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Comparison between Newton and response-surface methods

G.R. Kress and P. Ermanni

Abstract A supporting-point placement scheme is pre-
sented that is used for calculating function derivatives by
the method of differences as well as a quadratic response-
surface approximation. The placement scheme unifies the
Newton (NM) and response-surface (RSM) methods in
the limiting case when the point-set distance parameter
for the RSM is chosen as small as that for obtaining the
derivatives needed by the NM. Two new RSM minimiza-
tion strategies with and without line searches are pre-
sented. The numerical performance of the algorithms is
studied by using well-known test functions and the paths
through the two-dimensional variables space are plotted
for easier interpretation of the performance results. The
results are compared with results of numerical experi-
ments found in the literature.

Key words Newton method, response-surface method,
sampling point placement schemes

1
Introduction

The computational effort for solving structural optimiza-
tion procedures depends on the computing time for eval-
uating the structural model, the number of function eval-
uations, and the calculations performed by the minimiza-
tion algorithm. For large structural models the numeri-
cal effort is dominated by the product of the structural-
model solution time and the number of function evalua-
tions. Thus, for a problem with given structural model, it
is desirable to have a minimization algorithm that solves
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the problem with as small a number of function evalua-
tions as possible.
The hope to realize computational savings in solving

large numerical optimization problems is at the heart of
recent work, for instance by Canfield (2002) who uses
a multi-point cubic approximation based on accumu-
lating function and gradient information from multiple
points during the iteration history of a sequential approx-
imate optimization. Such methods can achieve a number
of sampling points needed in each iteration less than that
required by the Newton method or conventional RSM.
The focus of this research is a comparison of the New-

ton method and a basic RSM method using a new point
placement scheme which achieves a smooth method tran-
sition just by changing the spacing of the point placement
scheme. In addition, the placement scheme allows an
RSM optimization strategy where function values of pre-
vious sampling points are inherited and the optimization
process can be continued even when the minimum point
of the approximation function corresponds to a higher
value of the original function than the sampling points on
which the approximation is based.

1.1
Characterization of the Newton and RSM methods

Mathematical programming provides efficient algorithms
for convex and continuous objective functions with con-
tinuous derivatives. Both the NM and the RSM are de-
rived by using properties of a quadratic polynomial. The
NM is a second-order method because it requires both
first and second function derivatives:

x(k+1) = x(k)−H−1∇f . (1)

The first derivative is the gradient vector∇f and the sec-
ond derivative is the Hessian matrixH.
On the other hand, the RSM does not require any

derivatives. Both methods minimize a quadratic func-
tional in one step. Assuming that derivatives are obtained
by the differences method, the NM method and the RSM
method considered here require the same number of func-
tion evaluations nfe. Thus, the two methods are numer-
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ically equivalent on quadratic functionals and the unifi-
cation of the two methods through the supporting-points
scheme presented here is discussed in this paper.
Practical optimization problems generally yield non-

quadratic objective functions and both methods must
seek the minimum points through iterations. Here, the
two methods will generally perform differently because
the NM bases its minimum-point estimates on informa-
tion obtained in the small neighborhood of a reference
point while the RSM method uses supporting points, the
distance between which can span a wider region of the
search space. However, if the distances between the sup-
porting points for constructing the response-surface ap-
proximations are chosen as small as those for calculating
derivatives, the RSM performs similarly to the NM.
Both methods have in common that, depending on

the function landscape topology, the minimum-point es-
timates can be so poor that it is useful to enhance both
basic algorithms by additional elements of a minimization
strategy. The so-called modified Newton method com-
bines the basic algorithm with a line search. Some mini-
mization strategies elements for the RSMmethod, includ-
ing the line search, are suggested in this paper.

1.2
Contents of this study

The methods are shortly recalled in Sect. 2. A scheme,
placing supporting points in variables spaces of any di-
mension, is presented in Sect. 3. The points placed by
the scheme determine the parameters of the quadratic
response-surface approximation. If the distance between
the points is chosen appropriately small, the point set
is also well suited for obtaining the function derivatives
needed for the NM. The evaluation scheme for obtain-
ing the exact first and second derivatives of a quadratic
polynomial is also explained. Common features and dif-
ferences between the new point-placement scheme and
the existing Latin hypercube design (LHD), which was
first introduced by McKay et al. (1979), are outlined
in Sect. 6.2.
A minimization strategy for the RSM is developed

in Sect. 4. It allows the optimization process to continue
even when the minimum-point estimates based on the
response-surface approximation are occasionally diver-
gent. Section 4.2 presents a modified RSM algorithmwith
line search.
The performance of the methods is studied on test

functions that are well known from the literature. The
minimization paths through the two-dimensional vari-
ables spaces are plotted, which helps to interpret the ob-
served performance results.
In the literature, the conjugated gradient method by

Fletcher and Reeves (2002) (FRM) is applied to the same
test functions used in this study. The performance results
reported by Reklaitis et al. (1983) are compared with
those of NM and RSM obtained in this study.

Both methods offer the opportunity of taking advan-
tage of parallel computing because the supporting points
can be evaluated in parallel.

2
Methods recall

2.1
Second-order model: quadratic function

A quadratic function Π2 is given by the form

Π2 = p+x
Tp+xTPx , (2)

with the scalar p, the vector p, and the matrix P. As
a necessary condition, the gradient must vanish at an ex-
tremum,

∇Π2 = p+2Px= 0 , (3)

yielding the extreme point

xE =−
1

2
P−1p . (4)

The extreme point is a minimum when, for any vector v
with non-zero length, it holds:

vTPv> 0 , |v| �= 0 . (5)

2.2
Newton method

Consider a twice differentiable function f and its Taylor-
series approximation f̂ up to the quadratic term:

f̂
(
x(k)+�x

)
= f
(
x(k)
)
+�xT∇f

(
x(k)
)
+

1

2
�xT∇∇f

(
x(k)
)
�x . (6)

The first and second derivatives of the approximation f̂
are:

∇f̂
(
x(k)+�x

)
=∇f

(
x(k)
)
+∇∇f

(
x(k)
)
�x , (7)

∇∇f̂
(
x(k)+�x

)
=∇∇f

(
x(k)
)
. (8)

The extreme point condition is that the gradient vector
vanishes, yielding:

�x=−
[
∇∇f

(
x(k)
)]−1

∇f
(
x(k)
)
. (9)

Understanding �x as the difference vector between the
extreme point estimate xk+1 and the reference point xk,

�x= xk+1−x(k) , (10)
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yields the iteration rule

xk+1 = x(k)−
[
∇∇f

(
x(k)
)]−1

∇f
(
x(k)
)
. (11)

2.3
Response-surface method

The response-surface methodology was originally de-
veloped for constructing empirical response functions
based on physical experiments. Replacing the physical
experiments by numerical evaluations of a function al-
lows the same methodology to find minimum points of
that function. For that purpose quadratic polynomials
are obviously suited. They are the simplest functions
with a minimum point and can easily be constructed and
evaluated. As stated by Venter (1998), response-surface
approximations shift the computational burden from the
optimization problem to the problem of constructing the
approximations, and accommodate the use of detailed
analysis techniques without the need for derivative infor-
mation. Additionally, response-surface approximations
filter out numerical noise inherent to most numerical an-
alysis procedures by providing a smooth approximate
response function, and simplify the integration of the an-
alysis and the optimization codes.
Here, the response surface is approximated with

a polynomialΠ2. The following example is written out for
two variables, or nx = 2:

Π2 = a1+a2x1+a3x2+a4x
2
1+a5x1x2+a6x

2
2 . (12)

The coefficients ci in terms of powers of the nx optimiza-
tion variables xj , xk can be obtained from the scheme
given in Table 1. The parameters ai ofΠ2 can be adjusted
to fit the objective function values at supporting points.
The polynomialΠ2 (12) can be written as the inner prod-
uct of the coefficient and parameter vectors, c and a:

Π2 = c
Ta . (13)

Table 1 Coefficients c for nx supporting points

ci 1 xj xjxk

i 1 1+ j
1

2
j(2nx− j+1)+k+1

j 1, nx 1, nx

k j, nx

Table 2 Polynomial expression (2) in terms of (12)

p= a1 pj = ai P̂jk =
1

2
ai, P= P̂+ P̂T

i 1 1+ j
1

2
j(2nx− j+1)+k+1

j 1, nx 1, nx

k j, nx

We consider the case where the number of supporting
points spanning the search space equals the number nc of
parameters or coefficients appearing in Π2. That number
depends on the number nx of optimization variables:

nc = 1+nx+
1

2
[nx(nx+1)] , nx ≥ 1 . (14)

Upon evaluation of nc supporting points, the system of
equations

⎡
⎢⎢⎢⎢⎢⎢⎣

1 c12 . . . c1nc

1 c22 . . . c2nc

1
...

. . .
...

1 cnc2 . . . cnc

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a1

a2

...

anc

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1

f2

...

fnc

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(15)

yields the approximation of the response surface with the
unknown parameters a.
The extreme point of the response-surface approxima-

tion is given by (4). The mapping of the parameters a of
the form (12) to the parameters p, p, and P of the form
(2) is given in Table 2.

3
Placement of supporting points

Figure 1 shows the placement of the supporting points
that can be used for a three-dimensional response-surface
approximation. The point x(1) at the center of the point
set is the reference for constructing the other supporting
points. Assuming the placement of the points on a regu-
lar lattice, indicated in Fig. 1, with a spacing D along

Fig. 1 Placement of supporting points x(1) through x(10) in
three-dimensional variables space
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Table 3 Supporting points in terms of changes with respect
to x(1)

2 3 4 5 6 7 8 9 10

1 −D D 0 0 D 0 0 D 0

2 0 0 −D D D 0 0 0 D

3 0 0 0 0 0 −D D D D

the respective coordinate directions, the coordinate vari-
ations of the individual supporting points with respect to
the reference point x(1) are given in the matrix presenta-
tion of Table 3. The rows correspond to the optimization
variables and the columns correspond to the supporting
points x(2) through x(10). The coordinates of the points
can generally be identified for nx variables by the follow-
ing scheme. The points are identified successively from
variable 1 through nx. For the i

th variable, a number
of i+1 supporting points must be added to the set of
nc = nc(i− 1) (14) existing points. The first two of the
new points span the direction of the ith variable:

x
(nc+1)
k = x1k−

{
0, k �= nc+1

D, k = nc+1
(16)

and

x
(nc+2)
k = x1k+

{
0, k �= nc+1

D, k = nc+1
. (17)

The remaining i−1 points are variations of the new point
x(nc+2) (17):

x
(nc+2+l)
k = x

(nc+2)
k +

{
0, k �= l

D, k = l
, l = 1, i−1 (18)

The supporting points span some appropriate region of
the search space. Along with the function values at each
point, they are used to construct the response-surface
approximation.
It is interesting to examine the presented supporting-

point arrangement for the NM. The NM uses a set of
supporting points in the vicinity of a reference point to
calculate the gradient and Hessian matrix at that point.
Point x(1) then becomes the reference point at which
the gradient and Hessian matrix must be obtained by
the method of differences. The other supporting points
must then move very close to the reference point, which
is achieved by choosing a very small value for the dis-
tance D:

D = ε� 1 . (19)

It is interesting to note that the point arrangement al-
lows exact calculation of both first and second derivatives
of quadratic polynomials, independent of the value of ε.
This is illustrated in the three-dimensional case, where

the points 1 through 10 are arranged as shown in Fig. 1.
Let the gradient and Hessian matrix be calculated from

∇f =
1

2ε

⎧
⎪⎪⎨
⎪⎪⎩

f3−f2

f5−f4

f8−f7

⎫
⎪⎪⎬
⎪⎪⎭

(20)

and

∇∇f =
1

ε2
(
Haij+H

b
ij+H

c
ij

)
, (21)

whereHa is formed in terms of the reference point,

Haij =−

⎡
⎢⎢⎣
2f1 −f1 −f1

−f1 2f1 −f1

−f1 −f1 2f1

⎤
⎥⎥⎦ , (22)

Hb is formed in terms of the points on the coordinate
axes,

Hbij =

⎡
⎢⎢⎣
(f2+f3) −(f3+f5) −(f3+f8)

−(f3+f5) (f4+f5) −(f5+f8)

−(f3+f8) −(f5+f8) (f7+f8)

⎤
⎥⎥⎦ , (23)

andHc is formed in terms of the points shifted away from
the coordinate axes in other directions:

Hcij =

⎡
⎢⎢⎣
0 f6 f9

f6 0 f10

f9 f10 0

⎤
⎥⎥⎦ . (24)

Obviously, the gradient of quadratic functions is cal-
culated exactly because (20) is the central differences
method. It can be seen from (22), (23), and (24) that (21)
produces a symmetric Hessian matrix. Moreover, it can
be shown that the evaluations reproduce the symmetric
version of the matrix P, multiplied by two:

∇∇f = (Pij +Pji) (25)

The presented point arrangement and evaluation scheme
calculate for quadratic functions f := Rn → R and re-
gardless of the value of the epsilon parameter not only the
Hessian but also the gradient exactly.
The RSM evaluation scheme obtaining the approx-

imation parameters p, p, and P, suggested by Venter
(1998) and recalled in Sect. 2.3, can therefore be replaced
by p = f(x(1), p =∇f , and P = 1

2∇∇f where ∇f , and
∇∇f are obtained by (20) and (21), respectively, for arbi-
trary values of D. For quadratic functions, both methods
obtain the same approximation parameters. Therefore,
the evaluation scheme of the Newton method becomes
identical with that of the RSM method at the limit of D
approaching very small valuesD→ ε.
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The entries in the gradient vector, where (20) repre-
sents the example for three variables, are calculated by
the general scheme

∇fk =
fnc(k−1)+2−fnc(k−1)+1

2ε
. (26)

The entries of the matricesHa,Hb, andHc follow from

Haij =−

{
2f1, j = i

−f1, j �= i
, (27)

Hbij =

{
(fnc(i−1) +fnc(j−1) ), j = i

−(fnc(i−1)+2+fnc(j−1)+2), j �= i
, (28)

and

Hcij =

{
0, j = i

fnc(j)−i+1, j �= i
. (29)

4
Minimization strategies

4.1
Strategies without line search

The original Newton method without line search is given
by (1) and is therefore not further discussed.

4.1.1
RSM minimization algorithms without line search

If the point defined by (4) has a smaller function value
than any of the supporting points, it is used as the ref-
erence point for the next set of supporting points. The
distance valueD of the next supporting-point set depends
on the distance between the current and next reference
points:

D =
∣∣xk+1−xk∣∣ . (30)

This is illustrated in Fig. 2. A current point set in
two-dimensional variables space (solid circles) defines
a response-surface approximation. Its minimum point xE
is the encircled square. It becomes the reference x(1) for
the new set of supporting points that is marked with
squares. The minimum point estimate of this set is indi-
cated by the encircled triangle, defining the next point
set. As can be seen from Fig. 2, the distance values D
of new point sets are always chosen so that the region
covered by the new set extends to the previous reference
point. Thus, if the successful minimum point estimate is
outside the region of the current set, the new set will span
a larger region. If the minimum point is found inside the
region of the current point set, the new region will auto-
matically contract. Expanding the point set region makes

Fig. 2 Updated supporting-point sets around successful
minimum-point estimates

it more likely to find the minimum point of the objective
function inside that region when future minimum-point
estimates will fail, and contracting the region helps accel-
erate convergence once it seems likely that the objective
minimum point is being closed in.
If, on the other hand, the point defined by (4) does not

yield a smaller function value than any of the support-
ing points, it is discarded and the strategy considers two
cases.
In the first case, the current reference point x(1) has

a smaller function value than any of the other points
x(i), i �= 1 of the set and remains the best estimate of the
minimum point. Then the reference point x(1) is kept and
convergence is facilitated by shrinking the set of support-
ing points as illustrated in Fig. 3. In the present study
a shrinking factor of 1/

√
2 reduces the distanceD.

In the second case, a point x(i) other than the refer-
ence point x(1) appears as the best minimum-point es-
timate. Then, the point set is shifted by the vector u =
x(i)−x(1). The reference point of the shifted set coincides
with the point with smallest function value of the previ-
ous set. As the spacingD is preserved, several of the other
points will also coincide. Naturally, the function values
of the coinciding points are already known. The numer-
ical economy of this reminds one of the simplex search

Fig. 3 Shrinking of supporting-point region around the ref-
erence point by a factor of 1/

√
2
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Fig. 4 Supporting-point set shifted to center around the re-
spective points with smallest function value

method by Spendley et al. (1962). Figure 4 illustrates the
shifts to the points two through six, respectively. The fig-
ure shows that in each case three points of the shifted
sets coincide with previous points so that three function
evaluations can be saved, making the optimization pro-
cess more time efficient. In general, however, when mov-
ing the supporting-point set so that the reference point
of the shifted set coincides with one of the other points
in the original position, the total number of coinciding
points depends on the point to which the reference point
is shifted. Table 4 shows the number of coinciding points
when the reference point of the new supporting-point set
coincides with the other points of the previous set. In
the one-dimensional variables space there are two other
points where the reference point can be shifted and in
each case there are two coinciding points. The situation in
the two-dimensional variable space is illustrated in Fig. 4.
In the three-dimensional variables space with ten sup-
porting points the number of coincidences depends on
the point of the previous set at which the reference point
of the new set is located. The number of coincidences is
either three or four. In the four-dimensional space the
number of coincidences is either three or five. For a set
of supporting points corresponding to nx variables, the

Table 4 Number of coinciding points for the different refer-
ence point positions of the shifted sets corresponding to one-,
two-, three-, and four-dimensional variable spaces

No. of coinciding points
Shifted to point 1D 2D 3D 4D

2 2 3 4 5

3 2 3 4 5

4 3 4 5

5 3 4 5

6 3 3 3

7 4 5

8 4 5

9 3 3

10 4 3

11 5

12 5

13 3

14 3

15 3

average number nc of coinciding points can be shown to
be

nc =
nx

np−1
[2 (nx+1)+3 (nx−1)] (31)

The minimum, maximum, and average numbers of coin-
ciding points, depending on the number of variables, are
shown in Fig. 5. The maximum number increases linearly
and the minimum number remains constant at three for
variable spaces higher than one dimensional. The aver-
age number shown in the figure is calculated with (31).
The points of each shifted set coinciding with previously
evaluated points need not be evaluated again. Figure 6
shows the point set size according to (14) and the re-
duced size with minimum, average (31), and maximum
number of coinciding points depending on the number of
variables. The potential relative computing time savings

Fig. 5 Minimum, average, and maximum numbers of coin-
ciding points depending on the number of variables
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Fig. 6 Number of function evaluations versus number of
variables and reductions due to point-shift mechanism

Fig. 7 Relative savings of function evaluations due to point-
shift mechanism

are rather large when the number of variables is small
but tend to become insignificant at large numbers of vari-
ables, as Fig. 7 illustrates. The figure plots the point-set
size over the point-set size reduced by the average number
of coinciding points,

e=
np

np−pc
, (32)

which is a measure of the potential efficiency gain. As the
figure shows, a program may run up to three times faster
when searching for the minimum point of only one vari-
able, or twice as fast when there are two variables, but
only insignificantly faster when the number of variables is
large.

4.2
Strategies with line search

A line search is an essential part of the method of steepest
descent by Cauchy (1847), the method of feasible direc-
tions by Vanderplaats (1984), the zeroth-order method
of conjugated directions by Powell (1964), the method of
conjugated gradients by Fletcher and Reeves (2002), or

the quasi-Newtonmethods by Davidon (1959) and Powell
(1963). All of these have in common that the minimiza-
tion process is a sequence of line searches where a min-
imum is sought along the respective given or calculated
search directions s.
Although line searches may require many iterations to

obtain the minimum point with a specified accuracy, they
may increase efficiency of even the Newton or the RSM
methods if the functions are highly nonlinear.
Brent (1973) provides an efficient line search algo-

rithm, called Brent’s routine. It starts from a reference
point α = 0 with known function value and first estab-
lishes an upper bound αu so that the minimum along the
search direction is bracketed between the two positions.
Then, it applies the golden section method to narrow the
brackets around the minimum point. Finally, it relies on
the quadratic approximation method to obtain the mini-
mum point quickly with high precision.

4.2.1
Line search termination criteria

The line search routine used in the present study fol-
lows the principles of the line search algorithm of Brent’s
routine and is amended with an additional feature. The
additional feature is the criterion used to switch from
the golden section method to the quadratic approxima-
tion method. The criterion is derived from the concept
that the deviation between the objective function and
its quadratic approximation appears in the deviation be-
tween it and the cubic approximation. A cubic approxi-
mation can be obtained at virtually no cost from the four
supporting points required by the golden section method
while the three of these points with lowest function values
establish a quadratic approximation. The golden section
algorithm decreases the distance between the brackets en-
closing the minimum point in steps. The accuracy of both
the cubic and the quadratic approximations increases
with decreasing distance between the brackets. This im-
plies that some measure of the deviation between the
two approximations will become smaller. Specifically, the
deviation between the respective predictions of the min-
imum point yields the criterion upon whose fulfillment
the algorithm switches from the golden section to the
quadratic approximation methods.
The routine starts to rely on the quadratic approxi-

mation method if the estimated minimum points of both
methods fall between the brackets established by the
three points with smallest function values and if
(
x
(quadratic)
min −x(cubic)min

)
(
x
(quadratic)
min +x

(cubic)
min

) < 0.1 . (33)

The line search ends if the bracketed range and some
measure of the quadratic deviation of the function values
of the three supporting points from the mean value be-
come smaller than an ε value:
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|x3−x1|< ε∧
3∑
k=1

(
fk− f̄

)2
< ε , f̄ =

1

3

3∑
k=1

fk . (34)

A value of ε = 5×10−8 has been used for all the sample
calculations presented in Sect. 5.

4.2.2
Modified Newton method

The modified Newton is well known in the literature:

x(k+1) = x(k)−αkH−1∇f (35)

4.2.3
RSM minimization algorithms with line search

The original RSMminimization algorithm is enhanced by
line searches.
When the estimated minimum point calculated by

(4) has a lower function value than can be found in
the supporting-point set, a line search is conducted. The
search direction follows from the difference of the esti-
mated minimum point xE and the reference point x

(1) of
the supporting-point set:

s= xE−x
(1) . (36)

When the estimated minimum point calculated by (4)
does not have a lower function value than can be found
in the supporting-point set, the shifting mechanism of the
original method is enhanced by a line search. The search
direction then follows from the difference of the minimum
and reference points, x(imin) and x(1), of the supporting-
point set:

s= x(imin)−x(1) . (37)

Of course, the line search annihilates the potential savings
in function evaluations characteristic of the original shift
mechanism.

5
Numerical examples

The performance of the following methods is studied:

1. Newton method (11),
2. modified Newton method (33),
3. response-surface method without line search, and
4. response-surface method with line search.

A value of �x= 10−6 is used for calculating derivatives
by the forward differences method and an initial point-set
spacing D = 0.5 is used for the RSM versions. Numeri-
cal experimentation indicated better performance values
if the distance parameter is only allowed to remain con-
stant or to decrease during the optimization sequence; the
reported results are obtained with that rule.

5.1
Comparison with literature results

Reklaitis et al. (1983) present some numerical perform-
ance results. These are obtained with some conjugate-
gradient and quasi-Newton methods using line searches.
They consider various sample problems and the two-
dimensional functions by Rosenbrock and by Eason and
Fenton (1974) are also used in the present study. In order
to reference the literature results presented here, the liter-
ature problems are also solved with the Fletcher–Reeves
method and the results are compared with those pre-
sented by Reklaitis et al. (1983). The literature uses sev-
eral line search algorithms, namely the interval halving
method, the golden section method, Coggin’s method,
and the cubic approximation method. The software used
for this study includes an algorithm similar to Brent’s
routine. Not allowing the switch to the quadratic approx-
imation, the line search is conducted using the golden
section method only. These results can be compared di-
rectly with those given in the literature and are listed in
Table 5. Table 5 lists the number of iterations (here: line
searches) nIT , the number of function evaluations nFE,
and the achieved function values f̄∗ on termination. The
literature does not mention the number of iterations.
The present study obtains better efficiency than reported
by Reklaitis et al. (1983). This may be due to the fact that
the present study uses double-precision arithmetic while
the literature results were obtained with single-precision
arithmetic.
Reklaitis et al. (1983) obtain best results when the

cubic approximation method is used for the line searches.
Using Brent’s routine instead of the golden section
method improves the results obtained in the present
study. The improved results are listed in Table 6.

Table 5 Numerical results from (Reklaitis et al. 1983) (a)
and present study (b) obtained with the golden section
method

Problem Ref. nIT nFE f̄∗

Rosenbrock (a) – 805 5.9×10−6

(b) 27 650 8.4×10−7

Fenton/ (a) – 199 1.744
Eason (b) 4 103 1.744

Table 6 Numerical results from (Reklaitis et al. 1983) (a)
and present study (b) obtained with improved line search
methods

Problem Ref. nIT nFE f̄∗

Rosenbrock (a) – 273 2.8×10−7

(b) 27 348 4.3×10−6

Fenton/ (a) – 92 1.744
Eason (b) 4 62 1.744
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5.2
Rosenbrock function

The Rosenbrock function is defined as

f = 100
(
x2−x

2
1

)2
+(1−x1)

2
(38)

and illustrated by contour lines in Figs. 8, 9, 10, and 11.
The contour lines do not present equidistant function
values but allow for a better resolution of small func-
tion values: the function value differences increase, from
line to line, by the fourth power. The starting point of
the minimization procedures considered here is x(0)=
{−1.2, 1.0}T and the minimum point is x∗ = {1.0, 1.0}T

with function value f(x∗) = 0.
The original Newton method solves the problem. Its

solution path through the landscape of the Rosenbrock
function is shown in Fig. 8. Instead of following the bot-

Fig. 8 Path taken by the Newton’s method algorithm

Fig. 9 Path taken by the modified Newton’s method algo-
rithm

Fig. 10 Path taken by the RSM algorithm without line
search

Fig. 11 Path taken by the RSM algorithm with line search
and reference point based on minimum-point estimate

tom of the canyon, intermediate minimum-point esti-
mates may occasionally be placed high up on the scarps.
Nevertheless, the method performs better on the Rosen-
brock function problem than the other methods, as docu-
mented in Table 8.
Figure 9 illustrates the path along the bottom of the

Rosenbrock function canyon taken by the modified New-
ton’s method algorithm.
The performance of the original and modified New-

ton method is virtually reproduced by RSM with and
without line search, if the spacing of the supporting-point
set is restricted to D ≤�x. The results listed in Table 7
agree closely with those of the Newton methods given in
Table 8. The paths of these algorithms agree closely with
those shown in Figs. 8 and 9. The results confirm that, in
limiting cases, NM and RSM unify.

Table 7 Performance results for the Rosenbrock function
with RSM algorithms mimicking Newton methods

Method nIT nFE f̄∗

RSM like Newton 8 55 4.0×10−9

RSM like mod. Newton 13 235 7.1×10−10
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Table 8 Performance results for the Rosenbrock function

Method nIT nFE f̄∗

Newton 7 57 2.6×10−7

Mod. Newton 13 242 4.9×10−8

RSM no LS 179 741 3.6×10−8

RSM with LS 1 25 348 7.7×10−10

The globally spaced point sets of the RSM are de-
picted by filling the spanned area with grey levels pro-
portional to the average function value f̄ = 1

6

∑6
k=1 fk

that is, moreover, normalized with respect to the function
value range contained in the plotted area of the Rosen-
brock function. In addition, the individual supporting
points of each set are indicated by dots, and lines are
drawn between points x2 and x3, x4 and x5, and x5 and
x6. Each new point set is plotted on top of previous sets
so that some sets are obscured from view.
The RSM algorithm without line search takes the

path indicated in Fig. 10. The range from the top left
to the middle of Fig. 11 indicates a sequence of success-
ful minimum-point estimates where the values of D(k)

tend to decrease. In the middle of the figure, another se-
quence starts dominated by the point-set shift mechanism
with D(k) values remaining constant. The accumulation
of dots in the top right of the figure indicates the unsuc-
cessful minimum-point estimates activating the shifting
mechanism.
The RSM algorithm version, where a line search re-

places the shift mechanism, takes the path indicated
in Fig. 11.
The performance characteristics of each method are

listed in Table 8.

5.3
Fenton and Eason’s function

The function used by Fenton and Eason is defined as

f =
1

10

(
12+x21+

1+x22
x21

+
x21x

2
2+100

(x21x
2
1)
4

)
(39)

and illustrated by the contour lines in Figs. 12, 13, 14,
and 15. The function value increases with the fifteenth
power of the order of contour lines. The starting point is
x(0) = {0.5, 0.5}T . The lines x1 = 0 and x2 = 0 are singu-
lar. Therefore, the initial and maximum size of the RSM
supporting-point set isD = 2.5.
The original Newton method takes the path shown

in Fig. 12. The estimated minimum points are always
placed in useful directions but the distances from the ref-
erence point tend to be too short. This is due to the high
deviation of the function from a quadratic polynomial.
The distances from point to point tend to increase toward

Fig. 12 Path taken by the Newton’s method algorithm

Fig. 13 Path taken by the modified Newton’s method algo-
rithm

Fig. 14 Path taken by the RSM algorithm without line
search

the minimum, where the function is better represented by
its three-term Taylor-series approximation.
The modified Newton method takes the path shown

in Fig. 13. The line search utilizes descent from the ref-
erence point to the other point along the search direc-
tion that is much closer to the minimum. The number of
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Fig. 15 Path taken by the RSM algorithm with line search

Table 9 Performance results for the function by Fenton and
Eason with RSM algorithms mimicking Newton methods

Method nIT nFE f̄∗

RSM like Newton 17 119 1.7442

RSM like mod. Newton 5 105 1.7442

Table 10 Performance results for the function by Fenton
and Eason

Method nIT nFE f̄∗

Newton 14 113 0.17442

Mod. Newton 4 68 0.17442

RSM no LS 12 65 0.17442

RSM with LS 1 5 127 0.17442

line searches until termination is only four and the pro-
cess needs fewer function evaluations than the original
method.
The performance of the original and modified New-

ton method is again approximated by RSM without line
search and version 1 of the RSM, when the spacing of
the supporting-point set is restricted to D ≤�x. The re-
sults listed in Table 9 are similar to those of the Newton
methods given in Table 10.
The RSM algorithm without line search takes the

path shown in Fig. 14. It starts with a sequence of eco-
nomic shifts, i.e. where only three function evaluations
are needed to establish the new supporting-point set.
This is followed by a few successful minimum point es-
timates and ends with rapid size reduction of the point
set.
The RSM algorithm with line search takes the path

shown in Fig. 15. The line search replaces the sequence of
shifts so that the second supporting-point set is already
much closer to the minimum than to the reference point.
Nevertheless, the method needs more function evalua-
tions than the version without line searches.

The performance characteristics of each method are
listed in Table 10.

5.4
Discussion of numerical performance results

The numbers of function evaluations to obtain the mini-
mum of the functions by Rosenbrock and by Fenton and
Eason are summarized in Figs. 16 and 17, respectively.
The horizontal bars in these figures indicate the number
of function evaluations used by the conjugate-gradient
method of Fletcher and Reeves (FRM). The results reveal
that the relative performance of the various algorithms
depends on the problem considered.
For the Rosenbrock function, the original and modi-

fied Newton methods outperform both FRM and RSM.
The original NM needs even fewer function evaluations
than its modified version. However, the path plotted
in Fig. 8 reveals one divergingminimum-point estimate so
that the favorable performance result seems to be effected
by random chance rather than systematics. The RSM ver-
sion with line search uses fewer function evaluations than
the original one. Only the original RSM version is less ef-
ficient than the FRM.

Fig. 16 Performance for the function by Rosenbrock. 1:
Newton. 2: modified Newton. 3: RSM. 4: RSMwith line search

Fig. 17 Performance for the function by Fenton and Eason.
1: Newton. 2: modified Newton. 3: RSM. 4: RSM with line
search
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For the function by Fenton and Eason, on the other
hand, FRM tends to perform better than the Newton
methods and RSM. The line search improves the Newton
method but slows down the RSM. The modified Newton
method and original RSM nearly match the efficiency of
the Fletcher–Reeves method.

6
Summary

The contributions of the present study are summarized in
the following sections.

6.1
Relationship between the Newton method and RSM

The quadratic approximation of a response surface (ob-
jective function) requires a number of supporting points
scaling with the number of optimization variables accord-
ing to (14). The method of differences for numerically
obtaining first and second derivatives of a function at
a point also requires a set of supporting points with ap-
propriately small separations.
The study presents, with (16) through (18), a place-

ment scheme for supporting points in variable spaces of
any dimension that can be used for both purposes. The
evaluation of the placement scheme for the response-
surface approximation and for obtaining first and sec-
ond derivatives is also given with (26) and (27) through
(29), respectively. On quadratic objective functions, the
derivatives are calculated exactly regardless of the spac-
ing between the points. This is because the point set, in
any dimension, allows the gradient to be calculated by
the central differences method while the Hessian matrix
is already evaluated exactly by the forward differences
method. The derivative information thus obtained can be
used to construct the response surface in an alternative
way.
NM and RSM find the minimum of a quadratic func-

tion exactly in one step. By using the same point place-
ment and evaluation schemes presented here, they also
require the same number of function evaluations. They
are thus perfectly equivalent on quadratic functions de-
pending on any number of variables.
Considering functions composed of higher-order poly-

nomial terms, NM can be regarded as a limiting case of
the RSM for D→ ε, ε� 1. This unification is effected by
the particular supporting-point placement scheme pre-
sented. The theoretically identified similarity of both
methods is numerically corroborated by applying the al-
gorithms to test problems brought to the literature by
Rosenbrock and by Eason and Fenton (1974). The NM
and the limiting case of the RSM minimization algorithm
outlined here solve the problems with almost identical
numbers of function evaluations.
The similarity appears so interesting because the two

methods are second and zero order, respectively, and

therefore often perceived as being of a fundamentally dif-
ferent nature.

6.2
Minimization algorithm based on RSM

The minimization algorithm, based on RSM and pre-
sented in this study, contains a shifting mechanism. It is
used if the predicted minimum point has a higher function
value than the smallest value of the supporting-point set.
The shifting mechanism lets points of the new and previ-
ous supporting-point sets systematically coincide so that
the number of new function evaluations is reduced.
Inheritance is also at the heart of RSM strategies,

where the supporting-point sets are provided by LHD.
LHD sampling can be controlled to yield a saturated set
fulfilling the minimum requirement to fit a second-order
model. Saturated LHD point sets and the new place-
ment scheme have in common that the number of sup-
porting, or sampling, points depends on the number of
optimization variables by (14). Wang (2003) has used
LHD to achieve an improved adaptive response-surface
method (ARSM) with an increased probability of finding
the global minimum of non-concave functions. It appears
likely that LHD is better suited, for the design-space re-
duction strategies used by Wang, than the rigid lattice of
the new point-placement scheme.
A version with line search, analogous to the modified

Newton method, is also explained.

6.3
Numerical experiments

A link to numerical performance results given in the lit-
erature is established in Sect. 5.1. The results of this
study are not only given in terms of numbers of func-
tion evaluations but the paths taken by the various algo-
rithms through the landscapes of the two test problems
considered are plotted so that the results can be better
interpreted.
The original and modified Newton methods and the

RSM-minimization algorithms presented in this study
show similar performance, comparing well with that of
the conjugated-gradient method by Fletcher and Reeves
(2002).

7
Conclusion

The Newton and response-surfacemethods have been dis-
cussed and their common features have been exposed.
A particular supporting-point arrangement scheme is

presented. It serves two purposes, constructing a quadratic
approximation of response surfaces and obtaining the
first two derivatives, equally well.
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Along with the evaluation schemes presented in this
paper, it provides identical scaling, in terms of number of
function evaluations as a function of the number of opti-
mization variables, for the Newton and response-surface
methods when applied to the minimization of quadratic
functions with unknown parameters.
An RSM-based algorithm for minimizing higher-order

functions is presented where a point-set shift mechanism
reduces the number of function evaluations.
The commonness of the Newton and RSM methods

is also confirmed by the performance results obtained
from the minimization of frequently used higher-order
test problems.
The presented response-surface method minimization

algorithms perform similarly to those based on the New-
ton and conjugated-gradient methods.
One of the advantages of RSM is their ability to fil-

ter out numerical noise. Apart from the wide spacing of
the supporting points across the design space, a num-
ber of points higher than the number of model coeffi-
cients enhances the filter effect. Since the presented point-
placement scheme produces exactly saturated point sets,
the noise issue has not been addressed in this work.
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