we first give a mathematically precise definition of our model and list all
our hypotheses for easy reference. We then summarize our key results on the existence
and uniqueness of dressed one-electron states, ψP . All proofs concerning these matters
are deferred to Appendix D.1.

We also prove a fundamental positive–commutator estimate and a Virial Theorem,
which, by standard arguments of Mourre theory, show that there are no excited dressed
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one-electron states; i.e., there is no binding between a dressed electron and bosons. See
Theorems 5, 6 and 7.

In the last part of Sect. 3 we exhibit some simple properties of the interaction Hamilto-
nian gφ(Gx). In particular, we show that the strength of interaction between an electron
at position x and a boson localized (in the sense of Newton and Wigner) near a point
y ∈ R

3 tends rapidly to 0, as |x − y| → ∞; (see Lemma 9). This property is important
in our proof of AC.

In Sect. 4, we construct Møller wave operators as a first step towards understanding
scattering in our model. Our construction is based on [FGS00]. It involves the following
ideas.

(i) We prove a propagation estimate saying that an electron with dispersion law�(p)
propagates with a group velocity not exceeding β, for states with a finite total energy �
if ‖|∇�|E�(Hg)‖ ≤ β, see Proposition 12 and [FGS00]. A sufficient condition for the
latter assumption is that � < Oβ and that |g| is sufficiently small.

(ii) This propagation estimate for the electron with β < 1 combined with a stationary
phase argument for the bosons guarantees that the interaction between a dressed electron
and a configuration of freely moving bosons tends to 0 at large times. This can be used
to establish existence of asymptotic creation- and annihilation operators, a∗±, a±:

a#
±(h1) . . . a

#
±(hn)ϕ = lim

t→±∞ e
iHgta#(h1,t ) . . . a

#(hn,t )e
−iHgtϕ,

for an arbitrary ϕ ∈ Eλ(Hg)H, hj ∈ L2
ω(R

3) = L2(R3, (1+ |k|−1)dk), j = 1, . . . , n,
n ∈ N, and λ +∑Mi ≤ �, where ‖|∇�|E�(Hg)‖ < 1, and Mi as in (7). Here
ht (k) := e−i|k|t h(k), and a# = a or a∗. See Theorem 13.

We then show that all dressed one-electron wave packets ψf , with ψf ∈ E�(Hg)H,
are “vacua” for the asymptotic creation– and annihilation operators, in the sense that

a±(h)ψf = 0,

for arbitrary h ∈ L2
ω(R

3); see Lemma 14.
(iii) We define the scattering identification map I by

I : H̃ ≡ H⊗ F −→ H
ϕ ⊗ a∗(h1) . . . a

∗(hn)� �−→ a∗(h1) . . . a
∗(hn)ϕ

and the extended Hamiltonian H̃g by

H̃g = Hg ⊗ 1+ 1⊗ d�(|k|).
To say that asymptotic creation operators exist - under the aforementioned assumptions
- is equivalent to saying that the operators

�̃±ϕ = lim
t→±∞ e

iHgt Ie−iH̃gtϕ

exist for ϕ in some dense subspace of E�(H̃ )H̃. The Møller wave operators are then
defined by

�± = �̃±(Pdes ⊗ 1),
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where Pdes is the orthogonal projection onto the subspace, Hdes, of H of dressed one-
electron wave packets. Since vectors in Hdes are vacua for a#±(h), the operators �± are
isometric on Hdes ⊗ F ; see Theorem 15.

Asymptotic completeness of scattering on states of energy ≤ � can be formulated as
the statement that

Ran�± ⊃ E�(Hg)H. (8)

In Sect. 5 we introduce a modified Hamiltonian,Hmod, which agrees withHg , except
that the dispersion law, |k|, for soft bosons of momentum k with |k| < σ is replaced by
a new dispersion law ω(k), where ω ∈ C∞(R3), ω(k) ≥ |k|, ω(k) = |k|, for |k| ≥ σ ,
and ω(k) ≥ σ/2, for all k. Since bosons of momentum k with |k| ≤ σ do not interact
with the electron, the Hamiltonians Hmod and Hg have the same Møller operators. But
since the boson number operator is bounded by Hmod, it is more convenient to work
with the Hamiltonian Hmod, instead of Hg . (Of course, this trick does not survive the
limit σ → 0 !) In the sections following Sect. 5 we work with Hmod exclusively and
H ≡ Hmod!

In Sect. 6 we establish the main propagation estimate for the bosons. Denoting by
x the position of the electron and by y the Newton–Wigner position at time t of an
asymptotically free boson present in a state of finite total energy, we show that

1

t
|J (y/t) · (∇ω(k)− y/t)+ h.c|F(|x|/t)→ 0, as t →∞, (9)

at an integrable rate, if J ∈ C∞0 (R3,R3), F ∈ C∞0 (R) and supp(J ) ⊂ {|y| ≥ λ} while
supp(F ) ⊂ (−∞, β], where β < λ. The gradient, ∇ω, of ω is the group velocity of the
bosons. By Eq. (9) the asymptotic velocity of bosons that escape the electron, is given
by their group velocity ∇ω.

In Sect. 7, we construct the asymptotic observable W , which plays a crucial role in
our proof of asymptotic completeness. Given � with supp |∇�(p)|χ(�(p) ≤ �) < β

and g so small that ‖∇�E�(Hg)‖ ≤ β < 1/3, we choose γ ∈ (β, 1/3) and define χγ
as depicted in Fig. 1. For every energy cutoff f with supp(f ) ⊂ (−∞, �] we define

W = s − lim
t→∞ e

iHtf (H)d�(χγ,t )f (H)e
−iH t , (10)

where χγ,t denotes the operator of multiplication with χγ (|y|/t).W measures the num-
ber of bosons that propagate into the region {|y| ≥ γ t} as t → ∞. They are asymp-
totically free since β < γ is an upper bound on the electron propagation speed by the
electron propagation estimate in Sect. 4. In fact, thanks to this propagation estimate,
we may add a suitable space cutoff F(|x|/t) (see Fig. 1) in Eq. (10) next to d�(χγ,t )
without changing the limit, if it exists. For this reason the propagation estimate (9) is
sufficient to prove existence of W .

The key result of Sect. 7 is Theorem 27, which says that W is positive on the space
of states orthogonal to Hdes, without soft bosons, and with energies inside the support
of the energy cutoff f . This positivity is derived from an estimate of the form

〈e−iH tnψ, d�(|x − y|/tn)e−iH tnψ〉 ≥ (1− β − ε)‖f (H)ψ‖2 +O(g), (11)

valid for all vectors ψ with the properties specified above and for smooth energy cutoffs
f with supp(f ) ⊂ (−∞, �] and with ‖|∇�|E�(Hg)‖ ≤ β. Here {tn} is a sequence
of times, depending on ε and ψ , with tn → ∞ as n→ ∞. Some further explanations
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χF j j 8

β

0 γ

γ 1/3

Fig. 1. Typical choice of the function χγ , of the electron space cutoff F and of the partition in the photon
space j0, j∞

are necessary at this point: (i) Soft bosons must be avoided because, in H = Hmod,
their dispersion relation has been modified. “Without soft bosons” means “in the range
of the projector �(χi)”, where χi = χ|k|≥σ . (ii) Inequality (11) would fail for some
ψ ∈ P⊥desH were there excited one-electron states. But this has been excluded in Sect.
3. (iii) The estimate (11) does not easily translate into positivity ofW because inW the
photon position is measured relative to the origin, rather than relative to x. It is due to the
assumption β < 1/3, and a suitable choice of γ ∈ (β, 1/3) that (11) implies positivity
of W . See the introduction to Sect. 7.1 for a detailed explanation.

The subject of Sect. 8 is to show that, on states of energy ≤ � and for sufficiently
small coupling constant g (depending on the choice of �), the extended wave opera-
tor �̃+ can be inverted. Our proof is based on the construction of a Deift-Simon wave
operator W+ with the properties

W = �̃+W+, and (1⊗ P�)W+ = 0.

In order to construct the operatorW+, we have to split an arbitrary configuration of bosons
into one staying close to the electron and a configuration of bosons escaping ballistically
from the “localization cone” of the electron. This is accomplished by decomposing the
space, h = L2(R3, dk), of one-boson wave functions into a direct sum of two subspaces,

jt : h � h �−→ (
j0,t h, j∞,t h

) ∈ h⊕ h,

where j0 and j∞ are C∞-functions on R+ with j0 + j∞ ≡ 1 and graphs as depicted in
Fig. 1, and j0,t , j∞,t are defined by

j�,t (y) := j�(y/t).
The operator �̆(jt ) is the second quantization of the operator jt . It maps the physical
Hilbert space H = L2(R3, dx)⊗F into the extended Hilbert space H̃ = L2(R3, dx)⊗
F ⊗ F , and

I �̆(jt ) = 1.

The Deift-Simon wave operator W+ is a linear operator from H to H̃ defined by

W+ = s − lim
t→∞ e

iH̃ tf (H̃ )�̆(jt )d�(χγ,t )f (H)e
−iH t ,

where H̃ = H ⊗ 1+ 1⊗ d�(ω) is the extended modified Hamiltonian. The results of
Sect. 8 are summarized in Theorem 28.
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In Sect. 9, our proof of asymptotic completeness for Compton scattering is com-
pleted. In order to prove Eq. (8) we use an inductive argument, the induction being in
the number of bosons present in a scattering state. Let m := σ/2 > 0, where σ is the
infrared cutoff, and let n be an arbitrary positive integer. Our induction hypothesis is that

Ran�+ ⊃ E(−∞,�−nm)(H)H,
and our claim is that Ran�+ ⊃ E(−∞,�−(n−1)m)(H)H. From the definition of �+ it is
clear that the dressed one-electron wave packets are contained in Ran�+, and, thanks
to the infrared cutoff, so are all states which differ from a given vector in Ran�+ only
by soft bosons. Since, moreover, Ran�+ is closed, it is enough to show that

Ran�+ ⊃ P⊥des�(χi)E�(Hg)H,
where� is an arbitrary compact subinterval of (−∞, � − (n− 1)m), P⊥des = 1− Pdes,
and Pdes is the orthogonal projection onto the subspace, Hdes, of H of dressed one-
electron wave packets. Let ψ ∈ P⊥des�(χi)E�(H)H. Since our asymptotic observable
W is strictly positive on this space, there exists a vector ϕ = P⊥des�(χi)E�(H)ϕ with
ψ = �(χi)P⊥desWϕ. By Theorem 28,

Wϕ = �̃+W+ϕ = �̃+(1⊗ P⊥� )W+ϕ.
Next, by the intertwining property of W+ and since ϕ ∈ E�−(n−1)m(H),

W+ϕ ∈ E�−(n−1)m(H̃ )H̃.
Hence,

(1⊗ P⊥� )W+ϕ = (E�−nm(H)⊗ P⊥� )W+ϕ,
because H̃ = H ⊗1+1⊗d�(ω), and d�(ω)|̀RanP⊥� ≥ m. By our induction hypothe-
sis, (E(−∞,�−nm)(Hg)⊗P⊥� )W+ϕ can be approximated, with a norm error of less than
ε, by vectors of the form

∑

i

(�+χ(i))⊗ ϕ(i),

where ε > 0 is arbitrarily small, ϕ(i) ∈ F is orthogonal to �, and χ(i) ∈ H̃. Our results
in Sect. 4 (see Lemma 16, and proof thereof) then show that

lim
t→∞ e

iHgt Ie−iH̃gt
(
∑

i

�+χ(i) ⊗ ϕ(i)
)

exists and belongs to the range of�+. Some technical details may be found in the proofs
of Lemma 29 and Theorem 30 of Sect. 9.

At present, we do not see how to remove the infrared cutoff σ in the proofs of our
results of Sects. 6, 7 and 8. However, it is possible to construct scattering states and wave
operators in the limit σ → 0. Elaborating on a proposal in [Frö73], this has recently
been shown by Pizzo in a remarkable paper [Piz00].

A more unpleasant assumption in our work is the energy bound � < Oβ=1/3, forc-
ing the electron speed to be less than one third of the speed of light. One would expect
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asymptotic completeness to hold true under the assumption � < Oβ=1, which suffices
for the existence of the wave operator. The need for � < Oβ=1/3 is due to a lack of
Lorentz invariance; the speed of light is not independent of the frame of reference (see
Sect. 7.1). This problem can be avoided by defining all observables relative to the elec-
tron position x, rather than relative to the origin, but then one runs into serious technical
problems with non-H -bounded commutators.

In Sect. 10, we conclude with an outlook.
Some technical details are discussed in several appendices.

2. Fock Space and Second Quantization

Let h be a complex Hilbert space, and let⊗ns h denote then-fold symmetric tensor product
of h. Then the bosonic Fock space over h

F = F(h) = ⊕n≥0 ⊗ns h

is the space of sequences ϕ = (ϕn)n≥0, with ϕ0 ∈ C, ϕn ∈ ⊗ns h, and with the scalar
product given by

〈ϕ,ψ〉 :=
∑

n≥0

(ϕn, ψn),

where (ϕn, ψn) denotes the inner product in ⊗ns h. The vector � = (1, 0, . . . ) ∈ F is
called the vacuum. By F0 ⊂ F we denote the dense subspace of vectors ϕ for which
ϕn = 0, for all but finitely many n. The number operatorN is defined by (Nϕ)n = nϕn.

2.1. Creation- and Annihilation Operators. The creation operator a∗(h), h ∈ h, on F
is defined by

a∗(h)ϕ = √n S(h⊗ ϕ), for ϕ ∈ ⊗n−1
s h,

and extended by linearity to F0. Here S ∈ B(⊗nh) denotes the orthogonal projection
onto the symmetric subspace⊗ns h ⊂ ⊗nh. The annihilation operator a(h) is the adjoint
of a∗(h) restricted to F0. Creation- and annihilation operators satisfy the canonical
commutation relations (CCR)

[a(g), a∗(h)] = (g, h), [a#(g), a#(h)] = 0.

In particular, [a(h), a∗(h)] = ‖h‖2, which implies that the graph norms associated with
the closable operators a(h) and a∗(h) are equivalent. It follows that the closures of a(h)
and a∗(h) have the same domain. On this common domain we define the self-adjoint
operator

φ(h) = 1√
2
(a(h)+ a∗(h)). (12)

The creation- and annihilation operators, and thus φ(h), are bounded relative to the
square root of the number operator:

‖a#(h)(N + 1)−1/2‖ ≤ ‖h‖. (13)

More generally, for any p ∈ R and any integer n,

‖(N + 1)pa#(h1) · · · a#(hn)(N + 1)−p−n/2‖ ≤ Cn,p ‖h1‖ · · · · · ‖hn‖.
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2.2. The Functor �. Let h1 and h2 be two Hilbert spaces and let b ∈ B(h1, h2). We
define �(b) : F(h1)→ F(h2) by

�(b)|̀ ⊗ns h1 = b ⊗ · · · ⊗ b.
In general �(b) is unbounded; but if ‖b‖ ≤ 1 then ‖�(b)‖ ≤ 1. From the definition of
a∗(h) it easily follows that

�(b)a∗(h) = a∗(bh)�(b), h ∈ h1, (14)

�(b)a(b∗h) = a(h)�(b), h ∈ h2. (15)

If b∗b = 1 on h1 then these equations imply that

�(b)a(h) = a(bh)�(b) h ∈ h1, (16)

�(b)φ(h) = φ(bh)�(b) h ∈ h1. (17)

2.3. The Operator d�(b). Let b be an operator on h. Then d�(b) : F(h)→ F(h) is
defined by

d�(b)|̀ ⊗ns h =
n∑

i=1

(1⊗ · · · b ⊗ · · · 1).

For example N = d�(1). From the definition of a∗(h) we get

[d�(b), a∗(h)] = a∗(bh) [d�(b), a(h)] = −a(b∗h),
and, if b = b∗,

i[d�(b), φ(h)] = φ(ibh). (18)

Note that ‖d�(b)(N + 1)−1‖ ≤ ‖b‖.

2.4. The Operator d�(a, b). Suppose a, b ∈ B(h1, h2). Then we define d�(a, b) :
F(h1)→ F(h2) by

d�(a, b)|̀ ⊗ns h =
n∑

j=1

(a ⊗ . . . a︸ ︷︷ ︸
j−1

⊗b ⊗ a ⊗ . . . a︸ ︷︷ ︸
n−j

).

For a, b ∈ B(h) this definition is motivated by

�(a)d�(b) = d�(a, ab), and [�(a), d�(b)] = d�(a, [a, b]).

If ‖a‖ ≤ 1 then ‖d�(a, b)(N + 1)−1‖ ≤ ‖b‖ and

‖N−1/2d�(a, b)ψ‖ ≤ ‖d�(b∗b)1/2ψ‖. (19)

Lemma 1. Suppose r1 : h1 → h2, r∗2 : h2 → h3 and q : h1 → h3 are linear operators
and ‖q‖ ≤ 1. Then

|〈u, d�(q, r∗2 r1)v〉| ≤ 〈u, d�(r∗2 r2)u〉1/2〈v, d�(r∗1 r1)v〉1/2

for all u ∈ F(h3) and all v ∈ F(h1).
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Proof. By definition of the inner product, of d�(q, r∗2 r1), and by assumption on q,

|〈u, d�(q, r∗2 r1)v〉| =
∣
∣
∣
∣
∑

n≥0

n∑

j=1

〈un, (q ⊗ . . . r∗2 r1︸︷︷︸
j th

⊗ . . . q)vn〉
∣
∣
∣
∣

≤
∑

n≥0

n∑

j=1

‖(r2)jun‖‖(r1)j vn‖,

where (r�)j = 1⊗ . . . r� ⊗ . . . 1, r� in the j th factor. The assertion now follows by the
Schwarz inequality. ��

2.5. The Tensor Product of Two Fock Spaces. Let h1 and h2 be two Hilbert spaces. We
define a linear operator U : F(h1 ⊕ h2)→ F(h1)⊗ F(h2) by

U� = �⊗�,
Ua∗(h) = [a∗(h(0))⊗ 1+ 1⊗ a∗(h(∞))]U for h = (h(0), h(∞)) ∈ h1 ⊕ h2.

(20)

This defines U on finite linear combinations of vectors of the form a∗(h1) . . . a
∗(hn)�.

From the CCRs it follows that U is isometric. Its closure is isometric and onto, hence
unitary. It follows that

Ua(h) = [a(h(0))⊗ 1+ 1⊗ a(h(∞))]U. (21)

Furthermore we note that

Ud�(b) = [d�(b0)⊗ 1+ 1⊗ d�(b∞)]U if b =
(
b0 0
0 b∞

)

. (22)

For example UN = (N0 +N∞)U , where N0 = N ⊗ 1 and N∞ = 1⊗N .
Let Fn = ⊗ns h and let Pn be the projection from F = ⊕n≥0Fn onto Fn. Then the

tensor product F ⊗F is norm-isomorphic to⊕n≥0⊕nk=0 Fn−k⊗Fk , the corresponding
isomorphism being given by ϕ �→ (ϕn,k)n≥0, k=0..n, where ϕn,k = (Pn−k ⊗ Pk)ϕ. In
this representation of F ⊗ F and with pi(h(0), h(∞)) = h(i), U becomes

U |̀ ⊗ns (h⊕ h) =
n∑

k=0

(
n

k

)1/2

p0 ⊗ . . .⊗ p0︸ ︷︷ ︸
n−k factors

⊗p∞ ⊗ . . .⊗ p∞︸ ︷︷ ︸
k factors

. (23)

2.6. Factorizing Fock Space in a Tensor Product. Suppose j0 and j∞ are linear opera-
tors on h and j : h→ h⊕ h is defined by jh = (j0h, j∞h), h ∈ h. Then j∗(h1, h2) =
j∗0 h1 + j∗∞h2 and consequently j∗j = j∗0 j0 + j∗∞j∞. On the level of Fock spaces,
�(j) : F(h)→ F(h⊕ h), and we define

�̆(j) = U�(j) : F → F ⊗ F .
It follows that �̆(j)∗�̆(j) = �(j∗j) which is the identity if j∗j = 1. Henceforth
j∗j = 1 is tacitly assumed in this subsection. From (14) through (17), (20) and (21) it
follows that

�̆(j)a#(h) = [a#(j0h)⊗ 1+ 1⊗ a#(j∞h)]�̆(j), (24)

�̆(j)φ(h) = [φ(j0h)⊗ 1+ 1⊗ φ(j∞h)]�̆(j). (25)
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Furthermore, if ω = ω ⊕ ω on h⊕ h, then by (22)

�̆(j)d�(ω) = U�(j)d�(ω) = Ud�(ω)�(j)− Ud�(j, ω j − jω)
= [d�(ω)⊗ 1+ 1⊗ d�(ω)]�̆(j)− d�̆(j, ω j − jω), (26)

where the notation d�̆(a, b) = Ud�(a, b) is introduced. In particular �̆(j)N = (N0 +
N∞)�̆(j). We remark that, by (23),

�̆(j)|̀ ⊗ns h =
n∑

k=0

(
n

k

)1/2

j0 ⊗ . . .⊗ j0︸ ︷︷ ︸
n−k factors

⊗ j∞ ⊗ . . .⊗ j∞︸ ︷︷ ︸
k factors

. (27)

Lemma 2. If j, k : h→ h⊕ h, j∗j ≤ 1, and k0, k∞ are self-adjoint, then

|〈u, d�̆(j, k)v〉| ≤ 〈u, (d�(|k0|)⊗ 1) u〉1/2〈v, d�(|k0|)v〉1/2
+〈u, (1⊗ d�(|k∞|)) u〉1/2〈v, d�(|k∞|)v〉1/2

for all u ∈ F ⊗ F and all v ∈ F .

Proof. Write 〈u, d�̆(j, k)v〉 = 〈U∗u, d�(j, k(0))v〉+〈U∗u, d�(j, k(∞))v〉where k(0) =
(k0, 0) and k(∞) = (0, k∞). Then apply Lemma 1 to both terms. In the first term we
choose r2 = (|k0|1/2, 0) and r1 = |k0|1/2sgn(k0). ��

2.7. The “Scattering Identification”. An important role will be played by the scattering
identification I : F ⊗ F → F defined by

I (ϕ ⊗�) = ϕ,
Iϕ ⊗ a∗(h1) · · · a∗(hn)� = a∗(h1) · · · a∗(hn)ϕ, ϕ ∈ F0,

and extended by linearity to F0⊗F0. (Note that this definition is symmetric with respect
to the two factors in the tensor product.) There is a second characterization of I which
will often be used. Let ι : h⊕ h→ h be defined by ι(h(0), h(∞)) = h(0) + h(∞). Then
I = �(ι)U∗, with U as above. Since ‖ι‖ = √2, the operator I is unbounded.

Lemma 3. For each positive integer k, the operator I (N+1)−k⊗χ(N ≤ k) is bounded.

Let j : h → h ⊕ h be defined by jh = (j0h, j∞h), where j0, j∞ ∈ B(h). If
j0 + j∞ = 1, then �̆(j) is a right inverse of I , that is,

I �̆(j) = 1. (28)

Indeed I �̆(j) = �(ι)U∗U�(j) = �(ιj) = �(1) = 1.

3. The Model, Dressed One-Electron States, and Bounds on the Interaction

In this section we describe our model in precise mathematical terms and discuss its main
properties. The main new result of this section is Theorem 7.
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3.1. The Model. The Hamilton operator of the system described in the introduction is
defined by

Hg = �(p)⊗ 1+ 1⊗ d�(|k|)+ gφ(Gx) (29)

acting on the Hilbert space H = L2(R3, dx)⊗ F , where F is the bosonic Fock space
over L2(R3, dk). Here and henceforth x ∈ R

3 denotes the position of the electron, k is
the momentum of a boson and p = −i∇x . In this paper we are interested in both rela-
tivistic electrons with �(p) =

√
p2 +M2 and non-relativistic ones, �(p) = p2/2M .

Rather than treating these two cases separately, we formulate a set of assumptions that
are satisfied in both cases.

Hypothesis 0. � ∈ C2(R3), � ≥ 0, and the functions |∇�|(� + 1)−1/2 and ∂2� are
bounded.

The boundedness of |∇�|(�+ 1)−1/2 ensures that |∇�|2 is Hg-bounded.
The coupling function Gx(k) has the form

Gx(k) = e−ik·xκσ (k)
with an infrared (IR) cutoff imposed on the form factor κσ . Specifically, we assume that

Hypothesis 1. κσ (k) = κ(k)χ(|k|/σ), for some σ > 0. Here κ ∈ C∞0 (R3), κ ≥ 0, and
χ ∈ C∞(R, [0, 1]) with χ(s) = 0 if s ≤ 1 and χ(s) = 1 if s ≥ 2.

The fact that
∫ |κσ (k)|2/|k| dk ≤

∫ |κ(k)|2/|k| dk < ∞ for all σ guarantees that the
smallness assumptions on |g| in Theorems 7 and 17 are independent of σ . Incidentally,
we put κσ=0(k) = κ(k) (this is used in Sect. 4 where most of the results also hold without
infrared cutoff). The assumption κ ≥ 0 in Hypothesis 1 is included for convenience. It
allows us to give a simple proof of Lemma 38 in Appendix D.1, but it is otherwise not
needed; (see the remark after Theorem 7).

By Lemma 8 below, the operator φ(Gx) is bounded relative to (d�(|k|) + 1)1/2

and thus also relative to (Hg=0 + 1)1/2. It follows that φ(Gx) is infinitesimal w.r. to
H0 = Hg= 0, and thus the operatorHg is self-adjoint onD(H0) and bounded from below.
Our main results hold on spectral subspacesE�(Hg)H, where ‖|∇�|E�(Hg)‖ ≤ β for
some β < 1/3. This bound can be derived from the following further assumption on�;
(see Lemma 10).

Hypothesis 2. For each β > 0, there exists a constant Oβ > infp �(p) such that

|∇�(p)| ≤ β for all p with �(p) ≤ Oβ.
By lowering the values of Oβ we may achieve that β �→ Oβ is non-decreasing and
continuous from the left. Under these assumptions, for each � < Oβ , there exists a
β ′ < β such that � < Oβ ′ < Oβ . A function Oβ with these properties can also be
defined by Oβ := sup{λ : f (λ) < β}, where f (λ) := sup{|∇�(P )| : �(P ) < λ}.
Given Hypothesis 0, Hypothesis 2 is then equivalent to f (λ)→ 0 as λ→ inf �(p).

An important consequence of Hypothesis 2 is that

�(p − k) ≥ �(p)− β|k|, if �(p) ≤ Oβ, (30)

which is obvious from a sketch of the graph of a generic function � satisfying
Hypothesis 2.
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As mentioned in the introduction, the number operator N is not bounded relative
to Hg . However, by Hypothesis 1, an interacting boson has a minimal energy σ > 0
and thus the number of interacting bosons is bounded w.r. to the total energy, while the
number of soft bosons with energy below σ is conserved under the time evolution. To
split the soft bosons from the interacting ones, we use that L2(R3) = L2({k : |k| >
σ }) ⊕ L2({k : |k| ≤ σ }) and thus that F is isomorphic to Fi ⊗ Fs , where Fi and Fs
are the Fock spaces over L2(|k| > σ) and L2(|k| ≤ σ), respectively. Let χi denote the
characteristic function of the set {k : |k| > σ }. Then the isomorphismU : F → Fi⊗Fs
is given by

U � = �i ⊗�s,
U a∗(h) = (a∗(χi h)⊗ 1+ 1⊗ a∗((1− χi)h)) U. (31)

We also use the symbolU to denote the operator 1L2(R3,dx)⊗U : H→ Hi⊗Fs , where
Hi = L2(R3, dx)⊗Fi . On the Hilbert space Hi⊗Fs the Hamiltonian is represented by

UHgU
∗ = Hi ⊗ 1+ 1⊗ d�(|k|) with

Hi = �(p)+ d�(|k|)+ gφ(Gx),
and the projector �(χi) onto the subspace of interacting bosons becomes

U�(χi)U
∗ = 1⊗ P�s ,

where P�s is the orthogonal projection onto the vacuum vector �s ∈ Fs .
The Hamiltonian Hg commutes with translations generated by the total momen-

tum P = p + d�(k). It is therefore convenient to describe Hg in a representation
of H in which the operator P is diagonal. To this end, we define the unitary map
� : H→ L2(R3

P ;F), whereL2(R3
P ;F) ≡

∫ ⊕
dP F is the space ofL2-functions with

values in F . For ϕ = {ϕn(x, k1, . . . , kn)}n≥0 ∈ H we define �ϕ ∈ L2(R3
P ;F) by

(�ϕ)n(P, k1, . . . , kn) = ϕ̂n
(
P −

n∑

i=1

ki, k1, . . . , kn

)
,

where

ϕ̂n(p, k1, . . . , kn) = (2π)−3/2
∫
e−ip·xϕn(x, k1, . . . , kn)d

3x.

On L2(R3
P ;F) the Hamiltonian Hg is given by

(�Hg�
∗ψ)(P ) = Hg(P )ψ(P ), where

Hg(P ) = �(P − d�(k))+ d�(|k|)+ gφ(κσ ).

3.2. Dressed One-Electron States. Next we describe sufficient conditions for Eg(P ) =
inf σ(Hg(P )) to be an eigenvalue of Hg(P ).

If g = 0 then clearly the vacuum vector is an eigenvector of Hg=0(P ) and �(P ) is
its energy. Furthermore, if �(P ) ≤ Oβ=1 then �(P − k)+ |k| ≥ �(P ) and hence

�(P ) = inf σ(Hg=0(P )) = E0(P ).

At least for small g and�(P ) < Oβ=1, we expect that inf σ(Hg(P )) remains an eigen-
value, and this is what we prove below.

If |∇�(P )| > 1, however, then �(P ) > E0(P ), and the eigenvalue �(P ) of
Hg=0(P ) is expected to disappear when the interaction is turned on.
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Theorem 4. Assume Hypotheses 0–2 are satisfied. Let Hg(P ) be defined as above and
let Eg(P ) := inf σ(Hg(P )). For every � < Oβ=1 there exists a constant g� > 0 such
that, for |g| < g� and Eg(P ) ≤ �,

(i) Eg(P ) is a simple eigenvalue of Hg(P ).
(ii) The (unique) ground state of Hg(P ) belongs to Ran�(χi).

Proof. It suffices to combine results proven in Appendix D.1 to conclude Theorem 4.
(i) By Hypothesis 2 and the remarks thereafter, there exists a β < 1 such that � <

Oβ < O1. By Lemma 35 and Theorem 37 (i), there exists gβ > 0 such that Eg(P )
is an eigenvalue of Hg(P ) if �(P ) ≤ Oβ and |g| < gβ . By Lemma 39, the former
assumption is satisfied if Eg(P ) ≤ � and |g| ≤ (Oβ −�)/(Oβ + C). Hence (i) holds
for g� := min(gβ, (Oβ −�)/(Oβ + C)).

The uniqueness follows from Lemma 38, and part (ii) of Theorem 4 from Theorem 37,
part (ii). ��
Remark. If �(p) =

√
p2 +M2 then Hg(P ) has a unique ground state for all values of

g ∈ R, σ > 0 and all P ∈ R
3. An analogous result for�(p) = p2/(2M) holds at least

for all P ∈ R
3 with |P | ≤ (√3− 1)/M , [Frö74].

In the following we denote by ψP ∈ F the (up to a phase) unique ground state vec-
tor of Hg(P ) provided by Theorem 4. The space of dressed one-electron wave packets
Hdes ⊂ H is defined by

�Hdes = {ψ ∈ L2({P : Eg(P ) ≤ �};F)|ψ(P ) ∈ 〈ψP 〉},
where 〈ψP 〉 is the one-dimensional space spanned by the vector ψP ; Hdes is a closed
linear subspace which reduces Hg in the sense that Hg commutes with the projection
Pdes onto Hdes. The latter is obvious from (�Pdes�

∗ϕ)(P ) = PψP ϕ(P ).

3.3. Positive Commutator and Absence of Excited States. The purpose of this section is
to prove the absence of excited eigenvalues of Hg(P ) below a given threshold � if g is
small enough, depending on�.As usual this is done by combining a positive commutator
estimate with a virial theorem. A priori we only have a virial theorem on Ran�(χi), and
therefore we only get absence of excited eigenvalues for Hg(P ) restricted to Ran�(χi)
in a first step. Recall thatχi(k) is the characteristic function of the set {k ∈ R

3 : |k| > σ },
where σ > 0 is the infrared cutoff defined in Hypothesis 1, and hence that �(χi) is the
orthogonal projection onto the subspace of interacting bosons. Thanks to the IR cutoff,
however, this fact then allows us to show thatHg(P )|̀�(χi)⊥ has no eigenvalues, at all,
below �, and the desired result follows.

The conjugate operator we use is A = d�(a), where

a = 1

2

(
k

|k| · y + y ·
k

|k|
)

.

On a suitable dense subspace of F ,

[iHg(P ),A] = N − ∇�(P − d�(k)) · d�(k/|k|)− g φ(iaκσ ). (32)

We use this identity to define the quadratic form 〈ϕ, [iHg(P ),A]ϕ〉 on D(Hg(P )) ∩
D(N).
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Theorem 5 (Virial Theorem). Let Hypotheses 0 and 1 (Sect. 3.1) be satisfied. If ϕ ∈ F
is an eigenvector of Hg(P ) with �(χi)ϕ = ϕ, then

〈ϕ, [iHg(P ),A]ϕ〉 = 0.

Proof. The theorem follows directly from Lemma 40 in Appendix D.2, where we prove
the Virial Theorem for a modified Hamiltonian Hmod(P ), which is identical to Hg(P )
on states without soft bosons. ��

Theorem 6. Assume Hypotheses 0 – 2 (Sect. 3.1) are satisfied. For each � < Oβ=1,
there exist constants δ� > 0, g� > 0 and C� , independent of σ , such that

〈ϕ, [iHg(P ),A]ϕ〉 ≥ δ�〈ϕ,Nϕ〉 − C� |g|‖ϕ‖2,

for all P ∈ R
3, |g| < g� , and ϕ ∈ D(N) ∩ RanE�(Hg(P )).

Proof. Choose f ∈ C∞0 (R; [0, 1]) with f ≡ 1 on [infP E0(P ) − 1, �] and f (s) = 0
for s ≥ � + ε, where � + ε < Oβ=1. Let f = f (Hg(P )) and E� as above. Since
fE� = E� and since [f,N1/2] and [f,N1/2](Hg(P )+ i)1/2 are of order g, uniformly
in σ , by Lemma 10,

E�∇�(P − d�(k)) · d�(k̂)E� ≤ E� |∇�(P − d�(k))|NE�
= E�N1/2f |∇�(P − d�(k))|fN1/2E� +O(g)
≤ ‖|∇�(P − d�(k))|E�+ε(Hg(P ))‖E�NE� +O(g)
≤ ‖|∇�|E�+ε(Hg)‖E�NE� +O(g)
≤ (1− δ�)E�NE� +O(g)

for some δ� > 0 and |g| small enough. Here O(g) is independent of σ . By Eq. (32)
defining [iHg(P ),A], this estimate and the boundedness of φ(iaκσ )E� prove the the-
orem. ��

In the next theorem, Theorems 5 and 6 are combined to prove absence of excited
eigenvalues below�. This is first done forHg(P )|̀Ran�(χi) (see Eq. (33)) and then for
Hg(P ).

Theorem 7. Assume Hypotheses 0 – 2 are satisfied and that � < Oβ=1, with Oβ given
by Hypotheses 2. Then there exists a constant g� > 0 such that

σpp(Hg(P )) ∩ (−∞, �] = {Eg(P )},

for all P ∈ R
3 with Eg(P ) ≤ �, and all g with |g| < g� .

Remark. For those P with Eg(P ) ≤ � and for |g| small enough depending on �,
the proof of this theorem shows again that Eg(P ) is a non-degenerate eigenvalue (cf.
Theorem 4). Here no assumption on the sign of κ is needed.

The proof also shows that ‖ψP − �‖ = O(|g|1/2), g → 0, uniformly in P for
Eg(P ) ≤ �.

In the case of relativistic electrons the theorem shows that σpp(Hg(P ))∩(−∞, �] =
{Eg(P )} for all � ∈ R and for |g| small enough, depending on �.
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Proof. Letψg = �(χi)ψg be a normalized eigenvector ofHg(P )with energy≤ �, and
choose the phase of ψg so that 〈ψg,�〉 ≥ 0. By the Virial Theorem and by Theorem 6,

0 ≥ δ�〈ψg, (1− P�)ψg〉 − C� |g|,

where

〈ψg, (1− P�)ψg〉 = 1− |〈�,ψg〉|2 ≥ 1− |〈�,ψg〉| = 1

2
‖ψg −�‖2.

In the last equation the choice of the phase ofψg was used. We conclude that ‖ψg−�‖ ≤
(2|g|C�/δ�)1/2. Since it is impossible to have two orthonormal vectors ψ(1)g and ψ(2)g
with ‖ψ(i)g − �‖ < 1/

√
2, for |g| < δ�/4C� there exists only one eigenvalue of

Hg(P )|̀Ran�(χi) below or equal to �, and it is simple. By Theorem 4, this eigenvalue
is Eg(P ). Hence, for these values of g,

σpp
(
Hg(P )|̀Ran�(χi)

) ∩ (−∞, �] = {Eg(P )}, (33)

for all P with Eg(P ) ≤ �. The theorem now follows if we show that

σpp

(
Hg(P )|̀Ran�(χi)

⊥
)
∩ (−∞, �] = ∅. (34)

To prove (34), we use that F ∼= Fi ⊗Fs , where Fi and Fs are the bosonic Fock spaces
over L2({k : |k| > σ }) and over L2({k : |k| ≤ σ }), respectively, where σ > 0 is the
infrared cutoff defined in Hypothesis 1; (Fi and Fs are the spaces of interacting and of
soft, non-interacting bosons, respectively). Consider the restriction ofHg(P ) to the sub-
space of Fi ⊗Fs of all vectors with exactly n soft bosons. This subspace is isomorphic
to Fs,n = L2

s (R
3n, dk1 . . . dkn;Fi ), the space of all square integrable functions on R

3n,
with values in Fi which are symmetric with respect to permutations of the n variables.
The action of Hg(P ) on a vector ψ ∈ Fs,n is given by

(Hg(P )ψ)(k1, . . . kn) = HP (k1, . . . , kn)ψ(k1, . . . kn) with

HP (k1, . . . , kn) = Hg(P − k1 − · · · − kn)+ |k1| + · · · + |kn|.

The operatorHP (k1, . . . , kn) acts on Fi and, by (33), its only eigenvalue in the interval
(−∞, �] is given by Eg(P − k1 − · · · − kn)+ |k1| + · · · + |kn|, as long as this number
is smaller than �, and if |g| < δ�/(4C�). This implies that, for |g| < δ�/(4C�), a
number λ ∈ (−∞, �] is an eigenvalue of the restrictionHg(P )|̀Fs,n if and only if there
exists a set Mλ ⊂ R

3n of positive measure such that

Eg(P − k1 − . . . kn)+ |k1| + . . . |kn| = λ

for all (k1, . . . , kn) ∈ Mλ. Using that |∇Eg(P )| = |〈ψP ,∇�(P − d�(k))ψP 〉| ≤
supP :E(P )≤� ‖∇�(P − Pf )ψP ‖ ≤ ‖|∇�|E�(Hg)‖ < 1, for |g| small enough
(Lemma 10), it can easily be shown that such a set Mλ does not exist. This completes
the proof of the theorem. ��



Asymptotic Completeness 433

3.4. Bounds on the Interaction.

Lemma 8. Let L2
ω(R

3) ≡ L2(R3, (1 + 1/|k|)dk) = {
h ∈ L2(R3) :

∫
dk(1+ 1/|k|)

|h(k)|2 <∞} and let h ∈ L2
ω(R

3). Then

‖a(h)ϕ‖ ≤
(∫

dk|h(k)|2/|k|
)1/2

‖d�(|k|)1/2ϕ‖

‖a∗(h)ϕ‖ ≤ ‖h‖ω‖(d�(|k|)+ 1)1/2ϕ‖
‖φ(h)ϕ‖ ≤

√
2‖h‖ω ‖(d�(|k|)+ 1)1/2ϕ‖

±φ(h) ≤ αd�(|k|)+ 1

α

∫
dk
|h(k)|2
|k| , α > 0,

where ‖h‖2ω =
∫
dk(1+ 1/|k|)|h(k)|2.

For the easy proofs, see [BFS98], where similar bounds are established.
In the analysis of electron-photon scattering it is important that the interaction be-

tween bosons and electron decays sufficiently fast with increasing distance. This decay
is the subject of the next lemma.

Lemma 9. Assume Hypothesis 1 (Sect. 3.1).

i) For arbitrary n,µ ∈ N there is a constant Cµ,n > 0 such that

sup
x∈R3
‖χ(|x − y| ≥ R)|x − y|nGx‖ ≤ Cµ,nR−µ

for all R > 0. In particular ‖φ (|x − y|nGx) (N + 1)−1/2‖ <∞, for all n ∈ N.
ii) For every µ ∈ N there is a constant Cµ > 0 such that

sup
|x|≤R

‖χ(|y| ≥ R′)Gx‖ ≤ Cµ(R′ − R)−µ

for all R′ ≥ R.

Proof. i) For all x ∈ R
3,

‖χ(|x − y| ≥ R)|x − y|nGx‖2 =
∫

|x−y|>R
dy|x − y|2n|κ̂σ (x − y)|2

=
∫

|y|>R
dy|y|2n|κ̂σ (y)|2

≤ R−2µ
∫
dy |y|2(n+µ)|κ̂σ (y)|2 = R−2µCµ,n,

where, by Hypothesis 1, Cµ,n is finite for all σ ≥ 0 and all n,µ ∈ N.
Statement ii) follows from i), because if |x| ≤ R and |y| ≥ R′, then |x − y| ≥

R′ − R. ��
The following lemma is used to apply Hypothesis 2, when we need to control the

velocity of the electron |∇�(p)| by bounds on the total energy Hg .

Lemma 10. Assume Hypotheses 0 – 2. For each β > 0 and each � < Oβ , there exists
a constant gβ,� > 0 independent of σ such that

sup
|g|≤gβ,�

‖|∇�|E�(Hg)‖ ≤ β

for all σ > 0.
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Remark. This lemma holds equally for the modified Hamiltonian Hmod, introduced in
Sect. 5.

Proof. Pick� < Oβ and pick ε > 0 such that�+ε < Oβ . Choose f ∈ C∞0 (R, [0, 1])
with f ≡ 1 on [inf σ(Hg=0)− 1, �] and f (s) = 0 for s ≥ � + ε. Then

‖|∇�|E�(Hg)‖ ≤ ‖|∇�|f (Hg)‖
≤ ‖|∇�|f (Hg=0)‖ +O(g)
≤ ‖|∇�|f (�)‖ +O(g) ≤ β

for g small enough, because ‖|∇�|f (�)‖ ≤ sup{|∇�(p)| : �(p) ≤ � + ε} < β by
Hypothesis 2 and the remarks thereafter. ��

For non-relativistic and relativistic electron kinematics the constants Oβ and g�,β
can be determined explicitly:

Lemma 11. Let� ∈ R andC := ∫ |κ(k)|2/|k| dk (which is independent of the IR cutoff
σ !)

(a) If �(p) = p2/2M then

‖|∇�|E�(Hg)‖ ≤
(

2

M
(� + g2C)

)1/2

. (35)

(b) If �(p) =
√
p2 +M2 then

‖|∇�|E�(Hg)‖ ≤
(

1− M2

(� + g2C)2

)1/2

. (36)

Proof. From Lemma 8 with α = 1/g and from |κσ | ≤ |κ| it follows that

� ≤ Hg + g2
∫ |κ(k)|2

|k| dk (37)

in both cases.
Statement (a) follows from |∇�|2 = 2�/M and (37). In case (b) we have |∇�|2 =

1 − M2/�2 and we need an estimate on �−2 from below. By (37), �−1 ≥ (H +
g2
∫ |κ(k)|2/|k| dk)−1 and hence

E�(Hg)�
−2E�(Hg) ≥ (E�(Hg)�−1E�(Hg))

2 ≥ (� + g2C)−2E�(Hg).

This proves (b). ��

4. Propagation Estimate for the Electron and Existence of the Wave Operator

Wave operators map scattering states onto interacting states. In our model the scattering
states consist of dressed one-electron (DES) wave packets and some asymptotically free
outgoing bosons described by asymptotic field operators, which act on the DES. The
DES were constructed in the previous section, and the existence of asymptotic field
operators in models such as the present one was established in [FGS00]. We recall that
the key idea in [FGS00] was to utilize Huyghens’ principle in conjunction with the fact
that massive relativistic particles propagate with a speed strictly less than the speed of
light. In the present setting, where the electron dispersion law �(p) is more general,
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we can limit the electron speed from above by imposing a bound on the total energy.
In fact, by the following propagation estimate, the electron in a state from RanE�(Hg)
with ‖|∇�|E�(Hg)‖ ≤ β will stay out of the region |x| > βt in the limit t →∞. (See
Proposition 6.3 in [DG97] for a similar result in N -body quantum scattering.)

No infrared cutoff is necessary in this section. From Hypothesis 1 we only need that
κσ ∈ C∞0 (R3), where σ may be equal to zero. Asymptotic completeness of the wave
operator, stated at the end of this section, of course does require that σ is positive.

Proposition 12 (Propagation estimate for electron). Let Hypotheses 0 and 2 (Sect.
3.1) be satisfied, and assume that κσ ∈ C∞0 (R3) (σ = 0 is allowed). Suppose β, g and
� > inf σ(Hg) are real numbers for which ‖|∇�|E�(Hg)‖ ≤ β. Let f ∈ C∞0 (R) with
supp f ⊂ (−∞, �).

i) If β < λ < λ′ <∞ then there exists a constant Cλ,λ′ such that
∫ ∞

1

dt

t
‖χ[λ,λ′](|x|/t)f (Hg)e−iHgtϕ‖2 ≤ Cλ,λ′ ‖ϕ‖2.

ii) Suppose F ∈ C∞(R) with F ′ ∈ C∞0 (R) and supp(F ) ⊂ (β,∞]. Then

s − lim
t→∞F(|x|/t)f (Hg)e

−iHgt = 0.

Remark. This proposition equally holds on the extended Hilbert space H̃ = H ⊗ F if
Hg is replaced by the extended Hamiltonian H̃g = Hg ⊗ 1+ 1⊗ d�(|k|) (see Eq. (48)
below).

Furthermore, the validity of the proposition does not depend on the dispersion law
of the bosons. Therefore we may replaceHg (or H̃g) by the modified HamiltonianHmod

(or H̃mod) to be introduced in Sect. 5, and the proposition continues to hold.

Proof. i) Let ε > 0 be so small that λ− ε > β. Pick h ∈ C∞0 (R) with h = 1 on [λ, λ′]
and supp(h) ⊂ [λ − ε, λ′ + 1]. Define h̃(s) = ∫ s

0 dτh
2(τ ), and set h = h(|x|/t) and

h̃ = h̃(|x|/t). We work with the propagation observable

φ(t) = −f (Hg)h̃f (Hg).
Since φ(t) is a bounded operator, uniformly in t , it is enough to prove the lower bound

Dφ(t) ≡ ∂φ(t)

∂t
+ [iHg, φ(t)] ≥ C

t
f h2f +O(t−2), (38)

for a positive constant C. To prove (38), we first note that

∂φ(t)

∂t
= f (Hg)h2 |x|

t2
f (Hg) ≥ (λ− ε)

t
f (Hg)h

2f (Hg). (39)

Furthermore, by Lemma 32,

[iHg, φ(t)] = −f (Hg)[i�(p), h̃]f (Hg)

= − 1

2t
f (Hg)

(

∇� · x|x|h
2 + h2 x

|x| · ∇�
)

f (Hg)+O(t−2)

= − 1

2t
f (Hg)h

(

∇� · x|x| +
x

|x| · ∇�
)

hf (Hg)+O(t−2),



436 J. Fröhlich, M. Griesemer, B. Schlein

and thus

|〈ϕt , [iHg, φ(t)]ϕt 〉| ≤ 1

t
‖|∇�|hf (Hg)ϕt‖‖hf (Hg)ϕt‖ +O(t−2). (40)

In order to estimate the factor ‖|∇�|hf (Hg)ϕt‖, we choose f̃ ∈ C∞0 (R) with f̃ f = f
and with supp f̃ ⊂ (−∞, �), and we note that, since [h, f̃ (Hg)] = O(t−1),

f (Hg)h|∇�|2hf (Hg) = f (Hg)hf̃ (Hg)|∇�|2f̃ (Hg)hf (Hg)+O(t−1). (41)

By assumption on |∇�|, (41) combined with (40) shows that

|〈ϕt , [iHg, φ(t)]ϕt 〉| ≤ β

t
‖hf (Hg)ϕt‖2 +O(t−2),

where we commuted f̃ (Hg) with h once again. This, together with (39) and λ− ε > β,
implies (38) and proves the first part of the proposition.

ii) Clearly it is enough to prove that

lim
t→∞φ(t) = 0 where φ(t) = 〈ϕt , f (Hg)F (|x|/t)f (Hg)ϕt 〉, (42)

for ϕ ∈ H and for an arbitrary F satisfying the assumptions of the proposition and such
thatF(s) ≥ 0 for all s. To this end we first note that the limit limt→∞ φ(t) exists because∫∞

1 dt |φ′(t)| < ∞ by part i) of this proposition. Moreover, if F has compact support,
then, by i),

∫∞
1 dt φ(t)/t <∞ and hence limt→∞ φ(t) = 0.

It remains to prove (42) if the support of F is not compact. Clearly it is enough to
consider the case where F(s) = 1 for all s sufficiently large and F ′ ≥ 0. For such
functions F we define

φλ(t) = 〈ϕt , f F (|x|/λt)f ϕt 〉,
for an arbitrary λ ≥ 1. Computing the derivative of φλ we find

d

dt
φλ(t) = 〈ϕt , f

(
− 1
t
F ′ |x|

λt
+ 1

2λt (∇� · x|x|F ′ + F ′ x|x| · ∇�)+O(λ−2t−2)
)
f ϕt 〉

≤ O(λ−2t−2)

for λ large enough (because the sum of the terms proportional to t−1 is negative, if λ is
large enough). Thus, for an arbitrary fixed t0 (and for λ large enough), we have that

φλ(t) = φλ(t0)+
∫ t

t0

dτφ′λ(τ ) ≤ φλ(t0)+
C

λ2t0
,

for all t > t0, and, in particular, for t →∞. Since φλ(t0)→ 0 for λ→∞ it follows that

lim
λ→∞

lim sup
t→∞

φλ(t) = 0. (43)

Obviously

lim
t→∞φ(t) = lim

t→∞(φ(t)− φλ(t))+ lim
t→∞φλ(t).
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By (43) the second term can be made smaller than any positive constant, by choosing λ
sufficiently large. After having fixed λ, the first term on the r.h.s. of the last equation is
seen to vanish, because

φ(t)− φλ(t) = 〈ϕt , f (F (|x|/t)− F(|x|/λt)) f ϕt 〉
and because the function F(s) − F(s/λ) has compact support. Thus the l.h.s. of the
last equation is smaller than any positive constant. Since φ(t) ≥ 0, for all t , Eq. (42)
follows. ��

In order to prove the existence of the asymptotic field operators we have to assume
that ‖|∇�|E�(Hg)‖ < 1; this will ensure that the photons propagating along the light
cone are far away from the electron and hence move freely, as t →∞.

Theorem 13 (Existence of asymptotic field operators). Let Hypotheses 0 and 2 be
satisfied and suppose κσ ∈ C∞0 (R3) (σ = 0 is allowed). Let g and � be real numbers
for which ‖|∇�|E�(Hg)‖ < 1 (see Hypothesis 2 and Lemma 10). Then the following
statements hold true.

i) Let h ∈ L2
ω(R

3). Then the limit

a
�
+(h)ϕ = lim

t→∞ e
iHgta�(ht )e

−iHgtϕ

exists for all ϕ ∈ RanE�(Hg). Here ht (k) = e−i|k|t h(k).
ii) Let h, g ∈ L2

ω(R
3). Then

[a+(g), a∗+(h)] = (g, h) and [a�+(g), a
�
+(h)] = 0,

in the sense of quadratic forms on RanE�(Hg).
iii) Let h ∈ L2

ω(R
3), and let M := sup{|k| : h(k) �= 0} and m := inf{|k| : h(k) �= 0}.

Then

a∗+(h)Ranχ(Hg ≤ E) ⊂ Ranχ(Hg ≤ E +M),
a+(h)Ranχ(Hg ≤ E) ⊂ Ranχ(Hg ≤ E −m),

if E ≤ �.
iv) Let hi ∈ L2

ω(R
3) for i = 1, . . . , n. Put Mi = sup{|k| : hi(k) �= 0} and assume

ϕ ∈ RanEλ(Hg). Then, if λ +∑n
i=1Mi ≤ � we have ϕ ∈ D(a�+(h1) . . . a

�
+(hn))

and

a
�
+(h1) . . . a

�
+(hn)ϕ = lim

t→∞ e
iHgta�(h1,t ) . . . a

�(hn,t )e
−iHgtϕ

and

‖a�+(h1) . . . a
�
+(hn)(Hg + i)−n/2‖ ≤ C‖h1‖ω . . . ‖hn‖ω.

Remark. For�(P ) = √P 2 +m2 the condition ‖|∇�|E�(Hg)‖ < 1 is satisfied for all

� ∈ R and hence a�+(h) exists on ∪�E�(Hg)H, and thus on D(|Hg + i|1/2) by (iv).
In this case part (iv) holds true for hi ∈ L2

ω(R
3), i = 1, . . . n and ϕ ∈ D(|Hg + i|n/2),

without any assumption on the support of the functions hi .
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Proof. Similar results are proven in [FGS00] for more involved models. It is easy to
make the necessary adaptations of the arguments in [FGS00] to the model at hand. ��

Next we show, using Proposition 12, that the DES wave packets ϕ ∈ Hdes are vacua
of these asymptotic fields. It is known that Eg(P ) = inf σ(Hg(P )) is an eigenvalue of
Hg(P ) if κσ is sufficiently regular at the origin (also if σ = 0) and if |g| is sufficiently
small. Thus Hdes is non–empty. However, we will not make any use of this, and no
assertion about Hdes is made in the following lemma.

Lemma 14. Suppose that Hypotheses 0 and 2 are satisfied and κσ ∈ C∞0 (R3) (σ = 0
is allowed). Let g and � > inf σ(Hg) be real numbers for which ‖|∇�|E�(Hg)‖ < 1
(see Hypothesis 2 and Lemma 10). Then, for all ϕ ∈ E�(Hg)Hdes and h ∈ L2

ω(R
3),

a+(h)ϕ = 0.

Remark. For �(P ) = √P 2 +m2 one has the stronger result that a+(h)ϕ = 0 for all
ϕ ∈ Hdes ∩D(|Hg + i|1/2). This follows from the remark after Theorem 13.

Proof. The intuition behind our proof is as follows: Because of the assumption ‖|∇�|E�
(Hg)‖ < 1 the speed of the electron is strictly less than one. Since, moreover, ϕ ∈ Hdes,
all bosons in ϕt are located near the electron, and thus the overlap of the bosons in ϕt
with a freely propagating boson ht will vanish in the limit t →∞, which implies that
a+(h)ϕ = 0.

This heuristic argument can be turned into a proof quite easily. Since ‖a(ht )(Hg +
i)−1/2‖ ≤ C‖h‖ω uniformly in t , we may assume that h ∈ C∞0 (R3/{0}). Choose ε > 0
so small that ‖|∇�|E�(Hg)‖ ≤ 1 − 4ε and pick F ∈ C∞0 (R), with F(s) = 1 for
s ≤ 1− 3ε and F(s) = 0 for s ≥ 1− 2ε. Then

ϕt = F(|x|/t)ϕt + o(1), as t →∞ (44)

by Proposition 12, part ii) , with β = 1− 3ε. Given δ > 0, we next show that

ϕt = �(χ[0,δ](|x − y|/t))ϕt + o(1), as t →∞. (45)

The operator on the right side, henceforth denoted byQt , is translation invariant and
hence leaves the fiber spaces HP invariant. On the other hand, the time evolution of the
component of ϕ ∈ Hdes in HP is just a phase factor. Therefore ‖Qtϕt‖ = ‖Qtϕ‖, which
converges to ‖ϕ‖, as t →∞. Since Qt is a projector this proves (45). Combining (44)
with (45) for δ = ε we get

ϕt = �(χ�(|y|/t))ϕt + o(1), as t →∞ (46)

with� = [0, 1−ε], because |x|/t ≤ 1−2ε and |x−y|/t ≤ ε imply that |y|/t ≤ 1−ε.
Let ψ ∈ D(Hg). By (46), and because ‖a∗(ht )ψt‖ is bounded uniformly in t ,

〈ψ, a+(h)ϕ〉 = lim
t→∞〈ψt , a(ht )�(χ�)ϕt 〉

= lim
t→∞〈ψt , �(χ�)a(χ�ht )ϕt 〉.

Using the Schwarz inequality and the bound ‖a(χ�ht )(Hg + i)−1/2‖ ≤ const‖χ�ht‖ω
we get

‖a+(h)ϕ‖ ≤ C lim sup
t→∞

‖χ�ht‖ω, (47)
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where

‖χ�ht‖2ω = ‖χ�ht‖2 + 〈χ�ht , |k|−1χ�ht 〉
≤ 2(1+ t)‖χ�ht‖2

because χ�|k|−1χ� ≤ (π/2) χ�|y|χ� ≤ (π/2)tχ�, by Kato’s inequality (see [Ka66],
Sect. V.5). Since

sup
|y|/t≤1−ε

|ĥt (y)| ≤ CN(1+ t)−N

for any integer N , and since the support of y �→ χ�(|y|/t) has volume proportional to
t3, we conclude that ‖χ�ht‖ω ≤ CN(1+ t)2−N . For N = 3 , this bound in conjunction
with (47) completes the proof. ��

Next, we define the Møller wave operator �+. We introduce the extended Hilbert
space H̃ = H⊗ F and the extended Hamilton operator

H̃g = Hg ⊗ 1+ 1⊗ d�(|k|). (48)

The wave operator �+ will be defined on a subspace of H̃.

Theorem 15 (Existence of the wave operator). Let Hypotheses 0 and 2 be satisfied
and assume κσ ∈ C∞0 (R3) (σ = 0 is allowed). For every pair of real numbers g and �
with ‖|∇�|E�(Hg)‖ < 1, the limit

�+ϕ := lim
t→∞ e

iHgt Ie−iH̃gt (Pdes ⊗ 1)ϕ (49)

exists, for ϕ in the dense subspace of RanE�(H̃g) spanned by finite linear combi-
nations of vectors of the form γ⊗a∗(h1) . . . a

∗(hn)�with γ = Eλ(Hg)γ , hi ∈ L2
ω(R

3),
and λ +∑i sup{|k| : hi(k) �= 0} ≤ �. If ϕ = γ ⊗ a∗(h1) . . . a

∗(hn)� belongs to this
space then

�+ϕ = a∗+(h1) . . . a
∗
+(hn)Pdesγ. (50)

Furthermore ‖�+‖ = 1 and thus �+ has a unique extension, also denoted by �+, to
E�(H̃g)H̃. On (Pdes⊗1)E�(H̃g)H̃, the operator�+ is isometric, and therefore Ran�+
is closed. For all t ∈ R,

e−iHgt�+ = �+e−iH̃gt .

Remark. i) In Sect. 5 we will enlarge the domain of the wave operator �+ to include
arbitrarily many soft, non-interacting bosons, regardless of their total energy. ii) For
�(p) =

√
p2 +m2, the wave operator can be defined as a partial isometry on the

entire extended Hilbert space H̃. This follows from the remarks after Theorem 13 and
Lemma 14.
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Proof. If ϕ = γ ⊗ a∗(h1) . . . a
∗(hn)�, then

eiHgt Ie−H̃gtPdesγ ⊗ a∗(h1) . . . a
∗(hn) = eiHgta∗(h1,t ) . . . a

∗(hn,t )e−iHgtPdesγ,

and hence the existence of the limit (49) and Eq. (50) follow from Theorem 13, part iv).
By Lemma 34, the space D spanned by vectors of the form specified in the theorem is
dense in RanE�(H̃g). From Eq. (50), in conjunction with Theorem 13, part ii) and with
Lemma 14, it follows that�+ is a partial isometry on D and therefore ‖�+‖ = 1. Hence
�+ has a unique extension to a partial isometry on E�(H̃g)H̃. The remaining parts of
the proof are straightforward. ��

The next result is a generalization of Eq. (50) that will be needed for the proof of
asymptotic completeness.

Lemma 16. Suppose�+ is defined as in the preceding theorem. Assumeψ ∈ Eλ(H̃g)H̃
and h1, . . . hn ∈ L2

ω(R
3), with λ+∑n

i=1 sup{|k| : hi(k) �= 0} ≤ �. Then

�+(1⊗ a∗(h1) . . . a
∗(hn))ψ = a∗+(h1) . . . a

∗
+(hn)�+ψ. (51)

Proof. If the vector ψ is of the form

ψ = γ ⊗ a∗(f1) . . . a
∗(fm)�, (52)

where γ ∈ Eη(Hg)H, f1, . . . fm ∈ C∞0 (R3) with η +∑i sup{|k| : fi(k) �= 0} ≤ λ,
then

�+(1⊗ a∗(h1) . . . a
∗(hn))ψ = a∗+(h1) . . . a

∗
+(hn)a

∗
+(f1) . . . a

∗
+(fm)Pdesγ

= a∗+(h1) . . . a
∗
+(hn)�+ψ

by Eq. (50). This proves (51) for all ψ which are finite linear combinations of vectors
of the form (52). These vectors span a dense subspace of Eλ(H̃ )H̃ by Lemma 34 in
Appendix C. The lemma now follows by an approximation argument using Theorem 13
iv) and the intertwining relation for �+. ��

We are now prepared to formulate the main result of this paper.

Theorem 17 (Asymptotic Completeness). Assume that Hypotheses 0 – 2 (Sect. 3.1) are
satisfied, and let � be such that supp |∇�(p)χ(�(p) ≤ �)| < 1/3 (see Hypotheses
2). Then, for |g| small enough depending of �,

Ran�+ ⊃ E�(Hg)H.

Remark. The assumption supp |∇�(p)χ(�(p) ≤ �)| < 1/3 implies that

‖|∇�|E�(Hg=0)‖ < 1/3,

which, for small |g|, ensures that ‖|∇�|E�(Hg)‖ < 1/3. This last inequality is actually
what we shall make use of. Since |g| must be small for reasons other than this one as
well, we have chosen the above formulation of the theorem.
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This result follows from Theorem 30 in Sect. 9, where asymptotic completeness for
a modified Hamiltonian (with a modified dispersion law for the bosons) is proved, and
from Lemma 21 in Sect. 5, where the behavior of the soft bosons in the scattering process
is investigated.

In the most interesting cases of a relativistic dispersion �(p) =
√
p2 +M2 and of

a non-relativistic dispersion �(p) = p2/2M Theorem 17 implies the following result.

Corollary 18. Assume that Hypothesis 1 and one of the following hypotheses hold:

1. �(P ) = P 2/2M and 0 < � < M/18,
2. �(P ) = √P 2 +M2 and M < � < 3M/

√
8.

Then, for |g| small enough,

Ran�+ ⊃ E�(Hg)H.

Proof. Hypotheses 0 and 2 are clearly satisfied in both cases and the bounds on � are
chosen in such a way that supp |∇�(p)χ(�(p) ≤ �)| < 1/3. Thus the corollary
follows from Theorem 17. ��

5. The Modified Hamiltonian

Since the bosons in our model are massless, their number is not bounded in terms of
the total energy. This, however, is an artefact, since the number of bosons with energy
below σ (the IR cutoff) is conserved. To avoid technical difficulties due to the lack of
a bound on the number operator, N , relative to the Hamiltonian Hg , we work with a
modified HamiltonianHmod whose photon-dispersion law,ω(k), is bounded from below
by a positive constant (in contrast to |k|).

We define

Hmod = �(p)+ d�(ω)+ gφ(Gx),

and we assume that ω satisfies the following conditions.

Hypothesis 3. ω ∈ C∞(R3), with ω(k) ≥ |k|, ω(k) = |k|, for |k| > σ , ω(k) ≥ σ/2,
for all k ∈ R

3, supk |∇ω(k)| ≤ 1, and ∇ω(k) �= 0 unless k = 0. Furthermore,
ω(k1 + k2) ≤ ω(k1)+ ω(k2) for all k1, k2 ∈ R

3 (see also Figure 2). Here σ > 0 is the
infrared cutoff defined in Hypothesis 1.

The HamiltonianHmod shares many of the properties derived forHg in previous sections,
such as Lemma 10 and Proposition 12 (see the remarks thereafter). We now explore the
similarities of Hg and Hmod more systematically.

The two Hamiltonians Hg and Hmod act identically on states of the system without
soft bosons. Denoting by χi(k) the characteristic function of the set {k : |k| > σ },
the operator �(χi) is the orthogonal projection onto the subspace of vectors describing
states without soft bosons. Since χiGx = Gx it follows from Eqs. (14) and (15) thatHg
and Hmod commute with the projection �(χi), and hence they leave the range of �(χi)
invariant. Moreover, since χiω(k) = χi |k|,

Hg |̀Ran�(χi) = Hmod |̀Ran�(χi). (53)
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ω (k)

σ k

Fig. 2. Typical choice of the modified photon-dispersion law ω(k)

LetU denote the unitary isomorphismU : H→ Hi⊗Fs introduced in Sect. 3.1. Then,
on the factorized Hilbert space Hi ⊗ Fs , the Hamiltonians Hg and Hmod are given by

UHgU
∗ = Hi ⊗ 1+ 1⊗ d�(|k|),

UHmodU
∗ = Hi ⊗ 1+ 1⊗ d�(ω) with
Hi = �(p)+ d�(|k|)+ gφ(Gx). (54)

Again, we observe that the two Hamiltonians agree on states without soft bosons.
The modified Hamiltonian Hmod, like the physical Hamiltonian Hg , commutes with

spatial translations of the system, i.e., [Hmod, P ] = 0, where P = p + d�(k) is the
total momentum of the system. In the representation of the system on the Hilbert space
L2(R3

P ;F) the modified Hamiltonian Hmod is given by

(�Hmod�
∗ψ)(P ) = Hmod(P )ψ(P ),

Hmod(P ) = �(P − d�(k))+ d�(ω)+ gφ(κσ ),
where � : H→ L2(R3, dP ;F) has been defined in Sect. 3.1.

Like Hg and Hmod, the fiber Hamiltonians Hg(P ) and Hmod(P ) commute with the
projection �(χi) and agree on its range, that is

Hg(P )|̀Ran�(χi) = Hmod(P )|̀Ran�(χi). (55)

In Appendix D.1 (see Theorem 37) it is shown that, for�(P ) < Oβ=1 and |g| small
enough,

inf σ(Hmod(P )) = inf σ(Hg(P )) = Eg(P )
and that Eg(P ) is a simple eigenvalue of Hg(P ) and Hmod(P ). The corresponding
dressed one-electron states coincide by Theorem 37, (ii). Since the subspace Hdes is
defined in terms of the dressed one-electron states ψP , it follows that vectors in Hdes
describe dressed one-electron wave packets for the dynamics generated by the modified
Hamiltonian Hmod as well.

We remark that, in view of (55), the proof of Theorem 7 shows that

σpp(Hmod(P )) ∩ (−∞, �) = {Eg(P )},

for all P ∈ R
3 with Eg(P ) ≤ �, and for |g| sufficiently small.
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Next, we consider the positive commutator discussed in Sect. 3.3. Thanks to Eq.
(55), the inequality established in Theorem 6 continues to hold whenHg(P ) is replaced
by Hmod(P ), provided we restrict it to the range of the orthogonal projection �(χi).
We need to rewrite this commutator estimate in terms of Hmod, rather than Hmod(P ),
restricted to Ran�(χi). To this end we define

a = 1

2
(∇ω · (y − x)+ (y − x) · ∇ω) ,

and we consider the conjugate operator d�(a). In the representation of the system on
the Hilbert space L2(R3

P ;F), the operator d�(a) is given by

(�d�(a)�∗ψ)(P ) = Aψ(P ), where

A = 1

2
d� (∇ω · y + y · ∇ω)

is the conjugate operator used in Theorem 6 (if restricted to states without soft bosons).

Theorem 19 (Positive Commutator). Assume Hypotheses 0 – 3 (see Sects. 3.1 and 5)
are satisfied. Let β ≤ 1 and choose g0 and � such that ‖|∇�|E�(Hmod)‖ ≤ β, for all
g with |g| ≤ g0. Suppose moreover that f ∈ C∞0 (R) and supp(f ) ⊂ (−∞, �). Then
there exists a constant C, independent of the infrared cutoff σ , such that, on the range
of the projector �(χi),

f (Hmod)[iHmod, d�(a)]f (Hmod) ≥ (1− β)f (Hmod)Nf (Hmod)− Cgf (Hmod)
2,

(56)

for all g with |g| ≤ g0.

Proof. Set H ≡ Hmod. By definition

[iH, d�(a)] = d�(|∇ω|2)− d�(∇ω) · ∇�− gφ(iaGx).
Since∇ω(k) = k/|k| on the range ofχi and sinceφ(iaGx)E�(H) is bounded, it follows
that

f (H)�(χi)[iH, d�(a)]�(χi)f (H) ≥ f (H)�(χi)N�(χi)f (H)
− f (H)�(χi)N |∇�|�(χi)f (H)− Cgf (H)2.

The assumption ‖|∇�|E�(H)‖ ≤ β implies

E�(H)|∇�|E�(H) ≤ βE�(H).
Using this inequality and that [f (H),N1/2] and (H + i)1/2[f (H),N1/2] are of order
g, uniformly in σ , we conclude that

f (H)N |∇�|f (H) = f (H)N1/2|∇�|N1/2f (H)

= N1/2f (H)|∇�|f (H)N1/2 +O(g)
≤ βf (H)Nf (H)+O(g),

with O(g) independent of σ . Since �(χi) commutes with f (H), this proves the
theorem. ��
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Next, we discuss the scattering theory for the modified Hamiltonian.As in Theorem 15
we assume that g and � > inf σ(Hg) are real numbers for which ‖|∇�|E�(Hg)‖ < 1.
Hypothesis 2 (Sect. 3.1) and Lemma 10 ensure the existence of these numbers. Then, by
the assumption that ω(k) = |k| for wave vectors k of interacting bosons (cf. Hypotheses
1,3) we have that

eiHmodt a�(e−iωth)e−iHmodt = eiHgt e−id�(|k|−ω)ta�(e−iωth)eid�(|k|−ω)t e−iHgt
= eiHgta�(e−i|k|t h)e−iHgt (57)

for all t . It follows that the limit

a
�
mod,+(h)ϕ = lim

t→∞ e
iHmodt a�(e−iωth)e−iHmodt ϕ

exists and that a�mod,+(h)ϕ = a�+(h)ϕ, for all ϕ ∈ RanE�(Hmod) ⊂ RanE�(Hg) and
for all h ∈ L2

ω(R
3). This and the discussion of Hdes above show that the asymptotic

states constructed with the help of the Hamiltonians Hg and Hmod coincide.
On the extended Hilbert space H̃ = H ⊗ F , we define the extended modified

Hamiltonian

H̃mod = Hmod ⊗ 1+ 1⊗ d�(ω).

In terms of Hmod and H̃mod we also define an extended (modified) version �̃mod+ of the
wave operator �+ introduced in Sect. 4.

Lemma 20. Let Hypotheses 0, 2 and 3 be satisfied, and assume κσ ∈ C∞0 (R3) (σ = 0
is allowed). For every pair of real numbers g and� with ‖|∇�|E�(Hg)‖ < 1, the limit

�̃mod
+ ϕ = lim

t→∞ e
iHmodt I e−iH̃modt ϕ (58)

exists for all ϕ ∈ E�(H̃mod)H̃. The modified wave operator �mod+ defined by �mod+ =
�̃mod+ (Pdes ⊗ 1) agrees with �+ defined by Theorem 15. More precisely

�mod
+ ϕ = �+ϕ, (59)

for all ϕ ∈ RanE�(H̃mod) ⊂ RanE�(H̃g).

Remark. Recall from the discussion above that Pdes does not depend on whether it is
constructed using Hg or Hmod.

Proof. Since IE�(H̃mod) is bounded, eiHmodt I e−iH̃modtE�(H̃mod) is bounded uniformly
in t ∈ R and hence it suffices to prove existence of �̃mod+ on a dense subspace of
RanE�(H̃mod). By Lemma 34, finite linear combinations of vectors of the form

ϕ = γ ⊗ a∗(h1,t ) · · · · · a∗(hn,t )�
with λ+∑i Mi < �, where γ = Eλ(Hmod)γ , andMi = sup{ω(k) : hi(k) �= 0}, form
such a subspace. Existence of �̃mod+ on these vectors follows from

eiHmodt I e−iH̃modt = eiHgt Ie−iH̃gt

and from Theorem 15. This also proves (59). ��
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We shall now extend the domain of �+ to include arbitrarily many soft, non-inter-
acting bosons. As a byproduct we obtain a second proof of (59). To start with, we recall
the isomorphismU : F → Fi ⊗Fs introduced in Sect. 3.1 and define a unitary isomor-
phism U ⊗U : H̃→ Hi ⊗Fi ⊗Fs ⊗Fs separating interacting from soft bosons in the
extended Hilbert space H̃. With respect to this factorization the extended Hamiltonian
H̃g becomes H̃g = H̃i ⊗ 1⊗ 1 + 1⊗ 1⊗ d�(|k|)⊗ 1 + 1⊗ 1⊗ 1⊗ d�(|k|), where
H̃i = Hi ⊗ 1+ 1⊗ d�(|k|). As an operator from Hi ⊗ Fi ⊗ Fs ⊗ Fs to Hi ⊗ Fs , the
wave operator �+ acts as

U�+(U∗ ⊗ U∗) = �int
+ ⊗�soft

+ , (60)

where �int+ : Hi ⊗ Fi → Hi is given by

�int
+ = s − lim

t→∞ e
iHi t I e−iH̃i t (P int

des ⊗ 1) (61)

while �soft+ : Fs ⊗ Fs → Fs is given by

�soft
+ = I (P� ⊗ 1), (62)

where P� is the orthogonal projection onto the vacuum vector � ∈ Fs . In view of
(60) and (61), the domain of �+ can obviously be extended to RanE�(H̃i) ⊗ Fs ⊗
Fs ⊃ RanE�(H̃g). For the modified wave operator �mod+ = �̃mod+ (Pdes ⊗ 1), we have
�mod+ = �int

+,mod ⊗ �soft+ , and from Hg |̀Ran�(χi) = Hmod |̀Ran�(χi) it follows that

�int
+,mod = �int+ . Consequently, also�mod+ is well defined on RanE�(H̃i)⊗Fs ⊗Fs and

�mod+ = �+.
We summarize the main conclusions in a lemma.

Lemma 21. Let the assumptions of Theorem 20 be satisfied, and let �+ be defined on
RanE� ⊗ Fs ⊗ Fs as explained above. Then

Ran�+ ∼= Ran�int+ ⊗ Fs (63)

with respect to the factorization H ∼= Hi ⊗ Fs . In particular, the following statements
are equivalent:

i) Ran�+ ⊃ E�(Hg)H.
ii) Ran�+ ⊃ �(χi)E�(Hg)H.

iii) Ran�+ ⊃ E�(Hmod)H.
iv) Ran�+ ⊃ �(χi)E�(Hmod)H.

Proof. Equation (63) follows from (60) and (62). The equivalences i)⇔ ii) and iii)⇔
iv) follow directly from Eq. (63), while ii)⇔ iv) follows from Eq. (53). ��
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6. Propagation Estimates for Photons

The purpose of this section is to prove a phase-space propagation estimate (Propo-
sition 24), which is used in the next section to establish existence of the asymptotic
observable W and of the Deift-Simon wave operator W+.

Henceforth we shall always work with the modified Hamiltonian Hmod, and we will
use the shorthand notation

H ≡ Hmod = �(p)+ d�(ω)+ g φ(Gx).
Moreover, for an operator b acting on the one-boson space h, we define the Heisenberg
derivative

db := [iω(k), b]+ ∂b
∂t
,

while we define the Heisenberg derivatives of an operatorA on H with respect toH and
H0, respectively, by

DA := i[H,A]+ ∂A
∂t

and

D0A := i[H0, A]+ ∂A
∂t
.

We observe that

D0(d�(b)) = d�(db).

The first propagation estimate is a maximal velocity propagation estimate saying that
photons cannot propagate into the region |y| > ut , if u = max(1, β) (if β > 1 there
will always be some photons, in the vicinity of the electron, propagating into the region
|y| > t).

Proposition 22 (Upper bound on the velocity of bosons). Assume Hypotheses 0–3 are
satisfied. Suppose β, g and� > inf σ(H) are real numbers for which ‖|∇�|E�(H)‖ ≤
β. Let f ∈ C∞0 (R) be real-valued with supp f ⊂ (−∞, �), and suppose F ∈ C∞0 (R),
with F ≥ 0 and suppF ⊂ (−∞, β]. Then, for each pair of real numbers λ, λ′ with
max(1, β) < λ < λ′, there exists a constant Cλ,λ′ such that

∫ ∞

1

dt

t
〈ϕt , f d�(χ[λ,λ′](|y|/t))F (|x|/t)f ϕt 〉 ≤ Cλ,λ′ ‖ϕ‖2

for all ϕ ∈ H. Here f = f (H).
Remark. The lower bound, 1, in the assumption max(1, β) < λ is the upper bound on
the photon propagation speed |∇ω| in Hypothesis 3.

Proof. Choose ε > 0 so small that 3ε < λ − β and λ − ε > 1. The proposition will
follow if we prove it for smooth functions F with F(s) = 1 for s ≤ β + ε, F(s) = 0
for all s ≥ β + 2ε, and F ′ ≤ 0. Choose h ∈ C∞0 (R; [0, 1]) with h = 1 on [λ, λ′] and
supp(h) ⊂ [λ − ε, λ′ + 1]. It is important that there are gaps between (−∞, β] and
supp(F ′), and between supp(F ) and supp(h).
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We define h̃(s) = ∫ s0 dτh2(τ ) and we use the notationh = h(|y|/t) and h̃ = h̃(|y|/t).
Consider the propagation observable

φ(t) = −f (H)d�(h̃)F (|x|/t)f (H).
Since φ(t) is a bounded operator, uniformly in t , the proposition follows if we show that

Dφ(t) ≡ ∂φ(t)

∂t
+ [iH, φ(t)] ≥ C

t
f d�(h2)F (|x|/t)f + B(t), (64)

for some operator-valued function B(t) with
∫∞

1 |〈ϕt , B(t)ϕt 〉|dt ≤ C‖ϕ‖2. We have
that

∂φ(t)

∂t
= 1

t
f d�(h2 |y|/t)F (|x|/t)f + 1

t
f d�(h̃)F ′(|x|/t) |x|

t
f

≥ λ− ε
t

f d�(h2)Ff − β + 2ε

t
f d�(h̃)|F ′|f. (65)

The second term on the right side gives a contribution to B(t) by Proposition 12. In fact,
since supp(F ′) ⊂ [β + ε, β + 2ε] ⊂ [β + ε, λ] and F ′ ≤ 0 we have that

〈ϕt , f d�(h̃)|F ′|f ϕt 〉 ≤ ‖χ[β+ε,λ](|x|/t)f ϕt‖ ‖d�(h̃)F ′f ϕt‖
≤ ‖χ[β+ε,λ](|x|/t)f ϕt‖ ‖d�(h̃)(H + i)−1‖

(
‖F ′(H + i)f ϕt‖ +O(t−1)‖ϕ‖

)

≤ C‖χ[β+ε,λ](|x|/t)f ϕt‖ ‖χ[β+ε,λ](|x|/t)g(H)ϕt‖ +O(t−1)‖ϕ‖2,
where we used that ‖[H,F ′]f ‖ = O(t−1), by Lemma 32 and Hypothesis 0, and put
g(s) := (s + i)f (s) and C = ‖d�(h̃)(H + i)−1‖ in the last line. Thus, by the Schwarz
inequality and Proposition 12,

∫ ∞

1

dt

t
〈ϕt , f d�(h̃)|F ′|f ϕt 〉 ≤ const ‖ϕ‖2, (66)

that is, the second term in (65) contributes to B(t) in (64). To evaluate the commutator
in (64), we use Lemma 32 and get

−[iH, φ(t)] = f [iH, d�(h̃)]Ff + f d�(h̃)[iH, F ]f

= f [id�(ω), d�(h̃)]Ff + f [igφ(Gx), d�(h̃)]Ff

+f d�(h̃)[i�(p), F ]f

= 1

2t
f d�

(

∇ω · y|y|h
2 + h2 y

|y| · ∇ω
)

Ff + gf φ(ih̃Gx)Ff

+ 1

2t
f d�(h̃)

(

∇� · x|x|F
′ + F ′ x|x| · ∇�

)

f +O(t−2). (67)

The term that involves F ′ is integrable w.r. to t , by Proposition 12 and Hypothesis 0.
This is seen in the same way as the integrability of the second term of (65). Next we
bound the second term of (67). By Lemma 9 part ii),

‖φ(ih̃Gx)F (|x|/t)f ‖ ≤ C sup
|x|≤(β+2ε)t

‖χ(|y| ≥ (λ− ε)t)Gx‖ ≤ Ct−µ (68)
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for some µ > 1, because supp(F ) ⊂ (−∞, β + 2ε], supp(h̃) ⊂ [λ − ε,∞), and
λ− ε > β + 2ε. Finally, in the first term of (67), we commute one factor of h to the left
and one to the right and conclude that

[iH, φ(t)] = − 1

2t
f d�

(
h(∇ω · y|y| +

y

|y| · ∇ω)h
)
Ff + B(t)

≥ −1

t
f d�(h2)Ff + B(t),

where
∫∞

1 |〈ϕt , B(t)ϕt 〉|dt ≤ C‖ϕ‖2. Together with (65), (66), and λ − ε > 1 this
proves Eq. (64). ��

The following phase-space propagation estimate compares the group velocity ∇ω
with the average velocity y/t for bosons that escape from the electron in the limit
t → ∞ (i.e., for bosons with asymptotic velocity greater than β). This result will be
improved in Proposition 24.

Proposition 23. Assume Hypotheses 0–3 are satisfied. Suppose β, g and� > inf σ(H)
are real numbers for which ‖|∇�|E�(H)‖ ≤ β. Let f ∈ C∞0 (R) be real-valued with
supp f ⊂ (−∞, �), and suppose F ∈ C∞0 (R), with F ≥ 0 and suppF ⊂ (−∞, β].
Then, for each pair of real numbers λ, λ′ with β < λ < λ′, there exists a constant Cλ,λ′
such that
∫ ∞

1

dt

t
〈ϕt , f d�

(
(∇ω − y

t
)χ[λ,λ′](|y|/t)(∇ω − y

t
)
)
F(|x|/t)f ϕt 〉 ≤ Cλ,λ′ ‖ϕ‖2,

for all ϕ ∈ H. Here f = f (H).
Proof. Choose ε > 0 so small that 3ε < λ−β.Without loss of generality we may assume
that λ′ > 1. We may also assume, as in the proof of Proposition 22, that F(s) = 1 for
s ≤ β + ε and F(s) = 0 for all s ≥ β + 2ε. Pick R ∈ C∞0 (R3) with supp(R) ⊂ {y :
λ− ε ≤ |y| ≤ λ′ + 1} and

R′′(y) ≥ χ[λ,λ′](|y|)− Cχ[λ′,λ′+1](|y|).
It is easy to construct a function R with these properties explicitly. We work with the
propagation observable

φ(t) = f (H)d�(b(t))Ff (H), (69)

where

b(t) = R(y/t)+ 1

2
[(∇ω − y/t) · (∇R)(y/t)+ (∇R)(y/t) · (∇ω − y/t)]

and F denotes the operator of multiplication by F(|x|/t). For the reader who com-
pares this proof with the proof of the related Proposition 11 in [FGS01] we remark that
b(t) = d(tR(y/t)) +O(t−1), and that we could work with d(tR(y/t)) here, too. The
operator φ(t) is bounded uniformly in t ≥ 1, because b(t) is. Hence the proposition
follows if we show that

Dφ(t) ≥ C

t
〈ϕt , f d�

(
(∇ω − y

t
)χ[λ,λ′](|y|/t)(∇ω − y

t
)
)
Ffϕt 〉 + B(t) (70)
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for some operator-valued function B(t) with
∫∞

1 |〈ϕt , B(t)ϕt 〉|dt ≤ C‖ϕ‖2. By the
Leibniz rule for the Heisenberg derivative,

Dφ(t) = f d�(db(t))Ff + f φ(ib(t)Gx)Ff + f d�(b(t))(DF)f. (71)

The second and the third terms contribute to the integrable part B(t). For the second
term this follows from Lemma 9, since the distance between the support of R and the
support of F is strictly positive. The integrability of the third term follows from Prop-
osition 12, thanks to the location of the support of F ′, and from boundedness of ∇�
w.r.to H (Hypothesis 0); (see the proof of Proposition 22 for details). The first term in
(70) comes from the first term in (71). Using Lemma 32, it is straightforward to show
that

db(t) = 1

t
(∇ω − y/t) · R′′(|y|/t)(∇ω − y/t)+O(t−2)

≥ 1

t
(∇ω − y/t) · χ[λ,λ′](|y|/t) (∇ω − y/t)

−C
t
(∇ω − y/t) · χ[λ′,λ′+1](|y|/t) (∇ω − y/t)+O(t−2),

where

(∇ω − y/t) · χ[λ′,λ′+1](|y|/t) (∇ω − y/t) ≤ Cηχ[λ′−η,λ′+η+1](|y|/t)+O(t−1)

for some η > 0 chosen so small that λ′ − η > max(1, β); (recall that λ′ > max(1, β)).
Hence this term contributes to B(t), by Proposition 22, and (70) is proven. ��

Using Proposition 23, we can establish an improved phase-space propagation esti-
mate, which is the main result of this section. Existence of an asymptotic observable,W ,
and of the inverse wave operator,W+, in Sects. 7 and 8 will follow from this propagation
estimate alone; (see [DG99] for a similar result). Some technical parts in the proof of
Proposition 24 are stated as Lemma 25 below.

Proposition 24. Assume Hypotheses 0–3 are satisfied. Suppose β, g and� > inf σ(H)
are real numbers for which ‖|∇�|E�(H)‖ ≤ β. Let f ∈ C∞0 (R) be real-valued with
supp f ⊂ (−∞, �), and pick F ∈ C∞0 (R), with F(s) ≥ 0 and suppF ⊂ (−∞, β]. For
each pair of real numbers λ, λ′ with max(1, β) < λ < λ′ and each J = (J1, J2, J3) ∈
C∞0 (R

3;R3) with supp Jl ⊂ {y ∈ R
3 : λ < |y| < λ′} there exists a constant Cλ,λ′ such

that
∫ ∞

1

dt

t
〈ϕt , f d� (|J (y/t) · (∇ω − y/t)+ (∇ω − y/t) · J (y/t)|)

×F(|x|/t)f ϕt 〉 ≤ Cλ,λ′ ‖ϕ‖2

for all ϕ ∈ H. Here f = f (H).
Proof. Choose ε > 0 so small that 2ε < λ− β. The proposition will follow if we prove
it for smooth functions F with F(s) = 1 for s ≤ β + ε and F(s) = 0 for s ≥ β + 2ε.

Let A = (y/t − ∇ω)2 + t−δ , for some δ ∈ (0, 1], and set

b(t) = J̃ (y/t) · A1/2J̃ (y/t) =
3∑

i=1

J̃i (y/t)A
1/2J̃i (y/t),
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where J̃ ∈ C∞0 (R3;R3) is chosen such that J̃i = 1 on the support of Ji and with
supp J̃i ⊂ {y ∈ R

3 : λ < |y| < λ′}. Note that the operator b(t) is bounded uniformly in
t , because of the space cutoff J . We consider the propagation observable

φ(t) = −f (H)d�(b(t))F (|x|/t)f (H).
Because of the boundedness of b(t) and the energy cutoff f , the observable φ(t) is
bounded, uniformly in time. Thus, to prove the proposition, it is enough to show that

Dφ(t) ≥ C

t
f (H)d� (|J (y/t) · (∇ω − y/t)+ h.c|) F (|x|/t)f (H)+ B(t), (72)

for some operator-valued function B(t) with
∫∞

1 dt |〈ϕt , B(t)ϕt 〉| ≤ C‖ϕ‖2. The
Heisenberg derivative of φ(t) is given by

Dφ(t) = −f (Dd�(b(t))) Ff − f d�(b(t))(DF)f

= −f d�(db(t))Ff − f φ(ib(t)Gx)Ff − f d�(b(t))(DF)f. (73)

The last term, involving DF , contributes to B(t). This follows from Proposition 12,
since, by Lemma 32,

DF = 1

t

(

F ′
x

|x| · ∇�−
|x|
t
F ′
)

+O(t−2),

where F ′ is supported in the interval [β + ε, β + 2ε], and ∇� is bounded w.r.to H , by
Hypothesis 0 (see the proof of Proposition 22 for more details). The term with the factor
φ(ib(t)Gx) also contributes to B(t). This follows from Lemma 9, part ii), because the
distance between the support of F and the support of J̃ is positive, and thus

‖φ(ib(t)Gx)F (|x|/t)f ‖ ≤ Ct−µ,
for some µ > 1. It remains to consider the contribution of the first term on the r.h.s. of
(73). To this end we use that

db(t) = J̃ · (dA1/2)J̃ + (dJ̃ ) · A1/2J̃ + J̃ · A1/2(dJ̃ )

= J̃ · (dA1/2)J̃ +
3∑

i=1

(
(dJ̃i)A

1/2J̃i + J̃iA1/2(dJ̃i)
)
. (74)

Applying Lemma 25 below, part ii) and part iii), we find that

−J̃ (y/t) · (dA1/2)J̃ (y/t) ≥ C

t
|J (y/t) · (∇ω − y/t)

+(∇ω − y/t) · J (y/t)| +O(t−1−η/2), (75)

with η = min(δ, 1− δ/2). The other terms in Eq. (74) turn out to contribute to B(t) in
(72), (a consequence of Proposition 23). To prove this, we start with the bound

±
(
dJ̃iA

1/2J̃i + J̃iA1/2dJ̃i

)
≤ t (dJ̃i)

2 + 1

t
J̃iAJ̃i . (76)

Observing that

dJ̃i = 1

2t

(
∇J̃i · (∇ω − y/t)+ (∇ω − y/t) · ∇J̃i

)
+O(t−2)
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we find that

(dJ̃i)
2 ≤ C

t2
(∇ω − y/t) · χ[λ,λ′](|y|/t)(∇ω − y/t)+O(t−3).

To bound the second term on the r.h.s. of (76), we use that

J̃iAJ̃i = J̃i (∇ω − y/t)2J̃i +O(t−δ) = (∇ω − y/t)J̃ 2
i (∇ω − y/t)+O(t−δ).

We then find that

±
(
dJ̃iA

1/2J̃i + J̃iA1/2dJ̃i

)
≤ C + 1

t
(∇ω − y/t)

×χ[λ,λ′](|y|/t)(∇ω − y/t)+O(t−1−δ).

By (74) and (75) we thus conclude that

−f d�(db(t))F (|x|/t)f ≥ C1

t
f d� (|J (y/t) · (∇ω − y/t)

+(∇ω − y/t) · J (y/t)|) Ff
−C2

t
f d�

(
(∇ω − y/t)χ[λ,λ′](|y|/t)(∇ω − y/t)

)
Ff +O(t−1−η/2),

where the second term on the right-hand side is integrable by Proposition 23. This,
together with (73), proves Eq. (72) and completes the proof of the proposition. ��
Lemma 25. LetA = (y/t−∇ω)2+ t−δ , 0 < δ ≤ 1, and assume that J ∈ C∞0 (R3,R3)

(J has three components Ji , i = 1, 2, 3). Then

i) [A1/2, J (y/t)] = O(t−1+δ/2).
ii) dA1/2 = − 1

t
A1/2 +O(t−1−δ/2) .

iii) Suppose that J̃ ∈ C∞0 (R3,R3) with J̃i = 1 on the support of Ji , for i = 1, 2, 3.
Then

|J (y/t) · (y/t − ∇ω)+ (y/t − ∇ω) · J (y/t)| ≤ CJ̃A1/2J̃ +O(t−η/2),
where η = min(δ, 1− δ/2).

This lemma is taken from [DG99]. For the sake of completeness its proof is included in
this paper.

Proof. i) Writing A1/2 = AA−1/2 and using the representation

A−1/2 = 1

π

∫ ∞

0

ds√
s

1

s + A
one finds that

[A1/2, J ] = 1

π

∫ ∞

0
ds
√
s

1

s + A [A, J ]
1

s + A. (77)

With the help of Lemma 32 it is easy to see that [A, J ] = O(t−1) and, by definition of
A, ‖(s + A)−1‖ ≤ (s + t−δ)−1. Hence (77) implies that

‖[A1/2, J ]‖ ≤ C

t

∫ ∞

0
ds

√
s

(s + t−δ)2 = O(t
−1+δ/2).
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ii) The main observation is that

eitω(k)A1/2e−itω(k) =
(
y2

t2
+ t−δ

)1/2

. (78)

On the one hand, by definition of dA1/2,

d

dt

(
eitω(k)A1/2e−itω(k)

)
= eitω(k)dA1/2e−itω(k), (79)

and, on the other hand, by (78),

d

dt

(
eitω(k)A1/2e−itω(k)

)
= d

dt

(
y2

t2
+ t−δ

)1/2

= −1

t

(
y2

t2
+ t−δ

)1/2

+O(t−1−δ/2).

Combining these two equations and using (78) again proves the assertion.
iii) First we note that

|J · (∇ω − y/t)+ (∇ω − y/t) · J |2 ≤
∑

i,j

Ji(∂iω − yi/t)(∂jω − yj /t)Jj +O(t−1).

Using that a∗i aj + a∗j ai ≤ a∗i ai + a∗j aj it follows that

|J · (∇ω − y/t)+ (∇ω − y/t) · J |2 ≤ C
∑

i

Ji(∂iω − yi/t)2Ji +O(t−1)

≤ CJAJ +O(t−δ). (80)

Furthermore, by part i), and since J̃ 4 ≥ J 2 by our choice of J̃ ,

(
J̃A1/2J̃

)2 =
∑

i,j

J̃iA
1/2J̃i J̃jA

1/2J̃j = A1/2J̃ 4A1/2 +O(t−1+δ/2)

≥ A1/2J 2A1/2 +O(t−1+δ/2) = JAJ +O(t−1+δ/2).

Combined with (80) this shows that

(
J̃A1/2J̃

)2 ≥ C |J · (∇ω − y/t)+ (∇ω − y/t) · J |2 +O(t−η),

where η = min(δ, 1− δ/2). The assertion now follows from the operator monotonicity
of the square root. ��
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7. The Asymptotic Observable

Let β, g and � be given real numbers for which ‖|∇�|E�(H)‖ ≤ β. Let γ > β and
pick χγ ∈ C

∞(R; [0, 1]) such that χγ ≡ 1 on [γ,∞) and χγ ≡ 0 on (−∞, β3] for
some β3 ∈ (β, γ ) (see Fig. 3 in Sect. 8). Our goal, in this section, is to establish existence
of the asymptotic observable

W = s − lim
t→∞ e

iHtf d�(χγ (|y|/t))f e−iH t ,

where f is a smooth energy cutoff supported in (−∞, �). By construction of W ,
〈ψ,Wψ〉 is the expectation value of the number of bosons present in fψ that prop-
agate into the region {|y| ≥ γ t} as t →∞. These bosons are asymptotically free, since
the energy cutoff and the assumption on ∇� guarantee that the electron stays confined
to {|x| ≤ βt} (cf. Proposition 12) and since β < γ . As a consequence, the interaction
strength between the electron and those bosons counted by W decays in t at an integra-
ble rate. This is one of the two key ingredients for proving existence of W and of the
Deift-Simon operator W+. The other one is the propagation estimate in Proposition 24.

Theorem 26 (Existence of the asymptotic observable). Assume that Hypotheses 0 – 3
are satisfied. Let β, g, and � be real numbers for which ‖|∇�|E�(H)‖ ≤ β. Suppose
that f ∈ C∞0 (R) with supp(f ) ⊂ (−∞, �). Let β, γ , and χγ be as defined above, and
let χγ,t be the operator of multiplication with χγ (|y|/t). Then

W = s − lim
t→∞ e

iHtf d�(χγ,t )f e
−iH t

exists, W = W ∗ and W commutes with H . Here f = f (H), (as before).

Proof. Pick F ∈ C∞0 (R) with 0 ≤ F ≤ 1, F(s) = 1 for s ≤ β0, and F(s) = 0 for
s ≥ β1, where β < β0 < β1 < β3 < γ (see Fig. 3, Sect. 8). We also use F to denote
the operator of multiplication by F(|x|/t). By Proposition 12 (ii) applied to 1− F , and
since eiHtf d�(χγ,t ) is bounded, it suffices to prove the existence of

lim
t→∞ϕ(t), where ϕ(t) = eiHtf d�(χγ,t )Ff e

−iH tϕ.

By a variant of Cook’s argument this limit will exist if there exists a constantC such that
∫ ∞

1
|〈ψ, ϕ′(t)〉| dt ≤ C‖ψ‖

for all ψ ∈ H. We have

d

dt
〈ψ, ϕ(t)〉 = 〈ψt , fD

[
d�(χγ,t )F

]
f ϕt 〉

= 〈ψt , f d�(dχγ,t )Ff ϕt 〉 + g〈ψt , f φ(iχγ,tGx)Ff ϕt 〉
+〈ψt , f d�(χγ,t )(DF)f ϕt 〉, (81)

and we shall prove integrability of these three terms, beginning with the third one.
Since supp(F ′) ⊂ [β0, β1] and by Lemma 32,

DF = 1

t
F ′
(
x

|x| · ∇�−
|x|
t

)

+O(t−2)

= 1

t
χ[β0,β1](|x|/t)

(
x

|x| · ∇�−
|x|
t

)

F ′ +O(t−2)
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and hence, using that, by Hypothesis 0, |∇�| is bounded w.r.t. H ,

|〈ψt , f d�(χγ,t )(DF)f ϕt 〉|
≤ 1

t
‖χ[β0,β1]fψ‖ ‖d�(χγ,t )F ′f ϕt‖ +O(t−2)‖ψ‖‖ϕ‖. (82)

On the right-hand side the operator F ′f can be replaced by (H + i)−1F ′g(H), g(s) =
(s + i)f (s), at the expense of another term of order t−2 originating from t−1[H,F ′] =
O(t−2). The integrability of (82) then follows from Proposition 12.

The second term on the r.h.s. of (81) is integrable because |x|/t ≤ β1 on supp(F ),
while |y|/t ≥ β3 on supp(χγ,t ), and hence, by Lemma 9,

|〈ψt , f φ(iχγ,tGx)Ff ϕt 〉| ≤ C sup
|x|/t≤β1

‖χγ,tGx‖‖ψ‖‖ϕ‖

≤ const t−µ‖ψ‖ ‖ϕ‖,
with µ > 1. This is integrable in t .

To bound the first term on the r.h.s. of (81), we note that

dχγ,t = 1

2
[(∇ω − y/t) · ∇χγ,t + h.c.]+O(t−2)

=:
1

t
Pt +O(t−2),

where 1/t has been factored out from ∇χγ,t = (1/t)χ ′γ (|y|/t) y/|y|. It follows that

|〈ψt , f d�(dχγ,t )Ff ϕt 〉| ≤ 1

t

∣
∣〈ψt , f F 1/2d�(Pt )F 1/2f ϕt 〉

∣
∣+O(t−2)‖ψ‖‖ϕ‖

≤ 1

t
〈ψt , f F 1/2d�(|Pt |)F 1/2fψt 〉1/2

×〈ϕt , f F 1/2d�(|Pt |)F 1/2f ϕt 〉1/2
+O(t−2)‖ψ‖‖ϕ‖.

Since F 1/2 commutes with d�(|Pt |), this is integrable thanks to Proposition 24.
To prove that W commutes with H we show that e−iHsW = We−iHs for all s ∈ R.

By definition of W ,

[e−iHsWeiHs −W ]ϕ = lim
t→∞ e

iHtf [d�(χγ,τ )]
τ=t+s
τ=t f e−iH tϕ.

This limit vanishes because ∂τχγ,τ = O(τ−1) and hence ‖[d�(χγ,τ )]τ=t+sτ=t (N+1)−1/2‖
≤ Cs/t . ��

7.1. Positivity of W . The upper bound β on the electron speed (cf. Proposition 12)
could usually be chosen arbitrarily, so far. Only in our proof of the existence of the wave
operator we required β < 1. To prove the strict positivity of W , we must require that
β < 1/3.

Recall that 〈ψ,Wψ〉 is the number of bosons in fψ with asymptotic speed γ or
higher, while the energy cutoff f in W ensures that the speed of the electron does not
exceed β. By the positive commutator estimate, Theorem 19, in a state orthogonal to
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Hdes with energy in the support of f , the photons have a speed, relative to the electron,
of at least 1 − β. Their speed relative to the origin is thus bounded below by 1 − 2β.
By assuming γ ≤ 1 − 2β we can ensure that these bosons are counted by W . (Their
number is positive by our smallness assumption on g.) Since β < γ is required for the
existence of W , we need to assume that β < 1/3.

Theorem 27. Assume Hypotheses 0 – 3 are satisfied. Given β < 1/3, pick� < Oβ and
suppose that g� > 0 is so small that sup|g|≤g� ‖|∇�|E�(Hg)‖ ≤ β (cf. Hypothesis 2
and Lemma 10). Pick γ ∈ (β, 1−2β), and letW be defined as in Theorem 26. Choosing
g� even smaller if necessary, there exists a constant C > 0 such that, in form-sense,

W ≥ Cf (H)2, on P⊥des�(χi)H
for |g| ≤ g� . In particular, if f = 1 on an interval � ⊂ (−∞, �), then

W ≥ C > 0, on E�(H)P
⊥
des�(χi)H.

Remark. Our proof shows that g� = O(1−3β), as (1−3β)→ 0, is sufficient if γ > β

is chosen close to β.

Proof. Let D = D(d�(a))∩RanP⊥des�(χi), where a = 1/2(∇ω ·(y−x)+(y−x)·∇ω).
Since D is dense in RanP⊥des�(χi) (see Lemma 46 in Appendix G), and since W is
bounded, it suffices to prove that there is a constant C > 0 such that

〈ϕ,Wϕ〉 ≡ lim
t→∞〈ϕt , f d�(χγ,t )f ϕt 〉 ≥ C‖f ϕ‖2 (83)

for all ϕ ∈ D. In the following ϕ ∈ D is fixed. The proof of (83) is based on esti-
mates of 〈ϕt , f d�(a/t)f ϕt 〉 from above and from below. The upper bound relates
〈ϕt , f d�(a/t)f ϕt 〉 to 〈ϕ,Wϕ〉 and the lower bound uses the positive commutator esti-
mate, Theorem 19. We begin with the estimate from above.

Step 1. Let ε > 0. There exists a finite constant C such that

〈ϕt , f d�(a/t)f ϕt 〉 ≤ C〈f ϕt , d�(χγ,t )f ϕt 〉1/2‖f ϕ‖
+(γ + β + ε)〈ϕt , fNf ϕt 〉 + o(1), t →∞.

To see this, suppose F ∈ C∞(R; [0, 1]), supp(F ) ⊂ (−∞, β + ε] and F(s) = 1 for
s ≤ β. Then

χγ (|y|/t) ≥ χ(|y|/t ≥ γ )
≥ χ(|x|/t ≤ β + ε) χ(|x − y|/t ≥ γ + β + ε)
≥ F(|x|/t) χ(|x − y|/t ≥ γ + β + ε).

It follows that

〈ϕt , f d�(χγ (|y|/t))f ϕt 〉 ≥ 〈ϕt , f F (|x|/t)d�(χ(|x − y|/t ≥ γ + β + ε))f ϕt 〉,
= 〈ϕt , f d�(χ(|x − y|/t ≥ γ + β + ε))f ϕt 〉 + o(1),

(84)

where we used Proposition 12 to get rid of the factor F(|x|/t). Next we estimate the
right side from below by showing that

〈ϕt , f d�(a/t)f ϕt 〉 ≤ C〈f ϕt , d�(χ(|x − y|/t ≥ γ + β + ε))f ϕt 〉1/2‖f ϕ‖
+(γ + β + ε)〈ϕt , fNf ϕt 〉 +O(t−1), t →∞, (85)

for some σ -dependent but finite constant C. Combined with (84) this will prove Step 1.
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From now on λ := γ + β + ε, χ ≡ χ(|x − y|/t ≥ λ) and χ̄ ≡ 1 − χ , for short.
Using the identity 1 = �(χ̄)+ (1−�(χ̄))we split each photon wave function into parts
in- and outside of the sphere |x − y|/t = λ. We find the bound

〈ϕt , f d�(a/t)f ϕt 〉 = 1/2〈ϕt , f d�(a/t)�(χ̄)f ϕt 〉 + h.c
+1/2〈ϕt , f d�(a/t)(1− �(χ̄))f ϕt 〉 + h.c.

≤ 〈ϕt , f d� (χ̄, 1/2((a/t) χ̄ + χ̄ (a/t))) f ϕt 〉
+‖d�(a/t)f ϕt‖‖(1− �(χ̄))f ϕt‖. (86)

To estimate the first term on the right hand side, note that d�(χ̄, b) ≤ d�(b) ≤ ‖b‖N
for every symmetric one-photon operator b. Since

‖(a/t) χ̄‖ ≤ 1/t ‖∇ω(k) · (y − x) χ̄‖ + 1/2t‖�ω(k) χ̄‖
≤ λ+O(t−1),

one arrives at

〈ϕt , f d�[χ̄ , 1/2((a/t) χ̄ + χ̄(a/t))]f ϕt 〉 ≤ λ〈ϕt , fNf ϕt 〉 +O(t−1). (87)

The first factor in the second term of (86) is estimated, for any t ≥ 1, by

‖d�(a/t)f ϕt‖ ≤ C(‖ϕ‖ + 1/t‖d�(a)ϕ‖), (88)

by Lemma 44 (use f = gf , for a suitable g ∈ C∞0 (R) to see this). This is finite, since
ϕ ∈ D(d�(a)) by assumption. For the second factor in the second term of (86) we use
that

‖(1− �(χ̄))f ϕt‖2 = 〈ϕt , f (1− �(χ̄))f ϕt 〉 ≤ 〈ϕt , f d�(χ)f ϕt 〉 (89)

since χ̄ and hence (1−�(χ̄)) is a projection. The bound (1−�(χ̄)) ≤ d�(χ) is easily
verified on each n-boson sector separately.

After inserting (87), (88) and (89) into (86) one arrives at (85), which proves Step 1.

Step 2. For each δ > 0, there is a sequence tn→∞ such that

〈ϕtn, f d�(a/tn)f ϕtn〉 ≥
1

1+ δ (1− β)〈ϕtn, fNf ϕtn〉 − CMg‖f ϕ‖
2 + o(1) (90)

as n→∞.

By the positive commutator estimate, Theorem 19,

〈ϕt , f d�(a)f ϕt 〉 ≥ 〈ϕ, f d�(a)f ϕ〉 + (1− β)
∫ t

0
ds〈ϕs, fNf ϕs〉 − CMgt‖f ϕ‖2,

and, after dividing both sides by t ,

〈ϕt , f d�(a/t)f ϕt 〉 ≥ (1− β) 1

t

∫ t

0
ds〈ϕs, fNf ϕs〉 − CMg‖f ϕ‖2 +O(t−1),

as t →∞. This inequality proves Step 2 thanks to the following general fact: for every
bounded, continuous function h(t) ≥ 0 and for each δ > 0, there exists a sequence
tn→∞ such that

m(t) := 1

t

∫ t

0
dsh(s) ≥ 1

1+ δ h(t)
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for all t ∈ {tn}n∈N. In fact, the opposite assumption that h(t) ≥ (1 + δ)m(t), for all
t > T0 and some T0 ∈ R, would imply that

d

dt
logm(t) = m′(t)

m(t)
≥ δ

t

for all t > T0. This is impossible since m(t) is bounded.

Combining Steps 1 and 2 we get

C‖f ϕ‖〈ϕtn, f d�(χγ,t )f ϕtn〉1/2 ≥
{

1

1+ δ (1− β)− (γ + β + ε)
}

〈ϕtn, fNf ϕtn〉

−CMg‖f ϕ‖2 + o(1), n→∞. (91)

Using (1 + δ)−1 ≥ 1 − δ and the assumption on γ , one finds that {. . . } ≥ (1 − 2β −
γ − ε− δ) ≥ (1− 2β− γ )/2 > 0 for ε and δ small enough. To bound the second factor
on the r.h.s of (91), we use that N ≥ 1−P� and that fP�f ≥ fPdesf −D� |g|1/2f 2,
by the remark after Theorem 7 (here we use that supp f ⊂ (−∞, �)). Since Pdesϕ = 0
by assumption on ϕ, we conclude that

〈ϕtn, f d�(χγ,t )f ϕtn〉 ≥
1

C

{
1

2
(1− 2β − γ )(1−D� |g|1/2)− CM |g|

}2

× ‖f ϕ‖2 + o(1),
as n → ∞. For |g| small enough this proves Eq. (83), because
limn→∞ 〈ϕtn, f d�(χγ )f ϕtn〉 = 〈ϕ,Wϕ〉 by Theorem 26, and the proof is complete. ��

8. The Inverse of the Wave Operator

The purpose of this section is the construction of an operator W+ : H → H̃ inverting
the extended wave operator �̃+ with respect to the asymptotic observable W ; that is
W = �̃+W+. To this end one needs to show that the dynamics of bosons that escape
from the electron ballistically - if there are any - is well approximated by the free-boson
dynamics. We shall prove this with the help of Proposition 24, which was established
for exactly this purpose.

Many elements in the construction of W+ are familiar from the construction of W .
We recall from Sect. 7 that β, g, and � are real numbers with ‖|∇�|E�(H)‖ ≤ β and
that γ > β. Then

W+ := s − lim
t→∞ e

iH̃ t f̃ �̆(jt )d�(χγ,t )f e
−iH t ,

where f̃ = f (H̃ ) andf = f (H) are smooth energy cutoffs supported in (−∞, �).As in
Sect. 7, χγ,t is the operator of multiplication with χγ (|y|/t), where χγ ∈ C∞(R; [0, 1]),
χγ ≡ 1 on [γ,∞) and supp(χγ ) ⊂ [β3,∞) for some β3 > β. The purpose of �̆(jt ) :
F → F ⊗F is to split each boson state into two parts, the second part being mapped to
the second Fock-space of prospective asymptotically freely moving bosons. We intro-
duce β1 and β2 such that

β < β1 < β2 < β3 < γ
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Fig. 3. Typical choice of the function χγ , of the electron space cutoff F and of the partition in the photon
space j0, j∞

and define jt : h = L2(R3, dk) → h ⊕ h as follows: let jth = (j0,t h, j∞,t h), where
j�,t (y) = j�(|y|/t), j� ∈ C∞(R; [0, 1]), j0+j∞ ≡ 1, j0 ≡ 1 on (−∞, β2], supp(j0) ⊂
(−∞, β3] while j∞ ≡ 1 on [β3,∞) and supp(j∞) ⊂ [β2,∞) (see Fig. 3, below).

As in the last section, we work with the modified Hamiltonian Hmod = �(p) +
d�(ω) + gφ(Gx) and with the extended modified Hamiltonian H̃mod = Hmod ⊗ 1 +
1⊗ d�(ω), and we use the notationH ≡ Hmod, H̃ ≡ H̃mod. Moreover, as in Sect. 7, we
use the notationDA andD0A to denote Heisenberg derivatives of operators A on H. If
B is an operator on the extended Hilbert space H̃, and if C maps H to H̃ we set

DB := i[H̃ , B]+ ∂B
∂t

D̃C := i(H̃C − CH )+ ∂C
∂t
.

The derivatives D0, and D̃0 are defined in a similar way, using H0 and H̃0 instead
of H and H̃ . The Heisenberg derivative of an operator a on L2(R3) is denoted by
da = [iω(k), a] + ∂a/∂t . Finally, the Heisenberg derivative db of an operator b map-
ping the one-boson space h to h⊕ h is defined by

db = i
(
ω 0
0 ω

)

b − b iω + ∂b
∂t
=:

(
db0
db∞

)

.

Theorem 28 (Existence of W+). Assume Hypotheses 0 – 3 are satisfied. Let β, g and
� be real numbers for which ‖|∇�|E�(H)‖ ≤ β. Suppose that f ∈ C∞0 (R) with
supp(f ) ⊂ (−∞, �), and that β, γ and χγ are defined as described above. Then

(i) The limit

W+ = s − lim
t→∞ e

iH̃ t f̃ �̆(jt )d�(χγ,t )f e
−iH t

exists, and e−iH̃ sW+ = W+e−iHs , for all s ∈ R.
(ii) (1⊗ χ(N = 0))W+ = 0.

(iii) W = �̃+W+.

Proof. Statement (ii) follows from (1⊗χ(N = 0))�̆(jt ) = �̆(j0,t , 0) and j0,tχγ,t = 0.
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(i) Pick F ∈ C∞0 (R) with F(s) = 1 for s ≤ β0 and F(s) = 0 for s ≥ β1, where
β0 ∈ (β, β1). We also use F to denote the operator of multiplication with F(|x|/t). By
Proposition 12, it suffices to prove the existence of

lim
t→∞ϕ(t), where ϕ(t) = eiH̃ t f̃ �̆(jt )d�(χγ,t )Ff e−iH tϕ

for all ϕ ∈ H. Using Cook’s argument one is led to show that

∫ ∞

1
|〈ψ, ϕ′(t)〉|dt ≤ C‖ψ‖

for all ψ ∈ H̃. We have

d

dt
〈ψ, ϕ(t)〉 = 〈ψt , f̃ D̃

[
�̆(jt )d�(χγ,t )F

]
f ϕt 〉

= 〈ψt , f̃ d�̆(jt , djt )d�(χγ,t )Ff ϕt 〉
+〈ψt , f̃ �̆(jt )d�(dχγ,t )Ff ϕt 〉
+g〈ψt , f̃

[(
iφ(Gx)⊗ 1

)
�̆(jt )− �̆(jt )iφ(Gx)

]
d�(χγ,t )Ff ϕt 〉

+g〈ψt , f̃ �̆(jt )φ(iχγ,tGx)Ff ϕt 〉
+〈ψt , f̃ �̆(jt )d�(χγ,t )(DF)f ϕt 〉. (92)

We now prove integrability of all these terms, beginning with the last one. Since

DF = 1

t
χ[β0,β1](|x|/t)

(

F ′
x

|x| · ∇�−
|x|
t
F ′
)

χ[β0,β1](|x|/t)+O(t−2),

the last term on the r.h.s. of (92) is integrable, by Proposition 12 and the remarks thereafter
and because |∇�| is bounded w.r.toH , by Hypothesis 0. See the proof of Proposition 22
for details.

The second but last term on the r.h.s. of (92) decays like t−µ with µ > 1, because
|x|/t ≤ β1 on supp(F ), |y|/t ≥ β3 on supp(χγ,t ) and hence |x − y| ≥ t (β3 − β1) on
supp(χγ,tGxF ); (see the proof of Proposition 22 for details). Similar remarks prove the
integrability of the third term, because

[φ(Gx)⊗ 1]�̆(jt )− �̆(jt )φ(Gx) =
[
φ((1− j0,t )Gx)⊗ 1− 1⊗ φ(j∞Gx)

]
�̆(jt ),

where 1 − j0,t and j∞,t are supported in |y|/t ≥ β2, while |x|/t ≤ β1 on supp(F ),
hence |x − y| ≥ t (β2 − β1).

The integrability of the first and second term on the r.h.s. of (92) will follow from
the improved propagation estimate in Proposition 24. For the second term we use that
�̆(jt )d�(dχγ,t ) = d�̆(jt , jtdχγ,t ), where

jtdχγ,t = 1

2

[
(∇ω − y/t) · ∇χγ,t jt + jt∇χγ,t · (∇ω − y/t)

]+O(t−2)

=:
1

t
Pt +O(t−2),



460 J. Fröhlich, M. Griesemer, B. Schlein

where one power of 1/t has been factored out from ∇χγ,t = (1/t)χ ′β,t (|y|/t)y/|y|.
The error term O(t−2) is integrable. By Lemma 2 and since P0,t = 0, P0,t is the first
component of Pt = (P0,t , P∞,t ),

∣
∣〈ψt , f̃ d�̆(jt , Pt )Ff ϕt 〉

∣
∣

≤ 〈f̃ ψt ,
[
1⊗ d�(|P∞,t |)

]
F f̃ψt 〉1/2〈f ϕt , d�(|P∞,t |)Ff ϕt 〉1/2.

This is integrable by Proposition 24 and the remarks thereafter.
Finally, we estimate the first term on the r.h.s. of (92). Let Kt = 1/2((∇ω − y/t) ·

∇jt+h.c.) and let the operator χ
γ

be defined by χ
γ
(h1, h2) = (0, χγ,th2) onL2(R3)⊕

L2(R3). Then djt = Kt+O(t−2), jtχγ,t = χγ jt andKtχγ,t = χγKt+O(t−2). There-
fore

d�̆(jt , djt )d�(χγ,t ) =
[
1⊗ d�(χγ,t )

]
d�̆(jt , Kt )+O(t−2)N2.

We write
[
1⊗ d�(χγ,t )

]
d�̆(jt , Kt ) = d�̆(jt , χγKt )+ URt, (93)

where Rt is defined by this equation and U is as in d�̆ = Ud�. The term d�̆(jt , χγKt )

is treated very much like d�̆(jt , jtdχγ,t ) above, and it leads to an integrable contribution
thanks to the choice of supp(∇j) and Proposition 22. On ⊗ns L2(R3) the operator Rt is
given by

n∑

l=1

n∑

k=1, k �=l
jt ⊗ . . . (χγ jt )

︸ ︷︷ ︸
kth

⊗ . . . Kt︸︷︷︸
lth

. . .⊗ jt .

From the defining equation (93) for Rt and from Lemma 2 it is plausible that

|〈ψt , f̃ URtFfψt 〉|
≤ 〈ψt , f̃

[
1⊗ d�(|K∞,t |)

]
N2∞F f̃ψt 〉

1/2〈ϕt , f d�(|K∞,t |)Ff ϕt 〉1/2

+〈ψt , f̃
[
d�(|K0,t |)⊗N2

]
F f̃ψt 〉1/2〈ϕt , f d�(|K0,t |)Ff ϕt 〉1/2. (94)

To prove this, we return to the proofs of Lemma 1 and Lemma 2 with Kt = r∗2 r1,
and r∗2 r2 = |K�,t | = r∗1 r1. The number operators in (94) prevent us from applying
Proposition 24. We choose g ∈ C∞0 (R) with supp(g) ⊂ (−∞, �) and gf = f . Then

N∞f̃ ψt = g(H̃ )e−iH̃ t (N∞f̃ )ψ,

whereN∞f̃ is a bounded operator. Now the integrability of (94) follows from supp(∇j)
⊂ {β2 ≤ |y| ≤ β3} and Proposition 24.

The second assertion in (i) is proved in the same way as the corresponding statement
for W . By definition of W+,

[
e−iH̃ sW+eiHs −W+

]
ϕ = lim

t→∞ e
iH̃ t f̃

[
�̆(jt )d�(χγ,t )

]t+s
t
f e−iH tϕ.
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Since ∂t jt = O(t−1) and ∂tχγ,t = O(t−1), we conclude that

d

dt
�̆(jt )d�(χγ,t )f =

[
d�̆(jt , ∂t jt )d�(χγ,t )+ �̆(jt )d�(∂tχγ,t )

]
f = O(t−1),

and hence ‖[�̆(jt )d�(χγ,t )
]t+s
t
f ‖ = O(t−1).

It remains to prove (iii). Recall from Eq. (28) that I�(jt ) = 1, because j0+ j∞ = 1.
Furthermore

I f̃ �̆(jt )F = fF + o(1), (t →∞), (95)

as can be shown using Lemma 43 in Appendix F (see the proof of Lemma 16 in [FGS01]
for details). Let g ∈ C∞0 (R) with gf = f , and let g̃ = g(H̃ ). By definition of W ,
Proposition 12, and by (95),

Wϕ = eiHtf Fd�(χγ,t )f e
−iH tϕ + o(1)

= eiHt I g̃
(
e−iH̃ t eiH̃ t

)
f̃ �̆(jt )Fd�(χγ,t )f e

−iH tϕ + o(1)
= eiHt I g̃e−iH̃ tW+ϕ + o(1),

where the last step uses that I g̃ is a bounded operator. Since g̃W+ = W+ the assertion
follows. ��

9. Putting It All Together: Asymptotic Completeness

As explained in the introduction, we prove asymptotic completeness by induction in
the energy measured in units of σ/2, σ being the infrared cutoff. The first step is the
following essentially trivial lemma. The idea is that AC on Eη(H), as characterized by

Eq. (6), implies the same property for Ie−iH̃ t onEη(H)⊗F , the photons from F merely
contributing to the asymptotically free radiation.

Lemma 29. Assume that Hypotheses 0 – 3 are satisfied. Suppose g and � > inf σ(H)
are real numbers for which ‖|∇�(p)|E�(H)‖ < 1. Let the wave operators �̃+ and
�+ be defined as in Lemma 20 and in Theorem 15, respectively. Suppose Ran�+ ⊃
Eη(H)H, for some η < �. Then, for every ϕ ∈ RanE�(H̃ ), there exists a ψ ∈
RanE�(H̃ ) such that

�̃+(Eη(H)⊗ 1)ϕ = �+ψ.

If � ⊂ (−∞, �) and ϕ ∈ E�(H̃ )H̃ then ψ ∈ E�(H̃ )H̃.

Proof. By Lemma 34 (Appendix C), every given ϕ ∈ RanE�(H̃ ) can be approximated
by a sequence of vectors ϕn ∈ E�(H̃ ) which are finite linear combinations of vectors
of the form

γ = α ⊗ a∗(h1) . . . a
∗(hn)�, λ+

n∑

i=1

Mi < �, (96)
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for some λ, where α = Eλ(H)α and Mi = sup{|k| : hi(k) �= 0}. Let γ ∈ H̃ be of the
form (96). Then

eiHt Ie−iH̃ t (Eη(H)⊗ 1) γ = eiHta∗(h1,t ) . . . a
∗(hn,t ) e−iH t Eη(H)α

= a∗+(h1) . . . a
∗
+(hn)Eη(H)α + o(1), (97)

as t →∞. By assumption,Eη(H)α = �+β, for some β ∈ H̃, and we may assume that
β = Eη(H̃ )β, thanks to the intertwining relation for �+. From (97) it follows that

�̃+(Eη(H)⊗ 1)γ = a∗+(h1) . . . a
∗
+(hn)�+β

= �+(1⊗ a∗(h1) . . . a
∗(hn))β,

where, in the second equation, we have used Lemma 16. Hence, to each vector ϕn as
in Eq. (96), there corresponds a vector ψn ∈ Eµ(H)H̃ such that �̃+(Eη(H)⊗ 1)ϕn =
�+ψn. The left side converges to �̃+(Eη(H) ⊗ 1)ϕ, as n → ∞, and hence the right
side converges as well. Since�+ is isometric on Hdes⊗F , it follows that (Pdes⊗ 1)ψn
is Cauchy and hence has a limit ψ ∈ Eµ(H)H̃. Thus �̃+(Eη(H)⊗ 1)ϕ = �+ψ which
proves the lemma. ��
Theorem 30. Assume Hypotheses 0 – 3 are satisfied. Suppose that � > inf σ(H) and
g0 > 0 are so small that ‖|∇�|E�(H)‖ < 1/3, for all g < g0. Then, if g < g0 is
sufficiently small (compared to (1− 3‖|∇�|E�(H)‖))

Ran�+ ⊃ E(−∞,�)(H)H.
Proof. The proof is by induction in energy steps of size m = σ/2. We show that

Ran(�+) ⊃ E(−∞,�−km)(H)H, (98)

for k = 0, by proving it for all k ∈ {0, 1, 2, . . . }. SinceH is bounded below, (98) is cer-
tainly correct for k large enough. Assuming that (98) holds for k = n+1, we now prove
it for k = n. Since Ran�+ is closed, by Theorem 15, it suffices to prove that Ran�+ ⊃
E�(H)H for all compact intervals � ⊂ (−∞, � − nm), which is equivalent to

Ran�+ ⊃ P⊥des�(χi)E�(H)H,

by Lemma 21 and because Ran�+ ⊃ Hdes. Choose f ∈ C∞0 (R;R) with f = 1 on �
and supp(f ) ⊂ (−∞, �), and defineW in terms of f as in Theorem 26. By Theorem 27,
the operator�(χi)P⊥desWP

⊥
des�(χi) is positive onP⊥des�(χi)E�(H)H, and hence onto, if

g < g0 is small enough. Givenψ in this space we can thus findϕ = P⊥des�(χi)ϕ such that

P⊥des�(χi)Wϕ = ψ.

By Theorem 28, Wϕ = �̃+W+ϕ and W+ϕ = E�−mn(H̃ )W+ϕ. Furthermore, by part
(ii) of Theorem 28, W+ϕ has at least one boson in the outer Fock space, and thus an
energy of at most � − (n+ 1)m in the inner one. That is,

W+ϕ = [E�−(n+1)m(H)⊗ 1]W+ϕ,
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and we can now use the induction hypothesis Ran�+ ⊃ E�−(n+1)m(H)H. Using
Lemma 29, it follows that �̃+W+ϕ = �+γ for some γ ∈ E�(H̃ )H. We conclude that

ψ = �(χi)P⊥des�+γ
= �(χi)�+(1⊗ P⊥� )γ
= �+(�(χi)⊗ �(χi)P⊥� )γ,

where P⊥� is the projection onto the orthogonal complement of the vacuum. This proves
the theorem. ��

10. Outlook

It is clear that the infrared cutoff σ > 0 has played an unpleasantly crucial role in our
proof ofAC for Compton scattering. We do not know how to remove this cutoff in several
key estimates used in our proof; see Sect. 8.

However, the construction of a suitable Møller wave operator in the limit σ → 0 has
been accomplished by Pizzo [Piz00], using results of [Frö73] and of [Che01].

In the presence of an infrared cutoff we are also able to construct Møller wave oper-
ators for the scattering theory of N ≥ 2 conserved electrons interacting with scalar
bosons or photons. The proof follows arguments used in Haag–Ruelle scattering the-
ory; see [Jos65] and refs. given there. However, because the models studied here are
neither Galilei–, nor Lorentz covariant, in particular, because the dispersion law Eg(P )

of dressed one–electron states does not reflect any symmetries other than Euclidean
motions and hence the center of mass motion of bound clusters does not factor out, there
are no methods known to us enabling one to attack the problem of proving AC for the
scattering of many electrons.

By combining the methods developed in this paper with those in [FGS01] and with
elements of Mourre theory for Schrödinger operators, we expect to be able to extend
the results of this paper to a model, where the electron moves under the influence of a
screened electrostatic force generated by some static nuclei. We thus expect to be able
to describe scattering processes corresponding to ionization of an atom and electron
capture by a nucleus (Bremsstrahlung).

A. Functional Calculus

The Helffer-Sjöstrand Functional Calculus is a useful tool in the computation of com-
mutators of functions of self adjoint operators. Suppose that f ∈ C∞0 (R;C) and that A
is a self adjoint operator. A convenient representation for f (A), which is often used in
this paper, is then given by

f (A) = − 1

π

∫
dxdy

∂f̃

∂z̄
(z) (z− A)−1, z = x + iy,

which holds for any extension f̃ ∈ C∞0 (R2;C) of f with |∂z̄f̃ | ≤ C|y|,

f̃ (z) = f (z), and
∂f̃

∂z̄
(z) = 1

2

(
∂f

∂x
+ i ∂f

∂y

)

(z) = 0, for all z ∈ R.

(99)
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Such a function f̃ is called an almost analytic extension of f . A simple example is given
by f̃ (z) = (f (x) + iyf ′(x)) χ(z), where χ ∈ C∞0 (R2) and χ = 1 on some complex
neighborhood of supp f . Sometimes we need faster decay of |∂z̄f̃ |, as |y| → 0; namely
|∂z̄f̃ | ≤ C|y|n. We then work with the almost analytic extension

f̃ (z) =
(

n∑

k=0

f (k)(x)
(iy)k

k!

)

χ(z),

with χ as above. We call this an almost analytic extension of order n. For more details
and extensions of this functional calculus the reader is referred to [HS00] or [Dav95].

To estimate commutators involving �(p) =
√
p2 +M2 we will use the following

lemma.

Lemma 31. Let B be an operator on H. Then

[�(p), B] = 1

π

∫ ∞

M2
dy

√
y −M2

y + p2 [p2, B]
1

y + p2 . (100)

B. Pseudo-Differential Calculus

In order to compute commutators of functions of the momentum-coordinates with func-
tions of the position-coordinates the following lemma is very useful.

Lemma 32. Suppose f ∈ S(Rd), g ∈ Cn(Rd) and sup|α|=n ‖∂αg‖∞ < ∞. Let p =
−i∇. Then

i[g(p), f (x)] = i
∑

1≤|α|≤n−1

(−i)|α|
α!

(∂αf )(x)(∂αg)(p)+ R1,n

= (−i)
∑

1≤|α|≤n−1

i|α|

α!
(∂αg)(p)(∂αf )(x)+ R2,n

where

‖Rj,n‖ ≤ Cn sup
|α|=n
‖∂αg‖∞

∫
dk |k|n|f̂ (k)|.

In particular, and most importantly, if n = 2 then

i[g(p), f (εx)] = ε∇g(p) · ∇f (εx)+O(ε2)

= ε∇f (εx) · ∇g(p)+O(ε2),

as ε→ 0.

For the proof of this lemma see [FGS01].
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C. Representation of States in χ(H̃ ≤ c)H̃
The representation of states in Ran χ(H̃ ≤ c) proved in this section is used in Sect. 4 to
prove the existence of the wave operator and in Lemma 29. See [FGS01] for the proofs.

Lemma 33. Supposeω(k) = |k| or thatω satisfies Hypothesis 3, and let c > 0. Then the
space of linear combinations of vectors of the form a∗(h1) . . . a

∗(hn)�withhi ∈ L2(Rd)

and
∑n
i=1 sup{ω(k) : k ∈ supp(hi)} ≤ c is dense in χ(d�(ω) ≤ c)F .

Lemma 34. Suppose that ω(k) = |k| or that ω satisfies Hypothesis 3, setH = �(p)+
d�(ω)+ gφ(Gx), acting on H and H̃ = H ⊗ 1+ 1⊗ d�(ω) acting on H̃ = H⊗ F .
Let c > 0. Then the set of all linear combinations of vectors of the form

ϕ ⊗ a∗(h1) . . . a
∗(hn)�, λ+

N∑

i=1

Mi ≤ c, (101)

where ϕ = χ(H ≤ λ)ϕ for some λ ≤ c, n ∈ N and Mi = sup{ω(k) : hi(k) �= 0}, is
dense in χ(H̃ ≤ c)H̃.

D. Spectral Results

In the first subsection of this appendix we prove the existence of ground state vectors
forHg(P ), which are used in Sect. 3.2 to construct the dressed electron states (DES). In
the second subsection we prove a version of the Virial Theorem for the modified Ham-
iltonian Hmod(P ) introduced in Sect. 5, which together with the positive commutator
discussed in Sect. 3.3 allows us to prove the absence of eigenvalues of Hg(P ) above its
ground state energy.

D.1. Existence of DES. Our proof that Eg(P ) = inf σ(Hg(P )) is an eigenvalue of the
Hamiltonian Hg(P ) for σ > 0 relies on the Lipshitz property

inf
|k|≥ε

{
Eg(P − k)+ |k| − Eg(P )

}
> 0 (102)

valid whenever ε > 0, �(P ) < Oβ=1, and |g| is small enough. To prove Eq. (102), we
argue by way of perturbation theory and we use that

(1− α)E0(P )− g
2

α

∫ |κ(k)|2
|k| dk ≤ Eg(P ) ≤ �(P ) (103)

for all P ∈ R
3, g ∈ R and α ∈ (0, 1]. The upper bound in (103) follows from

〈�,φ(κσ )�〉 = 0 (Rayleigh–Ritz principle) and the lower bound from Hg(P ) ≥
(1− α)H0(P )+ αd�(|k|)+ gφ(κσ ) and from Lemma 8. Note that the lower bound is
independent of the IR cutoff σ , because, by Hypothesis 1, κσ (k) = κ(k)χ(|k|/σ), and
0 ≤ χ ≤ 1.

Lemma 35. Assume Hypotheses 0 – 2 and define B := supP ‖∂2�(P )‖ < ∞ and
C := ∫ |κ(k)|2/|k| dk <∞ . If β < 1, �(P ) ≤ Oβ , and

|g| < gβ := min

(

1,
(1− β)3/2
3(BC)1/2

,
(1− β)2

3B(C +Oβ)
)

then, for all ε > 0, Eq. (102) holds true.
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Proof. For shortness we write Pf andHf instead of d�(k) and d�(|k|) in the following.
LetP ∈ R

3 with�(P ) ≤ Oβ be fixed. Given δ > 0 and k ∈ R
3 pickψδ ∈ D(Hg(P−k))

with ‖ψδ‖ = 1 and

〈ψδ,Hg(P − k)ψδ〉 ≤ Eg(P − k)+ δ. (104)

Since 〈ψδ,Hg(P )ψδ〉 ≥ Eg(P ), it follows that

Eg(P − k)− Eg(P ) ≥ 〈ψδ, [Hg(P − k)−Hg(P )]ψδ〉 − δ
= 〈ψδ, [�(P − k − Pf )−�(P − Pf )]ψδ〉 − δ. (105)

From the formula

�(P − k − q)−�(P − q)
= �(P − k)−�(P )+

∫ 1

0
dt

∫ 1

0
ds
∑

i,j

(∂i∂j�)(P − sk − tq)kiqj ,

the assumptions and (30), we obtain the estimate

�(P − k − q)−�(P − q) ≥ −β|k| − B|k||q| (106)

valid for all k, q ∈ R
3. Since |Pf | ≤ Hf , Eq. (106) leads to the operator bound

�(P − k − Pf )−�(P − Pf ) ≥ −β|k| − B|k|Hf . (107)

In conjunction with (105) this proves that

Eg(P − k)− Eg(P ) ≥ −β|k| − B|k|〈ψδ,Hfψδ〉 − δ, (108)

and hence we need a bound on 〈ψδ,Hfψδ〉 from above.
From the bound (104) characterizing ψδ we see that

�(P − k)+ δ ≥ Eg(P − k)+ δ ≥ 〈ψδ,Hg(P − k)ψδ〉
= 〈ψδ, [�(P − k − Pf )+Hf + gφ(κσ )]ψδ〉

which we estimate from below using the operator bounds

�(P − k − Pf ) ≥ �(P − k)− (β + B|k|)Hf
gφ ≥ −αHf − g

2C

α
,

obtained from (106) with q and k interchanged, and Lemma 8, respectively . We conclude
that

δ ≥ (1− β − B|k| − α)〈ψδ,Hfψδ〉 − g
2

α
C. (109)

Inserting this bound on 〈ψδ,Hfψδ〉 in (108) and letting δ→ 0 leads to

Eg(P − k)+ |k| − Eg(P ) ≥
(

1− β − g2BC/α

1− β − B|k| − α
)

|k|

≥
(

1− β − g2 9BC

(1− β)2
)

ε
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for α = (1− β)/3 and ε ≤ |k| ≤ (1− β)/(3B). This is positive under our assumption
on g. It remains to estimate the left hand side from below when |k| ≥ (1− β)/(3B).

To this end we note that for g = 0,

E0(P − k)+ |k| − E0(P ) ≥ (1− β)|k| (110)

while, by (103) with α = |g|,
Eg(P − k) ≥ (1− |g|)E0(P − k)− C|g|, (111)

Eg(P ) ≤ �(P ) = E0(P ). (112)

Equation (110) follows fromE0(P−k) = infq(�(P−k−q)+|q|) ≥ �(P )−β|k+q|+
|q| ≥ �(P )−β|k| ≥ E0(P )−β|k|. By (110), (111), (112), andE0(P ) = �(P ) ≤ Oβ ,

Eg(P − k)+ |k| − Eg(P )
≥ (1− |g|)(E0(P − k)− E0(P ))− C|g| + |k| − |g|E0(P )

≥ (1− β)2/3B − |g|(C +Oβ) > 0,

where |k| ≥ (1 − β)/(3B) and |g| < (1 − β)2/(3B(C + Oβ)) was used in the last
line. ��

To prove that Eg(P ) = inf σ(Hg(P )) is an eigenvalue of the Hamiltonian Hg(P )
we first show the corresponding result for the modified Hamiltonian

Hmod(P ) = �(P − d�(k))+ d�(ω)+ gφ(κσ )
introduced in Sect. 5.

Lemma 36. Assume Hypotheses 0, 1, and 3. Let Emod(P ) := inf σ(Hmod(P )), and
�(P ) := infk(Emod(P − k)+ ω(k)− Emod(P )). Then

inf σess(Hmod(P )) ≥ Emod(P )+�(P ).
In particular, if �(P ) > 0 then Emod(P ) is an eigenvalue of Hmod(P ) .

Remark. The assumption that�(P ) > 0 will be derived from Hypothesis 3 in the proof
of Theorem 37 below.

Proof. Let λ ∈ σess(Hmod(P )). Then there exists a sequence (ϕn)n∈N ⊂ D(Hmod(P )),
‖ϕn‖ = 1, such that ‖(Hmod(P )−λ)ϕn‖ → 0 and ϕn ⇀ 0 (weakly) as n→∞. Hence

λ = lim
n→∞〈ϕn,Hmod(P )ϕn〉.

To estimate 〈ϕn,Hmod(P )ϕn〉 from below, we need to localize the photons. Pick j0, j∞ ∈
C∞(R3) with j2

0 + j2∞ = 1, j0(y) = 1 for |y| ≤ 1 and j0(y) = 0 for |y| ≥ 2. Given
R > 0 set j�,R(y) = j�(y/R), where � = 0 or∞. Let jR : h → h ⊕ h be defined by
h �→ (j0,Rh, j∞,Rh) and let jx,R be defined in a similar way with j�(y) replaced by
j�(y − x). By Lemma 42

esssupP ‖[Hmod(P ) − �̆(jR)∗H̃mod(P )�̆(jR)](N + 1)−1‖
= ‖[H − �̆(jx,R)∗H̃ �̆(jx,R)](N + 1)−1‖
= O(R−1) as R→∞, (113)
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where

H̃mod(P ) = �(P − d�(k)⊗ 1− 1⊗ d�(k))

+d�(ω)⊗ 1+ 1⊗ d�(ω)+ gφ(κσ )⊗ 1.

In (113) we may replace “essupP ” by “supP ” because ‖[Hmod(P )− �̆(jR)∗H̃mod(P )�̆

(jR)](N+1)−1‖ is continuous as a function ofP . Using that
∑N
i=1 ω(ki) ≥ ω(

∑N
i=1 ki),

by Hypothesis 3, and the definition of �(P ), we arrive at the lower bound

H̃mod(P ) ≥ Emod(P )+�(P )−�(P )E{0}(N∞),
which, in conjunction with (113) and �̆(jR)∗E{0}(N∞)�̆(jR) = �(j2

0,R), shows that

〈ϕn,Hmod(P )ϕn〉 = 〈ϕn, �̆(jR)∗H̃mod(P )�̆(jR)ϕn〉 +O(R−1)

≥ Emod(P )+�(P )− 〈ϕn, �(j2
0,R)ϕn〉�(P )+O(R−1),

whereO(R−1) is independent ofn. Now letn→∞ and observe that�(j2
0,R)(Hmod(P )+

i)−1 is compact to get

λ ≥ Emod(P )+�(P )+O(R−1) for all R > 0.

Letting R→∞ this proves the theorem. ��
Theorem 37. Assume Hypotheses 0 – 3. Suppose β < 1 and |g| < gβ , with gβ defined
by Lemma 35.

i) If �(P ) ≤ Oβ then Eg(P ) = Emod(P ) and Eg(P ) is an eigenvalue of Hg(P ).
ii) Suppose�(P ) ≤ Oβ . If ψP ∈ F is a ground state ofHg(P ) or ofHmod(P ), then it

belongs to Ran�(χi). In particular, by i), ψP is ground state of Hg(P ) if and only
if it is a ground state of Hmod(P ).

iii) The mappingP �→ Eg(P ) is twice continuously differentiable on {P ∈ R
3|�(P ) ≤

Oβ}.
Proof. Recall from the proof of Theorem 7, that F ∼= ⊕n≥0Fs,n where each subspace
Fs,n is invariant under Hg(P ) and that on Fs,n = L2

s (Bσ (0)
×n, dk1 . . . dkn;Fi ) the

operator Hg(P ) is given by

(Hg(P )ψ)(k1, . . . , kn) = HP (k1, . . . , kn)ψ(k1, . . . , kn),

where

HP (k1, . . . , kn) = Hg(P − k1 . . .− kn)+ |k1| + . . .+ |kn|
> Hg(P ) if (k1, . . . , kn) �= (0, . . . , 0) (114)

as an operator inequality on Fi . In the last equation we used that�(P−k)+|k| > �(P )

by assumption and Hypothesis 2.

i) Inequality (114) proves that

inf σ(Hg(P )|̀Fs,n) ≥ inf σ(Hg(P )|̀Fi ) = inf σ(Hmod(P )|̀Fi ) ≥ Emod(P )

for each n ∈ N. This shows that Eg(P ) ≥ Emod(P ) and hence that Eg(P ) =
Emod(P ). We next verify that�(P ) > 0 in Lemma 36. In fact, inf |k|≥σ/4(Emod(P−
k)+ω(k)−Emod(P )) ≥ inf |k|≥σ/4(Eg(P − k)+|k|−Eg(P )) > 0 by Lemma 35
while, for |k| ≤ σ/4, by (114),Emod(P−k)+ω(k)−Emod(P ) ≥ σ/2−|k| ≥ σ/4.
Hence, by Lemma 36, Emod(P ) is an eigenvalue ofHmod(P ), and that Eg(P ) is an
eigenvalue will now follow from ii) because Hmod(P ) = Hg(P ) on Ran�(χi).



Asymptotic Completeness 469

ii) By (114), HP (k1, . . . , kn) > Eg(P ) if (k1, . . . , kn) �= (0, . . . , 0). This shows
that any hypothetical eigenvector of Hg(P ) with eigenvalue Eg(P ) belongs to
Ran�(χi). The corresponding result forHmod(P ) follows from an inequality simi-
lar to (114) for Hmod(P ).

iii) This statement follows by analytic perturbation theory, becauseEg(P ) = Emod(P ),
and because Emod(P ) is an isolated eigenvalue of Hmod(P ). ��

Lemma 38. Assume Hypotheses 0–2 are satisfied. Suppose that �(P ) ≤ Oβ for some
β < 1 (see Hypothesis 2 for the definition of Oβ ) and that Eg(P ) = inf σ(Hg(P )) is
an eigenvalue of Hg(P ). Then Eg(P ) is a simple eigenvalue.

Proof. If g = 0 (or if κσ (k) = 0 a.e.) the lemma is true, under our assumptions, because
the only ground state of Hg=0(P ) is the vacuum. In fact, in this case Hg(P ) commutes
with N and the absence of ground state vectors in the n particle sector, for any n > 0,
can easily be proven using the equation

�(P − k1 − . . . kn) ≥ �(P )− β|k1| − · · · − β|kn|
with β < 1 (see the remark after Hypothesis 2). Thus, without loss of generality we
can assume that g �= 0 and that the set {k ∈ R

3 : κσ (k) �= 0} has positive measure.
We consider here the case g > 0 . The proof for g < 0 is then similar. Suppose that
ψ = {f (n)(k1, . . . , kn)}∞n=0 ∈ F is an eigenvector of Hg(P ) corresponding to the
eigenvalue Eg(P ). Then we have

〈ψ,Hg(P )ψ〉 =
∞∑

n=0

∫
dk1 . . . dkn|f (n)(k1, . . . , kn)|2

{

�

(

P −
n∑

i=1

ki

)

+
n∑

i=1

|ki |
}

+2g Re
∞∑

n=0

√
n+ 1

∫
dk1 . . . dkn f (n)(k1, . . . kn)

×
∫
dk κσ (k)f

(n+1)(k, k1, . . . , kn).

Now define

g(n)(k1, . . . kn) = (−1)n|f (n)(k1, . . . kn)|
and set ψ̃ = {g(n)(k1, . . . , kn)}∞n=0. Then ‖ψ̃‖ = ‖ψ‖ and since κσ ≥ 0 we have

〈ψ̃,Hg(P )ψ̃〉 =
∞∑

n=0

∫
dk1 . . . dkn|f (n)(k1, . . . , kn)|2

{

�

(

P −
n∑

i=1

ki

)

+
n∑

i=1

|ki |
}

−2g Re
∞∑

n=0

√
n+ 1

∫
dk1 . . . dkn |f (n)(k1, . . . kn)|

×
∫
dk κσ (k)|f (n+1)(k, k1, . . . , kn)|

≤ 〈ψ,Hg(P )ψ〉,
where the equality holds if and only if there is some real θ with

g(n)(k1, . . . , kn) = eiθf (n)(k1, . . . , kn), for all n ≥ 0. (115)

Since ψ is a ground state vector for Hg(P ), Eq. (115) has to be satisfied.
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Now suppose that ψ1 = {f (n)1 (k1, . . . , kn)}∞n=0 and ψ2 = {f (n)2 (k1, . . . , kn)}∞n=0 are
two orthonormal ground state vectors of Hg(P ). Then, by (115),

f
(n)
1 (k1, . . . , kn) = eiθ1 (−1)n|f (n)1 (k1, . . . , kn)| and

f
(n)
2 (k1, . . . , kn) = eiθ2 (−1)n|f (n)2 (k1, . . . , kn)|,

for some constants θ1, θ2 and thus

0 = 〈ψ1, ψ2〉 =
∞∑

n=0

∫
dk1 . . . dknf

(n)
1 (k1, . . . , kn)f

(n)
2 (k1, . . . , kn)

= ei(θ2−θ1)
∞∑

n=0

∫
dk1 . . . dkn|f (n)1 (k1, . . . , kn)| |f (n)2 (k1, . . . , kn)|. (116)

This implies, in particular, that f (0)1 ·f (0)2 = 0. We claim that this is not possible. In fact,
let ψ = {f (n)(k1, . . . , kn)}∞n=0 be an eigenvector of Hg(P ), and suppose that f (n) = 0
for all n < n0 for some n0 > 0, and that f (n0) �= 0, that is, f (n0)(k1, . . . kn0) �= 0
on a set G of positive measure. Since f (n0)(k1, . . . kn) = 0 unless ki ∈ supp κσ , for
all i = 1, . . . n0 (this can be proved in the same way as the absence of soft bosons in
the ground state, see Theorem 37), the set G must (essentially) belong to (supp κσ )×n0 .
Using that κσ (k) ≥ 0 and that f (n0)(k1, . . . , kn0) = (−1)n0eiθ |f (n0)(k1, . . . , kn0)| it
follows that

(Hg(P )ψ)
(n0−1)(k1, . . . kn0−1) = (ga(κσ )ψ)(n0−1)(k1, . . . kn0−1)

= g√n0

∫
dk κσ (k)f

(n0)(k, k1, . . . , kn0−1) �= 0,

which is in contradiction with (Hg(P )ψ)(n0−1) = Ef (n0−1) = 0. Hence n0 = 0 and
f (0) �= 0. Thus Eq. (116) cannot be true. ��

The following lemma is needed to apply Theorem 37 in cases where an upper bound
on Eg(P ), rather than �(P ), is given.

Lemma 39. Supposeβ ≤ 1 and� < Oβ . If |g| ≤ (Oβ−�)/(Oβ+C) andEg(P ) ≤ �,
then �(P ) ≤ Oβ .

Proof. Recall from (103) that

Eg(P ) ≥ (1− |g|)E0(P )− C|g|
for all P ∈ R

3 and all g. Hence Eg(P ) ≤ � and |g| ≤ (Oβ −�)/(Oβ +C) < 1 imply
that

E0(P ) ≤ � + C|g|
1− |g| ≤ Oβ.

It remains to prove that E0(P ) ≤ Oβ implies that �(P ) ≤ Oβ for β ≤ 1. This is fairly
obvious fromE0(P ) = infk(�(P − k)+|k|) and a sketch ofE0(P ) for a typical�. We
nevertheless give an analytical proof. Since�(P ) ≤ Oβ=1 implies thatE0(P ) = �(P )
it suffices to consider the case β = 1. Let A := {P : �(P ) ≤ Oβ=1} �= ∅. We
derive a contradiction from the two assumptions P �∈ A and E0(P ) ≤ Oβ=1. Let
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d := dist(P,A) > 0, let k be any vector with P − k ∈ A and choose a point P ′ on the
intersection of ∂A and the line segment from P − k to P . Then �(P ′) = Oβ=1 and
hence

�(P − k) ≥ �(P ′)− |P ′ − (P − k)|
= Oβ=1 − (|k| − |P − P ′|)
≥ E0(P )− |k| + d.

Using again that E0(P ) ≤ Oβ=1 and the above inequality we get

E0(P ) = min
k
(�(P − k)+ |k|)

= min
k:(P−k)∈A

(�(P − k)+ |k|) ≥ E0(P )+ d,

a contradiction. ��

D.2. Virial Theorem for the Modified Hamiltonian. Let Amod = d�(a), where a =
1/2(∇ω · y + y · ∇ω) and define the commutator [iHmod(P ),Amod] by the quadratic
form

〈ϕ, [iHmod(P ),Amod]ϕ〉 := 〈ϕ, d�(|∇ω|2)ϕ〉 − 〈∇�(P − d�(k))ϕ, d�(∇ω)ϕ〉
−〈ϕ, φ(iaκσ )ϕ〉

for ϕ ∈ D(Hmod(P )).

Lemma 40 (Virial Theorem). Let Hypothesis 0 be satisfied. If ϕ is an eigenvector of
Hmod(P ) then

〈ϕ, [iHmod(P ),Amod]ϕ〉 = 0.

Proof. We adapt the strategy used to prove Lemma 3 in [FGS01] to the present situ-
ation. Let ε > 0 and define yε = y/(1 + εy2), aε = 1/2(∇ω · yε + yε · ∇ω) and
Aε = d�(aε). The subspace D = {ϕ ∈ F0 : ϕn ∈ C∞0 (R3n, dk1 . . . dkn)} is a core of
�(P − Pf )+ d�(ω), and hence it is also a core of Hmod(P ). On D

i〈Hmod(P )ϕ,Aεϕ〉 − i〈Aεϕ,Hmod(P )ϕ〉
= 〈ϕ, {[i�(P − Pf ),Aε]+ d�(i[ω, aε])− φ(aεκσ )

}
ϕ〉, (117)

where

2i[ω, aε] = |∇ω|2 1

1+ εy2 − (∇ω · y)
ε

1+ εy2 (y · ∇ω + ∇ω · y)
1

1+ εy2 + h.c.

and, on ⊗ns L2(R3, dk),

2i[�(P − Pf ),Aε] = −
n∑

i=1

∇ω(ki) · ∇�(P − Pf ) 1

1+ εy2
i

+∇ω(ki) · yi ε

1+ εy2
i

(yi · ∇�(P − Pf )
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+∇�(P − Pf ) · yi) 1

1+ εy2
i

+ h.c.

Since D is a core of Hmod(P ), since Aε is bounded w.r.to Hmod(P ) and the quadratic
form on the right side of (117) is form bounded with respect to Hmod(P )

2, this equa-
tion carries over to all ϕ ∈ D(Hmod(P )). If ϕ is an eigenvector of Hmod(P ) then the
left side vanishes because Aε is symmetric, and thus it remains to show that the right
side converges to [iHmod(P ),Amod] as ε→ 0. This is done by repeated application of
Lebesgue’s dominated convergence theorem, see [FGS01] for more details. ��

E. Number–Energy Estimates

In this section we consider the modified Hamiltonian

Hmod = �(p)+ d�(ω)+ gφ(Gx)
introduced in Sect. 5, where the dispersion relation ω satisfies Hypothesis 3. We use the
notation H ≡ Hmod. Thanks to the lower bound ω(k) ≥ σ/2 > 0, one has the operator
inequality

N ≤ aH + b, (118)

for some constants a and b. The purpose of this section is to prove that also higher powers
of N are bounded with respect to the same powers ofH . This easily follows from (118)
if the commutator [N,H ] is zero, that is, for vanishing interaction. Otherwise it follows
from the boundedness of adkN(H)(H + i)−1 for all k.

Lemma 41. Assume the Hypotheses 0, 1 and 3 are satisfied and suppose m ∈ N ∪ {0}.
i) Then uniformly in z, for z in a compact subset of C,

‖(N + 1)−m(z−H)−1(N + 1)m+1‖ = O(| Im z|−m).
ii) (N+1)m(H+i)−m is a bounded operator. In particular (N+1)mχ(H) is bounded,

for all m ∈ N, if χ ∈ C∞0 (R).
Proof. This lemma follows from Lemma 31 i) and ii) in [FGS01], where it is proved
for a class of Hamiltonians which is larger than the one we consider here. Note that
Hypothesis 3 in this paper implies Hypothesis (H1) in [FGS01], and that Hypothesis
(H1) in [FGS01] is sufficient to prove parts i) and ii) of Lemma 31 in [FGS01]. ��

F. Commutator Estimates

In this section we consider the modified HamiltoniansHmod = �(p)+d�(ω)+gφ(Gx)
and H̃mod = Hmod⊗1+1⊗d�(ω) introduced in Sect. 5. We use the notationH = Hmod
and H̃ = H̃mod.

Let j0, j∞ ∈ C∞(Rd) be real-valued with j2
0 + j2∞ ≤ 1, j0(y) = 1 for |y| ≤ 1

and j0(y) = 0 for |y| ≥ 2. Given R > 0 set j#,R = j#((x − y)/R) and let jR,x =
(j0,R; j∞,R) (jR,x is an operator from L2(R3)⊗ h to L2(R3)⊗ (h⊕ h)).
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Lemma 42. Assume Hypotheses 0,1 and 3 are satisfied. Supposem ∈ N∪ {0}, and jR,x
is as above. Suppose also that χ, χ ′ ∈ C∞0 (R). Then, for R→∞,

i) (N0 +N∞ + 1)m
(
�̆(jR,x)H − H̃ �̆(jR,x)

)
χ ′ = O(R−1),

ii) (N0 +N∞ + 1)m
(
χ(H̃ )�̆(jR,x)− �̆(jR,x)χ(H)

)
χ ′(H) = O(R−1).

Remark. This lemma also holds if we replace the modified Hamiltonian H ≡ Hmod
with the original Hamiltonian Hg and if we restrict the equality to states with no soft
bosons, that is to states in the range of the orthogonal projection �(χi).

Proof. i) From the intertwining relations (25), and (26) we have that

�̆(jR,x)H − H̃ �̆(jR,x) = d�̆(jR,x, [jR,x, ω(k)+�(p)])
+[φ((j0,R − 1)Gx)⊗ 1+ 1⊗ φ(j∞,RGx)]�̆(jR,x).

By Lemma 32, and because of Hypothesis 0 (which guarantees that∇� is bounded
with respect to H ), we have

(N0 +N∞ + 1)md�̆(jR,x, [jR,x, ω(k)+�(p)])χ ′(H) = O(R−1).

To see that the other two terms lead to contributions of order O(R−1) write

(N0 +N∞ + 1)m[φ((j0,R − 1)G)⊗ 1+ 1⊗ φ(j∞,RG)]
= [φ((j0,R − 1)G)⊗ 1+ 1⊗ φ(j∞,RG)](N0 +N∞ + 1)m

+
m∑

l=1

(
m

l

)

(−i)l[φ(il(j0,R − 1)G)⊗ 1

+1⊗ φ(ilj∞,RG)](N0 +N∞ + 1)m−l ,

and then use (N0 + N∞ + 1)m−l �̆(jR,x) = �̆(jR,x)(N + 1)m−l , the fact that
(N + 1)m−lχ ′(H) is bounded (see Lemma 41) and Lemma 9.

ii) Let χ̃ be an almost analytic extension of χ of order m, as defined in Appendix A.
Then we have

(N0 +N∞ + 1)m(χ(H̃ )�̆(jR,x)− �̆(jR,x)χ(H))χ ′(H)
= − 1

π

∫
dxdy ∂z̄χ̃(N0 +N∞ + 1)m(z− H̃ )−1(H̃ �̆(jR,x)− �̆(jR,x)H)

×χ ′(H)(z−H)−1.

Then the statement follows by i) because

(N0 +N∞ + 1)m(z− H̃ )−1(N0 +N∞ + 1)−m+1 = O(| Im z|−m). �� (119)

Now suppose that j0, j∞ ∈ C∞(R3), with j2
0 + j2∞ ≤ 1, j0 ∈ C∞0 (R3) and with

j0(y) = 1 for |y| < λ0, for some λ0 > 0. Set j�,R = j�(y/R) and jR = (j0,R, j∞,R)
(note that here the operator jR does not depend on the electron position x). Suppose
moreover that F ∈ C∞0 (R) with F(s) = 0 for s > λ1, for some λ1 < λ0.

Lemma 43. Assume that Hypotheses 0, 1 and 3 are satisfied. Suppose that m ∈ N and
that jR and F are defined as above and that f, f ′ ∈ C∞0 (R). Then, if R→∞,
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i) (N0 +N∞ + 1)m
(
�̆(jR)H − H̃ �̆(jR)

)
F(|x|/R)(N + 1)−m−1 = O(R−1),

ii) (N0 +N∞ + 1)m
(
f (H̃ )�̆(jR)− �̆(jR)f (H)

)
F(|x|/R)f ′(H) = O(R−1).

The proof of the last lemma is very similar to the proof of Lemma 42. The only
difference is that now, in order to bound the commutator with the interaction φ(Gx) we
use the space cutoff F(|x|/t) and part ii) of Lemma 9.

G. Invariance of Domains

In this section the invariance of the domain of d�(∇ω · (y − x) + (y − x) · ∇ω) with
respect to the action of f (H) for smooth functions f is proven. Here H denotes the
modified Hamiltonian Hmod = �(p)+ d�(ω)+ gφ(Gx) introduced in Sect. 5. More-
over we prove in Lemma 44 that the norm of d�(a)f (H)e−iH tϕ can only grow linearly
in t if ϕ ∈ D(d�(a)). All these results are only used in Sect. 7.1 to prove the positivity
of the asymptotic observable W .

In the following we use the notation a = 1/2 (∇ω · (y − x)+ (y − x) · ∇ω).
Lemma 44. Assume Hypotheses 0,1 and 3 are satisfied and let f ∈ C∞0 (R). Then
f (H)D(d�(a)) ⊂ D(d�(a)) and

‖d�(a)e−iH tf (H)ϕ‖ ≤ C(‖d�(a)ϕ‖ + (t + 1) ‖ϕ‖),
for all t ≥ 0 and for all ϕ ∈ D(d�(a)).
Proof. First we note, that

eiHtd�(a)e−iH tf (H)− d�(a)f (H) =
∫ t

0
ds eiHs [iH, d�(a)] f (H)e−iHs

=
∫ t

0
ds eiHs (d�(∇ω · (∇ω − ∇�))− φ(iaGx)) f (H)e−iHs .

Since the operator in the integral on the r.h.s. of the last equation is bounded (because
of the energy cutoff f (H) and because, by Hypothesis 0, ∇� is bounded w.r.t. H ) it
follows that

‖d�(a)e−iH tf (H)ϕ‖ ≤ C (‖d�(a)f (H)ϕ‖ + t‖ϕ‖) . (120)

Now we have

d�(a)f (H)ϕ = f (H)d�(a)ϕ + [d�(a), f (H)]ϕ. (121)

To compute the commutator in the last equation we choose an almost analytic extension
f̃ of f , and we expand f (H) in an Helffer-Sjöstrand integral (see Appendix A).

[d�(a), f (H)] = −1

π

∫
dxdy∂z̄f̃ (z−H)−1[d�(a),H ](z−H)−1

= −i
π

∫
dxdy∂z̄f̃ (z−H)−1d�(∇ω · (∇ω − ∇�))(z−H)−1

+ i
π

∫
dxdy∂z̄f̃ (z−H)−1φ(iaGx)(z−H)−1.

Both integral on the r.h.s. of the last equation are bounded (because, by Hypothesis 0,
∇� is bounded w.r.t.H ). This together with (121) and (120) completes the proof of the
lemma. ��
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In the following lemma we prove the invariance of the domain of d�(a + 1) with
respect to the action of operators like �(χ(k)), where χ is a smooth function. This result
is used below, in the proof of Lemma 46.

Lemma 45. Assume Hypothesis 3 is satisfied. Suppose moreover that ϕ ∈ D(d�(a+1))
and that χ ∈ C∞(R3, [0, 1]) with ∇χ ∈ L∞(R3). Then

‖d�(a)�(χ(k))ϕ‖ ≤ C‖d�(a + 1)ϕ‖.
Proof. For ϕ ∈ D(d�(a)) we have

d�(a)�(χ(k))ϕ = �(χ(k))d�(a)ϕ + d�(χ(k), [a, χ(k)])ϕ.

The lemma follows because

[a, χ(k)] = i∇ω(k) · ∇χ(k)
is a bounded operator (and thus the operator d�(χ(k), [a, χ(k)]) can be estimated by
the number-operator N ). ��

Next, using Lemma 45, we prove that vectors in the domain of d�(a+1) are dense in
the range of �(χi), the orthogonal projection onto the subspace of vectors without soft
bosons. This is used in the proof of Theorem 27, where the positivity of the asymptotic
observable W is proven.

Lemma 46. Suppose Hypothesis 3 is satisfied and that χi is the characteristic function
of the set {k ∈ R

3 : |k| ≥ σ }. Let D := D(d�(a + 1)) and Hi = Ran�(χi). Then the
linear space Hi ∩D is a dense subspace of Hi .

Proof. First, we note that Hi ∩D(N) is dense in Hi . This is clear, since [N,�(χi)] = 0.
The lemma follows if we show that Hi ∩D is dense in Hi ∩D(N). To this end choose
an arbitrary ϕ ∈ Hi ∩D(N). Then, since D is dense in H, we find a sequence ϕn ∈ D
with ϕn → ϕ, as n→ ∞. Moreover we find functions fn ∈ C∞(R3) with fn(k) = 0,
if |k| < σ , and with fn → χi , as n→∞, pointwise. Then we define ψn := �(fn)ϕn.
On the one hand, by Lemma 45, ψn ∈ Hi ∩D for all n ∈ N. On the other hand

‖ψn − ϕ‖ = ‖�(fn)ϕn − ϕ‖ ≤ ‖�(fn)(ϕn − ϕ)‖ + ‖(�(fn)− �(χi))ϕ‖
≤ const‖ϕn − ϕ‖ + ‖(�(fn)− �(χi))ϕ‖ → 0

for n→∞. In the last step we used that, by assumption, ϕ ∈ Hi ∩D(N). ��
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