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ABSTRACT

We prove a uniqueness theorem for homogeneous quasimorphisms on the

universal cover of the symplectic linear group.

Let G be a group. A quasimorphism on G is a map ρ : G → R satisfying

|ρ(gh) − ρ(g) − ρ(h)| ≤ C

for all g, h ∈ G and a suitable constant C. It is called homogeneous if ρ(gk) =

kρ(g) for every g ∈ G and every integer k ≥ 0. Let

Sp(2n) :=
{
Ψ ∈ R

2n×2n |ΨJ0Ψ
T = J0

}
, J0 :=

(
0 −1l

1l 0

)
,

denote the group of symplectic matrices and S̃p(2n) its universal cover. Think

of an element of S̃p(2n) as a homotopy class [Ψ] (with fixed endpoints) of a

smooth path Ψ : [0, 1] → Sp(2n) satisfying Ψ(0) = 1l.

Theorem 1: There is a unique homogeneous quasimorphism µ on S̃p(2n) that

descends to the determinant homomorphism on U(n) in the sense that

det(X + iY ) = exp (2πiµ([Ψ])) ,

(
X −Y

Y X

)
:= Ψ(1),

for every [Ψ] ∈ S̃p(2n) with Ψ(1) ∈ Sp(2n) ∩ O(2n) ∼= U(n).
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The quasimomorphism of Theorem 1 plays a central role in [3] and this mo-

tivated the present note. Two explicit constructions of the quasimorphism can

be found in [1] and [5]. The construction in [1] uses the unitary part in a polar

decomposition and homogenization. The construction in [5] uses the eigenvalue

decomposition of a symplectic matrix (but does not mention the term quasi-

morphism).

Lemma 1: If ρ : G → R is a homogeneous quasimorphism, then ρ is invariant

under conjugation and ρ(g−1) = −ρ(g) for every g ∈ G.

Proof of Lemma 1. Let C be the constant in the definition of quasimorphism.

By homgeneity, we have ρ(1) = 0. Hence
∣∣ρ(gk) + ρ(g−k)

∣∣ ≤ C for every g ∈ G

and every integer k ≥ 0. By homogeneity, we obtain
∣∣ρ(g) + ρ(g−1)

∣∣ ≤ C/k for

every k and so ρ(g−1) = −ρ(g). Hence
∣∣ρ(ghg−1) − ρ(h)

∣∣ =
∣∣ρ(ghg−1) − ρ(g) − ρ(h) − ρ(g−1)

∣∣ ≤ 2C.

Using homogeneity again we obtain ρ(ghg−1) = ρ(h) for all g, h ∈ G.

Proof of Theorem 1. Let P ⊂ Sp(2n) denote the set of symmetric positive defi-

nite symplectic matrices. This space is contractible and hence there is a natural

injection ι : P → S̃p(2n). Explicitly, the map ι assigns to a matrix P ∈ P the

unique homotopy class of paths Φ : [0, 1] → P with endpoints Φ(0) = 1l and

Φ(1) = P .

Let µ : S̃p(2n) → R be a homogeneous quasimorphism that descends to the

determinant homomorphism on U(n). It suffices to prove that the restriction

of µ to ι(P) is bounded. (If µ′ is another quasimorphism satisfying the require-

ments of Theorem 1 and µ, µ′ are bounded on ι(P) then, by polar decomposition

and the determinant assumption, their difference is bounded and so, by homo-

geneity, they are equal.) We prove that µ vanishes on ι(P). For every unitary

matrix Q ∈ U(n) ⊂ Sp(2n) and every P ∈ P we have

(1) µ(ι(QPQT )) = µ(ι(P )).

To see this, choose two paths Φ : [0, 1] → P and Ψ : [0, 1] → U(n) such that

Φ(0) = Ψ(0) = 1 and Φ(1) = P , Ψ(1) = Q. Then µ([Φ]) = µ([ΨΦΨ−1]), by

Lemma 1, and so (1) follows from the fact that Ψ−1 = ΨT . Now let P ∈ P .

Since P is a symmetric symplectic matrix we have PJ0P = J0 and hence

µ(ι(P )) = µ(ι(J0P
−1J−1

0
)) = µ(ι(P−1)) = µ(ι(P )−1) = −µ(ι(P )).
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Here the second equation follows from (1) and the last from Lemma 1. This

shows that µ(ι(P )) = 0 for every P ∈ P .

Remark 1: Lemma 1 is well known to the experts [2]. We included a proof to

give a self-contained exposition.

Remark 2: Related results, obtained with different methods, are contained in [1]

and [4]. Our main theorem can in fact be deduced from these results.

Remark 3: The determinant homomorphism det : U(n) → S1 is uniquely

determined by the condition that it induces an isomorphism on fundamental

groups. Hence it follows from Theorem 1 that the homogeneous quasimorphism

µ : S̃p(2n) → R is uniquely determined by the condition that it restricts to an

isomorphism of the fundamental group of Sp(2n) to the integers.

Remark 4: The referee pointed out to us the following generalization.

Let G be a uniformly perfect group and Z → G̃ → G be a central extension.

If ρ is a homogeneous quasimorphism on G̃ that vanishes on Z then ρ ≡ 0.

To see this we first observe that, since ρ vanishes on Z, we have

ρ(zg) = lim
k→∞

k−1ρ(zkgk) = lim
k→∞

k−1ρ(gk) = ρ(g)

for all z ∈ Z and g ∈ G̃. Hence ρ descends to G. Now let c > 0 be the constant in

the definition of quasimorphism. Then, by Lemma 1, we have
∣∣ρ(ghg−1h−1)

∣∣ =∣∣ρ(ghg−1h−1) − ρ(g) − ρ(hg−1h−1)
∣∣ ≤ c for all g, h ∈ G. Since every element of

G can be expressed as a product of at most N commutators we have |ρ(g)| ≤

(2N−1)c for all g ∈ G. Thus the quasimorphism is bounded and hence vanishes

identically.

Theorem 1 follows from this generalization because Sp(2n) is uniformly per-

fect and S̃p(2n) is a central extension of Sp(2n). However, the geometric prop-

erties of the Maslov quasimorphism µ : S̃p(2n) → R derived in the proof of

Theorem 1 do not follow from the above algebraic argument.
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[4] M. Burger, A. Iozzi and A. Wienhard, Surface group representations with maximal Toledo

invariant, Annals of Mathematics, to appear.

[5] D. A. Salamon and E. Zehnder, Floer homology, the Maslov index, and periodic solution

of Hamiltonian equations, in Analysis et cetera, (P. H. Rabinowitz and E. Zehnder, eds.),

Academic Press, New York, 1990, pp. 573–600.


