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Abstract Semiconductor nanowires may be the core com-
ponents of next generation processors and memories. In
effect, several groups already demonstrated the feasibility
of Si or Ge nanowire field-effect transistors (FETs). How-
ever, the fabrication of novel devices is always a difficult
and expensive process. The recourse to technology com-
puter aided design can facilitate the development of new
structures and help reducing the inherent costs. In this ar-
ticle a full-band quantum transport (QT) solver dedicated
to nanowire transistors is presented. The semi-empirical
sp3d’s* tight-binding (TB) method is chosen as bandstruc-
ture model for its accuracy to reproduce the bulk properties,
for its straight forward extension to nanostructures, and for
its atomic description of the simulation domain. The cal-
culation of multi-band open boundary conditions (OBCs)
and their integration into a three-dimensional Schrodinger-
Poisson or Non-equilibrium Green’s Function solver are
fundamental in the development of a ballistic QT simula-
tor. Different approaches are investigated and compared in
this work. They all allow transport with any channel orien-
tation, material composition, and cross section shape. The
computational burden restricts most of them to the simula-
tion of small nanowire structures. However, some advanced
numerical techniques open promising perspectives towards
realistic devices.
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1 Introduction

During the last thirty years the size of the transistors has
been aggressively scaled to reach the atomic range. Some
groups have already reported metal-oxide-semiconductor
field-effect transistors (MOSFETSs) with a gate length below
10 nm. The lateral dimensions of these transistors has also
been reduced to form a kind of “wire” structure. The re-
sulting nanowire (NW) devices may play an important role
in the future of nanoelectronics [1]. This article presents an
atomistic quantum transport solver designed for these post-
CMOS FETs [2]. The quantization effects characterizing
nanowires cannot be captured by classical models and re-
quire the development of a full-band (FB) simulator. This
particularly concerns transistors whose cross section does
not exceed 5 nm x 5 nm [3]. The sp3d5s* semi-empirical
tight-binding (TB) method [4, 5] is an appropriate band-
structure model for the desired application. It has the ad-
vantage to fully account for the atomic granularity of the
simulation domain.

The paper is organized as follows: Sect. 2 describes three
procedures to compute open boundary conditions (OBCs)
in a multi-band model and their integration into an atom-
istic quantum transport solver based either on the Non-
Equilibrium Green’s Function [6] (NEGF) or on the Wave
Function [7] (WF) formalism. The results are used to com-
pute carrier and current densities in nanowires with any crys-
tal orientation such as [100], [110], or [111], and any wire
shape (e. g. square, triangular, circular, ... ).

Section 3 deals with the numerical implementation of the
transport models. The methods to compute the OBCs and to
solve the NEGF or WF problems are benchmarked on a sin-
gle CPU and on many shared/distributed memory processors
for selected nanowire structures.
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Simulation results are presented in Sect. 4. First, the limit
of the effective mass approximation (EMA) is investigated.
Square Si nanowire transistors with transport along the [100]
crystal axis are simulated as function of their cross section
size. The corresponding FB and EMA current characteristics
are then compared. It is followed by a study of circular Si
nanowires with different crystal orientations. The optimiza-
tion of the computational resources enables the treatment of
structures with a cross section surface up to 16 nm?.

Finally, this article is summarized and concluded in
Sect. 5. Some indications regarding further improvement of
the quantum transport models are also given.

2 Theory

This Section starts with a brief description of three FB al-
gorithms to obtain open boundary conditions in nanowire
structures, (1) an iterative solver [8], (2) a generalized eigen-
value problem approach [9], and (3) a shift-and-invert pro-
cedure resulting in an eigenvalue problem [10]. Figure 1
shows the schematic view of a nanowire transistor without
its semi-infinite reservoirs. Effective transport occurs along
the x-axis while y and z are directions of confinement. Each
atom is characterized by a set of orbitals. In the sp3d°s*
tight-binding model, ten different orbitals are kept (twenty
with spin-orbit coupling).

To solve the Schrédinger equation in the WF or NEGF
formalism, electrons with an energy E enter and leave the
n-doped device in Fig. 1 at the source and drain contacts.
The valence band is assumed completely filled. The result-
ing open system can be written as

(E—-H;;))C; — Hjj11Ciy1 — H;;—1C;i-1 =0 (1

if the Schrodinger wave functions are expanded in terms of
orthogonalized Lowdin atomic orbitals and coefficient vec-
tors C; [10]. The index i denotes the i wire unit cell (or

Fig. 1 Schematic view of a n-doped triple-gate nanowire transistor
deposited on a buried oxide and surrounded by three oxide layers. The
source is denuded in order to give an overview of the structure. The
atomic granularity of the nanowire is fully accounted, but there is no
electron penetration into the oxide
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slab) of width A. The matrices E — H;; represent the on-
site energy and the bond connections within a slab, H;;+
the coupling to the nearest-neighbors unit cells. If #, is the
tight-binding order (10 without spin, 20 with) and each slab
contains N atoms, the size of these square matrices is #, N.
Equation (1) has to be solved for each slab index i. The ma-
trices Hig and Hy 41 couple the device to its semi-infinite
contacts represented by the self-energies X1; and Xy that
are added to Hq; and Hyy, respectively.

To calculate X iteratively, the following matrix equa-
tion has to be solved

Y11 = Hio(E — Hyp — 211) " Hoy. (2)

A similar expression is found for Xy . Equation (2) hardly
ever converges. Hence, the procedure is improved so that
the modified iteration n corresponds to the iteration 2" in
(2) [8]. Nevertheless, 20 to 40 inversions of a dense or full
matrix of size #, N are required for each energy point and for
each contact.

Another common procedure of calculating the ¥’s con-
sists in separating the boundary coefficients Cqy (or Cy41)
into a transmitted and a reflected part

Co= Z(aneik;x%; + bne"k;x‘)(prf). 3)

n

and then in constructing a generalized eigenvalue problem
(GEVP) of size 2t, N based on them [9]. In (3) a, is the
injection coefficient for the n™ state ¢ injected into the
device and b, the coefficient for the n'" state ¢~ reflected
back to the contact. All these quantities are energy depen-
dent. The X’s are derived from the ¢ and the wave vectors
k= [10].

A better insight into the physical structure of the matri-
ces H;;, H;ji11, and H;;_1 leads to a simplified procedure
to evaluate the OBCs. The detailed derivation can be found
in Ref. [10]. Only the final step of the calculation is given
here. A matrix M is formed from H;;, H;;+1, and H;;_1 by
applying a shift-and-invert spectral transformation. The size
of M is equal to that of the H’s. Then, the k,’s and the ¢,,’s
are the solutions of an ordinary eigenvalue problem (EVP)

1
Mo, = eikapn- 4)

-1
The matrix M is always well-defined and has an advanta-
geous structure. For example, if the transport direction x is
aligned with [100], M looks like

0 0 My Moy
10 0 M, M

M= 0 0 My My )
0 0 M3p Ms;
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Table 1 OBCs computational time (in seconds) for one single contact
and energy point in square Si nanowires with x aligned with [100] and
Ly and L, given in the first column. The shift-and-invert method, the

iterative procedure, and the generalized eigenvalue problem (GEVP)
approach outlined in Sect. 2 are compared. Spin-orbit coupling is not
considered

LyxL, nm? Atoms per slab Shift-and-invert [s] Iterative [s] GEVP [s]
2.5x%x2.5 181 7.2 197 506
29x%x29 242 18.5 462 1490
33x33 313 39 1070 3930

It is thus not necessary to consider the whole matrix M in the
eigenvalue problem defined in (4), but only its lower right
corner, corresponding to a size of #, N /2. The matrix M can
be constructed for any crystal orientation and always has a
size smaller or equal to #, N. The knowledge of the contact’s
variables ¢ and ki yields the =’s [10]. The influence of
the source and drain shape is discussed in Ref. [11].

Once the open boundary conditions are known, (1) can
be cast into a linear system

(E-—H-12%) -C=Inj, 6)

where the matrix Inj represents the injection mechanism, or
into a NEGF problem

(E-H-X)-GR=1, @)

where I is the identity matrix [10]. If there are N4 atoms
in the nanowire, the Hamiltonian H is a square matrix of
size Ngotfp X Natp as the boundary self-energy X. Its first
and last diagonal blocks contain X1; and Xy, respectively.
Packages capable of solving the linear system of equations
(6) are presented in the next Sect. 3. Equation (7) is solved
with a recursive Green’s function (RGF) algorithm [12].

It remains to determine the electron density n(r) (the hole
density is obtained in a similar way) and the current density
J(r). Due to the strong localization of the Lowdin orbital
functions, n(r) and J(r) are represented by §-functions cen-
tered around the atom positions R; [2]. The calculation of
the carrier density and of the electrostatic potential in the
device are self-consistently coupled. A finite element grid is
used for that purpose. Floating boundary conditions are ap-
plied to the source and drain ensuring charge neutrality in
these regions.

3 Numerical Aspect

To calculate the density-of-states and the transmission in
a nanowire, electrons are injected into the device from the
source and the drain contacts. This procedure is repeated for
each injection energy. Typically, the energy vector is com-
posed of 500 points with a finer discretization around the
contact eigenstates. This means that (6) or (7) is solved 500

times. In the absence of dissipative scattering in the device,
all the energy points are independent and can be treated in
parallel. The distribution of the tasks is realized by the mes-
sage passing interface (MPI). A total of N available CPUs
yields a speed up factor of N. However, it is not always pos-
sible to solve (6) or (7) on a single node, if, for example, the
size of the matrix (E — H — X) is too large or if the memory
per processor is too low . In this case a pool of M CPUs is
dedicated to one energy point. With N CPUs, N/M energy
points can be treated at the same time.

For a given energy point the first task consists in cal-
culating the OBCs in order to construct (E — H — X). In
Table 1, the OBCs computational time for [100] square Si
nanowires is reported. Spin-orbit coupling is neglected. The
generalized eigenvalue problem, the iterative procedure, and
the shift-and-invert method are tested on a 64-bit Sun Fire
X4600 with 4 x 2.8 GHz Dual Core Opteron processors.
The benchmark times refer to the calculation of one contact
only, the source or the drain. The shift-and-invert method is
about 25 to 100 times faster than the others and is preferred
for the simulation of nanowire transistors.

After the calculation of the OBCs, the sparse matrix
(E — H — X) is assembled and factorized. This task is ei-
ther processed directly by sparse linear solvers like Umf-
pack 5.0.1 [13], PARDISO [14], SuperLUy;s; 2.0 [15],
MUMPS 4.6.3 [16], a recently developed basis compres-
sion algorithm (BACA) [17], or indirectly by using a re-
cursive Green’s Function (RGF) algorithm [12]. The pack-
ages SuperLUy;s; 2.0 and MUMPS 4.6.3 as well as the basis
compression algorithm are designed for distributed memory
computers, PARDISO works on shared memory machines,
while Umfpack 5.0.1 and the RGF are sequential.

To compare the different methods, a [100] Si nanowire
with a 3.3 x 3.3 nm? cross section and a total length L =
35 nm is solved. The sequential and parallel performances
of the linear solvers are tested on the same computer archi-
tecture as before. The results are summarized in Table 2.
Columns 3 to 8 reproduce the time (in seconds) to factorize
and solve (6) or (7). The ninth column is the time neces-
sary to obtain the OBCs for one contact with the shift-and-
invert approach. The size of the sparse matrix (E—H —X) is
shown in the last column (spin-orbit coupling not included).
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Table 2 Time (in seconds) required to calculate the wave function
(columns 3, 4, 5, 6, and 7) or to obtain the Green’s functions (col-
umn 8) for one energy point of a square nanowire once the open
boundary conditions have been computed (column 9). The parallel

scalability of the solvers is also shown. The size N of the Hamiltonian
matrix is given in column 10 (no spin-orbit coupling). In the first col-
umn, Ly, Ly, and L, indicate the size of the nanowire

LyxLyxL, CPU Umfpack PARDISO SuperLUyy; MUMPS BACA RGF Bound. Cond. N

[nm?] [s] [s] [s] [s] [s] [s] [s]

35x3.3x%x3.3 1 406 271/1x 560/1x 240/1x 105/1x 1418 39 197190

35x3.3x%x3.3 2 - 141/1.9x 258/2.2x 129/1.86x 54/1.94x - 39 197190

35%x3.3%x3.3 4 - 84/3.2x 130/4.3x 76/3.15x 31/3.38x - 39 197190

35%x3.3%x3.3 8 - 63/4.3x 112/5x 56/4.3x 21/5x - 39 197190
(a) (b)

On a single processor, the basis compression algorithm is
at least two times faster than all the other methods. On the
opposite side, the solution of the NEGF problem is ineffi-
cient. The NEGF formalism is not indicated in the case of
ballistic transport, but becomes significant in the presence
of scattering. The analysis of the parallel scalability shows
that SuperLU;5; 2.0 is better than the others on 2 and 4
processors. This must be carefully considered since the fac-
torization and solve time on 2 (4) CPUs is more than two
(four) times faster than on a single CPU. This could orig-
inate from the fact that this package was designed for par-
allel use only. On 8 processors, the scalability of the basis
compression algorithm is as good as that of SuperLUy;;,
but it factorizes and solves (6) five times faster. Hence, the
best package tested in this study is the basis compression
algorithm. Consequently, it is used in combination with the
shift-and-invert OBCs calculation to produce the results of
the next section.

4 Results

The room temperature IV-characteristics of square and cir-
cular Si field-effect nanowire transistors are simulated in
this Section. The full-band charge and current densities are
calculated as described in Sect. 2. They are solved self-
consistently with the three-dimensional (3D) electrostatic
potential (Poisson equation) of the device. To keep the
8-character of the carrier density, the finite element method
(FEM) is chosen. A Delaunay grid is constructed by impos-
ing the constraint that no atom is contained in the volume of
any tetrahedron mesh element. A projection of the FEM grid
is given in Fig. 2 for a [100] square nanowire and a [111]
circular structure. As seen on the left part of the figure the
Si0; oxide layers do not participate to the transport calcula-
tion, but are included in the 3D electrostatic potential. This
is due to a poor tight-binding parametrization of SiO, (only
crystalline structure) and to the difficulty of constructing Si—
Si0; interfaces for other than [100]-grown nanowires, for
corners, and for circular structures. Consequently, the oxide

@ Springer
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Fig. 2 Cross section (/eft) and corresponding finite element mesh pro-
jection (right) of a square and of a circular nanowire transistor sur-
rounded by 1 nm oxide layers

grid points carry no charge, a coarse mesh is used in these
regions, and hard wall boundary conditions are applied to
the Si surface atoms [18]. A perfect crystal structure is as-
sumed in the entire nanowire. As a first approximation the
bulk dielectric constants are used for Si (¢ = 11.9) and SiO,
(e =3.9).

The selected transistors (circular or square) are composed
of 10 nm long source and drain (length L and L;) ex-
tensions that are n-doped (Np = 10*° cm™3). The doping
charge is homogeneously distributed on the source and drain
atoms. The undoped channel, the source, and the drain are
surrounded by 1 nm thick oxide layers. A potential V is ap-
plied to the gate (work function ¢,, =4.25eV), V;, =0V to
the source and V to the drain. Note that p-doped transistors
are treated in a similar way, assuming that the conduction
band is completely empty [2].

4.1 Square structure

In Fig. 3 the FB (black lines) and the EMA (gray lines)
Iq — Vg transfer characteristics of square nanowire with
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Fig. 3 Current transfer characteristics Iy — V5 at Vg3 = 0.6 V
for [100] square Si nanowires (length L = 35 nm, gate length
Ly =15 nm). FB (black lines) and EMA (gray lines) results are pre-
sented for three nanowire cross sections: 2.5 x 2.5 nm? (lines with
circles), 3.3 x 3.3 nm? (lines with squares), and 4.1 x 4.1 nm? (lines
without symbols). The simulations are done at room temperature for a
gate work function ¢,, =4.25 eV and a Si affinity x5; =4.05eV

different cross sections are compared. They are calculated
at a fixed drain-source voltage Vs = 0.6 V. All the transis-
tors have a channel aligned with [100] and are controlled
by a triple-gate of length L, = 15 nm, as in Fig. 1. The
EMA results are obtained with a longitudinal m} = 0.92m,
and a transverse m; = 0.19m, effective mass extracted
from the bulk bandstructure. The lines with circles denote
a 2.5 x 2.5 nm? cross section (11403 atoms in the wire),
the lines with squares a 3.3 x 3.3 nm? cross section (19719
atoms), and the lines without symbols a 4.1 x 4.1 nm? cross
section (28350 atoms). These surfaces do not include the
1 nm oxide layer surrounding the nanowire.

Independently from the size of the transistor the current
in the subthreshold regime is underestimated by the effective
mass approximation. This leads to an increase of the transis-
tor threshold voltage V;;,. In the saturation regime the EMA
ON-currents (defined as drain current Iy at Vg = Vg =
0.6 V) tend to be larger than their FB counterpart. However,
the overall difference between the EMA and FB results de-
creases as the cross section of the nanowire increases so that
both currents are about the same for the 4.1 x 4.1 nm? case.
This is confirmed by the FB and EMA transmission coef-
ficients plotted in Fig. 4 at Vg3 = Vyg = 0.6 V. There are
two important channel turn-on in each transmission curve,
the first one involving four bands, the second one six bands.
They are marked as circles for the 2.5 x 2.5 nm? cross sec-
tion. The shift between the FB and EMA turn-on almost dis-
appears for the 4.1 x 4.1 nm? structure, making the two cur-
rents approximatively the same.

20

4.1x4.1 nm>

151

Transmission
o
=
:

]

“k 3.3x3.3 nm’
P i

5 |
-0 )
2.5x2.5 nm
!
0 L =25 L L L L L
1.2 1.3 14 1.5 1.6 1.7 1.8 1.9 2

E [eV]

Fig. 4 FB (black solid lines) and EMA (gray dashed lines) trans-
mission coefficient at Vgg = Vyy = 0.6 V corresponding to the three
nanowires structures simulated in Fig. 3

: :
—_ T100]: T, =18.6 A
- - [110]: 1 =183 pA
107 5 o (111 1 =122 4A

0.3 0.4 0.5 0.6
v, V]

Fig. 5 Full-band current transfer characteristics Iy — Vg, at
Vis = 0.6 V for circular Si nanowires (diameter d = 4 nm, length
L = 30 nm, gate length L, = 10 nm) with transport along the
[100], [110], and [111] crystal axis. The simulations are done at
room temperature for a gate work function ¢,, = 4.25 eV and a
Si affinity xs; = 4.05 eV. The ON-current Ioy is defined as I; at
Vs = Vas = 0.6 V. The region around /o is enlarged in the inset

4.2 Circular structure

Figure 5 shows the FB I; — Vs (V45 = 0.6 V) transfer char-
acteristics of circular FETs with [100] (gray line), [110]
(black dashed line), and [111] (black line with circles) as
channel orientation. The three transistors have a gate-all-
around architecture of length L, = 10 nm and a diameter
d =4 nm without the oxide layers and d = 6 nm with. The
[100] nanowire is composed of 18755 atoms, the [110] of
19344, and the [111] of 19264. The channel orientation that
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offers the highest ON-current (Iy at Vg3 = Vg = 0.6 V) is
[100] (18.6 pA), followed by [110] (18.3 pA), and finally
[111] (12.2 pA). At the same time, the [100] direction profits
from a lower OFF-current (/g at Vgg =0V and V43 =0.6 V)
than [110]. This behavior results from a crossing of the [110]
and [100] current characteristics that can be observed in the
inset of Fig. 5. The prominence of the [100] channel is a
consequence of the compromise between the electron ve-
locity (proportional to the inverse of the effective mass) and
the number of available states (proportional to the effective
mass) reached by its lowest conduction subbands. Source-
to-drain tunneling does not affect the OFF-current since the
subthreshold swing S of the three structures is very close to
its ideal value of 60 mV/decade.

5 Conclusion

In this paper full-band quantum transport approaches to sim-
ulate nanowire transistors are presented. They are based on
the semi-empirical sp3d>s3 tight-binding model and on an
atomistic description of the device structure. Different pro-
cedures to calculate open boundary conditions and to obtain
carrier and current densities in the Wave Function or in the
Non-Equilibrium Green’s Function formalism are derived.
The resulting simulator allows the self-consistent simulation
of square or circular nanowire FETs with transport along the
[100], [110], or [111] crystal axis.

As possible improvement to the current quantum trans-
port simulator, an accurate description and random distrib-
ution of the doping atoms, a better treatment of the oxide
layers, a relaxation of the surface atoms from their “equilib-
rium” position, and the inclusion of scattering mechanisms
such as electron-phonon interactions should be mentioned.

@ Springer
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