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Abstract. Missing link prediction in networks is of both theoretical interest and practical significance in
modern science. In this paper, we empirically investigate a simple framework of link prediction on the
basis of node similarity. We compare nine well-known local similarity measures on six real networks. The
results indicate that the simplest measure, namely Common Neighbours, has the best overall performance,
and the Adamic-Adar index performs second best. A new similarity measure, motivated by the resource
allocation process taking place on networks, is proposed and shown to have higher prediction accuracy
than common neighbours. It is found that many links are assigned the same scores if only the information
of the nearest neighbours is used. We therefore design another new measure exploiting information on the
next nearest neighbours, which can remarkably enhance the prediction accuracy.

PACS. 89.75.-k Complex systems – 05.65.+b Self-organized systems

1 Introduction

Many social, biological, and information systems can be
properly described as networks with nodes representing
individuals or organizations and edges representing the
interactions among them. The study of complex networks
has attracted increasing attention and become a common
focus of many branches of science. Many efforts have been
made to understand the evolution of networks [1,2], the
relations between topologies and functions [3,4], and the
network characteristics [5]. Very recently, a fresh question
has arisen [6], that is, how to predict missing links of net-
works? For some networks, especially biological networks
such as protein-protein interaction networks, metabolic
networks and food webs, the discovery of links (i.e., inter-
actions) is costly in the laboratory or the field, and thus
the current knowledge of those networks is substantially
incomplete [7,8]. Instead of blindly checking all possible
interactions, prediction based on the interactions already
known and focusing on those links most likely to exist can
sharply reduce the experimental costs if the predictions
are accurate enough. For some others like the web-based
friendship networks [9,10], very likely but not yet existent
links can be suggested to the relevant users as recommen-
dations of promising friendships, which can help users in
finding new friends and thus enhance their loyalties to web
sites.

The majority of previous works on missing link pre-
diction have used some external information besides the
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network topology [11]. Graven et al. [12] predicted the
semantic relationships of the world wide web with the
help of web content. Popescul and Ungar [13] designed
a regression model to predict citations made in scientific
literature based not only on the citation graph, but also
on authorship, journal information and content. Taskar
et al. [14] applied the relational Markov network algo-
rithm to predict missing links in a network of web pages
and a social network, in which the well-defined attributes
of each node are exploited. O’Madadhain et al. [15] con-
structed local conditional probability models for link pre-
diction, based on both structural features and nodes’ at-
tributes. The usage of external information can somewhat
enhance the algorithmic accuracy, however the content
and attribute information are generally not available and
thus the applications of the above algorithms are strongly
limited. Goldberg and Roth [16] exploited the neighbour-
hood cohesiveness property of small-world networks to as-
sess confidence for individual protein-protein interactions.
Liben-Nowell and Kleinberg [17] empirically investigated
the similarity-based prediction algorithms for large scien-
tific collaboration networks. Clauset et al. [18] designed
a prediction algorithm based on the inherent hierarchical
organization of social and biological networks.

The above-mentioned works are successful in dealing
with specific networks, however thus far a comprehensive
picture of the dependence of algorithmic performance on
network topology is lacking. The reason is twofold: (i) the
works from engineering and biological communities have
not yet caught up with the current state of development
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in characterizing the topologies of complex networks [5],
while (ii) the physics community has not paid enough
attention to the link prediction problem. Accordingly,
dozens of important issues are still insufficiently explored.
For example, one may be concerned with how to choose
a suitable algorithm given some structural descriptions of
a network, such as the small-world phenomenon [19], de-
gree heterogeneity [20], mixing pattern [21], community
structure [22], and so on. From the opposite viewpoint,
comparison of the performances of some prediction algo-
rithms may reveal some of the structural information of
the networks. It is just like the community structure has
a significant effect on the network synchronizability [23],
while the synchronizing process can be used to reveal the
underlying community structure [24]. In addition, the al-
gorithms based only on local information are generally fast
but of lower accuracy, while the ones making use of knowl-
edge of global topology are of higher accuracy yet higher
computational complexity [17]. Can we find a good trade-
off that provides high quality predictions while requiring
light computation?

In this paper, we empirically investigate a simple
framework of link prediction on the basis of node similar-
ity. Although the framework is simple, it opens a rich space
for exploration since the design of similarity measures is
challenging and can be related to very complicated phys-
ical dynamics and mathematical theory, such as random
walks [25] and the counting problem of spanning trees [26].
Here we concentrate on local-information-based similari-
ties. We compare nine well-known local measures on six
real networks, and the results indicate that the simplest
measure, namely common neighbours, has the best overall
performance, which is in accordance with the empirical
results reported in reference [17]. Motivated by the re-
source allocation process in transportation networks, we
next propose a new similarity measure, which performs
noticeably better than common neighbours, while requir-
ing no more information and computational time. Fur-
thermore, it is found that many links get the same scores
under local similarity measures, just like the degeneracy
of energy levels. We therefore design a new measure using
the information of the next nearest neighbours, which can
break the “degeneracy of states” and thus remarkably en-
hance the algorithmic accuracy. Finally, we outline some
future interests in this direction.

2 Method

Consider an undirected simple network G(V, E), where V
is the set of nodes and E is the set of links. Multiple
links and self-connections are not allowed. For each pair
of nodes, x, y ∈ V , every algorithm referred to in this
paper assigns a score sxy. This score can be viewed as a
measure of similarity between nodes x and y, and here-
inafter we do not distinguish similarity and score. All the
nonexistent links are sorted in decreasing order according
to their scores, and the links at the top are most likely to
exist.

To test the algorithm’s accuracy, the observed links,
E, are randomly divided into two parts: the training set,
ET , is treated as known information, while the probe set,
EP , is used for testing and no information in this set is
allowed to be used for prediction. Clearly, E = ET ∪ EP

and ET ∩ EP = ∅. In this paper, the training set al-
ways contains 90% of links, and the remaining 10% of
links constitute the probe set. We use a standard metric,
the area under the receiver operating characteristic (ROC)
curve [27], to quantify the accuracy of the prediction algo-
rithms. In the present case, this metric can be interpreted
as the probability that a randomly chosen missing link (a
link in EP ) is given a higher score than a randomly chosen
nonexistent link (a link in U \E, where U denotes the uni-
versal set). In the implementation, among n independent
comparisons, if there are n′ occurrences of the missing link
having a higher score and n′′ occurrences of the missing
link and nonexistent link having the same score, we define
the accuracy as:

AUC =
n′ + 0.5n′′

n
. (1)

If all the scores are generated from an independent and
identical distribution, the accuracy should be about 0.5.
Therefore, the degree to which the accuracy exceeds 0.5
indicates how much better the algorithm performs than
pure chance.

3 Data

In this paper, we consider six representative networks
drawn from disparate fields: (i) PPI – A protein-protein
interaction network containing 2617 proteins and 11855
interactions [28]. Although this network is not well con-
nected (it contains 92 components), most of the nodes
belong to the giant component, whose size is 2375. (ii) NS
– A network of coauthorships between scientists who are
themselves publishing on the topic of networks [29]. The
network contains 1589 scientists, 128 of which are isolated.
Here we do not consider those isolated nodes. The connec-
tivity of NS is not good, in fact NS consists 268 connected
components, and the size of the largest connected compo-
nent is only 379. (iii) Grid – An electrical power grid of
the western US [19], with nodes representing generators,
transformers and substations, and edges corresponding to
the high voltage transmission lines between them. (iv) PB
– A network of the US political blogs [30]. The original
links are directed, however here we treat them as undi-
rected. (v) INT – The router-level topology of the Inter-
net, as collected by the Rocketfuel Project [31]. (vi) USAir
– The network of the US air transportation system, which
contains 332 airports and 2126 airlines [32].

Table 1 summarizes the basic topological features of
these networks. Brief definitions of the monitored topolog-
ical measures can be found in the table caption. For more
details, please see the review articles [1–5]. We here give
a few remarks on the numbers which may be unexpected
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Table 1. The basic topological features of six example networks. N and M are the total numbers of nodes and links,
respectively. Nc denotes the size of the giant component. For example, the entry 2375/92 in the first line means that the
network has 92 components and the giant component consists of 2375 nodes. e is the network efficiency [33], defined as e =

2
N(N−1)

∑
x,y∈V,x �=y d−1

xy , where dxy is the shortest distance between x and y, and dxy = +∞ if x and y are in two different

components. C and r are the clustering coefficient [19] and assortative coefficient [21], respectively. Nodes with degree 1 are

excluded from the calculation of clustering coefficient. H is the degree heterogeneity, defined as H = 〈k2〉
〈k〉2 , where 〈k〉 denotes

the average degree.

Nets N M Nc e C r H
PPI 2617 11855 2375/92 0.180 0.387 0.461 3.73
NS 1461 2742 379/268 0.016 0.878 0.462 1.85

Grid 4941 6594 4941/1 0.063 0.107 0.003 1.45
PB 1224 19090 1222/2 0.397 0.361 –0.079 3.13
INT 5022 6258 5022/1 0.167 0.033 –0.138 5.50

USAir 332 2126 332/1 0.406 0.749 –0.208 3.46

for some readers: (i) it is well known that in the protein-
protein interaction networks, links between highly con-
nected proteins are systematically suppressed, while those
between highly-connected and weakly-connected pairs are
favoured [34]. That is to say, the assortative coefficient
should be negative for PPI (for example, as reported in
reference [21], the Yeast PPI network has an assortative
coefficient –0.156), however, in the present network, the
assortative coefficient is very positive – 0.461. This is
because the data set used here [28] is determined from
functional interactions and not from physical interactions.
More detailed discussion can be found in reference [35]. (ii)
The extremely large clustering coefficient of NS is due to
the specific construction rule of collaboration networks,
namely that all the participants in an act are fully con-
nected. Relevant discussion can be found in Appendix B
of reference [36].

4 Comparison of nine similarity measures
based on local information

In this section, we compare the prediction accuracies of
nine similarity measures. All these measures are based on
the local structural information contained in the testing
set. We first give a brief introduction of each measure as
follows.

(i) Common Neighbours – For a node x, let Γ (x) de-
note the set of neighbours of x. By common sense,
two nodes, x and y, are more likely to have a link
if they have many common neighbours. The simplest
measure of this neighbourhood overlap is the directed
count, namely

sxy = |Γ (x) ∩ Γ (y)|. (2)

(ii) Salton Index – The Salton index [37] is defined as

sxy =
|Γ (x) ∩ Γ (y)|
√

k(x) × k(y)
, (3)

where k(x) = |Γ (x)| denotes the degree of x. The
Salton index is also called the cosine similarity in the
literature.

(iii) Jaccard Index – This index was proposed by Jaccard
[38] over a hundred years ago, and is defined as

sxy =
|Γ (x) ∩ Γ (y)|
|Γ (x) ∪ Γ (y)| . (4)

(iv) Sørensen Index – This index is used mainly for eco-
logical community data [39], and is defined as

sxy =
2 × |Γ (x) ∩ Γ (y)|

k(x) + k(y)
. (5)

(v) Hub Promoted Index – This index is proposed for
quantifying the topological overlap of pairs of sub-
strates in metabolic networks [40], and is defined as

sxy =
|Γ (x) ∩ Γ (y)|
min{k(x), k(y)} . (6)

Under this measure, the links adjacent to hubs (here,
the term “hub” represents a node with very large de-
gree) are likely to be assigned high scores since the
denominator is determined by the lower degree only.

(vi) Hub Depressed Index – Analogously to the above in-
dex, we consider a measure with the opposite effect on
hubs for comparison, defined as

sxy =
|Γ (x) ∩ Γ (y)|
max{k(x), k(y)} . (7)

(vii) Leicht-Holme-Newman Index – This index assigns
high similarity to node pairs that have many common
neighbours compared not to the possible maximum,
but to the expected number of such neighbours [41]. It
is defined as

sxy =
|Γ (x) ∩ Γ (y)|
k(x) × k(y)

, (8)

where the denominator, k(x)×k(y), is proportional to
the expected number of common neighbours of nodes
x and y in the configuration model [42].

(viii) Preferential Attachment – The mechanism of pref-
erential attachment can be used to generate evolving
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scale-free networks (i.e., networks with power-law de-
gree distributions), where the probability that a new
link is connected to the node x is proportional to
k(x) [20]. A similar mechanism can also lead to scale-
free networks without growth [43], where at each time
step, an old link is removed and a new link is gen-
erated. The probability of this new link connecting x
and y is proportional to k(x)×k(y). Motivated by this
mechanism, a corresponding similarity index can be
defined as

sxy = k(x) × k(y), (9)

which has already been suggested as a proximity mea-
sure [44], as well as having been used to quantify
the functional significance of links subject to various
network-based dynamics, such as percolation [45], syn-
chronization [46] and transportation [47]. Note that
this index requires less information than all the others,
namely it does not require information on the neigh-
bourhood of each node. As a consequence, it also has
the least computational complexity.

(ix) Adamic-Adar Index – This index refines the simple
counting of common neighbours by assigning the less-
connected neighbours more weight [48], and is defined
as:

sxy =
∑

z∈Γ (x)∩Γ (y)

1
logk(z)

. (10)

We present the algorithmic accuracies for the six exam-
ple networks in Table 2, with those entries corresponding
to the highest accuracies being emphasized in black. To
our surprise, the simplest measure, common neighbours,
performs the best. This result is in accordance with the
one reported in reference [17] for social collaboration net-
works. After CN, the Adamic-Adar index performs the
next best since its accuracies are always close to the best
one, while others, such as the Jaccard index, Sørensen in-
dex and HDI, perform far worse in the cases of PB and
USAir.

Note that the first seven measures, from CN to LHN,
only differ in the denominators. If all the nodes have pretty
much the same degree, corresponding to a very small H ,
then the difference among those measures becomes in-
significant. In addition, for a given network, if its clus-
tering coefficient is very small, whether two nodes have
common neighbours plays the most important role, while
the denominator is less important. In a word, significant
difference among those seven measures can be found only
if the investigated network simultaneously has large clus-
tering coefficient and large degree heterogeneity, such as
PPI, PB and USAir. As shown in Table 2, the perfor-
mances of those seven algorithms on PB and USAir are
clearly different, but for PPI, they are more or less the
same. A possible reason is that PPI is a very assortative
network (i.e., r = 0.461), and thus two nodes of a link
tend to have similar degrees, which reduces the difference
in denominators.

The preferential attachment index has the worst over-
all performance. However, we are interested in it for it
requires the least information. One may intuitively think

Table 2. Accuracies of algorithms, measured by the area under
the ROC curve. Each number is obtained by averaging over 10
implementations with independently random partitions of test-
ing set and probe set. The abbreviations, CN, Salton, Jaccard,
Sørensen, HPI, HDI, LHN, PA, and AA, stand for Common
Neighbours, Salton Index, Jaccard Index, Sørensen Index, Hub
Promoted Index, Hub Depressed Index, Leicht-Holme-Newman
Index, Preferential Attachment and Adamic-Adar Index, re-
spectively. The entries corresponding to the highest accuracies
among these nine measures are emphasized in black. RA and
LP are abbreviations for the Resource Allocation Index and
Local Path Index, proposed in Sections 5 and 6 respectively.
The parameter for LP, ε, is fixed as 10−3.

Measures PPI NS Grid PB INT USAir
CN 0.889 0.933 0.590 0.925 0.559 0.937

Salton 0.869 0.911 0.585 0.874 0.552 0.898
Jaccard 0.888 0.933 0.590 0.882 0.559 0.901
Sørensen 0.888 0.933 0.590 0.881 0.559 0.902

HPI 0.868 0.911 0.585 0.852 0.552 0.857
HDI 0.888 0.933 0.590 0.877 0.559 0.895
LHN 0.866 0.911 0.585 0.772 0.552 0.758
PA 0.828 0.623 0.446 0.907 0.464 0.886
AA 0.888 0.932 0.590 0.922 0.559 0.925
RA 0.890 0.933 0.590 0.931 0.559 0.955
LP 0.939 0.938 0.639 0.936 0.632 0.900

that PA will give good predictions for assortative net-
works, while performing badly for disassortative networks.
However, no obvious correlation between assortative coef-
ficient and algorithmic accuracy based on PA can be found
from our numerical results. The reason is twofold. Firstly,
links between pairs of high-degree nodes contribute posi-
tively to the assortative coefficient and are assigned high
scores by PA, while links between pairs of low-degree
nodes also contribute positively to the assortative coef-
ficient but are disfavored by PA. Actually, the assortative
coefficient is an integrated measure involving many ingre-
dients, and there is no simple relation between this mea-
sure and the performance of PA. Secondly, the assortative
coefficient itself is very sensitive to the degree sequence,
and a network of higher degree heterogeneity tends to be
disassortative [49]. Therefore, this single parameter cannot
reflect the detailed linking patterns of networks. Clearly,
if the high-degree nodes are very densely connected to
each other, and the low-degree nodes are rarely connected
to each other, PA will perform relatively well. The for-
mer relates to the so-called rich-club phenomenon [50],
and we have checked that PB and USAir clearly exhibit
the rich-club phenomenon with respect to their random-
ized versions (we followed the method proposed by Colizza
et al. [51], who have already demonstrated the presence of
rich-club phenomenon in the air transportation network).
In addition, in USAir, more than 40% of nodes are very
small local airports, with degrees no larger than 3. A local
airport usually connects to a nearby central airport and
very few hubs, with direct links between two local airports
rarely found. This topological feature is also favoured by
PA. As shown in Table 2, PA gives relatively good pre-
dictions for PB and USAir, in accordance with the above
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discussion. Note that all the other eight measures will au-
tomatically assign zero score to a pair of nodes located in
different components. Therefore, PA performs badly when
the network consists many components. This is the very
reason why PA gives very bad predictions for NS, although
NS clearly exhibits the rich-club phenomenon. We also
note that PA performs even worse than pure chance for the
Internet at router level and the power grid. In these two
networks, the nodes have well-defined positions and the
links are physical lines. Actually, geography plays a signif-
icant role and links with very long geographical distances
are rare (the empirical analysis of the spatial dependence
of links in the Internet can be found in reference [52], and
the absence of clustering-degree correlation in the router-
level Internet and power grid can be considered as an indi-
cator of a strong geographical constraint [53]). PA can not
take into account the effect of geographical localization at
all. As local centers, the high-degree nodes have longer
geographical distances to each other than average. Corre-
spondingly, they also have a lower probability of directly
connecting to each other. Actually, these two networks ex-
hibit the anti-rich-club phenomenon, that is, the link den-
sity among very-high-degree nodes is even lower than the
randomized versions. This anti-rich-club effect leads to the
bad performance of PA. In contrast, although USAir has
well-defined geographical positions of nodes, its links are
not physical. Empirical data has demonstrated that the air
transportation networks show an inverse relation between
clustering coefficient and degree [54], and the number of
airline flights is not sensitive to the geographical distance
within a range of about 2000 kilometers [55]. As a final re-
mark, comparing equations (8) and (9), LHN is, to some
extent, inverse to PA. Therefore when PA performs badly,
LHN will give relatively good predictions, and vice versa.

5 Similarity measure based on resource
allocation

Except PA, all the other measures introduced in the last
section are neighbourhood-based. Although they are sim-
ple and mathematically elegant, they are not tightly re-
lated to any physical processes. In this section, motivated
by the resource allocation process taking place in net-
works [56], we propose a new similarity measure, which
has overall higher accuracy than all the measures men-
tioned in Section 4.

Consider a pair of nodes, x and y, which are not di-
rectly connected. The node x can send some resource to y,
with their common neighbours playing the role of trans-
mitters. In the simplest case, we assume that each trans-
mitter has a unit of resource, and will equally distribute it
between all its neighbours. The similarity between x and
y can be defined as the amount of resource y received from
x, which is:

sxy =
∑

z∈Γ (x)∩Γ (y)

1
k(z)

. (11)

Clearly, this measure is symmetric, namely sxy = syx.

The algorithmic accuracies on the six example net-
works are presented in Table 2, with RA the abbreviation
for Resource Allocation. Compared with all the nine mea-
sures introduced in Section 4, RA performs the best, es-
pecially for the networks (i.e., PB and USAir) with large
clustering coefficient, high degree heterogeneity and ab-
sence of a strongly assortative linking pattern. It is ob-
served that RA exhibits particularly good performance
on USAir. The reason may be that the resource allocation
process was originally proposed to explain the nonlinear
correlation between transportation capacity and connec-
tivity of each airport [54,57,58].

Note that, although resulting from different motiva-
tions [48,56], the Adamic-Adar index and resource alloca-
tion index have a very similar form. Indeed, they both
suppress the contributions of common neighbours with
high degrees. The difference between 1

logk(z) and 1
k(z) (see

Eqs. (10) and (11)) is insignificant if the degree, k(z), is
small, while it is great if k(z) is large. Therefore, when
the average degree is very small, the prediction results
of AA and RA are very close, while for the networks of
high average degree, such as PB and USAir, the results
are clearly different and the RA measure performs better,
which implies that AA’s penalty for high-degree common
neighbours is insufficient.

RA can be extended to the asymmetric case. Assum-
ing a unit of resource is located in x, which will be equally
send to all x’s neighbours, each of which will equally dis-
tribute the receives resource one step further to all its
neighbours. The amount of resource a node y received can
be considered as the importance of y in x’s view, denoted
as

sxy =
1

k(x)

∑

z∈Γ (x)∩Γ (y)

1
k(z)

. (12)

In this case, sxy �= syx. This idea has already found its
applications in a personalized recommendation algorithm
of bipartite user-object networks [59,60].

6 Improving algorithmic accuracy
by breaking the degeneracy of states

The neighbourhood-based measures require only informa-
tion on the nearest neighbours, and therefore have very
low computational complexity. However the information
usually seems insufficient and the probability that two
node pairs are assigned the same score is high. That is
to say, the neighbourhood-based similarity measures are
less distinguishable from each other. If we consider the
score assigned to a node pair as its energy, then many
node pairs crowd into very few energy levels. Taking INT
as an example, there are more than 107 node pairs, 99.59%
of which are assigned zero score by CN. For all the node
pairs having scores higher than 0, 91.11% are assigned
score 1, and 4.48% are assigned score 2. Using a little bit
more information involving the next nearest neighbours
may break the “degeneracy of the states” and make the
scores more distinguishable. Denote by A the adjacency
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matrix, where Axy = 1 if x and y are directly connected,
and Axy = 0 otherwise. Obviously, (A2)xy is the number
of common neighbours of nodes x and y, which is also
equal to the number of different paths with length 2 con-
necting x and y. And if x and y are not directly connected
(this is the case we are interested in), (A3)xy is equal to
the number of different paths with length 3 connecting x
and y. The information contained in A3 can be used to
break the degeneracy of the states, and thus we define a
new measure as

S = A2 + εA3, (13)

where S denotes the similarity matrix and ε is a free pa-
rameter. We call it the Local Path (LP) index since it
makes use of the information on local paths with lengths
2 and 3. Clearly, LP reduces to CN when ε = 0. Here, the
information in A3 is only used to break the degeneracy
of the states, therefore ε should be a very small number
close to zero (of course, given a network, one can tune
ε to find its optimal value corresponding to the highest
accuracy, however this optimal value is different for dif-
ferent networks, and a parameter-dependent measure is
less practical in dealing with huge-size networks since the
tuning process may take much time). In the real imple-
mentation, we directly count the number of different paths
with length 3, which is much faster than the matrix mul-
tiplication, and thus equation (13) is also based on local
calculation.

The algorithm’s accuracies on the six example net-
works are presented in Table 2, where this measure is de-
noted by LP and the parameter is fixed at ε = 10−3. It is
pleasing to see that the accuracy, except for USAir, can be
largely enhanced by LP. In USAir, the large-degree nodes
are densely connected and share many common neigh-
bours. Some links among high-degree nodes are removed
into the probe set. Even without the contribution of εA3,
those links are assigned very high scores, and thus the ad-
ditional item, εA3, changes their relative positions little.
Consider two small local airports, x and y, which are con-
nected to their local central airports, x′ and y′. Of course,
many hubs are common neighbours of x′ and y′, and x′
and y′ may be directly connected. If the link (x, x′) is
removed, the similarities between x and other nodes are
all zero for both CN and LP. If (x, x′) exists, by LP, the
similarities sxy′ (by x-x′-hub-y′), sxy (by x-x′-y′-y), and
sxh where h represents a hub node (by x-x′-hub-h and/or
x-x′-y′-h) are positive due to the contributions of paths
with length 3. There are many links connecting small lo-
cal airports and local centers, some of which are removed,
while the others are kept in the testing set. According to
the above discussion, the removed links have a lower score
than the nonexistent links due to the additional term εA3.
In a word, the very specific structure of USAir (the hier-
archical organization consisting of hubs, local centers and
small local airports) makes the LP worse than the simple
CN. In this specific case, we can break the degeneracy of
the states in the opposite direction by setting ε equal to
−10−3, which leads to an accuracy 0.945, higher than that
of CN, 0.937.

7 Conclusion and discussion

In this paper, we have empirically compared some link
prediction algorithms based on node similarities. All the
similarity measures discussed here, including the two
newly proposed ones, can be obtained by local calcu-
lations. Numerical results on the nine well-known mea-
sures indicate that: (i) the simplest measure, common
neighbours, performs best, with the Adamic-Adar index
second; (ii) significant difference between these measures,
excluding the Adamic-Adar index and the preferential at-
tachment, can be observed only if the monitored network
possesses a large clustering coefficient, high degree hetero-
geneity, and the absence of a strongly assortative linking
pattern; (iii) the preferential attachment index performs
relatively well if the monitored network displays the rich-
club phenomenon.

We have proposed a new measure, RA, motivated by
the resource allocation process, which is equivalent to the
one-step random walk starting from the common neigh-
bours. This measure has a similar form to the Adamic-
Adar index, but performs better, especially for the net-
works with high average degree. We make the prediction,
whose validity requires further evidence from more em-
pirical results, that RA is particularly suitable for link
prediction in transportation networks. We strongly rec-
ommend this measure for relevant applications and the-
oretical analyses, not only for its good performance, but
also for its simplicity and elegance.

Furthermore, we have found that many links are as-
signed identical scores based on the local measures using
the information on the nearest neighbours only. Exploita-
tion of some additional information on the next near-
est neighbours can therefore break the degeneracy of the
states and enhance the algorithmic accuracy. In real appli-
cations, the algorithms based on global calculations may
be less efficient for they require long time and/or huge
memory, while the algorithms only exploiting very local
information may be less effective due to their low accu-
racies. A properly designed algorithm can provide a good
tradeoff just like the LP index presented in this paper.
Indeed, it has been shown recently that the LP index pro-
vides competitively accurate predictions compared with
the indices making use of global information [61]. A similar
idea has also been adopted in the study of network-based
traffic dynamics, where the information on the next near-
est neighbours can sharply enhance the traffic efficiency
compared with the case in which only the information on
the nearest neighbours is known [62].

Although the framework adopted here is very simple,
it opens a rich space for investigation since in principle,
all algorithms can be embedded into this framework dif-
fering only in the similarity measures. Besides the ones
discussed in this paper, a number of similarity measures
are based on global structural information, such as the av-
erage commute time of a random walk [25], the number of
spanning trees embedding a given node pair [26], the pseu-
doinverse of the Laplacian matrix [63], and so on. Some
other similarity measures are even more complicated, de-
pending on parameters. These include the Katz index [64]
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and its variant [41], the transferring similarity [65], the
PageRank index [66], and so on. These measures may
give better predictions than the local ones, however the
calculation of such measures, including determination of
the optimal parameters for specific networks, is of high
complexity and thus unfeasible for huge-size networks. In
any case, we currently lack a systematic comparison and a
clear understanding of the performance of these measures,
which are set as our future goals.

Empirical analysis of more real networks as well as
more known and newly proposed similarity measures is
very valuable for building up knowledge and experience,
and we can expect a clear picture of this issue to be com-
pleted by the putting together of many fragments from
respective empirical studies. However, the empirical re-
sults may not be clear at all since many unknown and
uncontrollable ingredients are always mixed together in
real networks. An alternative route is to build artificial
network models with controllable topological features, and
to compare the prediction algorithms on these models (see
Ref. [61] for the comparison of link prediction algorithms
on modeled networks with controllable density and noise
strength).
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Rev. Lett. 96, 114102 (2006)
25. F. Gobel, A. Jagers, Stochastic Processes and Their

Applications 2, 311 (1974)
26. P. Chebotarev, E. Shamis, Automation and Remote

Control 58, 1505 (1997)
27. J.A. Hanely, B.J. McNeil, Radiology 143, 29 (1982)
28. C. Von Merging, R. Krause, B. Snel, M. Cornell, S.G.

Oliver, S. Fields, P. Bork, Nature 417, 399 (2002)
29. M.E.J. Newman, Phys. Rev. E 74, 036104 (2006)
30. R. Ackland, Mapping the US political blogosphere: Are

conservative bloggers more prominent, Presentation to
BlogTalk Downunder (Sydney, 2005), available at http://
incsub.org/blogtalk/images/robertackland.pdf

31. N. Spring, R. Mahajan, D. Wetherall, T. Anderson,
IEEE/ACM Trans. Networking 12, 2 (2004)

32. V. Batageli, A. Mrvar, Pajek Datasets, available at
http://vlado.fmf.uni-lj.si/pub/networks/data/

default.htm

33. V. Latora, M. Marchiori, Phys. Rev. Lett. 87, 198701
(2001)

34. S. Maslov, K. Sneppen, Science 296, 910 (2002)
35. J. Schmith, N. Lemke, J.C.M. Mombach, P. Benelli, C.K.

Barcellos, G.B. Bedin, Physica A 349, 675 (2005)
36. T. Zhou, B.-H. Wang, Y.-D. Jin, D.-R. He, P.-P. Zhang,

Y. He, B.-B. Su, K. Chen, Z.-Z. Zhang, J.-G. Liu, Int. J.
Mod. Phys. C 18, 297 (2007)

37. G. Salton, M.J. McGill, Introduction to Modern
Information Retrieval (MuGraw-Hill, Auckland, 1983)

38. P. Jaccard, Bulletin de la Societe Vaudoise des Sciences
Naturelles 37, 547 (1901)

39. T. Sørensen, Biol. Skr. 5, 1 (1948)
40. E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, A.-L.

Barabási, Science 297, 1553 (2002)
41. E.A. Leicht, P. Holme, M.E.J. Newman, Phys. Rev. E 73,

026120 (2006)

http://incsub.org/blogtalk/images/robertackland.pdf
http://incsub.org/blogtalk/images/robertackland.pdf
http://vlado.fmf.uni-lj.si/pub/networks/data/default.htm
http://vlado.fmf.uni-lj.si/pub/networks/data/default.htm


630 The European Physical Journal B

42. M. Molloy, B. Reed, Random Structure Algorithms 6, 161
(1995)

43. Y.-B. Xie, T. Zhou, B.-H. Wang, Physica A 387, 1683
(2008)

44. Z. Huang, X. Li, H. Chen, Link prediction approach to col-
laborative filtering, In Proceedings of the 5th ACM/IEEE-
CS joint conference on Digital libraries (ACM Press, New
York, 2005)

45. P. Holme, B.J. Kim, C.N. Yoon, S.K. Han, Phys. Rev. E
65, 056109 (2002)

46. C.-Y. Yin, W.-X. Wang, G.-R. Chen, B.-H. Wang, Phys.
Rev. E 74, 047102 (2006)

47. G.-Q. Zhang, D. Wang, G.-J. Li, Phys. Rev. E 76, 017101
(2007)

48. L.A. Adamic, E. Adar, Social Networks 25, 211 (2003)
49. S. Zhou, R.J. Mondragón, New J. Phys. 9, 173 (2007)
50. S. Zhou, R.J. Mondragón, IEEE Commun. Lett. 8, 180

(2004)
51. V. Colizza, A. Flammini, M.A. Serrano, A. Vespignani,

Nat. Phys. 2, 110 (2006)
52. S.-H. Yook, A.-L. Barabási, H. Jeong, Proc. Natl. Acad.

Sci. U.S.A. 99, 13382 (2002)
53. E. Ravasz, A.-L. Barabási, Phys. Rev. E 67, 026112 (2003)

54. H.-K. Liu, T. Zhou, Acta Physica Sinica 56, 106 (2007)
55. M.T. Gastner, M.E.J. Newman, Eur. Phys. J. B 49, 247

(2006)
56. Q. Ou, Y.-D. Jin, T. Zhou, B.-H. Wang, B.-Q. Yin, Phys.

Rev. E 75, 021102 (2007)
57. W. Li, X. Cai, Phys. Rev. E 69, 046106 (2004)
58. A. Barrat, M. Barthélemy, R. Pastor-Satorras, A.

Vespignani, Proc. Natl. Acad. Sci. U.S.A. 101, 3747 (2004)
59. T. Zhou, J. Ren, M. Medo, Y.-C. Zhang, Phys. Rev. E 76,

046115 (2007)
60. T. Zhou, L.-L. Jiang, R.-Q. Su, Y.-C. Zhang, Europhys.

Lett. 81, 58004 (2008)
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