
J Multimodal User Interfaces (2010) 3: 237–247
DOI 10.1007/s12193-010-0043-3

O R I G I NA L PA P E R

Description languages for multimodal interaction: a set
of guidelines and its illustration with SMUIML

Bruno Dumas · Denis Lalanne · Rolf Ingold

Received: 24 July 2009 / Accepted: 5 January 2010 / Published online: 11 February 2010
© OpenInterface Association 2010

Abstract This article introduces the problem of modeling
multimodal interaction, in the form of markup languages.
After an analysis of the current state of the art in mul-
timodal interaction description languages, nine guidelines
for languages dedicated at multimodal interaction descrip-
tion are introduced, as well as four different roles that
such language should target: communication, configura-
tion, teaching and modeling. The article further presents the
SMUIML language, our proposed solution to improve the
time synchronicity aspect while still fulfilling other guide-
lines. SMUIML is finally mapped to these guidelines as a
way to evaluate their spectrum and to sketch future works.

Keywords Markup languages · Multimodal interfaces ·
Multimodal modelling · Human-machine interaction

1 Introduction

Multimodal interfaces have drawn much interest since the
last decades. The promise of a more natural interaction by
using and combining different modalities such as speech,
gestures, emotions or gaze direction, along with the perspec-
tive of giving better expressive power to humans when in-
teracting with computers and electronic devices, helped the
creation of multiple multimodal systems and applications.

B. Dumas (�) · D. Lalanne · R. Ingold
Computer Science Department, University of Fribourg, Boulevard
de Pérolles 90, 1700 Fribourg, Switzerland
e-mail: bruno.dumas@unifr.ch

D. Lalanne
e-mail: denis.lalanne@unifr.ch

R. Ingold
e-mail: rolf.ingold@unifr.ch

This decade saw also the development and enhancement
of a number of natural communication means recognizers,
such as speech recognizers or posture recognizers. Mean-
while, studies on the use of multimodal systems, as well as
new algorithms for the fusion and fission of modalities were
achieved.

But multimodal interfaces still remain difficult to create.
On one hand, the use of state-of-the-art technologies such as
speech or gesture recognition implies advanced knowledge
in those state-of-the-art technologies from people wishing to
develop multimodal interfaces; on the other hand, research
fields such as modalities fusion, fission and synchronization
remain only partly explored [10]. To resolve this, tools and
frameworks targeted at easing the creation of multimodal
interfaces have been developed, and in the same process
opened another broad question: how to best represent and
model multimodal human-machine interaction? This article
explores one of the possible ways to address this problem:
description languages, and some of their characteristics. In
particular, this article tries to answer two questions: what
would be the uses of description languages for multimodal
interaction? And how should such languages be able to de-
scribe best multimodal interaction and its distinctive fea-
tures? Answering this last question leads us to introduce a
set of nine guidelines, covering different user- and system-
centered aspects that should be handled by such description
languages. The article finally presents SMUIML (Synchro-
nized Multimodal User Interaction Modeling Language), a
description language for multimodal human-machine inter-
action, which served as a testbed for these guidelines.

Section 2 of this article presents multimodal interac-
tion description languages and multimodal interfaces toolk-
its related to this study. The third section presents dif-
ferent approaches to the problem of formal description
and modeling of multimodal interfaces. Guidelines for lan-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159144492?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:bruno.dumas@unifr.ch
mailto:denis.lalanne@unifr.ch
mailto:rolf.ingold@unifr.ch

238 J Multimodal User Interfaces (2010) 3: 237–247

Table 1 State of the art
languages and their features Layers Events Time Plasticity Web-oriented Error handling Data modeling

EMMA X

XISL X X X

ICO X X X X

UsiXML X X X X

TeresaXML X X

MIML X X

NiMMiT X X X

guages targeted at describing multimodal interaction are de-
scribed in the fourth section. The fifth section introduces
the SMUIML language, a language for description and
modeling of multimodal human-machine interaction derived
from those guidelines. Evaluation and positioning of the
SMUIML languages are presented in the sixth section. The
seventh and final section concludes this article.

2 Description languages for multimodal interaction

Interesting attempts at creating a full-fledged language for
description of user-machine multimodal interaction have
come up in the past few years. A number of the approaches
presented below revolve around the concept of a “multi-
modal web”, enforced by the World Wide Web Consor-
tium (W3C) Multimodal Interaction Activity and its pro-
posed multimodal architecture. This theoretical framework
describes major components involved in multimodal inter-
action, as well as potential or existent markup languages
used to relate those different components. Many elements
described in this framework are of practical interest for
multimodal HCI practitioners, such as the W3C EMMA
markup language, or modality-focused languages such as
VoiceXML or InkML. The works of the W3C inspired Kat-
surada et al. [15] for their work on the XISL XML lan-
guage. XISL focuses on synchronization of multimodal in-
put and output, as well as dialog flow and transition. An-
other approach of the problem is the one of Araki et al. [1],
who propose MIML (Multimodal Interaction Markup Lan-
guage). One of the key characteristics of this language is its
three-layered description of interaction, focusing on interac-
tion, tasks and platform. Ladry et al. [16] proposed the ICO
notation for the description of multimodal interaction. This
approach is closely related to a visual tool allowing edition
and simulation of interactive systems, while being able to
monitor at a low level a systems operation. Stanciulescu et
al. [22] followed a transformational approach for develop-
ing multimodal web user interfaces based on UsiXML, also
in the steps of the W3C. Four steps are achieved to go from
a generic model to the final user interface. Thus, one of the
main features of their work is a strong independence to the

actual input and output available channels. This transforma-
tional approach is also used in Teresa XML (see Paterno et
al. [18]). Finally, at a higher level of modeling, NiMMiT
(see De Boeck et al. [7]) is a graphical notation associated
to a language used for expressing and evaluating multimodal
user interaction.

All these approaches seem, at first glance, rather different
one from the other. Some features are however common be-
tween most of them. Table 1 lists a number of features that
could be extracted between the different approaches, as well
as some more specific features, related to current research
in multimodal interaction. EMMA is included in the table,
even if this language targets primarily data transfer between
entities of a given multimodal system; in this regard, EMMA
perfectly addresses input and output data source representa-
tion; in fact, this is the only language to fully address this.
XISL is a language targeted at web interaction, and offer-
ing a SMIL-like language for multimodal interaction; thus,
it provides control over time synchronicity (e.g. with parallel
or sequential playing), at least on the output side. The ICO
notation targets safety-critical applications, with simulation
capabilities; it has events description capabilities but lacks
layers of abstraction. On the contrary, UsiXML and Tere-
saXML were based on specific layers of abstraction, namely
AUI (abstract user interface), CUI (concrete user interface)
and FUI (final user interface), with XSLT transformations
managing crossing from one layer to another. UsiXML also
takes into account plasticity. Furthermore, TeresaXML of-
fered extensive events management capabilities. MIML, tar-
geted at multimodal web interaction, also offers layers of
abstraction: it is composed of three different languages,
managing user/machine interaction, events description, and
input/output representation, respectively. Finally, NiMMiT
also takes into account separate layers and events manage-
ment capabilities.

A detailed analysis of Table 1 reveals that description lan-
guages for multimodal user-machine interaction either are
complete on a input/output data stream management point
of view, but lack abstraction and expression power, or fo-
cus on higher levels of user-machine interaction description,
thus losing control over data or even events. For example,
ICO, which addresses multimodal interaction at a low-level,

J Multimodal User Interfaces (2010) 3: 237–247 239

is thus forced to have precise data modeling and error han-
dling; on the contrary, a language such as UsiXML offers
higher-level abstraction, with fewer control over the lower
layers. It is also to be noted that particular features are in-
completely addressed by state of the art languages. Con-
trol over time synchronicity has been addressed on the out-
put side of multimodal interaction, but those languages still
lack capability to manage complementary, assigned, redun-
dant or equivalent (see CARE properties in Coutaz et al.
[6]) input events. As for error handling, most languages lack
ways to express graceful recovery from recognition errors,
data fusion mistakes, or event system errors. Most languages
also lack context and user model modeling, and furthermore
plasticity (user and context adaptability) control, with the
exception of UsiXML.

Most of the languages described above focus on the
“multimodal web”, and thus assume interpretation by
browser plugins, or even future versions of the browsers
themselves. Description languages for multimodal interac-
tion can however be used to be interpreted by dedicated tools
for the creation of standalone multimodal applications. On
the subject of tools allowing creation of multimodal inter-
faces, the use of specific languages for configuration has
been frequent, but sparsely studied. Cohen et al. [5] worked
on Quickset, a speech/pen multimodal interface, based on
Open Agent Architecture, which served as a test bed for dif-
ferent fusion methods. Bourguet [3] endeavored in the cre-
ation of a multimodal toolkit in which multimodal scenarios
could be modeled using finite state machines. This multi-
modal toolkit is composed of two components, a graphical
user interface named IMBuilder, which interfaces the multi-
modal framework itself, named MEngine. Multimodal inter-
action models created with IMBuilder are saved as a XML
file. Flippo et al. [13] also worked on the design of a mul-
timodal framework, geared toward direct integration into a
multimodal application. The general framework architec-
ture is based on agents, while the fusion technique itself
uses frames. Configuration of the fusion is done via a XML
file, specifying for each frame a number of slots to be filled
and direct link to actual resolvers implementations. Lastly,
Bouchet et al. [2] proposed a component-based approach
called ICARE thoroughly based on the CARE (see Coutaz
et al. [6]) design space. These components cover elementary
tasks, modality-dependent tasks or generic tasks like fusion.
The components-based approach of ICARE has been used
to create a comprehensive open-source toolkit called Open-
Interface [19]. Components are configured via CIDL XML
files.

3 Description languages spectrum

An interesting question to ponder is: who is the user of de-
scription languages? The answer is not as obvious as it could

appear. People who would want to design multimodal inter-
action with such languages could be either engineers cre-
ating multimodal systems based on programming tools, de-
signers using higher-level tools for creating multimodal in-
terfaces without having to delve too much into code, or even
advanced users wishing to customize interaction. These dif-
ferent users will not have the same approach to multimodal
interaction description languages. Through various work-
shops [20], informal discussions with colleagues and stu-
dents, and a study of the current state-of-the-art, we envi-
sioned three types of approaches for a description language:
a highly formal language approach, perfectly fit for config-
uring a tool, a loosely formal language approach, good at
communicating the details of an application, and a “middle”
approach, focused on modeling. Along those three purposes,
a fourth purpose for formal languages can be added: learn-
ing tool. In summary, formal languages can be used for the
following purposes:

– configuration
– communication
– modeling
– learning

Hence, formal languages can help configure a multi-
modal system, thus working as scripting or programming
languages; they can be used as communication tools to help
exchange and structure ideas about a multimodal systems;
formal languages with a thoroughly thought structure can
encourage careful modeling of a multimodal application; fi-
nally, as potential communication and modeling tools, they
can be interesting learning means to tackle multimodal inter-
action. Thus, every description language is expected to find
a balanced place on an axis running from highly formal to
loosely formal, from configuration to communication (see
Fig. 1).

Formal languages for description of multimodal interac-
tion can be approached from two different directions: ei-
ther from expressiveness, or from usability (see De Boeck
et al. [7]). Expressiveness covers technical features such as
extensibility, completeness, reusability, or temporal aspects
consideration; usability covers more human features such as
programmability or readability. Any formal language will
have to find its place between those two general require-
ments. Some languages will for example tend more toward
expressiveness, letting all edition be done through a dedi-
cated GUI (visual programming tool); others will focus on
usability. In case of a visual programming tool, the usabil-
ity of the description language is not that important, since

Fig. 1 Different purposes for a multimodal user interaction descrip-
tion language

240 J Multimodal User Interfaces (2010) 3: 237–247

Fig. 2 Different levels for a
multimodal user interaction
description language

it is hidden to users and to be read by the toolkit using the
description. An interesting approach is to seek balance be-
tween usability and expressiveness: that is, a language able
to configure a multimodal system, with high level modeling,
and readable enough to be used as a learning tool, or even a
communication tool. To attain those objectives, such a lan-
guage will need to have a number of clearly separated and
specifically dedicated parts, closely tied together (see Wind-
grave [23]). We introduce three different levels that will be
used in the rest of this paper: a human-machine dialog-level,
an input/output level, and a middle events-level in order
to create a link between the human-centered part and the
machine-centered part (see Fig. 2).

4 Guidelines for languages for multimodal toolkits

Sire and Chatty [21] describe what one should want from a
multimodal user interfaces programming language. The re-
quirements they express in their article include features such
as modality agnosticity, extensible event definition mech-
anisms or reusable components. From their proposal, the
analysis of the state of the art languages referenced in Sect. 2
and Table 1, and open changes described in key biblio-
graphic references [11, 17], the following guidelines for a
multimodal description language have been derived. These
guidelines are to be seen as a “checklist” of potential fea-
tures a given multimodal interaction description language
can provide. By no means should every language follow all
of them. Guidelines should be used as design tools, or as
language analysis criterias.

G1 Abstraction levels: different abstraction levels are ad-
vised, as multimodal interaction description can be
huge: for example, a description language should sep-
arate description of the events and description of the
human-machine dialog. Also, reusable parts or struc-
tures can greatly help programmability.

G2 Modeling the human-machine dialog: there should be
some way to model the human-machine dialog, be it
with a state machine, with an imperative approach with
control structures, a declarative approach, or another ap-
proach.

G3 Adaptability to context and user (input and output): as
multimodal interfaces often offer redundancy between
modalities, adaptability to context and user (also called
plasticity) should be taken into account by a language

dedicated at describing multimodal interaction. It is
worth noting that adaptability can be considered from
an input and an output point of view. On the input side,
adaptability would focus on using user information and
context to help recognition and fusion processes; on the
output side, message selection, modalities and output
coordination would be achieved according to user and
context.

G4 Control over fusion mechanism: algorithms used to fuse
multimodal input data can be quite complex and de-
liver different results according to the algorithm or its
settings. Thus, description languages should take into
account fusion parameters and ways to control them,
for example by allowing choice between different algo-
rithms, or by allowing management of fusion parame-
ters.

G5 Control over time synchronicity: actual human-machine
dialog description should give control over time syn-
chronicity: when multiple events can all lead to a
given action, how should the system fuse data if those
events are activated at the same time? Thus, the fusion
process would greatly benefit from control over time
synchronicity, for example by taking into account the
CARE properties [6].

G6 Error handling: error handling should be taken into
account early on. Multimodal systems feature a large
number of potential error sources, from the recogniz-
ers to the integration to the answer selection. Hence,
a language for description of multimodal interaction
should provide some way to handle errors and recogni-
tion mistakes, for example by allowing default choices
to be specified, or encouraging the design of guided di-
alogues.

G7 Events management: a mechanism for events descrip-
tion and management should be taken into considera-
tion, as events seem a natural way for people to think
about how their multimodal application should work
(see Sect. 6 for more details).

G8 Input and output sources representation: some way to
represent the actual input and output sources can also
be interesting, as the creator of the multimodal user in-
terface wants to have control over which recognizer is
used, and possibly be able to tune some parameters.

G* Find the right balance between usability and expressive-
ness: this follows from the discussion in Sect. 2, and
is maybe the single most important guideline: any de-
scription language should find its place (and role) be-
tween usability and expressiveness, between the human
and the machine. This guideline is at a higher level and
thus is not integrated in the following tables.

Table 2 presents the eight guidelines above and matches
them with the four different purposes of a description lan-
guage identified in Sect. 3. Guideline were ranked from the

J Multimodal User Interfaces (2010) 3: 237–247 241

Fig. 3 The link between the
HephaisTK toolkit and the
SMUIML document

Table 2 Eight guidelines for four purposes

G1 G2 G3 G4 G5 G6 G7 G8

Communication X X X X X

Learning X X X X X

Modeling X X X X X X

Configuration X X X X X X X

most user-focused (abstraction levels) to the most system-
focused (input/output data representation), hence the diago-
nal shape adopted by the crosses in the table. The next sec-
tion presents SMUIML, a language for description of mul-
timodal interaction, which will help illustrate most of the
presented guidelines.

5 SMUIML

SMUIML stands for Synchronized Multimodal User Inter-
action Modeling Language. As its name implies, the lan-
guage seeks to offer developers a language for describing
multimodal interaction, expressing in an easy-to-read and
expressive way the modalities used, the recognizers attached
to a given modality, the user-machine dialog modeling, the
various events associated to this dialog, and the way those
different events can be temporally synchronized.

Description languages can be used as configuration
scripts for tools allowing creation of multimodal interfaces.
The SMUIML language has been primarily designed with
this goal in mind. Thus, the SMUIML language is able to
configure a toolkit for creation of multimodal interfaces
(Fig. 3). This toolkit, named HephaisTK, is outlined in
Sect. 5.6. It is however to be noted that the subject of this
article lies in description languages and guidelines for the
creation of such languages. A deeper discussion on multi-
modal toolkits architectures and the HephaisTK toolkit can
be found in Dumas et al. [9]. Besides the goal of configura-
tion scripting, SMUIML follows the goal of multimodal in-
teraction modeling as it tries to guide the user by giving them

Fig. 4 The three levels of SMUIML

a pattern for the creation of their applications; SMUIML is
also used as a tool in a course on multimodal interaction, so,
obviously, has also the goal of a learning tool.

Developers can find a complete XML Schema reference
description of SMUIML available in [8].

The SMUIML language itself is described in the follow-
ing subsections. Section 5.1 gives an overview of the lan-
guage structure, followed by Sects. 5.2 to 5.5, which give a
detailed view of the three different levels described by the
language. Finally, Sect. 5.6 shows how SMUIML is used in
the context of the HephaisTK toolkit.

5.1 SMUIML structure

The way a SMUIML file is split allows a clear separation be-
tween three levels necessary to the integration process. As
shows Fig. 4, <recognizers> are at the lower, input/output
level, < triggers > and <actions> form a middle level, de-
voted to events management, and the upper level contains
the <dialog> description. This abstraction in three different
levels allows components definition and reusability. In order
to enhance reusability, the upper dialog level allows defini-
tion of clauses that can be later used and extended.

242 J Multimodal User Interfaces (2010) 3: 237–247

<? xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" ?>
<smuiml>

< i n t e g r a t i o n _ d e s c r i p t i o n c l i e n t =" c l i e n t _ a p p ">
< r e c o g n i z e r s >
< !−− . . . −−>
< / r e c o g n i z e r s >
< t r i g g e r s >
< !−− . . . −−>
< / t r i g g e r s >
< a c t i o n s >
< !−− . . . −−>
< / a c t i o n s >
< d i a l o g >
< !−− . . . −−>
< / d i a l o g >

< / i n t e g r a t i o n _ d e s c r i p t i o n >
<smuiml>

Fig. 5 General SMUIML layout

A typical SMUIML document is divided in a number of
sections (see Fig. 5). First, the overall integration descrip-
tion is proper to a given client application. Whenever a new
client application asks the HephaisTK toolkit for a handle, it
will have to give some identifier name (in the case of Fig. 5,
“client_app”). This identifier is used in the SMUIML file
to identify which integration description is to be used for
the current application. Hence, multiple applications can be
described in a same script, for example in a case where mul-
tiple small applications could access concurrently a number
of available input modalities.

For a given client application, four main sections form the
description of the multimodal interaction scenario. The first
part, <recognizers>, indicates which particular recognizer
will be tied to which modality. It also allows definition, per
recognizer, of a number of variables that will be of use to the
client application. The second section, < triggers >, lists the
different events that will be of interest for the client applica-
tion. The focus of this section is to model as generic triggers
all events coming from the different recognizers. <actions>
form the third section, and have the same goal of giving a
generic model to the output side of the toolkit. In particular,
those <actions> will serve as a description of the toolkit-to-
client application messages, as well as indicate the potential
variables that would have to be transferred to the client ap-
plication. < triggers > and <actions> form a set of building
blocks, using the results of the various recognizers defined
in the first section, and further called in the definition of the
<dialog>. This dialog is described by means of a finite state
machine. States are described by means of <context> ele-
ments, and to a given <context> are attached a number of
< transition > elements.

A complete SMUIML example is given in Fig. 6. This
example is taken from a multimodal drawing application re-
alized with help of the Reactivision [14] computer vision
framework and Sphinx 4 speech recognition system. The

<?xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" ?>
<smuiml>

< i n t e g r a t i o n _ d e s c r i p t i o n
c l i e n t =" x p a i n t _ c l i e n t ">

< !−− d e c l a r a t i o n o f r e c o g n i z e r s −−>
< r e c o g n i z e r s >

< r e c o g n i z e r
name=" s p h i n x 4 " m o d a l i t y =" s p e e c h " / >

< r e c o g n i z e r name=" r e a c t i v i s i o n "
m o d a l i t y =" r e a c t i v i s i o n ">

< v a r i a b l e name=" posx "
v a l u e =" x " t y p e =" i n t " / >

< v a r i a b l e name=" posy "
v a l u e =" y " t y p e =" i n t " / >

< / r e c o g n i z e r >
< / r e c o g n i z e r s >

< !−− d e c l a r a t i o n o f i n p u t t r i g g e r s −−>
< t r i g g e r s >

< t r i g g e r name=" r e t u r n ">
< s o u r c e m o d a l i t y =" s pe e c h "

v a l u e =" r e t u r n " / >
< / t r i g g e r >
< t r i g g e r name=" o p e r a t i o n ">

< s o u r c e m o d a l i t y =" s pe e c h "
v a l u e =" r o t a t e shape | move shape " / >

< / t r i g g e r >
< t r i g g e r name=" t o o l s _ o n e _ h a n d ">

< s o u r c e m o d a l i t y =" r f i d "
v a l u e =" s e l e c t | l i n e | f r e e h a n d " / >

< / t r i g g e r >
< / t r i g g e r s >

< !−− d e c l a r a t i o n o f o u t p u t a c t i o n s −−>
< a c t i o n s >

< a c t i o n name=" d r a w _ a c t i o n ">
< t a r g e t name=" x p a i n t _ c l i e n t " message=

" draw $ o p e r $ shape $ posx $ posy " / >
< / a c t i o n >

< / a c t i o n s >

< !−− d e c l a r a t i o n o f H/M d i a l o g −−>
< d i a l o g l e a d t i m e =" 1400 ">

< c o n t e x t name=" m o d i f i c a t i o n ">
< t r a n s i t i o n name=" m o d i f _ c l a u s e ">

< pa r_and >
< t r i g g e r name=" o p e r a t i o n " / >
< t r i g g e r name=" s e l e c t e d shape " / >
< t r i g g e r name=" p o s i t i o n " / >

< / pa r_and >
< r e s u l t a c t i o n =" d r a w _ a c t i o n " / >

< / t r a n s i t i o n >
< t r a n s i t i o n >

< t r i g g e r name=" r e t u r n " / >
< r e s u l t c o n t e x t =" s t a r t " / >

< / t r a n s i t i o n >
< / c o n t e x t >

< / d i a l o g >

< / i n t e g r a t i o n _ d e s c r i p t i o n >
< / smuiml>

Fig. 6 A typical example of a SMUIML script

J Multimodal User Interfaces (2010) 3: 237–247 243

example features two recognizers, three input triggers, one
output action and part of the overall human-machine interac-
tion dialog. All these elements will be detailed in the coming
subsections.

5.2 SMUIML recognizers

At the recognizers level, the goal is to tie the multimodal di-
alog scenario with the actual recognizers that the developer
wishes to use for his application. In the context of the Hep-
haisTK toolkit, all recognizers are identified by a general
name throughout the toolkit. This general identifier is hence
used in SMUIML. The HephaisTK toolkit keeps a list of
recognizers, and their associated modality (or modalities).
For example, if a number of speech recognizers are avail-
able, using one of them or the other is a matter of changing
the “name” attribute of the speech-related <recognizer> el-
ement. As every events are defined afterwards in relation
to the modality, and not a particular recognizer, this allows
for more flexibility in the creation of the implementation,
Moreover, design-wise, it enhances readability and allows
developers to design their application before thinking about
which recognizer they intend to use. It is to be noted that
the <recognizers> part is the only one where a tight link
between the SMUIML language and a given tool (in this
case, the HephaisTK toolkit) appears. The modality the dif-
ferent recognizers provide is also indicated. The “modal-
ity” attribute is a string of characters, chosen from a list of
keywords. This keywords list is created by the HephaisTK
toolkit (see Sect. 5.6) at runtime against the available recog-
nizers. In other words, the toolkit knows in real time which
modality it is able to offer.

Finally, SMUIML offers the possibility to declare vari-
ables attached to a given recognizer.Data types vary from
modality to modality, but are expected to be consistent
within one modality; for example, every speech recognizers
are expected to deliver text outputs.

5.3 SMUIML triggers

Triggers are at the core of the transition mechanism of
SMUIML. They describe a sub-set of interest from all the
possible events coming from the different recognizers. A set
of input events can hence be abstracted behind one trigger
name, enhancing as much the script readability.

A standard trigger declaration is shown in Fig. 6. In this
example, two triggers are defined for the speech modality,
regardless of the recognizer actually used. For example, the
speech recognizer is simply assumed to send its results as
strings of characters, and be scripted by means of a BNF-
style grammar. A unique name or number identifies each
< trigger >. As for the last trigger, attached to a Phidget (see
Greenberg et al. [12]) RFID tags reader in this example, the

three values declared are linked to actual tags numbers in the
< variable > declarations in the recognizers; the tag numbers
could also be used in place of variables.

5.4 SMUIML actions

<actions> are the output equivalent of < triggers >. They
describe the messages and their content that will form the
communication channel between HephaisTK toolkit and its
client application. A typical <action> declaration is shown
on Fig. 6.

The goal of those messages is to let the client applica-
tion know in which state the toolkit finds itself in, by means
of a clearly defined set of messages. Those messages can
contain variables previously defined, such as the $posx vari-
able defined in Fig. 6. The client application will then be
able to know what content is to be restituted to the user. The
choice was made not to offer extensive control over fission
of modalities in SMUIML, for two reasons. First, having ex-
tensive control over the way content is restituted can go as
far as recreating a full rendering language, which was not
the goal of this work. Second, mixing as little as possible
the model and the view allows for better readability of the
language. Hence, restitution of the content is up to the client
application. This choice can however be a source of errors,
as heavily modal applications would need some way to en-
sure synchronicity between the toolkit and the application.

5.5 SMUIML dialog

The <dialog> element describes the integration mechanisms
of a SMUIML script. In essence, a <dialog> is a finite state
machine, with transitions defined by the < triggers > and
<actions> events that were presented in the former sections.
We are currently working on adding other fusion algorithms
into the HephaisTK platform, some of which will need us
go beyond the simple state machine paradigm for the de-
scription of the human-machine interaction. States of the
dialog are described by <context> elements. Each context
has a unique name identifying it. One context must have a
“start_context” attribute, defining it as the starting state. An
“end_context” attribute also exists to describe a final state.
A simple example of a <dialog> is represented in Fig. 6.

When multiple triggers are present, the developer should
be able to clarify time synchronicity issues, i.e. how the in-
coming multimodal triggers should be considered. The ap-
proach of SMUIML is to distinguish between parallel and
sequential triggers, and between coupled and individual trig-
gers. To denote those different cases, a set of keywords has
been selected. Keyword “par” is for parallel triggers, “seq”
for sequential triggers, “and” for coupled triggers, “or” for
individual triggers.

Four elements to describe the different behaviors have
been designed by mixing those four CARE properties.

244 J Multimodal User Interfaces (2010) 3: 237–247

< t r a n s i t i o n >
< pa r_and >

< !−− C o m p l e m e n t a r i t y −−>
< / pa r_and >
< seq_and >

< !−− sequenced c o m p l e m e n t a r i t y −−>
< / seq_and >
< p a r _ o r >

< !−− Redundancy −−>
< / p a r _ o r >
< s e q _ o r >

< !−− E q u i v a l e n c e −−>
< / s e q _ o r >

< / t r a n s i t i o n >

Fig. 7 Triggers combination elements in SMUIML

<par_and> is to be used when multiple properties are to
be fused together, as they all are necessary for the meaning
extraction process. <seq_and> describes one or multiple in-
dividual triggers all necessary in sequence to trigger a transi-
tion. <par_or> describes redundant multimodal triggers hav-
ing similar meanings. Each one is sufficient for the correct
meaning to be extracted, but they all can be expressed at
the same time by the user, increasing as such the robustness
and recognition rate (for example, a user issuing a “play”
vocal command and simultaneously pushing a play button).
Finally, the <seq_or> element is to be used when multiple
triggers can lead to the same result, but only one of them
is to be provided. Those four integration describer elements
can also be combined in order to express all kinds of mul-
timodal interactions. In fact, as shows comments in Fig. 7,
three of those four elements correspond to three of the four
CARE properties of multimodal interactive systems (Com-
plementarity, Redundancy and Equivalence) as defined in
Coutaz et al. [6]. The only integration describer element not
matched to a CARE property is <seq_and>. The choice to
drop the Assignment CARE property was made because we
felt it was more meaningful to be able to differentiate se-
quenced and un-sequenced complementarity, than to differ-
entiate equivalence of choice (one of a number of modalities
is required, does not matter if two are selected at the same
time) and assignment (one and only one of a number of
modalities is required); In fact, assignment can be expressed
by using one transition per modality. The CARE properties
have revealed themselves a handy tool used by a number
of toolkits to help formalize relationships between different
modalities; choice was made to include them into SMUIML
in order to answer the guideline of time synchronicity con-
trol.

5.6 SMUIML language interpretation

In order to provide a tool allowing developers to prototype
multimodal interfaces in an easier way than by building
them from scratch, a toolkit named HephaisTK has been

developed. This toolkit has been designed to plug itself in
a client application that wishes to receive notifications of
multimodal input events received from a set of modality
recognizers. Output restitution, be it multimodal or not, is
managed by the client application. To give an example of
an application using HephaisTK and SMUIML, a binding
declaration in Java can be:

new HephaistkInitManager(“client_app”);
“client_app” refers to the application name every

SMUIML script has to specify, and which is described in
Sect. 5.1. To enhance flexibility, callbacks to the client appli-
cation are generated following the SMUIML script. Chang-
ing a few lines of the script can completely change the be-
havior of the multimodal toolkit, and as the callbacks are
rather loosely tied, the developers are completely free to
adapt their application, do testing on, or simply ignore, etc.
those callbacks.

HephaisTK is built on an architecture based on software
agents, as depicted in Fig. 8. Agents are dispatched to man-
age individual modality recognizers, receive and encapsu-
late data from the recognizers, and send them to an individ-
ual central agent named the “postman”. This postman agent
centralizes all data coming from the dispatched recogniz-
ers agents in a database, and distributes the data to other
interested agents in the toolkit, which can subscribe to be
informed of specific types of data. An “integration commit-
tee” of three different agents achieves integration of data.
A first agent manages fusion of input modalities, helped by
a dialog agent; a fission agent encapsulates the fused data
and sends it to the client application, which will be notified
of the incoming data by means of an event listener.

HephaisTK is an integrated tool, which needs to be
configured in order to send satisfactory information to its
client application. Thus, a configuration file, describing the
human-machine multimodal dialog wished for the client ap-
plication, needs to be specified when using the toolkit. This
configuration script also has other goals, for example the
specification of which recognizers need to be used with the
toolkit. Hence, the SMUIML language has been developed
as a configuration language for the HephaisTK toolkit. The
language is linked to this toolkit, and conversely the toolkit
is linked to the language. Nevertheless, the SMUIML lan-
guage has been created as being as generic as possible, and
should be able to model multimodal human-machine inter-
action independently from the subsequent tool used to inter-
pret the script.

6 Evaluation and positioning of SMUIML

The SMUIML language allowed modeling of a number of
different multimodal use cases, from a music player with

J Multimodal User Interfaces (2010) 3: 237–247 245

Fig. 8 HephaisTK toolkit
architecture

simple multimodal commands, to an application allowing
classification and visualization of documents based on dif-
ferent criterias, to a drawing table with speech and tangible
input. Thus, the ability to model and manage different mul-
timodal applications was empirically verified. Nevertheless,
the user-friendliness of SMUIML had still to be considered.

In order to compare the language’s expressiveness and
usability, master’s degree students from a course on mul-
timodal interaction were asked to devise their own version
of a language allowing description of multimodal interac-
tion. These students had all already a bachelor in computer
science degree, and were pursuing their studies to get a
master degree. The course on multimodal interaction deliv-
ered at the University of Fribourg (Switzerland) is an op-
tional course in their curriculum and amongst the 30 stu-
dents which were present the year this evaluation was done,
six of them chose to delve deeper in multimodal interac-
tion modeling. They already had an introductory course on
multimodal interaction, but no extended experience. Thus,
they represented developers with a strong interest and pass-
ing knowledge on multimodal interaction. These students
had to first imagine a multimodal application, draw a sto-
ryboard detailing the main use cases of their application,
and then they were given three weeks to invent a formaliza-
tion to describe more deeply their application. They had no
knowledge of SMUIML or any other description language
on multimodal interaction, although they had already fol-
lowed a course on multimedia-aimed description languages
such as SMIL. The idea behind this task was to see how de-

velopers think about modeling multimodal interaction when
they only have passing knowledge about multimodality.

First, most of the students tackled the problem by de-
scribing what “happens” in the system, i.e. events. Some
of them built their language proposal only around events,
others made a difference between “input” events and “re-
sult” events, and still others built chain of events. Nonethe-
less, non-specialists of multimodal interfaces, faced with the
problem of describing multimodal human-machine interac-
tion, show a tendency to first think about the actual events
and their awaited results. Thereafter, most proposals offered
a way to model human-machine interaction dialog, either by
“knitting” events and actions to and from the system, or by
describing fixed chains of events. Then, some students tried
to give a description of the actual hardware used; some oth-
ers did not see the interest of giving this level of detail. It
is nonetheless to be noted that the students were to create a
high-level formalization of multimodal human-machine in-
teraction. In a more “complete” approach, some link to the
actual hardware would have to be specified, and some of the
students paid attention to this.

Finally, the students were confronted with SMUIML, and
give a qualitative evaluation of it. Once again, the basic
idea behind it was to get the opinion of non-experts in the
field of multimodal interaction about the language. In regard
to usability, two remarks were raised about the <dialog>
part: first, with complex application, the whole context di-
agram could become tedious to analyze and read; second,
every trigger, action or context is identified with a unique

246 J Multimodal User Interfaces (2010) 3: 237–247

Table 3 The SMUIML
language and the eight
guidelines

SMUIML <dialog> < triggers > <actions> <recognizers>

G1. Abstraction levels X X X X

G2. HMI modeling X X

G3. Adaptability to context/user

G4. Control over fusion process X X X

G5. Time synchronicity X X

G6. Error handling

G7. Events management X X X

G8. I/O data representation X X

name, without distinction, which can easily lead to dupli-
cate names. Thus, as usable as a description language can
be, producing such documents for large-sized applications
can become tedious. On a final note, interestingly enough, a
final feature that was not addressed by most of the students is
error handling. In fact, modality recognizers and multimodal
integration are often considered as being error-free when de-
signing the first draft of a multimodal system; it is obviously
not the case, and even early design should take into account
error reduction techniques such as tap-to-speak interfaces,
restricted grammars or guided dialogues (See Bourguet [4]
for more information on error handling strategies).

When confronted with the guidelines introduced in
Sect. 4, SMUIML takes into account abstraction levels by
its three layers structure, events description with help of
the < triggers > and <actions> elements, and representation
of input sources with the <recognizers> elements. Con-
trol over the fusion process is allowed by specifying at-
tributes in the <dialog> part: for example, the time frame
in which a given meaning frame has to be fused can be
specified with help of the “leadtime” attribute. Time syn-
chronicity aspects are managed by the different <par_or>,
<par_and>, <seq_or> and <seq_and> elements. On the case
of data modeling, as SMUIML is tied to a toolkit, all data
modeling is supposed to be managed inside this toolkit. Sire
et Chatty admit in this regard that data modeling can be
present in multiple places, but could be present in XML
modeling, for example to be compliant with EMMA. We
believe data modeling could be based on EMMA descrip-
tion but should not be part of the multimodal interaction
description itself, mainly for readability reasons. Control
structures are a relevant point: basically, a state machine
such as the one present in SMUIML dialog description is
able to describe any application process, however control
structures such as “switch” or “while” statements can en-
hance the readability of a given language. But control struc-
tures imply an imperative programming-oriented language;
the way SMUIML dialog description was designed would
make unnatural the use of standard control structures such
as switch statements or loops: control structures are inherent

to the state machine model. A complete overhaul of the lan-
guage would be needed for the integration of such control
structures. Adaptability to user and context is not taken into
account yet in HephaisTK and SMUIML, though mecha-
nisms to ease plasticity integration are present. Finally, error
handling is also not yet present in the language, as can be
seen in Table 3, but is a planned work, that will take place
jointly with the enhancement of HephaisTK toolkit on error
handling.

Finally, about guideline G* (Usability vs. expressive-
ness balancing), SMUIML was created with readability in
mind, as well as keeping as much expressiveness as possi-
ble. Nonetheless, on the usability side, being able to use a
Graphical User Interface to create a SMUIML script would
go a long way toward better user-friendliness.

7 Conclusion and future works

This article discusses the advantages of having a modeling
language for describing multimodal human-machine inter-
action. It further presents the state of the art and various ap-
proaches to this problem. From experiments and study of the
state of the art, we propose a set of guidelines for the design
of modeling languages for multimodal toolkits.

As mentioned in the article, such modeling languages
role is not restricted to the configuration of a toolkit,
but could serve as a modeling and communication lan-
guage. Our thesis is that this kind of language should bal-
ance between readability (human-side) and expressiveness
(machine-side). In fact, a balance should also be found be-
tween the different user-focused and system-focused guide-
lines: a single description language would have difficulty
answering every guideline while still keeping readability.

When considering the SMUIML language in respect to
the guidelines devised in Sect. 5, guideline G3 (adaptabil-
ity to user and context) and G6 (error handling) are lack-
ing. Adaptability to user and context is not planned for the
moment, although the software architecture on which Hep-
haisTK is based upon could be extended to help take into

J Multimodal User Interfaces (2010) 3: 237–247 247

account user profile and context when managing and inter-
preting input events. Plasticity on the output side would be
harder to manage, and we have decided to leave it aside. Er-
ror handling is a planned future work, in parallel with the
integration of advanced error handling in the HephaisTK
toolkit, which will take into account errors coming from
recognizers, mistakes from the fusion engine and excep-
tion. A second planned future work will concentrate on cre-
ation of a visual programming tool which would generate
the SMUIML script. The challenge will lie in particular in
keeping the abstraction levels and in promoting a careful
modeling of the multimodal application, which were promi-
nent benefits of the markup language. Furthermore, such a
tool would enhance usability, while keeping expressiveness.
Lastly, a field study with developers interactive multimodal
systems will have to be achieved in order to assess the capa-
bilities of SMUIML in a real context of use.

Acknowledgements Thanks to Raphael Boesch, Guillaume Gnaegi,
Andreas Ruppen, Mario Sitz and Tony Svenson for their work on for-
malization languages in the frame of the MMI course at University of
Fribourg. The work on HephaisTK and SMUIML are funded by the
Hasler Foundation (http://www.haslerstiftung.ch) in the context of the
MeModules project (http://www.memodules.ch), and by the Swiss Na-
tional Center of Competence in Research on Interactive Multimodal
Information Management—NCCR IM2 project (http://www.im2.ch).

References

1. Araki M, Tachibana K (2006) Multimodal dialog description lan-
guage for rapid system development. In: Proceedings of the 7th
SIGdial workshop on discourse and dialogue, Sydney, Australia,
July 2006

2. Bouchet J, Nigay L, Ganille T (2004) ICARE software compo-
nents for rapidly developing multimodal interfaces. In: Confer-
ence proceedings of ICMI’2004, State College, PA, USA, October
2004. ACM, New York, pp 251–258

3. Bourguet ML (2002) A toolkit for creating and testing multimodal
interface designs. In: Companion proceedings of UIST’02, Paris,
October 2002, pp 29–30

4. Bourguet ML (2006) Towards a taxonomy of error-handling
strategies in recognition-based multi-modal human-computer in-
terfaces. Signal Process 86(12)

5. Cohen Pr, Johnston M, Mcgee D, Oviatt S, Pittman J, Smith I,
Chen L, Clow J (1997) QuickSet: multimodal interaction for dis-
tributed applications. In: Proceedings of the fifth ACM interna-
tional conference on multimedia, Seattle, USA

6. Coutaz J, Nigay L, Salber D, Blandford A, May J, Young R (1995)
Four easy pieces for assessing the usability of multimodal inter-
action: the CARE properties. In: Arnesen SA, Gilmore D (eds)
Proceedings of the INTERACT’95 conference, Lillehammer, Nor-
way, June 1995. Chapman & Hall, London, pp 115–120

7. De Boeck J, Vanacken D, Raymaekers C, Coninx K (2007) High-
level modeling of multimodal interaction techniques using NiM-
MiT 4(2007), no 2, September 2007, urn:nbn:de:0009-6-11615,
ISSN 1860-2037

8. Dumas B (2009) SMUIML XML Schema reference. http://diuf.
unifr.ch/diva/web/downloads/documents/other/2009/smuiml_
v04.xsd Accessed 28 September 2009

9. Dumas B, Lalanne D, Ingold R (2008) Prototyping multimodal
interfaces with smuiml modeling language. In: Workshop user in-
terface description languages for next generation user interfaces,
CHI 2008, Firenze, Italy, pp 63–66

10. Dumas B, Lalanne D, Oviatt S (2009) Multimodal interfaces: a
survey of principles, models and frameworks. In: Lalanne D.,
Kohlas J (eds) Human machine interaction, state-of-the-art survey.
LNCS, vol 5440. Springer, Berlin, pp 1–25

11. Garofolo J (2008) Overcoming barriers to progress in multimodal
fusion research. In: AAAI Fall 2008 symposium proceedings

12. Greenberg S, Fitchett C (2001) Phidgets: easy development of
physical interfaces through physical widgets. In: User interface
software & technology, CHI letters 2001

13. Flippo F, Krebs A, Marsic I (2003) A framework for rapid de-
velopment of multimodal interfaces. In: Proceedings of ICMI’03,
Vancouver, BC, 5–7 November 2003

14. Kaltenbrunner M, Bencina R (2007) ReacTIVision: a computer-
vision framework for table-based tangible interaction. In: Proceed-
ings of the first international conference on tangible and embedded
interaction (TEI07), Baton Rouge, LO

15. Katsurada K, Nakamura Y, Yamada H, Nitta T (2003) XISL: a
language for describing multimodal interaction scenarios In: Pro-
ceedings of the 5th international conference on multimodal inter-
faces (ICMI 2003), Vancouver, BC, Canada, 5–7 November 2003

16. Ladry JF, Palanque P, Basnyat S, Barboni E, Navarre D (2008)
Dealing with reliability and evolvability in description techniques
for next generation user interfaces. In: Proceedings of user inter-
face description languages for next generation user interface work-
shop at CHI’08, Florence, Italy

17. Oviatt SL (2008) Multimodal interfaces. In: Jacko J, Sears A (eds)
The human-computer interaction handbook: fundamentals, evolv-
ing technologies and emerging applications, 2nd edn. CRC Press,
Boca Raton, pp 286–304

18. Paternò F, Santoro C, Mäntyjärvi J, Mori G, Sansone S (2008)
Authoring pervasive multimodal user interfaces. Int J Eng Technol
4(2):235–261

19. Serrano M, Nigay L, Lawson JYL, Ramsay A, Murray-Smith R,
Denef S (2008) The openinterface framework: a tool for mul-
timodal interaction. In: Adjunct proceedings of CHI’2008, Flo-
rence, Italy, 5–10 April 2008. ACM, New York, pp 3501–3506

20. Shaer O, Jacob RJ, Green M, Luyten K (2008) User interface de-
scription languages for next generation user interfaces. In: CHI ’08
extended abstracts on human factors in computing systems, CHI
’08, Florence, Italy, 5–10 April 2008. ACM, New York, pp 3949–
3952

21. Sire S, Chatty C (2002) The markup way to multimodal toolkits,
In: W3C multimodal interaction workshop

22. Stanciulescu A, Limbourg Q, Vanderdonckt J, Michotte B, Mon-
tero F (2005) A transformational approach for multimodal web
user interfaces based on UsiXML. In: Proceedings of the 7th
international conference on multimodal interfaces (ICMI 2005),
Torento, Italy, 4–6 October 2005

23. Windgrave C (2008) Chasm: a tiered developer-inspired 3D inter-
face representation. In: Proceedings of user interface description
languages for next generation user interface workshop at CHI’08,
Florence, Italy

http://www.haslerstiftung.ch
http://www.memodules.ch
http://www.im2.ch
http://diuf.unifr.ch/diva/web/downloads/documents/other/2009/smuiml_v04.xsd
http://diuf.unifr.ch/diva/web/downloads/documents/other/2009/smuiml_v04.xsd
http://diuf.unifr.ch/diva/web/downloads/documents/other/2009/smuiml_v04.xsd

	Description languages for multimodal interaction: a set of guidelines and its illustration with SMUIML
	Abstract
	Introduction
	Description languages for multimodal interaction
	Description languages spectrum
	Guidelines for languages for multimodal toolkits
	SMUIML
	SMUIML structure
	SMUIML recognizers
	SMUIML triggers
	SMUIML actions
	SMUIML dialog
	SMUIML language interpretation

	Evaluation and positioning of SMUIML
	Conclusion and future works
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

