-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by RERO DOC Digital Library

Des Autom Embed Syst (2010) 14: 193-227
DOI 10.1007/s10617-010-9055-1

Analytic real-time analysis and timed automata: a hybrid
methodology for the performance analysis of embedded
real-time systems

Kai Lampka - Simon Perathoner - Lothar Thiele

Received: 15 January 2010 / Accepted: 17 May 2010 / Published online: 16 June 2010
© Springer Science+Business Media, LLC 2010

Abstract This paper presents a compositional and hybrid approach for the performance
analysis of distributed real-time systems. The developed methodology abstracts system com-
ponents by either flow-oriented and purely analytic descriptions or by state-based models
in the form of timed automata. The interaction among the heterogeneous components is
modeled by streams of discrete events. In total this yields a hybrid framework for the com-
positional analysis of embedded systems. It supplements contemporary techniques for the
following reasons: (a) state space explosion as intrinsic to formal verification is limited to
the level of isolated components; (b) computed performance metrics such as buffer sizes,
delays and utilization rates are not overly pessimistic, because coarse-grained analytic mod-
els are used only for components that conform to the stateless model of computation. For
demonstrating the usefulness of the presented ideas, a corresponding tool-chain has been
implemented. It is used to investigate the performance of a two-staged computing system,
where one stage exhibits state-dependent behavior that is only coarsely coverable by a purely
analytic and stateless component abstraction. Finally, experiments are performed to ascer-
tain the scalability and the accuracy of the proposed approach.

Keywords Performance analysis - Timed automata - Real-time calculus - Hard real-time
systems

1 Introduction

The designers of real-time embedded systems need to verify the correctness of their designs
already in early design stages. Due to the increasing complexity of modern system architec-
tures, guaranteeing correct system behavior has become one of the most challenging steps

K. Lampka - S. Perathoner (<) - L. Thiele
Computer Engineering and Networks Laboratory, ETH Zurich, Zurich, Switzerland
e-mail: perathoner @tik.ee.ethz.ch

K. Lampka
e-mail: lampka@tik.ee.ethz.ch

L. Thiele
e-mail: thiele @tik.ee.ethz.ch

@ Springer

https://core.ac.uk/display/159144538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:perathoner@tik.ee.ethz.ch
mailto:lampka@tik.ee.ethz.ch
mailto:thiele@tik.ee.ethz.ch

194 K. Lampka et al.

in the design process. Empirical methods such as testing or simulation are often inadequate
for this task because they are not exhaustive. In order to provide hard guarantees for the
system behavior as required for many application domains, formal analysis methods need to
be applied.

Timed automata [2] are a well accepted formalism for analyzing real-time systems, see

e.g. [17]. However, the finite state/transition system to be derived from some high-level
model tends to grow exponentially with the number of clocks and clock constants. There-
fore, the detailed analysis of a complex system may be hampered in practice, if not im-
possible at all. In contrast, purely analytic (or stateless) methods such as provided by the
Real-Time Calculus [21, 23], SymTA/S [11] or MAST [9] solely depend on solutions of
closed form expressions, yielding a very good scalability with the size of systems to be ana-
lyzed. But, this advantage leads to serious drawbacks: (a) analytic methods are limited to the
computation of a few specific system measures and (b) each method is restricted to a specific
model to which the system specification under analysis must be translated, which in general
may lead to overly conservative analysis results. To overcome these shortcomings, this paper
aims to combine purely analytic and state-based performance analysis methods. Employing
state-based evaluation approaches only for those system components, where stateless analy-
sis delivers overly pessimistic results, will maintain scalability.
In the present work we have chosen to combine TA (Timed Automata) and RTC (Real-Time
Calculus), as the former is widespread for verification of real-time systems and RTC is an
advanced analytic performance analysis approach, see [6, 21, 23]. However, we would like
to point out that the presented method is not limited to RTC. The coupling of TA with other
analytic performance evaluation frameworks such as any method from classical real-time
analysis or SymTA/S can be reduced to a special case of what is discussed here.

Coupling the Modular Performance Analysis framework (MPA) [23] which is based on
RTC [21] and Uppaal [22] for the joint analysis of embedded real-time systems is far from
trivial, since (a) the RTC lacks a concrete execution semantics unlike TA, (b) TA can not
be verified by evaluating closed form expressions, nor can one in general derive an analytic
description from them and (c) RTC and TA not even share the same time domain. TA op-
erate on the conventional time-line, whereas the RTC operates on stream abstractions that
are defined on time intervals. To overcome this obstacles this paper provides the following
contributions:

e A pattern is described allowing to convert abstract stream models such as PJD (periodic
with jitter) or arrival curves to a network of co-operating TA (Sect. 4.2).

e The pattern can be employed for a convex/concave approximation of arrival curves which
is the key factor for ensuring simple and scalable TA models.

e Tightness and correctness of the transformation is proven, i.e., the TA solely generate
event traces complying with the abstract stream model, and they do this for all conforming
event traces (Sect. 4.2.3).

e A pattern is described to automatically derive abstract stream models (such as PJD or
arrival curves) from a TA-based system model (Sect. 4.3).

o Finally the paper presents an implementation, analyzes an exemplarily chosen system,
and investigates the scalability and the accuracy of the proposed methodology (Sect. 5).

Note that this article builds on the work presented in [15]. In the present version we add
several explanation and proves, generalize the pattern for the conversion of arrival curves to
TA, formalize the derivation of arrival curves from TA systems, and extend the experimental
results by evaluating the scalability and the accuracy of the proposed approach.

@ Springer

Analytic real-time analysis and timed automata: a hybrid methodology 195

2 Related work

There are several other approaches known which also tackle the combination of RT'C-based
analytic and state-based models for system-wide performance analysis. The authors of [20]
bridge the gap between a state-based methodology and the RTC-method as discussed in
Sect. 3. However, contrary to this paper the work of [20] is based on event count automata
(ECA) [7]. With ECA the user must specify the minimum and maximum number of event
arrivals taking place while the ECA resides in the respective location. For translating an
RTC-based abstract stream representation into an ECA the authors use the principle of a
ring buffer. Each counter represents the number of events associated with the respective
number of unit intervals. When it comes to the interfacing of ECA with RTC, i.e., one needs
to derive abstract stream representations as used in RTC-curves from ECA specifications, the
authors of [20] suggest the usage of observer ECA. They use binary search for extracting the
maximum and minimum number of events seen in a window size A via reachability analysis.
In [19] it is shown how the above approach can be employed within a hybrid framework,
allowing to obtain key performance metrics of embedded systems by combining RTC and
ECA-based analysis. However, our usage of TA appears to be more beneficial, since contrary
to ECA they have an explicit notion of time, whereas ECA advance in a lock-step fashion.
In addition, in our work we solely require one observer automaton for a complete staircase
function defined over all time intervals A rather than one observer per discrete window
size A.

The authors of [8] present an approach, where a system to be analyzed is mapped to a
process network which is analyzed via a compositional response time analysis [11]. The
resulting periodic event stream models and the computed response times serve as parame-
ters for pre-defined TA. The high-level descriptions of system properties to be checked are
also transformed into TA. Finally, the use of standard model checking procedures allows to
check, whether the system model fulfils the desired properties or not. The approach differs
from the new results in this paper as the system is not decomposed into components which
exhibit substantial state-dependent behavior and those which can be analyzed using analytic
approaches. Instead, state-based behavior is not explicitly taken into account.

The authors of [13] also address the combination of RTC-based components and TA. For
including the abstract stream representation used in RTC into TA-based system models one
operates on an array of clocks. Each clock is associated with the number of events produced
so far, as well as with a minimal and maximal number of events to be generated within
the respective time interval length. For deriving RTC-based stream representations from the
combined model, the authors suggest the usage of observer automata and binary search on
the maximal and minimal number of events that appear within any time interval of length
A, which is in fact similar to the idea of [20]. As one operates on a finite set of time-interval
lengths A only, it is not clear when to stop with the translation of an abstract event stream
representation into a TA and vice versa. The use of observer automata that investigate single
time-interval lengths only implies that one either needs one observer automaton with its
local clock for each interval length, or one must execute a full state space exploration for
each of the interval lengths. Also on the side of the event generating automaton, the number
of clocks may be prohibitively large because one basically needs one clock per upper and
lower bound for the number of events seen on the stream within the resp. time interval A.
The approach described in this paper attempts to overcome these limitations by using a
compositional leaky bucket representation of event streams.

@ Springer

196 K. Lampka et al.

3 Background theory

In this section we describe the theoretical notions that form the basis of the approach devel-
oped in this paper. We start with some basic terminology followed by a brief introduction of
the Real-Time Calculus and Timed Automata.

3.1 Terminology

In the following we define some basic terms used in this paper.

e A timed action is a pair (a,t) where a is some action such as the occurrence of an event
and ¢ € R=Y is a time stamp.

e A timed trace T := (ay, 11); (az, t); ... is an (infinite) sequence of timed actions ordered
by non-decreasing time stamps, i.e., t; < ;4 fori > 1.

e A timed event trace r, shortly denoted as event trace, is a timed trace of the form r :=
(e, 11); (e, 1y); ... where e is a recurring event in a stream.

3.2 Real-time calculus

Real-Time Calculus (RTC) [6, 21] is a compositional framework for performance analysis
that extends the classical Network Calculus, see e.g. [5], towards analyzing distributed (hard)
real-time systems. RTC permits to analyze the flow of event streams through a network of
processing and communication resources. In the following, we will briefly reproduce the
basic concepts of RTC that will be used in this paper.

Definition 1 (Arrival function) Each event trace r can be characterized by an arrival func-
tion r : RZ% x R=% — NZ0 where r(s,) for 0 < s < ¢ denotes the number of events that
arrive in the time interval [s, #) (including s but not ¢), with (s, s) = 0.

For the sake of simplicity, in the following the notation r is used for both the event trace
and the corresponding arrival function; it will be clear from the context to which of the two
we refer.

Contrary to most other analysis techniques, in RTC event streams are not represented in
the time domain, but in the time-interval domain. In particular, when modeling event streams
one can abstract from concrete event traces and describe all traces of an event stream by
means of a tuple of arrival curves a(A) := [a*(A), &' (A)].

Definition 2 (Arrival curves) Let r(s, ¢) be the arrival function of an event trace r as defined
above. Then r, a“, o' are related to each other by the inequality

dt—s)<r(s,H)<a“(t—s) Vs, teR s<¢ €))

with " (0) = ! (0) = 0. If the above inequality holds for an event trace r, we say that r
conforms to «, denoted as r = «.

Informally, an upper arrival curve o : R=? — N=° provides an upper bound on the num-
ber of events seen on the event stream in any time interval of length A. Analogously, a lower
arrival curve o : R=® — N2 denotes a lower bound on the number of events seen in any
time interval of length A.

@ Springer

Analytic real-time analysis and timed automata: a hybrid methodology 197

Definition 3 (Set of conforming event traces) Let o be a tuple of arrival curves as defined
above. The set of all event traces that conform to « is defined by

R ={reR:rkE=a}, 2)
where R denotes the set of all event traces.

The conformance of an event trace r to an upper (lower) arrival curve o* ('), as well as
u ! .
the sets R* , R* are defined accordingly.

Similarly, for representing the availability of processing or communication resources,
RTC employs so-called service curves. A tuple B(A) =[B*(A), B! (A)] of upper and lower
service curves specifies an upper and a lower bound on the service available from a resource
in any time interval of length A.

Definition 4 (Service curves) Let c(s, t) be the number of service units (e.g. processing or
communication cycles) available from a resource over the time interval [s, 7). Then ¢, g“,
B! are related to each other by the inequality

Blt—s)<c(s,t)<B“(t—s) Vs, teR, s<t 3)
with g(0) = g/ (0) = 0.

In the following we will use the term RTC-conforming curves to refer generally to both,
arrival and service curves.

In RTC arrival and service curves provide the inputs to a single analysis component.
For computing the corresponding bounds o’ for the outgoing event stream and B’ for the
remaining resources one commonly applies operators of min-plus and max-plus algebra,
see [21, 23]. Overall, this component-based analysis methodology allows to obtain (hard)
bounds on job delays, buffer sizes and utilization of hardware units, either for a single com-
ponent or for complex systems.

3.3 Timed automata

In this paper we use timed safety automata as found in the model checker Uppaal [3]. In the
following we briefly re-capitulate only some relevant aspects of TA. For a detailed introduc-
tion please refer to [4].

An extended time safety automaton is a graph, consisting of locations, directed edges
between them, non-negative clocks and a set of local (integer) variables. Conditions imposed
on clocks (time constraints) and variables steer the execution of edges in a TA. An example
of TA is shown Fig. 1 which represents the model of a traffic light. Each edge execution
in a TA establishes a state-to-state transition in a corresponding state graph. A TA can be
expanded into its state graph by iteratively considering all executions until a fixed point
is reached. The state graph captures all the timed behavior of a TA and is used for the
formal verification of system properties. In a TA conditions related to edges are denoted as
guards and conditions related to locations are denoted as location invariants. The execution
of an edge can only take place if both the guard of the edge and the invariant of the target
location evaluate to true. The execution of an edge is typically followed by clock and variable
updates. Note that the invariant of the target location must be satisfied after the clock and
variable updates of the incoming edge have taken place. A location of a TA can be labeled

@ Springer

198 K. Lampka et al.

<— 64.800 tnvariant
y <=04,
x <=100
‘ Down clock reset
/
=0,
y == 86400 X s=g
s ™~ variable
update
y>64800 v ()x<=15
y=0 1= x> 200
@ $=9 ™~ guard
Up
y<=64,800||s!=r
System Declarations
channel on, off; synchronization

clock x,y; x=0 signal

enum phases {g =1,7,y}s;

OFF

Fig. 1 Timed Automata modelling a traffic light

as urgent. In urgent locations no time can elapse, meaning that once an urgent location is
entered, any outgoing edge has to be executed in zero time.

A key feature of the TA modeling approach is modularity. Individual TA models can
be composed for the representation of complex systems. The interaction of the different
TA modules is based on shared global variables and synchronized edge executions. For in-
stance, in the example of Fig. 1 the system model consists of two TA components. The TA
on the right represents a traffic light, whereas the TA on the left represents a controller which
switches the light off during some time interval. The two TA make use of a joint (enumera-
tion) variable denoted s which can have the values r, y or g. Moreover, the two TA interact
via synchronized execution of their edges labeled with on and off. Edges of different TA
with the same synchronization label, also denoted as channel, have to be executed contem-
poraneously in an atomic manner. By following Uppaal’s nomenclature we will also speak
of sender and receivers when referring to the synchronization of different TA. In Uppaal we
distinguish the following types of rendez-vous mechanisms:

e Binary synchronization
A sending and a receiving TA synchronize on the joint execution of two dedicated edges,
one in the sending TA, whose edge is labeled by a channel id and an exclamation
mark, and one in the receiving TA, whose edge is labeled by the same channel 1id, but
extended with a question mark (see, e.g., the event! and event?-labeled edges in the TA of
Fig. 4(B) and 4(C)).

e Broadcast synchronization
One sender synchronizes with up to n receivers. This refers to the situation where one
sending TA executes a sending edge, which can be understood as the emission of a signal
and where between 0 and n receiving TA execute a receiving edge, which can be inter-
preted as the instantaneous reception of this broadcast signal. It is important to note that
although the sender can synchronize with any number of receivers between O and n, par-

@ Springer

Analytic real-time analysis and timed automata: a hybrid methodology 199

ticipation in the broadcast synchronization is not facultative for receivers. In particular,
all TA containing a receiving edge have to execute this edge if at the time of the syn-
chronization it is enabled, that is, if the edge can be executed. (see, e.g., the event! and
event?-labeled edges in the TA of Fig. 5(B-D)).

Note that for the sake of better readability, the TA depicted in this paper are not always
syntactically correct. In particular, the i £-statement that we employ has to be implemented
in Uppaal with the ?-operator of ANSI C. For the max- and min-operator one needs to define
individual functions as part of Uppaal’s system declaration. Note further that for addressing
the evaluation of a clock x or a counter b at some time ¢ we will use the notation x(¢) or
b(t). In cases where the concrete point in time 7 is clear from the context, we will also use
the clock identifier instead.

4 The approach

In the following we will develop a scheme for interfacing RTC-conforming curves with TA-
based system descriptions, as illustrated in Fig. 2. The major result is the transformation of
event stream specifications in the form of arrival curves (defined in the time-interval domain)
to sets of event traces specified by TA (defined in the time domain) and vice versa. The
developed strategy consists of two independent parts which will be discussed separately:

(1) In Sect. 4.2 we show how to implement RTC-conforming input curves by a network of
TA denoted as input generator. This transformation corresponds to the interface denoted
with ‘RTC—TA’ in Fig. 2.

(i) In Sect. 4.3 we discuss how to derive output curves from TA-based system specifi-
cations. This transformation corresponds to the interface denoted with “TA—RTC’ in
Fig. 2.

These two transformations enable a hybrid approach to performance analysis of distributed
systems where the individual components are either abstracted on the basis of the RTC or
modeled by means of TA.

| t
npu Output
Interface Interface
%
, RTC—TA TA—RTC

O ===~

o' =fq(a, B)
B'=fp(a, B)

o' =fq (o, B)
B'=fp(c. B)

Stateless
component

State-based
component

Fig. 2 Overview of hybrid analysis method

@ Springer

200 K. Lampka et al.

Fig. 3 Transformations among RO R Ry RO
sets of event traces for the two Q o}
described interfaces

(A) Interface RTC—TA (B) Interface TA—RTC

In this paper we will focus on the conversion between arrival curves and sets of event
traces. Note, however, that the presented approach is not limited to arrival curves, but can
also be applied to service curves. The only limitation to consider is that with TA, in partic-
ular with Uppaal, one can only make use of discrete variables, rather than continuous ones.
Hence, we can consider only systems with discrete numbers of events or resource units,
where on the level of RTC this refers to staircase functions.

The major complexity faced when developing the mentioned interfaces is the fact that the
bounding functions & = [o*, '] in time-interval domain implicitly define a possibly infinite
set of event traces R“.

4.1 Requirements

The main requirement for the discussed hybrid approach to performance analysis of embed-
ded real-time systems is that the described input and output interfaces are correct, in the
sense that they do not harm the safety of the analysis. In particular, in order to guarantee
conservative analysis results, whenever transforming the abstraction of an event stream to
another representation, we have to make sure that the conversion does not suppress any event
trace of the stream.

Consider first a generic input interface (RTC—TA) in which a tuple of arrival curves
oy is converted to an input generator, that is, to a network of TA. Fig. 3(A) illustrates the
corresponding transformation among sets of event traces where R“! denotes the set of event
traces that conform to «; and R, represents the set of event traces specified by the input
generator. We denote the set R; also as the set of event traces producible by the input gen-
erator. We say that the input interface is correct iff Ry © R*!. More precisely, for the input
interface we require that

reay =>reR, VreR. “)

Now consider a generic output interface (TA—RTC) in which the output of a TA subsystem
is translated to a tuple of arrival curves . Fig. 3(B) shows the corresponding transformation
where R, denotes the set of traces producible by the TA subsystem and R*? represents the
set of traces that conform to «,. We say that the output interface is correct iff R*2 O R,.
More precisely, for the output interface we require that

reR, =>rkEa VreR. 5)

Note that the above properties guarantee a correct analysis, but do not exclude pessimistic
analysis results. In particular, the accuracy of the performance analysis can degrade in cases
in which R; D R“! holds for an input interface or R*> O R, holds for an output interface.
For instance, this corresponds to the case when the model of a system component is fed with
more event traces than originally specified for the ingoing event stream. Such pessimistic
transformations are avoided if R; € R holds for all input interfaces and R*2> C R, holds
for all output interfaces. Depending on the individual case, this requirement can, however,
be sacrificed, e.g., to improve the efficiency of the analysis.

@ Springer

Analytic real-time analysis and timed automata: a hybrid methodology 201

4.2 Input interface

For interfacing RTC-conforming curves to TA the approach has to translate time-interval-
based functions into TA-based representations of possibly infinitely many timed traces. The
main idea for achieving this is based on the observation that the interval-based arrival curves
a = [a", a'] can be modeled by sets of individual staircase functions combined by the
(nested) application of minimum or maximum. Each of the involved staircase functions

al“! s guarded by its own TA, where an automaton LTA; guards lower curve o and an

1

automaton UTA; guards upper curve «;'. The network of co-operating UTA and LTA emits
a dedicated, instantaneous signal event to the environment, where this signal can be used for
stimulating a user-defined TA-based model description which represents some component
of the system under analysis. Emission of the event-signal has to be done in such a way that
one is capable of producing each trace r = ((event, ty); ... (event,t,)...) of event-signals
such that r = «. For keeping the discussion as simple as possible, we will start now with the
most simple case, where o™/} are defined by a single staircase-function each.

4.2.1 Linear input pattern

We define an upper or lower staircase function as follows:

A
al(4) == NI 4 Lsm,nJ ©

where in our approach each curve is guarded by its own timed automaton denoted UTA,
LTA respectively. Binary synchronization enforces UTA and LTA to produce only those
traces which contain at least a/(A) and at most o (A) event signals for any interval of
length A € R=0,

For exemplification please refer to the curves depicted in Fig. 4. The parameter N“ can
be understood as burst capacity, which describes the number of events producible in zero
time according to curve *. The parameter 8" specifies the minimum/maximum distance
of two successive events with respect to curve o}, The absolute values of parameter N’
of the lower curve can be understood as the fictitious numbers of §' delays before event
emission has to be enforced every §' time unit. The above constants provide the values for
the free parameters in UTA and LTA.

(A) Implementation The actual implementation of UTA and LTA is shown in Fig. 4(B)
and 4(C). Each of them employs its own clock x, counter b, and its constants N} and
81 (Fig. 4(D)). The edge-guards steering the execution of the different edges, clock resets,
variable updates and signal sending and reception are specified next to the respective edge.
Location invariants are stated next to the affected location. UTA and LTA cooperate by
synchronizing on sending and receiving signal event, which enforces the joint execution of
the event! and the event?-labeled edges in the two TA. The non-deterministic emission of
events (sending and receiving of the event-signal by LTA and UTA) is possible as long as
for the UTA b > 0 holds. On the other hand emission of the signal event has to take place
once the local variable b of LTA reaches its local threshold |N!|, which is enforced by the
location invariant x <=8’ A b <= |N'|. It is also important to note that for » = 0 and the
production of an event LTA resets its local clock x, whereas UTA does so once b = N* holds
and the signal event is sent.

@ Springer

202 K. Lampka et al.

#events
A

(A) Staircase functions as upper and lower input curves

x=0 S . i
', ystem Declarations
x=0, b++ b=min (b+1,N") channel event,
Local Declarations for LTA
clock x;
int b =0;
x<=3" Local Declarations for UTA
clock x;
. int b = N%,
if (b==0) {x=01, if (b==N") {x=0}, w
b = max (b-1,0) b--
(B) LTA for guarding o/! (C) UTA for guarding a* (D) Declarations

Fig. 4 Linear pattern: input curves and their TA-based implementation

(B) Correctness and tightness of interface In the following, we briefly sketch a proof for
the correctness and tightness of the described interface. A more detailed proof that considers
more complex arrival curves follows in Sect. 4.2.3.

Theorem 1 Let R® be the set of event traces that conform to a = [*, o] defined in (6).

Let RT4 denote the set of event traces producible by the input generator of Fig. 4. Then,
R =R"".

Sketch of Proof

e R*DRTA:
This will be justified separately for «* and o’.

1. UTA enforces that the input generator can only produce traces with at most N* + L(S%J
timed event-actions seen on any interval of length A. This is because event emission
is blocked once the counter b of UTA equals 0 and because the local clock x of UTA
is reset at event emissions for which b = N* holds.

2. The invariant defined on the initial location of LTA enforces that after (N* + 1) - §' time
units an event is emitted and from then on at least every ' time unit. Therefore, every

@ Springer

Analytic real-time analysis and timed automata: a hybrid methodology 203

trace produced by the input generator contains at least o/ (A) timed event-actions for
any interval A.

e R* C R
We have to show that each event trace r such that r = « is producible by the input gen-
erator. This can be shown by contradiction. Consider the upper bound «*. Let us assume
that there exists an event trace r with r =" that is not producible by the input generator.
It follows that there is a time instant ¢ at which UTA is blocked, but r contains a timed
action (event, t). However, by reasoning about the prefix of any trace possibly produced
by the input generator up to time ¢, it can easily be shown that an additional event at ¢
would violate «*, which contradicts the assumption r = . Hence, such a trace r does
not exist. For the lower bound o/ the reasoning is analogous. O

4.2.2 Convex and concave input pattern

i

Now we extend the discussion to cases where the input functions «' or o are modeled as

the maximum or minimum of a set of staircase functions:

o"(A) :=min(a’(A)); o' (A) :=max(0, ! (A)) (7

where ozi(”’” (Q) is defined as stated in (6) but now with their individual pairs of parameters
Ni‘“’”, 81.{”’”. For exemplification one may refer to the curve(s) depicted in Fig. 5(A). In

accordance with (7), as well as with the scenario of Fig. 5 it is required that for all i < j
holds:

NSO < NP s s 0; ol =8 and 8 <Y ®)

In the following we informally denote arrival curves ™ that fulfill (7) and (8) as concave
and convex, respectively.

(A) Basic idea of the approach ~ The bound imposed by curve ai{”’” will be guarded by UTA
and LTA i, respectively. Cooperation among the UTA and LTA has to be organized in such
a way, that it complies with the minimum and maximum-operation as employed in (7). Due
to the usage of minimum and maximum the following conditions apply:

1. Minimum-condition: The input generator may emit timed action (event, t) <= b;(t) >
0Vb; € 98", where 98" is the set of the UTA-local b-variables such that i € {1, K} with
K as the number of UTA.

2. Maximum-condition: The input generator has to emit timed action (event, t) <= 3b; €
98" A 3Ax; € €' such that b; (t) = |Nl.l| A xi(t) = 35, where ' is the set of the LTA-local
b-variables, €” is the set of their local clocks and (Sf the period for incrementing x;, with
i € {1, L} where L is the number of LTA.

(B) Implementation The implementation is shown in Fig. 5. To be as generic as possible
we make use of Uppaal’s concept of templates, s.t. clock x, constants Nl-(”‘”, 85"‘”, and the
counter b of the TA shown in Fig. 5(B) and Fig. 5(C) are local entities only, and will be
indexed accordingly. The instances of Fig. 5(B) and Fig. 5(C) implement the single LTAs
and UTAs of the network, respectively. The TA shown in Fig. 5(D) is the scheduler employed
for governing event-emission, which is necessary since instead of binary synchronization we
are using now Uppaal’s concept of broadcast channels, where full synchronization among

@ Springer

204

K. Lampka et al.

#events

x=0, b++

if (b==0) {x=0},
b = max (b-1, 0)

(B) TA for lower curve a,-’

Sync == Num_UTA

Sync=0
(D) Scheduler for emitting events

(C) TA for upper curve o'

System Declarations
broadcast channel event;
int Sync = 0;

Declarations for LTA i
clock x;

int b=0;

Declarations for UTA i

clock x;
int b = N},

(E) Declarations

Fig. 5 Convex, concave pattern: input curves and their TA-based implementation

@ Springer

Analytic real-time analysis and timed automata: a hybrid methodology 205

the UTAs and LTAs has to be enforced. For bounding the number of producible events each
instance of an UTA and LTA periodically increments its local counter b; as before, namely
every 81.{”’” time units by executing the respective edge, which we denote as clock-tick edge
from now on; it is the top edge of the TA templates of Fig. 5(B) and Fig. 5(C). The emission
of an event can only take place if the minimum-condition applies, whereas event emission
is enforced if the maximum-condition holds. In any case event emission yields an update
of local counter b; which allows each UTA and LTA to track event production accordingly.
The minimum and the maximum-condition are implemented as follows:

1. The minimum-condition is enforced by the location invariant Sync = Num_UTA defined
for the target location of the event!-edge of the scheduler (Fig. 5(D)). The invariant ex-
presses the condition that the location can be entered only if the global variable Sync is
equal to the number of UTA in the network. Since at each broadcast synchronization each
UTA increments Sync by exactly 1, we have that event emission can take place only if
all UTA in the network are participating.

2. The maximum-condition is realized by means of the location invariants of the different
LTA. A single LTA enforces an event generation whenever executing the event!-edge is
the only way for circumventing the violation of the invariant.

The usage of the unique label event within all TA guarantees the joint execution of the
event!-edge of the scheduler and all event?-edges of the LTA and UTA, respectively. Thus
either all event-edges are jointly executed or none, which yields the nice feature that an
input generator of the above kind deadlocks if upper and lower bounding functions are not
consistent. In the case of concave/convex input curves this is the case if the upper and the
lower curve cross each other. Finally, one may note that as before LTA i resets its local clock
x; once b; = 0 and event emission takes place. UTA i does so once b; = N/’ holds and event
emission occurs.

4.2.3 Tightness and correctness of the interface

In this subsection we will reason formally about the tightness and correctness of the de-
scribed interface. In particular, we will show that R® = R”4 holds also for the con-
vex/concave pattern of staircase curves. This will be done in two steps. In step (A) we prove
that the input generator cannot violate the upper and lower bounds ", i.e., R* D RT4. In
step (B) we prove that the input generator can produce all the event traces that conform to
alth je., R* € RTA. The final result is summarized in (C).

(A) Tightness (R* 2 R™4)

Lemma 1 Let RT# denote the set of event traces producible by the input generator of Fig. 5.
Let o* be defined according to (7) and (8). Then, r =a* Vr € RTA.

Sketch of Proof According to the above discussion the parameters N/ and §;' of an UTA i

correspond to the parameters of the respective step-function «}'. It is easy to see that UTA

i allows the production of at most N/ + LS%J events and that with b; = 0 it blocks event

production. Minimum-condition as defined above gives, that for any A € R=° the max.

number of events producible is bounded by min(N} + L,;%J)- It is important to note that
1 1

for b; (o) = |N/'| an event generation resets clock x;, such that the above equation yields an
upper bound for the number of producible events. This is exactly what was defined for o*
in (7) and (8). O

@ Springer

206 K. Lampka et al.

For exemplification please refer to the graph of Fig. 5(A). If y events are produced in a
time interval of length ¢, then the counter b3 = 0 and hence UTA; blocks event production
until its local clock x3 expires. From that point on event production is bounded by o5 due to
the minimum-operation realized by synchronizing the UTA.

Lemma 2 Let RT# denote the set of event traces producible by the input generator of Fig. 5.
Let o' be defined according to (7) and (8). Then, r =o' Vr € RT4.

Sketch of Proof Due to the maximum-operation it seems appropriated to argue over the
index of the LTA currently enforcing the generation of events and the size of the intervals:

e 0< A< (N f |+1)- 811: For intervals of this length event emission does not need to be
enforced. Thus by choosing the parameters of LTA; accordingly the input generator is
capable of delaying event emission up to (| N { |+ 1) ~8’1 time units, since starting with by =
0 it is exactly this amount of time which it takes for LTA; to reach its event generation
threshold (b, = |N{ |) and the local clock x; expiring (x; = 8’1) given that no event has
been emitted before. This implies also why clock x; needs to be reset when emitting an
event in case of b; = 0 (cf. Fig. 5(B))

. (|N,ﬂ| +1)- (S,lc <A< (|N,i+l| +1)- ’31]<+1: For each interval of this length LTA k bounds
the minimum number of emitted events to N,ﬁ + Lij, with N ,ﬂ < 0. This is because when

holding its threshold (b, = |N}|) and with the local clock x; expiring (x; = 8,) LTA k
enforces the generation of an event and form now on every 8, time units (see location
invariant of the UTA of Fig. 5(C)). This goes on until LTA k£ + 1 holds its threshold
IN}, | and its local clock x| expires.

e (IN_ |+ 1)-8,, <A < oc: For intervals of this size we may use the same argument as
above, but now starting with LTA &k + 1.

Hence, we can exclude the existence of an interval in which the input generator can generate

less events than specified by o’.]

For exemplification refer to Fig. 6(B) which illustrates a trace produced by the LTAs.
Let event generation take place at time ¢, and let b;(7,) = 0 afterwards s.t. clock x; is set to

Fig. 6 Timed event-traces and =0 fo
evaluations of b; (t) and x; (7) ‘ A AA A A A

_{b,‘(O) = N;l b,‘(to) = N;‘
xi(0)=0 xi(to) =0
(A) Trace generated byUTAs

T=t, n

2 fo 73
R e T E

IR PR bi(t) = IV
1(t0) = | N (1) = IN!
{Jbﬁl ((8)) - 8 {xl () =i {Xi(tk) =9

(B) Trace enforced by LTAs

@ Springer

Analytic real-time analysis and timed automata: a hybrid methodology 207

zero. After another (|N f| +1)- 811 time units where no event emission took place b; = |N f |
and x| = 8{ will hold which immediately enforces event generation (here at time fy). From
now on this is done at least every &) time units, until b, = |Nj| and x, = §} holds which
enforces event production now every 8} time units. In general this means that once started
LTA i — 1 enforces the event generation every 8!, time units. This goes on until b; = | N/|
and x; = 6,(holds, which forces LTA i to take over event production, e.g. at time #; as shown
in Fig. 6(B).

Lemma 3 Let R® be the set of event traces that conform to o = [a", &'] defined according
to (7) and (8). Let R™4 denote the set of event traces producible by the input generator of
Fig. 5. Then, R* D R4,

Proof Follows directly from Lemmata 1 and 2. a
(B) Correctness (R* € RT4)

Lemma 4 Let R*" be the set of event traces that conform to o" defined according to (7)
and (8). Let RYT4 denote the set of event traces producible by the input generator of Fig. 5
without LTAs. Then, R*" C RUTA,

Proof This will be shown by contradiction. One may assume that there is a trace r with
r = o, but that is not producible by the network of UTAs. From this it follows that there
must be a timed action (event, t) where the UTAs are blocked, but the production of an
additional event would not be contradictory to a*. Let (event,t) € r but (event,t) & r’4,
where 74 is a trace producible by the input generator with the same prefix as a priori to the
occurrence of (event,t). Let t :=t; + €, it must hold that there 3b; € &, s.t. b;i(t; +¢€) =0,
otherwise one would be able to produce an event. Let ¢; be now the earliest point in time
for r where b; (t;) = 0 holds and let #, < ¢; be the last point in time where b;(fy) = N}' was
satisfied, which is exactly what we have illustrated in Fig. 6(A). The choice of i and the
blocking of events implies now that for the blocking period € it must hold #; + € <, where
7, is the next time b; is incremented and the generation of an event would not be blocked
anymore. From this it follows that for the number of events r(, t; + €) seen on r in the
interval [#y, #; + €] it must hold:

([j+6—t())

V(loylj+6)=Niu+{ 5

J +1l=0o/(t;j+e—1)+1,

otherwise b; would not be 0. Obviously this violates the bound imposed by «", since at
time point ¢; the number of events is bounded by «;' which is the current minimum and
truly smaller than r(t, t; + €). Thus from r(0,¢; 4+ €) > " we can conclude that such a
trace r does not exist. Concerning the assumption that #;, was the last point in time where
b;(to) = N;* was satisfied and that for #: b;(fy) = 0 must hold, one may note that for the

initial point in time we have b; (0) := N/* and that b; must be zero at ¢;, since otherwise UTA
would not block event emission by violating the minimum-condition. O

Lemma 5 Let R be the set of event traces that conform to o' defined according to (7)
and (8). Let R'T4 denote the set of event traces producible by the input generator of Fig. 5
without UTAs. Then, R* C RLTA,

@ Springer

208 K. Lampka et al.

Sketch of Proof Analogously to the proof of Lemma 4, this can be shown by contradiction.
We assume that there is a trace r with r |= &, but that is not producible by the network of
LTAs. In particular, we assume that for a given time interval [s,] with A =t — s the trace
r contains less events than the minimum number of events enforced by the network of LTAs
for any time interval of length A. By reasoning about the behavior of the network of LTAs
for different interval sizes as done in the proof of Lemma 2, it can be shown that such an
event trace does not exist. O

Lemma 6 Let R® be the set of event traces that conform to o = [a", &'] defined according
to (7) and (8). Let RT# denote the set of event traces producible by the input generator of
Fig. 5. Then, R* C RT4.

Proof Follows directly from Lemmata 4 and 5. O
(C) Identity (R* = RTA)

Theorem 2 Let R* be the set of event traces that conform to o = [a", o'] defined according
to (7) and (8). Let RT4 denote the set of event traces producible by the input generator of
Fig. 5. Then, R* = RT4.

Proof Follows directly from Lemmata 3 and 6.]
4.2.4 Extended input generators

In practice systems may show event streams that do not adhere to the above described input
pattern. While in such cases the pattern can still be used to conservatively approximate the
arrival curves and hence to realize a correct input interface, it is desirable to avoid approxi-
mations for the sake of accuracy. In the present subsection, we will therefore briefly sketch
two possible refinements of the input pattern.

Shifted staircase curves In the input pattern described in Sects. 4.2.1 and 4.2.2 each linear
staircase curve has a uniform step width for all steps. In practice one does, however, often
encounter staircase curves that have an initial offset, meaning that they are horizontally
shifted. For instance, this is the case for the arrival curves of a periodic event stream with
jitter. Figure 7 illustrates an example of such horizontally translated staircase curves.

Such staircase curves with initial offset can be modeled by a slightly more general version
of the TA shown in Fig. 5. In the following we will explain the underlying principle by
means of &. The corresponding automaton U’ f‘A,- is shown in Fig. 8. The differences to the
automaton UTA; are that at each event generation the counter b; is decreased by e! units, and
that scaled constants 1(’1-" and Sl’-‘ are used as maximum counter value and counter increase
period, respectively.

The idea for achieving the initial offset 6 is now to use a value for ¢} that is not a factor
of]\7;‘. In this way, after the generation of the maximum instantaneous burst of events, the
next event can be generated earlier compared to the previous case. This is because after the
generation of the maximum burst, the counter will be equal to a residual value 0 < b; < e;'.
The following equations permit to derive e,]\7;‘, and 31“ for given values of 6/, N/, and &}

~ ox
PN =N e = ©)

i

A

B =ged(. 61 e =

Oo)|__<_>§

~=

@ Springer

Analytic real-time analysis and timed automata: a hybrid methodology 209

#events
A

Fig. 7 Shifted staircase curves with offset 91.{”’”

Fig. 8 TA for shifted upper x=0,
staircase curve &;‘ b =min (b+1, NY)

if (b==N!) {x=0},
b=b-e;,
Sync++

Consider for instance &5 shown in Fig. 7 and defined by N} =6, §5 = 8, and 05 = 4. By

applying (9) we obtain 35‘ =4,¢e5 =2, and 195‘ = 13. One can easily verify, that by using

those constants in the automaton of Fig. 8, we generate event traces which conform to &5.
For lower curves &! the reasoning is analogous and results in the following equations:

st N 0!
:8—']; N}:Ni’-ef—g—'lﬂ. (10)

Sf = gcd(84, Ql.l); e

1 1

Non-convex/concave patterns Another issue is that in practice systems may sometimes
not show strictly concave or convex patterns. For instance, the overall upper input or output
curves may have parts with decreasing step widths (see, e.g., &5 gy in Fig. 17), or the lower
curve may contain parts with increasing ones. In the following we will briefly sketch how
one can resolve such situations for the input interface.

In cases where non-concave and non-convex patterns occur only finitely often within an
arrival curve, one can handle this by simply making use of subsets of UTA, LTA and local
synchronization for obtaining local minima and maxima. In order to implement such patterns
one solely needs to encapsulate the respective sets of co-operating LTA or UTA in their own
sub-system. These subsystems can be implemented analogously to the pattern illustrated
above, but requiring slightly adapted TA-specifications w.r.t. the employed thresholds.

@ Springer

210 K. Lampka et al.

Note that in the case of non-concave/convex input curves the specification of an upper and
a lower bound might be inconsistent even if the two curves do not intersect. This problem is
described in more detail in [1]. In our framework the input generator can run into a deadlock
in the presence of such an inconsistency. Hence, we can easily detect such a case by model
checking a corresponding query.

4.2.5 Complexity issues related to input modelling

Complexity of model checking TA is exponentially bounded by the number of clocks and
clock constants [2]. Thus it is straight forward to see that the efficiency of the approach is
closely related to the number of staircase functions employed for modeling lower and upper
input curves.

In the following we propose a simple method that permits to approximate a general arrival
curve with the convex/concave combination of just a few staircase functions. The approach
first approximates the arrival curve by a so called periodic with jitter event arrival model, and
then derives the parameters for the corresponding staircase curves oci{“’” . The periodic with
jitter event model (or PJID model in short) is commonly used in literature and is a simple
representation for the arrival of events in streams [23]. It is specified by a parameter triple
(p, j,d), where p denotes the period, jthe jitter and d the minimum inter-arrival time of
events in the modeled stream.

Arrival curves are in general more expressive than PJD models. However, every arrival
curve can be conservatively approximated by a PJD model [14]. Given a general arrival
curve to feed into a TA-based component, we first use the algorithm described in [14] to
approximate it with a PJD model. Subsequently, we convert the PJD parameters to a set of
appropriate parameters Ni{“’l} and 8}"’” that are used to specify the input generator for the
TA-based component as described in Sect. 4.2.2.

The upper bound described by a PJD model can be represented by the minimum of at
most two staircase functions o} and oj. In particular, two staircase functions are needed
ifd >0 A d > p— j, while only one staircase function suffices otherwise. For the lower
bound of a PJD model one staircase function o is always sufficient. The parameters of the
staircase functions are computed as follows:

e Cased=0Vvd<p-—j:
N*:= H-‘-l-l; N! ::—H—‘; st:=8:=p
e Cased>0Ad>p—j:

Ni:=1; & :=d; N;::H—‘+l; NI::—H-‘; v.=8:=p

Note that an exact representation of a PJD model by means of staircase functions «f, o5 and
! is not always possible if we exclude horizontal shifting of staircase functions. However,
in such a case the above formulae guarantee a correct (i.e., conservative) approximation of
the PJD model. On the other hand, if we use the generalized input model for shifted staircase
functions described in Sect. 4.2.4, then we can exactly represent any PJD model by means
of at most three staircase functions. In this case the parameters of the staircase functions are
computed as follows:

° Qasedzovdsp—j:
N"=x € NT, ¢ =y € NT such that
N!' =v e N*, ¢! = w e N* such that

° (;ased>0/\d>pA—j:

Noe=1; e'=1; §'=d

+1Aged(x,y)=1; §=2

elt

gle <=
=S

A ged(v, w) = 1; 8 = e’—;

@ Springer

Analytic real-time analysis and timed automata: a hybrid methodology 211

N¥ = x e N*, ¢4 = y € N* such that

N!'=v e N*, ¢! = w € N* such that

+1 A ged(x,y) =1, 3;‘:%

gle <=
N~ T [~

Agedw,w)=1; §'=4%

While the approximation of arrival curves with PJD models represents a simple way to
coarsely bound an event stream with few staircase functions, in the presented hybrid analysis
approach the interface between RTC and TA is of course not limited to PJD curves. Any
other algorithm that correctly bounds a general arrival curve with an arbitrary number of
staircase functions (x,-{”‘” can be used as an interface between the two domains.

Now that we have described the interfacing from RTC-based model descriptions to TA,
we will discuss the interfacing from TA-systems back to RTC-conforming performance

models.
4.3 Output interface

This subsection describes the realization of the output interface, that is, the bounding of the
output of a TA subsystem by means of a tuple of arrival curves « = [a”, ']. As described
in Sect. 4.1, the requirement for a correct output interface is R* 2 RS, where RS denotes
the set of event traces producible by the TA subsystem. In other words, the output of the
TA subsystem can be approximated, but the approximation has to be done in a conservative
manner. The main concept used for constructing valid output curves o'} can be considered
just the reverse of event generation: We construct a set of staircase functions o and &' for
the output of the TA subsystem which allows to construct an overall output curve o't*%
by means of minimum and maximum operators, respectively. For achieving this goal, we
couple the system under analysis including the input generator with a set of observing TA.
Checking reachability queries for these TA-systems allows to derive the parameters Ni{”’”
and 61.{”’1} that uniquely characterize o and o/ In the following we will first describe the
TA that are used to verify individual staircase parameters. After that, we will describe the
overall composition strategy for constructing a valid output curve o/*}(A).

For implementing the above procedure we will employ the observers TA depicted in
Fig. 9:

x=0,
b = min(b+1,BMAX)

count++ ' x=0
&l FlomsibAl) =0

ause iolati
count =0 P violation

(A) Maximum burst (B) Maximum distance (C) Upper bound

violation ' i i+1 '
© O

x <= Delta && i<=D drift
x=0, b++ count
(D) Lower bound (E) Tester for upper long-term

rate

Fig. 9 Observer automata for deriving upper and lower output curves

@ Springer

212 K. Lampka et al.

(a) Maximum burst size: An upper bound for the maximum number of events that the sys-
tem can generate simultaneously can be verified by means of the observer depicted in
Fig. 9(A) and the query:' A[] (count<=estimate).

(b) Maximal distance between two successively emitted events: We can verify a bound on
the maximum pause time between two output events by employing the observer shown
in Fig. 9(B) and the query A[] (pause imply x<=estimate).

(c) Arbitrary upper staircase curve o;*: For obtaining an individual staircase function
we employ the observer TA of Fig. 9(C) which witnesses the violation or invulner-
ability of the respective curve. The witnessing TA moves into the location viola-
tion, once the respective curve is violated, i.e. the actual system produces too many
events. Thus one simply needs to query for the reachability of location violation
(A[] (not violation)).In other words, given some staircase parameters N;* and
8, we can determine whether the corresponding staircase function is a valid upper
bound in time-interval domain of the produced event stream.

(d) Arbitrary lower staircase curve alfl : For obtaining an individual lower staircase func-
tion we employ observer TA of Fig. 9(D) and use the same principle as described
above: Given some parameters N/ and 8!, we can determine whether the correspond-
ing staircase function is a valid lower bound in time-interval domain of the produced
event stream.

(e) Long-term rates: In order to construct output curves o that approximate the system
behavior well also for large time intervals, we need to make sure that we follow the
long-term event output rate. By long-term rate of an arrival curve « we mean the inverse
of the limit lim_, o %, which always exists as detailed in [12]. The largest §; and the
smallest 8! of any valid upper and lower output staircase function, respectively, denote
upper and lower bounds on the long-term rate of the output. The principle of efficiently
verifying that a given staircase function represents this upper or lower bound will be
explained by means of . The procedure for o is analogous and is omitted for con-
ciseness. The idea is to verify whether the observed system can produce an event trace
such that for arbitrary long intervals the rate of the trace is not slower than §;. To do so
one may employ the TA depicted in Fig. 9(E). This TA monitors the difference between
the number of event arrivals allowed by rate §;' and the number of events actually pro-
duced by the observed system. Once this difference exceeds a constant D, the TA moves
to the location drift. If there is a trace for which the observer TA stays indefinitely
in the location count, it means that we have found a trace that on the long-term never
gets slower than 8¢, i.e., the rate §! is not overly pessimistic for the system output. Such
a trace can be found as counterexample to the query: count -> drift.?

Hu,l}

Now, we will describe how the TA introduced above can be used to construct valid upper
and lower bound curves o/*-"} (A) of the system output. There are many possibilities and the
following list summarizes only a few of them:

e A binary search on estimate (see (a) and (b)) yields the maximum burst size and the
maximal pause time, respectively.

e These values can be used to determine one degree of freedom (of the available two) of an
upper or lower staircase automaton, see (c) and (d). For example, using the maximal burst
size from (a) and a binary search on the remaining parameter §; in the automaton of (c)
yields an upper staircase function «* that characterizes the maximal burst rate.

n Uppaal A[] stands for ‘always invariantly’.

2In Uppaal —> stands for ‘always eventually leads to’.

@ Springer

Analytic real-time analysis and timed automata: a hybrid methodology 213

e Fixing any of the two free parameters in the automata of (c), (d) and performing a binary
search on the other yields a valid upper and lower staircase bound, respectively.

o Using the automaton of (c) with a large initial burst capacity N;* and performing a binary
search on &} leads to a tight upper bound on the maximal long-term rate.

e One may determine a convex hull of the lower and a concave hull of the upper (unknown)
RTC-curves of the event stream by calculating a sequence of staircase functions. For
example, in case of an upper curve, we can consider a sequence of increasing values N/’
and use the automaton (c) to determine the corresponding maximal values §; that bound
the system output. The sequence ends if the long-term rate is met, see (e).

e All constructed valid upper and lower staircase functions can be combined to a valid
bounding curve by minimum and maximum operations, respectively.

Algorithm 1 defines a simple heuristic procedure for bounding the output of a TA subsystem.
The algorithm makes use of the TA of Fig. 9 and will be employed in the case study and
in the other experiments of Sect. 5.3. The heuristic returns four vectors N, §*, N/, §' that
contain the parameters for the linear staircase curves used to bound the output of the TA
system. The input parameters have the following meaning:

n,m Maximal number of staircase curves o* and alfl , respectively, that shall be
used to bound the system output

Buyin, Byax Delimit the interval in which the maximum burst size is searched

Pyin, Puax Delimit the interval in which the maximum pause between two events is

searched
Smin, duax Delimit the interval in which the parameters 8f and §;' are searched
k Scaling factor > 1 for N/, N,.l

In line 5 the heuristic determines the maximum burst size N in the system output. This
is done by means of the function max_burst which implements a binary search coupled
with model checking of the system. In particular, in line 37 the function max_burst calls
the Uppaal model checker to verify whether in the observer TA of Fig. 9(A), denoted as
OMB, a given event counter value is never exceeded. Similarly, in line 6 the maximum value
of & is determined by the function max_delta such that the system output never violates
the bound specified by the parameter tuple (N}, 81). In this case the model checker is used
to verify whether the observer TA of Fig. 9(C), denoted as OUB, can reach its violation lo-
cation (line 52). At this point the first staircase curve «" is fixed. Next, the heuristic enters
a loop (line 8) in which at most n — 1 other staircase curves are determined for the upper
bound. At each loop iteration the value T} is scaled by a factor k, where T}* represents a
tentative value for N/*. Line 10 is equivalent to line 6, however when looking for the largest
valid §;' the algorithm considers that §; > §;" , and hence uses tighter bounds for the binary
search. In line 11 the heuristic calls the functlon min_N_upper which determines N/ by
verifying whether the found staircase curve with parameters (7}, §!') can be further shifted
down vertically without being violated by the system output. This is possible, as the stair-
case curve (T}, 87) is not necessarily the smallest valid staircase curve with rate ;. The
function min_N_upper is analogous to max_delta, with the only difference that the bi-
nary search is carried out on N/ instead of ;. The corresponding pseudo-code is omitted for
conciseness. After o is fixed, the heuristic calls the function isLongTermRate which
uses the TA of Fig. 9(E) to verify whether ;' corresponds to the long-term rate of the system
output. If this is the case, there is no point in further increasing 7 and the approximation of
the upper bound terminates. The derivation of the lower bound for the system output follows
the same line of thoughts, with analogous functions max_pause, min_delta_pause,

@ Springer

214

K. Lampka et al.

Algorithm 1 Bound output of TA component

1: function DERIVE_BOUNDS
2: input: n, m, k, Buin, Buax, Puin, Puax, Suin, Smax
3: output: N*, 84, N!, §!

4: /I Upper bound

5: Ni‘ < max_burst(Byrn, Buax)

6: 5? <—max_delta(Nf‘,SMIN,SMAX)

7T: T|' < Ny

8: fori <2, ndo

9: T!' < kxT",

10: 8 «<—max_delta(T}", ;" |, Smax)
11: N{ <~min_N_upper(8;', N;"_;, T|")
12: if isLongTermRate(8;') then

13: break

14: end if

15: end for

16: /I Lower bound

17: P <max_pause(Pyin, Prax)

18: [N!, 811 <~min_delta_pause(P, 81w, Spax)

19: T/ <N
20: fori < 2,m do

21: Tl.[<~k x Tilf]

22: 8! <—min_delta(T}, Sy sy, 8!_))
23: Ni’ emax_N_lower(Sf, Nl-l,l» Tl-/)
24 if isLongTermRate(le() then

25: break

26: end if

27: end for

28: remove_redundant_bounds()

29: return N*, 8%, N!,§!

30: end function

31: function MAX_BURST

32: input: estyin, €Stmax

33: output: N

34 est < [(eStmin + eStyax)/2]

35: repeat

36: estyy < est

37: if verifyta (A[] (OMB.count <est))=satisfied then
38: eStypax < est

39: else

40: eStyin < est

41: end if

42: est < [(eStmin + eStmax)/2]
43: until est = estyq

44: return est

45: end function

46: function MAX_DELTA

47: input: N, estyin, eStyax

48: output: §

49: est < [(estmin + eStmax)/2]

50: repeat

51: estyg < est

52: if verifyta (A[] (not OUB.violation))=satisfied then
53: eStyin < est

54: else

55: eStpay < est

56: end if

57: est < [(estyin + eStmax)/2]
58: until est = estyy

59: return esty;,

60: end function

@ Springer

Analytic real-time analysis and timed automata: a hybrid methodology 215

and max_N_1lower that employ the TA of Fig. 9(B), Fig. 9(D), as well as an adapted ver-
sion of the TA in Fig. 9(E). One difference to the upper bound is that we cannot directly
compute N{ given the value of P, the maximum pause between two events. In particular,
there are multiple staircase curves that contain the cartesian point (P, 0). Hence, in line 18
the heuristic calls the function min_delta_pause which looks for a curve «/ that con-
tains (P, 0) and has the smallest value of 811 such that ai’ is a valid lower bound for the
system output. At this point N! is also determined. Finally, in line 28, the heuristic removes
redundant staircase curves, that is, o for which we have

o : ((N; <N)A (5; >68!)) v ((N;' <N)A (57 > 8!)), (11)

and o/ for which we have
sl (V] < V) A 6] <) v (] < MDA G <),)

If after termination the upper (lower) long-term rate of the system is not reached, we can
either use a larger value for the parameter n (m), or try a larger value for the scaling factor
k. In many practical systems, however, the long-term rates of the system output are known a
priori. For instance, it is often the case that a component changes the jitter of an event stream,
but not its period. In such cases, it is much better to adopt an inverse search strategy in the
heuristic. For instance, for the upper bound one would start from the known long-term rate
8% and derive the corresponding value N in order to fix the last staircase curve a,". a{* could
be found as described before using the maximum burst size of the output. Successively, one
would use different values N with N{' < N;' < N} and find the corresponding values §;' to
refine the upper bound.

It remains to show that the heuristic of Algorithm 1 guarantees the correctness of the
output interface.

Theorem 3 Let RS be the set of event traces producible by a TA subsystem S. Let o =
[a™, o] be a tuple of arrival curves derived for the output of S by means of the heuristic of
Algorithm 1. Then, RY D RS,

Sketch of Proof We illustrate the idea for the justification of the upper bound «’. The
reasoning for the lower bound o’ is analogous. Let N* and §" be the parameter vectors
derived by the heuristic for the output of S. Let o with i € {1,...,n} be the staircase
curves defined by those parameters. It is sufficient to show that for each individual stair-
case curve «* we have R D RS, that is, for each output event trace r producible by
S we have r = o". Consider first «r}*. The function max_burst called in line 5 imple-
ments a binary search on the maximum burst in the output of S. By using the observer
TA of Fig. 9(A), the function verifies that a conservative estimate N;' is returned for the
maximum burst in the stream. Similarly, given N{’, by means of the TA of Fig. 9(C) the
function max_delta guarantees that a value 8{ is returned such that o} is never violated
by the output of S. Hence, r = o' Vr € RS. The same argument holds also for all suc-
cessive calls of max_delta, since the scaling factor & is such to assure N > Ny'. Thus,
rEavVreRSViefl,...,n}. |

@ Springer

216 K. Lampka et al.

5 Experimental evaluation

In this section we evaluate the performance of the proposed analysis methodology. We will
first discuss a case study that demonstrates the benefits of the hybrid analysis approach.
Subsequently, we will elaborate on the scalability and accuracy of the presented method.

5.1 Case study

The considered system is shown in Fig. 10. It consists of three event-triggered tasks Tj,
T, and T3 that run on two distinct processors CPU; and CPU,. We assume that each task
is triggered by the events of the corresponding input event stream and that it produces an
event on the corresponding output event stream once its execution is completed. The three
tasks process two event streams S4 and Sp which are periodic streams with large jitters that
lead to bursts. S4 and Sp are specified by the parameter triples py = 7 ms, js = 28 ms,
dy=1ms and pp =7 ms, jgp =23 ms, dg = 6 ms, respectively. CPU, implements a pre-
emptive fixed-priority scheduling policy with T, having higher priority than Ts. The ex-
ecution of each task on its respective CPU takes 10° cycles. CPU, operates at a constant
frequency of 350 MHz. CPU, implements a load-dependent frequency adaptation. In par-
ticular, it operates at 166 MHz if there are not more than 3 events in its input buffer, and at
500 MHz otherwise. Note that, for the sake of simplicity, we assume that the CPU frequency
cannot be changed during the processing of an event. That is, the new CPU frequency is cho-
sen only at the beginning of an event processing (depending on the current buffer fill level)
and this frequency is kept constant until the next event processing starts. The goals of the
performance analysis are to characterize the event output stream of T, to determine the
maximum delays and backlogs that events can experience at the single tasks, and to find the
maximum end-to-end delay for stream Sy.

In this case study we will compare three different approaches: First we analyze the de-
scribed system with the abstraction of RTC only using the MPA Toolbox [16, 23]. Subse-
quently, we carry out the analysis with the presented hybrid analysis approach, where we
model the state-dependent behavior of CPU,; as TA and analyze CPU, with RTC. Finally,
we verify the performance of the system by means of a dedicated TA model according to the
method described in [10], which permits to exploit the simple periodic nature of the input
streams.

For the hybrid analysis approach, we first represent the input stream S, by the combi-
nation of three staircase functions ¥, % and . Using the equations of Sect. 4.2.5 we get
the parameters N := 1, 8% := 1, N¥ :=5, 8% :=7, N' := —4 and §' := 7 for the staircase
functions. The corresponding event curve «g, is shown in Fig. 12(A). Given these para-
meters we automatically create the input generator as described in Sect. 4.2.2. In order to
increase the efficiency of the analysis, we merge the input generating network of TA into a
single automaton and simplify it slightly by considering that N{' = 1, that is, for o we do
actually not need a counter variable b, but just a clock to enforce a minimum distance &

Fig. 10 System architecture
2 M CPU, CPU,

Event |Sa DID—’@ T Event
source i f
o Buffer, ! Buffer, 2 sink A
Sg
Event Ts Event
source B Buffer sink B

@ Springer

Analytic real-time analysis and timed automata: a hybrid methodology 217

x <= ETfast x=0 x=0 x <= ETslow

e++ e++
e++ e-- e

Fig. 11 TA model for CPU;

Table 1 Results of performance -

analysis Max delay [ms] Max buffer [events]

Ty Ty T3 EE» T Ty T3

RTC 29 8 28.6 31.9 5 3 5
Hybrid 25 5.5 17.2 30.5 5 2 3
TA 25 4.6 14.3 27.9 5 2 3

between consecutive events. This input generator is then coupled with the automaton shown
in Fig. 11 which models the load-dependent behavior of CPU;. In this automaton we use
the signals inEvent and outEvent to distinguish between ingoing events coming from the
Event Source A and outgoing events sent to T,. Buffer! of CPU, is modelled by means of
a local counter variable e. The two locations Freql and Freq2 represent the processing of
events at low and high frequency, respectively, with corresponding processing times ETslow
and ETfast. The signal hurry belongs to an urgent channel which is always ready for syn-
chronization. This construct enforces greedy event processing. At this point we apply the
heuristic of Sect. 4.3 to get arrival curves that bound the output of the TA subsystem, where
we choose to represent the upper bound as the minimum of three staircase functions and the
lower bound with just one staircase function. The resulting pair of arrival curves is then used
as input for the RTC analysis of CPU,. For the analysis of the maximum delay on CPU; in
the hybrid setting, we customize the automaton of Fig. 11 following the ideas of [10].

Table 1 summarizes the results of the performance analysis. The worst-case end-to-end
delay of stream S, is denoted as EE,. Note that in general for a sequence of components
the worst-case end-to-end delay can be smaller than the sum of the individual worst-case
delays. While in the abstractions of RTC and TA this phenomenon can be captured for EE,4,
this is not possible in the hybrid approach.

As can be seen in the table, in terms of accuracy the hybrid approach is clearly better than
the pure RTC analysis. In particular, the conservativeness of the results is highly reduced,
with a maximum delay and backlog at T, that are 31% and 33% lower with respect to the
RTC analysis, respectively. For the delay and the backlog at T3, the hybrid approach achieves
values that are 40% lower compared to the pure RTC analysis.

The reason for the better results can be understood by looking at Fig. 12, where we
employed the RTC-related labeling, i.e. the a-curves refer to input streams of events, the
«’-curves to their outgoing counterparts and the 8- and B’-curves to the ingoing and out-
going streams of available resources, respectively. A pure RTC-based analysis of the above
scenario cannot capture the load-dependent behavior of CPU;. Hence, one has to assume
that the processor always operates at 500 MHz in the best case and at 166 MHz in the
worst case. This assumption corresponds to using the service curves BisctU! and BrGeY! (cf.
Fig. 12(A)) for the analysis of CPU;. This yields conservative worst-case processing load

@ Springer

218

K. Lampka et al.

15 : : : : : : : :
u CPU1
RTC
) 10
C
g
@ :
* A J
I CPU1
ArC JI—F
0O ‘ 1b ‘ 26 ‘ 36 4‘0 ‘ 50
At [ms]
(A) Arrival and (conservative) service curve for T
15
u,l
CPU2
1
O hybri
" 10 1 Hybrid
)
c ‘u '
2 Oy rrc
[SSEEELL
H 5 ~ ™ L .
del;grc=8 . o,
o TRTC -
1 Hybri R N
de|2Hybrid =5.5 >_ _)i_ ' \
0 10 20 30 40 50
At [ms]
(B) Delay computation for T,
25
U
2 B'U) Barrc et
2 Hybrid Nt
c 15 del; prc=28.6 ' | .
C|>J 3RTC Bz Hybrid
[N E —
+H+ 10 de|3 Hybrid =17.2
5
0 . [L I ' ' L L
10 20 30 40 50 60 70 80
At [ms]

(C) Delay computation for T3

Fig. 12 Curves associated with the case study

predictions captured by a{syc for To. However, a TA-based analysis of CPU; produces
tighter input bounds captured by o" Hybria Tor the RTC analysis of Ty. This leads to smaller
worst case delay guarantees, as shown in Fig. 12(B) and 12(C).

The last line of Table 1 contains the exact values for the worst-case performance of the

system. These values are determined by means of the dedicated TA model for the entire
system. As can be seen in the table, the results for the hybrid analysis approach are slightly
more conservative. The reason is that the concave (convex) hull determined as bound for the

@ Springer

Analytic real-time analysis and timed automata: a hybrid methodology 219

Table 2 Run-times for performance analysis (All run-times in this paper are referred to a commodity com-
puter with a dual core CPU and 2 GB of RAM)

RTC Hybrid TA

Total run-time <l1s 11 min 1h

output event stream of T; does slightly over- (under)-approximate the real behavior of the
system. The graphs of Fig. 12 do not show arrival and service curves for the exact internal
behavior of the system, as these interfaces are not intrinsic to the dedicated TA model.

The higher degree of accuracy of the hybrid analysis method in comparison to the pure
analytic RTC approach has its price, namely a substantially longer run-time, as can be seen
in Table 2. This becomes worse if one keeps in mind that we already decided to bound the
output curves by a convex (concave) pattern of three staircase functions only. In case of
requiring a higher degree of accuracy one needs to adapt the proposed scheme in order to
detect non-convex and non-concave patterns and its additional staircase functions. But this
once again comes along with clearly higher computation times. Nevertheless, the run-times
achieved for the hybrid approach are still significantly better compared to the verification of
the pure TA model.

Furthermore, we have observed that for the hybrid approach the run-times for deriving
an output curve from a TA component can be considerably reduced if for the representation
of the input stream we omit the lower bound, that is, in the event generator we use only
UTAs and leave out the LTAs. In the considered case study this corresponds to representing
the event stream S, by the upper bound a5, of Fig. 12(A) only, without specifying the
lower bound (xéA. Note that such a relaxation of the stream specification does not harm the
correctness of the analysis. In particular, by omitting the lower bound we specify a superset
of timed input event streams with respect to the case with both, upper and lower bounds.
That is, all behaviors of the original model are contained in the relaxed model and hence
the analysis is safe. However, depending on the behavior of the modeled system component,
considering more input streams then in the original model might lead to more conservative
analysis results. In the system of Fig. 10 this is not the case, meaning that the same analysis
results are achieved when representing the stream S, without LTA compared to the case with
LTA. In terms of verification effort the difference is, however, substantial; by leaving out the
LTA the run-time of the hybrid approach is reduced from 11 min to 18 s, which shows that
the synchronization of UTAs and LTAs in the input generators is one of the major sources
of complexity in the discussed analysis methodology.

5.2 Scalability of the approach

In this subsection we report the results of two different experiments that investigate the
scalability of the proposed analysis method. The first experiment demonstrates the clear
superiority of the presented compositional methodology in terms of scalability of the ver-
ification effort with respect to holistic TA models. The second experiment points out the
main limitation of TA-based performance analysis in general, namely poor scalability with
respect to non-determinism in the specification of event streams.

5.2.1 Modular vs. holistic TA analysis

In this experiment we consider a larger distributed system consisting of several state-based
components. We compare two different TA-based methods for the analysis of the system.

@ Springer

220 K. Lampka et al.

CPU;4 CPU; CPU3 CPU4 CPUs
S
S PO IO @@ D@
Buf, Buf, Bufy Bufy Bufy

Fig. 13 System instance with five components

Table 3 Parameters for the CPU

chain CPU, CPU, CPU3 CPUy4 CPU5
Sflow [MHz] 166 166 166 166 166
Jhigh [MHz] 1000 500 333 1000 500
threshold [events] 1 1 1 1 1

The first approach performs holistic analysis based on a single TA model of the entire sys-
tem. In the second approach the analysis is strictly modular. More precisely, in the second
case each component of the system is analyzed separately by an individual TA model, where
we use the staircase-curve based interfaces introduced in this paper to represent the input
and output event streams of the components. Obviously, characterizing the input/output in-
terfaces of each component explicitly by appropriate staircase curves will comport some ver-
ification overhead. However, we expect better scalability for the modular analysis approach,
as in contrast to the holistic method the analysis of each component is totally decoupled
from other components. In order to highlight how well the two different approaches scale
with the size of systems, we gradually increase the number of components in a predefined
system architecture and compare the results and run-times of the analysis methods.

The considered system template is a chain of n tasks, where each task executes on a
dedicated processor. We assume that the execution of each task takes 10° processor cycles.
The tasks successively process the events of an input event stream S. Figure 13 shows an
instance of the system for n =5.

Each CPU in the chain implements a load-dependent frequency adaptation (see details
below). For the experiments we consider five different system instances, from n =1 to
n =5. That is, the first instance consists of T1/CPU1 only, the second instance of T1/CPU1
and T2/CPU2, etc. In order to allow for event bursts also at the last components of the chain,
we choose different maximum frequencies for the five processors. The parameters for the
processors are summed up in Table 3. The load-dependent frequency adaptation works as
follows: if there are not more than threshold events in the input buffer of a CPU, it will
execute at frequency fiow, otherwise at fiiqon, Where again we exclude frequency changes
during the processing of an event.

The aim of the performance analysis is to determine, for each system instance, the worst-
case backlogs at the single event buffers. Note that since we consider a purely feed-forward
system architecture, when we increase the size of a system instance by adding one compo-
nent at the end of the chain, we need to verify only the backlog of the new component, as
the previous components are not affected by the extension of the system.

For the input event stream S we assume the same upper bound as for S4 in the previous
case study, that is o = o, . In order to speed up the run-times for both the holistic and the
modular analysis approach, we do, however, omit the specification of the lower bound o as
described at the end of Sect. 5.1. The resulting TA model for the input generator consists of
two UTAs with parameters N’ =1, §f =1,and Ny =5, 85 =7.

The results of the performance analysis are reported in Table 4. The first row in the table
contains the exact values for the worst-case backlogs. These values are determined by means

@ Springer

Analytic real-time analysis and timed automata: a hybrid methodology 221

Table 4 Worst-case backlogs as

derived with the different Buf} Bufy Bufj Bufy Bufs
approaches
TA holistic 5 3 4 4
TA modular 5 5 5
RTC 5 6 6 6
10° .
—a— TA Holistic 16h 25mingd4s
—&— TA Holistic (opt
104A (©p) 2h 9min 4s
=== TA Modular
RTC 42min 57s
o 103
()
~§ 102 1 66s 708
€ e A
&
10
1 4 1s
0.3s
01 1 . 0.2s |

components

Fig. 14 Computational effort of the modular and the holistic approaches

of holistic TA models for the different system instances. The second row shows the worst-
case backlogs as predicted by the modular analysis approach based on TA. The reason for the
slightly more conservative results is the same as in the case study of Sect. 5.1: The concave
hulls derived as upper bounds for the event streams transmitted between components are an
over-approximation of the real streams. In particular, for the sake of efficiency, we decided
to represent each input/output stream with a concave pattern of two linear staircase curves
only, which is not sufficient to capture the exact behavior of the system. For comparison
only, in the last row of Table 4 we report the analysis results achieved by a RTC analysis
of the system instances, which is obviously penalized, as the state-based behavior of the
components cannot be captured in the RTC models.

Let us now focus on the computational effort required by the considered analysis ap-
proaches. Figure 14 displays the run-times of the different methods for the analysis of the
five system instances. These run-times are cumulative, meaning that for a system instance
with n components they express the total time needed to determine the worst-case backlog
values for all n buffers. For the holistic TA analysis we consider two different alternatives
for the modeling of the input generator. The first variant uses the staircase-based TA pattern
for event generation described in this paper, which in this case corresponds to the combina-
tion of two UTAs. The second variant uses an optimized input generator for periodic event
streams with jitter/bursts as described in [10]. The chart of Fig. 14 shows a clear trend for the
holistic analysis approaches: The run-times increase exponentially with the size of the con-
sidered system instance (note the logarithmic scale on the y-axis). This holds for both types
of input event generators, the general one based on UTAs and the optimized one designed
for periodic streams with jitter/bursts. When we use the general input generator to trigger

@ Springer

222 K. Lampka et al.

the holistic TA model, we report a run-time of more than two hours to analyze the first three
components. For system instances with more than three components the model checker runs
out of memory after several hours of verification. For the optimized input generator the
run-times are slightly better with a maximum bearable system size of five components.

Also for the modular TA-based analysis approach the chart of Fig. 14 shows a trend: The
run-times increase nearly linearly with the number of considered components. In particular,
for each additional component in the chain the run-time increases by roughly 4-30 s. Given
the concave hull that describes the input stream of a component, this is the time needed
to determine the worst-case backlog of the component and to derive the concave hull that
bounds the output stream. The deviations from an exact linear increase pattern can most
likely be explained by the varying amount of non-determinism present in the specification
of the input streams at the different stages.

The above experiment highlights one of the main advantages of the proposed analysis
framework. By adopting appropriate patterns that permit to abstract the input/output inter-
faces of components, it enables a fully compositional system analysis. In particular, the
state-space explosion is limited to the level of isolated components. Consequently, the pro-
posed analysis technique scales to systems of almost arbitrary size, provided that the TA
abstractions of the single components are reasonably simple and the representation of the
input/output event streams is reasonably coarse.

5.2.2 Non-determinism in event stream specifications

In this second experiment we investigate how sensitive the run-times of the proposed compo-
sitional analysis method are with respect to increasing non-determinism in the specification
of the input event streams. More precisely, for a simple component modeled as TA, we grad-
ually increase the burstiness of the triggering input event stream, and measure the run-time
needed to characterize the output stream of the component.

We consider the component T1/CPU1 from Fig. 10 that implements the load-dependent
frequency adaptation described in Sect. 5.1. As input to the component we consider event
streams upper bounded by a simple linear staircase curve with step-width 6 =7 and seven
different levels of burstiness varying from N* =5 to N* = 150. As for the previous ex-
periment, in order to speed up the verification times, we consider only an upper bound for
the input event stream and omit the lower bound. For all seven different input bounds we
record the run-time needed by the heuristic described in Sect. 4.3 to characterize the output
event stream, where we choose to represent the output bounds as the minimum of two linear
staircase functions. In order to ensure that in all seven cases the same number of verification
steps is needed to characterize the system output, we set k := N* in the heuristic.

The results of the experiment are shown in Fig. 15. As can be seen in the chart, the
total run-time needed to characterize the output stream increases exponentially with the
jitter/burstiness of the input stream. While for the input stream with N* =5 the derivation
of an upper bound for the output event stream is performed in roughly one second, for the
input stream with N* = 125 we record a run-time that is three orders of magnitude larger,
and for the input stream with N* = 150 the model checker runs out of memory.

The described experiment clearly shows a limitation of TA-based performance analysis:
Only event streams with mediocre degree of non-determinism for the timing of event ar-
rivals can be handled with reasonable verification effort. This result is, however, not very
surprising, as in general with increasing non-determinism in a TA model the model checker
has to explore a larger number of system states.

@ Springer

Analytic real-time analysis and timed automata: a hybrid methodology 223

2500

41min 4s

2000

1500
22min 48s

1000+

Run-time [s]

11min 13s
500
. 1s 39s 3min 54s

0 25 50 75 100 125 150

NU

Fig. 15 Total run-time needed to characterize «

Fig. 16 Fixed priority

scheduling of two tasks CRU

Event | S1|_ T S¢‘ | Event
source A > 1 sink A
Event | Sz, S2' | Event
source B 4 Tz sink B

5.3 Approximation errors

In this final part of the experimental evaluation of the proposed analysis methodology
we briefly elaborate on possible approximation errors introduced by bounding the output
streams of system components with a convex/concave hull of staircase curves as described
in Sect. 4.3. In order to characterize these approximation errors in isolation from other ef-
fects, we apply the described TA-based analysis approach to two systems consisting of state-
less components only. We compare the obtained bounds with the results of an RTC analysis,
which for the considered systems ensures tight results.

Consider first the simple system architecture shown in Fig. 16. The depicted system con-
sists of a CPU that executes two tasks T; and T,. The two tasks are triggered by two strictly
periodic streams S; and S, with periods p; = 60 ms and p, =5 ms, respectively. The CPU
schedules the two tasks according to a preemptive fixed priority scheduling policy, where
T has higher priority than T,. We assume that the CPU executes at a constant frequency of
1 GHz and that the execution of T, and T, takes 60 - 10® and 5 - 10° cycles, respectively. The
goal of the analysis is to characterize the output event stream S),. For the TA-based analysis
of the system we employ a holistic TA model for the preemptive fixed priority scheduling
of two tasks, as described in [18].

Figure 17 shows the result for both the RTC analysis and the TA heuristic of Sect. 4.3.
The curves [a/lz.RTC, o5 rel (depicted with a solid line in the plot) represent the exact lower
and upper arrival curves for the stream S, computed by the RTC analysis. The dashed lines in
the plot represent the bounds for the output event stream derived by the heuristic, where we
decided to represent the upper bound &'y, as the minimum of two linear staircase functions
and the lower bound a4, by one single linear staircase function. As can be seen in the
plot, the heuristic clearly over-approximates the real upper bound for S). The reason for

@ Springer

224 K. Lampka et al.

30 [

20 -

events

0 50 160 150
At [ms]

Fig. 17 Bounds for S/2 determined by RTC (exact) and the TA-heuristic

this approximation error (represented by grey shaded areas in the figure) is that the heuristic
constructs only a concave hull of linear staircase functions to upper bound the output stream,
whereas the real upper bound of the stream does not have a strictly concave shape. Extending
the heuristic of Sect. 4.3 such that it handles such mixed convex/concave output patterns
without approximation errors is not trivial and would obviously also considerably slow down
the analysis process.

As second experiment for the illustration of approximation errors we consider a simpli-
fied version of the component T1/CPU1 from Fig. 10. Assume that instead of the described
load-dependent frequency adaptation, CPU1 can arbitrarily change its execution frequency
between 166 MHz and 500 MHz. Such a stateless best-case/worst-case component descrip-
tion is ideally suited for an exact RTC analysis of the component. As input for the compo-
nent we consider the stream S, as given in Sect. 5.1, that is, a periodic event stream with
jitter specified by the parameter triple p =7 ms, j = 28 ms, d = 1 ms. The goal of the
analysis is again to characterize the output event stream of the component. Figure 18 shows
the results of both approaches, the RTC analysis and the heuristic of Sect. 4.3. The curves
[O‘/{zTc» o'rrc] represent the exact lower and upper arrival curves for the component output
computed by RTC. These curves correspond to a periodic event stream with jitter specified
by the parameter triple p’ =7 ms, j' = 32 ms, d’ = 2 ms. For the heuristic approach, we
decide to represent the upper bound o'}, as the minimum of two linear staircase functions
and the lower bound o/lTA by one linear staircase function. The plot shows that the heuristic
slightly over-approximates the real upper bound, although the maximum component output
follows a concave pattern. Similarly, the lower bound is slightly under-approximated. The
reason for this kind of approximation error is that the heuristic described in Sect. 4.3 does
not consider horizontal translations of linear staircase functions. In particular, looking at
Fig. 18 we see that the offset n“, after which the real upper output bound of the component
follows the long-term rate 85, is not a multiple of the long-term rate itself. That is, no linear
staircase function o’ without horizontal offset will precisely capture the long-term behavior
of the component. The reason for the under-approximation of the lower bound is analogous.

Note that in the first part of Sect. 4.2.4 we have described how this kind of approximation
error can be avoided when converting known input event streams described with PJD para-
meters to TA input generators. The case of bounding the output stream of a TA component

@ Springer

Analytic real-time analysis and timed automata: a hybrid methodology 225

15 ; ; = ‘ ‘ —
I_l lu I._ L
=1 OLTA -

l': AN ; U
- 8=7
10f ! T 1

ﬂ 1’1224 |" o (x‘[lijTC

5 7

> ==

()] [

5f

0
0 10 20 30

At [ms]

Fig. 18 Output bounds determined by RTC (exact) and the TA-heuristic

is, however, more difficult, as the stream that needs to be bounded is obviously not known a
priori. In particular, permitting arbitrary horizontal shifts for the single linear staircase func-
tions would mean adding another degree of freedom for the heuristic and hence considerably
slow down the analysis process.

6 Conclusion

In this paper we developed a hybrid analysis methodology that couples analytic (stateless)
RTC- and state-based TA analysis. The presented technique is based on the observation that
stream abstractions in the form of arrival curves can be obtained by composing individual
linear staircase functions by means of minimum and maximum operations. The method-
ology relies on two different interfaces that were extensively discussed. The input interface
converts an arrival curve to a network of TA that triggers a TA component model. The output
interface performs the inverse transformation by constructing a tuple of arrival curves for the
output of a TA subsystem. In the realization of the input interface each staircase function is
guarded by its own TA, where the building of minimum and maximum is implemented by
synchronizing groups of TA. In the output interface, the parameters of staircase functions
are found by employing observer TA in a binary search based heuristic. For both interfaces
correctness is proven, which assures hard performance guarantees.

The proposed methodology limits state space explosion as intrinsic to formal verification
to the level of isolated (sub)-components, since loosely coupled TA-based component de-
scriptions can be verified in isolation. For maintaining scalability, we suggest to apply the
state-based analysis only to those components, for which an RTC analysis provides overly
pessimistic results. As demonstrated by the case study, such cases are found when dealing
with components showing state-dependent behavior. Overall, such a strategy will thereby
avoid overly conservative performance predictions, but still maintain the scalability of the
approach.

As arrival curves represent a more general abstraction for event streams than the widely
used PJD (periodic with jitter) event models, the proposed methodology can also directly be
applied to couple TA-based timing verification with other analysis tools relying on classical
real-time analysis, such as MAST [9] or Symta/S [11].

@ Springer

226 K. Lampka et al.

Lastly, we name some issues that this work leaves open. The heuristic devised for the
output interface does not explore shifted staircase curves or non convex/concave patterns.
In more general terms, the present work does not assure tightness for the output interface.
It does also not consider cycles in the event flow or dependencies among components that
require fixed-point iterations in the analysis process. These matters are left for future work.

Acknowledgements This work is funded by the European Union project COMBEST under grant number
215543 and by the Swiss National Science Foundation under grant number 200020-116594.

References

1. Altisen K, Moy M (2010) Arrival curves for real-time calculus: the causality problem and its solutions.
In: Esparza J, Majumdar R. (eds) TACAS, pp 358-372
2. Alur R, Dill DL (1990) Automata for modeling real-time systems. In: Paterson M (ed) Proceedings of
the 17th international colloquium on automata, languages and programming (ICALP’90). Lecture notes
in computer science, vol 443. Springer, Berlin, pp 322-335
3. Behrmann G, David A, Larsen KG (2004) A tutorial on UPPAAL. In: Bernardo M, Corradini F (eds)
Formal methods for the design of real-time systems: 4th international school on formal methods for the
design of computer, communication, and software systems, SFM-RT 2004. Lecture notes in computer
science, vol 3185. Springer, Berlin, pp 200-236
4. BengtssonJ, Yi W (2004) Timed automata: semantics, algorithms and tools. In: Lectures on concurrency
and Petri nets. Lecture notes in computer science, vol 3098. Springer, Berlin, pp 87-124
5. Boudec JYL, Thiran P (2001) Network calculus: a theory of deterministic queuing systems for the Inter-
net. Lecture notes in computer science, vol 2050. Springer, Berlin
6. Chakraborty S, Kiinzli S, Thiele L (2003) A general framework for analyzing system properties in
platform-based embedded system designs. Design, automation and test in Europe conference and ex-
hibition, vol 1
7. Chakraborty S, Phan LTX, Thiagarajan PS (2005) Event count automata: a state-based model for
stream processing systems. In: Proceedings of the 26th IEEE international real-time systems sympo-
sium (RTSS’05), pp 87-98
8. Dierks H, Metzner A, Stierand I (2009) Efficient model-checking for real-time task networks. In: 2nd
International conference on embedded software and systems. IEEE Computer Society, Los Alamitos, pp
11-18
9. Gonzélez Harbour M, Gutiérrez Garcia JJ, Palencia Gutiérrez JC, Drake Moyano JM (2001) Mast: Mod-
eling and analysis suite for real time applications. In: Proceedings of 13th Euromicro conference on
real-time systems. IEEE Computer Society, Los Alamitos, pp 125-134
10. Hendriks M, Verhoef M (2006) Timed automata based analysis of embedded system architectures. In:
Proceedings of the 20th international parallel and distributed processing symposium (IPDPS 2006). IEEE
Press, New York
11. Henia R, Hamann A, Jersak M, Racu R, Richter K, Ernst R (2005) System level performance analysis-the
SymTA/S approach. IEEE Proc Comput Digital Tech 152(2):148-166
12. Jonsson B, Perathoner S, Thiele L, Yi W (2008) Cyclic dependencies in modular performance analysis.
In: EMSOFT ’08: Proceedings of the 8th ACM international conference on embedded software. ACM,
New York, pp 179-188. doi:10.1145/1450058.1450083
13. Krcal P, Mokrushin L, Yi W (2007) A tool for compositional analysis of timed systems by abstraction
(extended abstract). In: Proceedings of 19th Nordic workshop on programming theory (NWPT07)
14. Kiinzli S, Hamann A, Ernst R, Thiele L (2007) Combined approach to system level performance analysis
of embedded systems. In: Proceedings of the 5th international conference on hardware/software codesign
and system synthesis 2007. ACM, New York, pp 63-68
15. Lampka K, Perathoner S, Thiele L (2009) Analytic real-time analysis and timed automata: a hybrid
method for analyzing embedded real-time systems. In: EMSOFT ’09: Proceedings of the seventh
ACM international conference on embedded software. ACM, New York, pp 107-116. doi:10.1145/
1629335.1629351
16. Modular Performance Analysis Framework and Matlab Toolbox. www.mpa.ethz.ch
17. Norstrom C, Wall A, Yi W (1999) Timed automata as task models for event-driven systems. In: Pro-
ceedings of the 6th international conference on real-time computing systems and applications. IEEE
Computer Society, Los Alamitos, p 182

@ Springer

http://dx.doi.org/10.1145/1450058.1450083
http://dx.doi.org/10.1145/1629335.1629351
http://dx.doi.org/10.1145/1629335.1629351
http://www.mpa.ethz.ch

Analytic real-time analysis and timed automata: a hybrid methodology 227

18.

19.

20.

21.

22.
23.

Perathoner S, Wandeler E, Thiele L, Hamann A, Schliecker S, Henia R, Racu R, Ernst R, Harbour MG
(2007) Influence of different system abstractions on the performance analysis of distributed real-time
systems. In: EMSOFT ’07: Proceedings of the 7th ACM & IEEE international conference on embedded
software. ACM, New York, pp 193-202. doi:10.1145/1289927.1289959

Phan L, Chakraborty S, Thiagarajan P (2008) A multi-mode real-time calculus. In: Proceedings of the
28th IEEE real-time systems symposium (RTSS 2008). IEEE Computer Society, Los Alamitos, pp 59—
69

Phan LTX, Chakraborty S, Thiagarajan PS, Thiele L (2007) Composing functional and state-based per-
formance models for analyzing heterogeneous real-time systems. In: Proceedings of the 28th IEEE real-
time systems symposium (RTSS 2007). IEEE Computer Society, Los Alamitos, pp 343-352

Thiele L, Chakraborty S, Naedele M (2000) Real-time calculus for scheduling hard real-time systems.
In: Proceedings of international symposium on circuits and systems, vol 4, pp 101-104

The Uppaal timed model checker. www.uppaal.com

Wandeler E, Thiele L, Verhoef M, Lieverse P (2006) System architecture evaluation using modular
performance analysis: a case study. Int J Soft Tools Technol Transf 8(6):649-667

@ Springer

http://dx.doi.org/10.1145/1289927.1289959
http://www.uppaal.com

	Analytic real-time analysis and timed automata: a hybrid methodology for the performance analysis of embedded real-time systems
	Abstract
	Introduction
	Related work
	Background theory
	Terminology
	Real-time calculus
	Timed automata

	The approach
	Requirements
	Input interface
	Linear input pattern
	(A) Implementation
	(B) Correctness and tightness of interface

	Convex and concave input pattern
	(A) Basic idea of the approach
	(B) Implementation

	Tightness and correctness of the interface
	(A) Tightness (Ralpha RTA)
	(B) Correctness (Ralpha RTA)
	(C) Identity (Ralpha = RTA)

	Extended input generators
	Shifted staircase curves
	Non-convex/concave patterns

	Complexity issues related to input modelling

	Output interface

	Experimental evaluation
	Case study
	Scalability of the approach
	Modular vs. holistic TA analysis
	Non-determinism in event stream specifications

	Approximation errors

	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

