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Abstract

In this study, parallel computation of blood flow in a 1-D model of human arterial network has been
carried out employing a Taylor Galerkin Finite Element Method. Message passing interface libraries
have been used on Origin 2000 SGI machine. A Greedy strategy for load-distribution has been devised
and data-flow graphs necessary for parallelization have been generated. The performance of parallel
implementation measured in terms of speedup and efficiency factors is found to be good. Further, the
parallel code is used in simulating the propagation of pressure and velocity waveforms in our 1-D
arterial model for two different inflow pressure pulses. Also, the influence of consideration of terminal
resistance on pressure and velocity waveforms have been analyzed.
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1 Introduction

The human vascular system is a complex network comprising of heart and blood
vessels of various dimensions. It functions in such a way as to supply each organ
with the proper amount of blood, which may vary depending on physiological
conditions and organ demands. In order to understand the normal and the
pathological behavior of the system, a detailed knowledge of blood flow and the
response of blood vessels is required. Computational simulations based on suit-
able mathematical models describing the hemo-dynamics in a blood vessel is one
of the effective ways for providing such information. Numerical computation of
pulsatile blood flow dynamics in the entire arterial network based on realistic
three dimensional arterial geometries remains an impractical task despite the
rapid progress in computer speed and the emergence of robust numerical tech-
niques because of the complexity of the problem, which has been highlighted in
[18]. To analyze the pathological behavior of blood vessels researchers [1–4] have
employed local 3-D models based on either realistic local vessel geometries or
conceptual models. Less detailed, yet meaningful information is obtained by the
use of simplified one-dimensional models [5–7] to represent the human arterial
tree and to approximately solve the flow and the pressure field. Recently, geo-
metrical multi-scale models have been advocated. Lumped (zero dimensional) and

Computing 71, 321–351 (2003)
Digital Object Identifier (DOI) 10.1007/s00607-003-0025-3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159144487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


one dimensional models describing arterial network are coupled together with
localized complex 3-D models [8, 9]. The adoption of a geometrical multi-scale
approach is a possible answer to the need of having rather detailed information in
a particular region of interest while maintaining a global description of the cardio-
vascular system. The applications of such techniques have been shown to provide
useful information to the practitioners [7, 10] and in perspective such models
could provide a suitable tool for patient-specific medical planning of interven-
tions. However, the computational complexities of the different ‘‘building blocks’’
that make up a geometrical multi-scale simulation are very different. On a scalar
computer, lumped parameter model solution over several heart beats are obtained
in a matter of seconds. Complex arterial trees simulated by a network of 1-D
model may require simulation times of the order of several minutes upto hours for
very complex geometries. Three-dimensional simulations, instead, require com-
puting times of several hours, even days on very refined grids. Load balancing
between the models is thus an important aspect. While, there is not much gain in
making the lumped parameter computations parallel, there is an interest in par-
allelizing 1-D computations (in view of their coupling with lumped parameter
network) as well as the three-dimensional schemes. High performance computing
based on the paradigm of parallel or distributed computing on a cluster of PCs or
on desk-side shared memory systems based (S2MPs) appear to be a viable means
of providing an efficient solution in real-time as required in the clinical practice.
As a step towards achieving such a goal authors in this work focus on the par-
allelization of a code for the computations of a 1-D modeling of arterial network.

In this study a simplified model of human arterial tree consisting of 55 arteries has
been considered. Flow in each of the arteries is approximated by using a one-
dimensional model [6, 7]. A second order Taylor-Galerkin Finite Element scheme
has been used to solve the hyperbolic partial differential equations describing the
flow and pressure fields inside the human arterial system. In Taylor-Galerkin
Finite Element method high order time-stepping schemes, derived by using Taylor
series expansion in the time increment, are coupled with accurate spatial discret-
ization provided by Galerkin Finite Element method. The resulting scheme has the
desired properties of accuracy and extended stability to cope up with the dominant
role played by the characteristics in convection-dominated hyperbolic problems. It
successfully precludes the so called spurious numerical oscillations which are
usually encountered while applying low-order time stepping schemes in combi-
nation with the conventional Galerkin method to convection-dominated flows.

A Parallel algorithm based on the paradigm of domain decomposition has been
developed and all the computations have been carried out on 8-node Origin 2000
machine using message passing interface libraries (MPI) under IRIX environ-
ment. A load-distribution strategy based on Greedy approach has been devised
and is successfully used in distributing the computational load on various nodes
of the parallel computer. The paper is organized in the following manner: (a) In
section 2 a brief description of the one-dimensional model is given, (b) In section 3
numerical discretization of the one-dimensional model and the sequential algo-
rithm for solving the problem is discussed, (c) In section 4 the parallelization
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details including those of hardware are provided, (d) Section 5 provides the details
of parallel computation in terms of speedup and efficiency plots. Also some of the
results pertaining to the flow in the arterial tree are discussed.

2 Mathematical Model

The simplified human arterial tree with 55 main arteries adopted in this work is
shown inFigure 1 and the data related to the arteries is provided inTable 1.Consider
a simple compliant tube of length L as shown in Figure 2, as a model of an arterial
segment of the human arterial tree. Following Brook et al. [11], Quarteroni and

Fig. 1. Simplified human arterial tree with 55 arteries

On Parallel Computation of Blood Flow in Human Arterial Network 323



Table 1. Data related to the simplified arterial tree with 55 main arteries

# Artery Length (cm) Area (cm2) b (kg s�2 cm�2) Rt

1 Ascending Aorta 4.0 5.983 97 –
2 Aortic Arch I 2.0 5.147 87 –
3 Brachiocephalic 3.4 1.219 233 –
4 R. Subclavian I 3.4 0.562 423 –
5 R. Carotid 17.7 0.432 516 –
6 R. Vertebral 14.8 0.123 2590 0.906
7 R. Subclavian II 42.2 0.510 466 –
8 R. Radial 23.5 0.106 2866 0.82
9 R. Ulnar I 6.7 0.145 2246 –
10 R. Interosseeous 7.9 0.031 12894 0.956
11 R. Ulnar II 17.1 0.133 2446 0.893
12 R. Internal Carotid 17.6 0.121 2644 0.784
13 R. External Carotid 17.7 0.121 2467 0.79
14 Aortic Arch II 3.9 3.142 130 )
15 L. Carotid 20.8 0.430 519 )
16 L. Internal Carotid 17.6 0.121 2644 0.784
17 L. External Carotid 17.7 0.121 2467 0.791
18 Thoracic Aorta I 5.2 3.142 124 )
19 L. Subclavian I 3.4 0.562 416 )
20 Vertebral 14.8 0.123 2590 0.906
21 L. Subclavian II 42.2 0.510 466 )
22 L. Radial 23.5 0.106 2866 0.821
23 L. Ulnar I 6.7 0.145 2246 )
24 L. Interosseous 7.9 0.031 12894 0.956
25 L. Ulnar II 17.1 0.133 2446 0.893
26 Intercostals 8.0 0.196 885 0.627
27 Thoracic Aorta II 10.4 3.017 117 )
28 Abdominal I 5.3 1.911 167 )
29 Celiac I 2.0 0.478 475 )
30 Celiac II 1.0 0.126 1805 )
31 Hepatic 6.6 0.152 1142 0.925
32 Gastric 7.1 0.102 1567 0.921
33 Splenic 6.3 0.238 806 0.93
34 Sperior Mesenteric 5.9 0.430 569 0.934
35 Abdominal II 1.0 1.247 227 )
36 L. Renal 3.2 0.332 566 0.861
37 Abdominal III 1.0 1.021 278 )
38 R. Renal 3.2 0.159 1181 0.861
39 Abdominal IV 10.6 0.697 381 )
40 Inferior Mesenteric 5.0 0.080 1895 0.918
41 Abdominal V 1.0 0.578 399 )
42 R. Common Iliac 5.9 0.328 649 )
43 L. Common Iliac 5.8 0.328 649 )
44 L. External Iliac 14.4 0.252 1493 )
45 L. Internal Iliac 5.0 0.181 3134 0.925
46 L. Femoral 44.3 0.139 2559 )
47 L. Deep Femoral 12.6 0.126 2652 0.885
48 L. Posterior Tibial 32.1 0.110 5808 0.724
49 L. Anterior Tibial 34.3 0.060 9243 0.716
50 R. External Iliac 14.5 0.252 1493 )
51 R. Internal Iliac 5.1 0.181 3134 0.925
52 R. Femoral 44.4 0.139 2559 )
53 R. Deep Femoral 12.7 0.126 2652 0.888
54 L. Posterior Tibial 32.2 0.110 5808 0.724
55 R. Anterior Tibial 34.4 0.060 9243 0.716
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Formaggia [10] and Sherwin et al. [7] we write the system of equations representing
conservation of mass and momentum in arterial segment ½0; L� as:

@A
@t
þ @Q
@z
¼ 0 ð1Þ

@Q
@t
þ @

@z
a

Q2

A

� �
þ A

q
@p
@z
þ KR

Q
A
¼ 0 ð2Þ

where z is the axial direction, A ¼ Aðz; tÞ ¼
R

Sðz;tÞ dr is the area of the cross section
S ¼ Sðz; tÞ, Q ¼ Qðz; tÞ is the mass flux across the section, q is the density of the
blood which is taken to be a constant, p ¼ pðz; tÞ is the internal pressure and
uðz; tÞ ¼ Qðz;tÞ

Aðz;tÞ denotes the velocity of the fluid averaged across the section. The
term a is the momentum flux correction coefficient, defined as aðz; tÞ ¼ A

Q2

R
u2dr

and is assumed to be a constant. This implies that the velocity u is taken to be
proportional to a given profile on each section S. A constant velocity profile
would give a ¼ 1. Details may be found in [10].

In this study we will assume a ¼ 1. Experimental data [6, 7] have shown that
blood velocity profiles are rather flat on average. Hence the crude assumption
that a ¼ 1 is reasonable and it further simplifies the analysis [7]. The term KR

is a strictly positive quantity, which represents the viscous resistance of the
flow per unit length of the tube. There are three unknowns ðp;A and QÞ in the
above system (1-2) of two equations. To close the system the following
static equilibrium relation between the pressure ðpÞ of the vessel and the vessel
area ðAÞ is assumed:

L

Fig. 2. A simple compliant tube of length L
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p ¼ pext þ
bðA�

ffiffiffiffiffi
A0

p
Þ

A0
ð3Þ

where b ¼ Eh0

ffiffiffi
p
p

.

Here h0 and A0 ¼ A0ðzÞ denote the reference vessel thickness and sectional area
respectively, E ¼ EðzÞ is the Young’s modulus, pext is the external pressure. The
reference state is taken to be that of the vessel at rest, i.e. Q ¼ 0, and in equi-
librium with the external pressure, i.e. p ¼ pext.

By replacing p in (2) using (3) we obtain a system of differential equations, which
may be written in conservation form as:

@U
@t
þ @F ðUÞ

@z
¼ BðUÞ ð4Þ

where U ¼ ½A;Q�T are the conservative variables, F ¼ ½FA; FQ� the corresponding
fluxes and B ¼ ½BA;BQ�T a source term. These quantities are given by:

F ðvÞ ¼
Q

a Q2

A0
þ b

3qA0
A3=2

� �
ð5Þ

BðUÞ ¼
0

KR
Q
A þ A

A0

h0
ffiffi
p
p

q
2
3 A1=2 � A1=2

0

� �
@E
@z �

Eh0
ffiffi
p
p

q
A
A2
0

2
3 A1=2 � 1

2 A1=2
0

� �
@A0

@z

" #
ð6Þ

Equation (4) may be written in quasi-linear form as:

@U
@t
þ H

@U
@z
¼ BðUÞ � @F

@A0

@A0

@z
� @F
@b

@b
@z

ð7Þ

where,

HðUÞ ¼ @F
@U
¼

@F1

@A
@F1

@Q
@F2

@A
@F2

@Q

" #
¼ 0 1
�a Q2

A2 þ b
2qA0

A1=2 2a Q
A

� �
ð8Þ

For all allowable values of U (i.e. A > 0) the matrix H has two real and distinct
eigenvalues [10],

k1;2 ¼ a
Q
A
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ aða� 1ÞQ

2

A2

r
; c1 ¼

ffiffiffiffiffiffiffiffiffiffi
b

2qA0

s
A1=4 ð9Þ

The system is hyperbolic. When a ¼ 1, the characteristic variables W ðUÞ are given
by:

W1;2 ¼ a
Q
A
� 4

ffiffiffiffiffiffiffiffiffiffi
b

2qA0

s
A1=4 ð10Þ
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From (10) one can get

A ¼ 2qA0

b

� �2ðW1 � W2Þ4

84
; Q ¼ A

W1 þ W2

2
ð11Þ

In this model approximately the presence of a prosthesis or a stent may be
modeled by changing the value of the parameter b. Stenosis may be simulated by
approximately choosing A0ðzÞ in the stenotic artery.

Boundary and Interface Conditions:

The arterial network will be handled by a domain decomposition approach, where
each arterial element is modeled by using the formulation just described. Clearly,
the differential system (4) must be augmented by proper conditions at the bound-
aries of the arterial network and at the interface between adjacent arterial elements.
Consequently, in our simplified model of human arterial system one would
encounter the following four types of situations, with respect to the inflow direction:

1. Artery with an inflow condition at its proximal end and a connection to another
artery at its distal end.

2. Artery which is connected to other arteries both at its proximal and distal ends.

3. Artery which is connected to another artery at its proximal end and bifurcates
into two other arteries at its distal end.

4. Artery which is connected to another artery at its proximal end and has a
terminal distal end.

For introducing the boundary conditions considered in this study we would first
discuss about characteristic extrapolation and about the boundary condition at
the interface of two (three) arteries. As the two eigenvalues (k1; k2) for the flow
regimes in the human arterial tree are always of opposite sign, the differential
problem associated with each arterial segment needs exactly one boundary con-
dition at either ends of a segment. Important classes of boundary conditions,
called non-reflecting conditions, are those that allow the simple wave solution
associated to the outgoing characteristic to leave the domain. Following [12, 13]
they may be written as:

LT
1

@U
@t
� BðUÞ

� �
z¼a
¼ 0; LT

2

@U
@t
� BðUÞ

� �
z¼b
¼ 0 ð12Þ

where z ¼ a; b denote either ends of an artery, L1; L2 are the left eigen vector
associated to k1 and k2 respectively. A boundary condition of this type is quite
convenient at the distal section of terminal arteries. However, if we want to
account for the terminal resistance caused by the smallest arterioles and the
capillary bed, those conditions should be replaced, for instance, by the technique
proposed by Sherwin et al. [7].

Although the differential problem requires only one boundary condition at either
ends of an artery, the solution of the numerical problem calls for a full set of
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values for A and Q at the ends of the computational grid. So in addition to the
physical boundary conditions we need two extra compatibility conditions [16] to
meaningfully define the values of A and Q at either ends. In view of the fact that A
and Q can be expressed in terms of characteristic variables W1, W2 the
required compatibility conditions are here implemented through the so-called
‘‘characteristic extrapolation method’’ [14]. The idea is based on the well known
fact that the characteristic variables satisfy a system of ODEs along the charac-
teristic path. Indeed when BðUÞ ¼ 0 the characteristic variables are constant
along the characteristics, so a first order approximation of the exiting charac-
teristic variables at time tnþ1 at proximal end ðz ¼ aÞ and distal end ðz ¼ bÞ is
provided by:

W nþ1
2 ðzaÞ ¼ W n

2 ð�kn
2ðzaÞ4tÞ ð13Þ

End
No

Time <= Time+   ∆  t

Begin

* Read control data regarding arterial tree
* Set IC’s
* Classify the various arteries

   finite elements

Time

Yes

No Store solution at 
current time level

i
<= Artery No.

i = i + 1
Yes

* Initialize the setting of ith arterial data 
   structure
* Compute solution set (A, Q) for the ith artery
   following Taylor Galerkin Scheme (18)
* Update the characteristic values of the ith 
   tube.

* Set interface conditions, 

  as per the tree topology
  inflow conditions on arteries 
  terminal conditions and 

* i = 1

* Discretize the arteries using piecewise linear

Target Time<=

Fig. 3. Flowchart for the sequential algorithm
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7

Space loop
(parallelizable)

(not parallelizable)
Time loop 

1

2

3

6

8

Fig. 4(a). Main Data Flow Graph depicting the data dependencies in solution procedure

Space loop

1                                                   3

4

4.1

4.2

(parallelizable)

Fig. 4(b). Data Flow Graph depicting the data dependencies in setting interface boundary conditions
during the temporal evolution of the solution
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W nþ1
1 ðzbÞ ¼ W n

1 ðzb � kn
1ðzbÞ4tÞ ð14Þ

When BðUÞ 6¼ 0 the values of W nþ1
2 ðzaÞ;W nþ1

1 ðzbÞ will have to be approximated
by numerically solving the associated ODE system. The values of W nþ1

2 ðzaÞ and
W nþ1

1 ðzbÞ together with the boundary conditions effectively complement the
linear system provided by the discretization of the hyperbolic differential
equations, which will be detailed in Section 3. Let us now consider the condi-
tions at the interfaces between arteries and at bifurcations. Now suppose that
X1 ¼ ½za; zC� and X2 ¼ ½zC; zb� denote two arteries with an interface at z ¼ zC. At
the interface the mass flux (Q) and the total pressure (ptÞ are assumed to be
continuous i.e.

Q1 ¼ Q2; pt;1 ¼ pt;2; at z ¼ zC; t > 0 ð15Þ

here pt ¼ p þ 1
2

�uu2.

While conservation of mass justifies the first interface condition, the second
condition guarantees the energy inequality for the coupled system [5]. In order
to compute the values of Qnþ1

i ;Anþ1
i ; i ¼ 1; 2 at zC, conditions (15) are sup-

plemented by the compatibility conditions in the form of extrapolation of
characteristic variables exiting domain X1 and X2 at z ¼ zC are used to obtain
the suitable values for Anþ1

i ;Qnþ1
i ; i ¼ 1; 2 at z ¼ zC [6]. In the case of bifur-

cation or branching we have three arterial segments, say X1 ¼ ½za; zB�,
X2 ¼ ½zB; zb� and X3 ¼ ½zB; zc� where X1 denotes the main branch and X2;X3

denote the two branches of X1. Again, for the reason mentioned earlier, mass
flux (Q) and total pressure (pt) are assumed to be continuous across the
branching, i.e.

Q1 ¼ Q2 þ Q3; pt;1 ¼ pt;2 ¼ pt;3 at z ¼ z3 ; t > 0 ð16Þ

These two conditions together with the three compatibility conditions permit to
define Anþ1

i ;Qnþ1
i ði ¼ 1; 2; 3Þ at the bifurcation point i.e. z ¼ zB [6]. It may be noted

that at the proximal end of the first artery in our arterial model pressure (i.e. Ai)

Fig. 4(c). Data Flow Graph depicting the data dependencies while setting interface boundary
condition between two arterial segments

Table 2. Time profile of sequential execution for 4t ¼ 0:000025, 4x ¼ 0:1

State no. in
Data-flow graph

Actual time
taken in seconds

% of total time
(28980 s)

Parallelization
status

1, 2, 3 100 0.0034 No
4 648 2.2 No
5 1772 6.11 Yes
6 23400 80.7 Yes
7 1424 4.91 Yes
8 268 0.09 Yes

Sys. Time 1368 4.72 No

b
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has been imposed. The exact details of the imposed pressure pulse will be provided
subsequently in results and discussion section.

3 Numerical Discretization

Let X ¼ ½za; zb� denote an artery of our network. Following a second order
Taylor-Galerkin Scheme [15] we discretize the system (14) in time to obtain the
following semi-discrete form:

U nþ1 ¼ U n �4t
@

@z
F n þ4t

2
H nBn

� �
�4t2

2
Bn

U
@F n

@z
� @

@z
H n @F n

@z

� �� �

þ4t Bn þ4t
2

Bn
U Bn

� �
n ¼ 0; 1; 2; . . . ð17Þ

where 4t denotes the time step and the superscript ‘n’ denotes the time level. F n

stands for F ðU nÞ and Bn
U stands for @B

@U

� 	n
.

Suppose that Vh be the space of piecewise linear finite element functions. Let
Vh ¼ ½vh�2, V 0

h ¼ vh 2 Vhjvh ¼ 0 at z ¼ a; bf g and ðu; vÞ ¼
R b

a u � vdz the L2ða; bÞ
scalar product. After carrying out the spatial discretization by linear finite ele-
ments the problem reduces to finding a solution U nþ1

h 2 Vh s.t.

Table 3. Sample data related to the load distribution achieved by Greedy approach

Number of
processing
elements

Processing
element
index

Assigned load
(# of arteries)

Assigned
DOF

Assigned
arteries
numbers

Two 1 28 2822 7,8,15,52,16,12,25,6,49,48,
27,24, 32,9,33,42,43,28,

18,40,14,19,3,51, 45,29,30,41
-do- 2 27 2822 21,22,5,46,13,17,11,20,55,54,

39,26, 10,23,31,34,
50,44,47,53,1,4,38,36, 2,37,36

Four 1 13 1408 7,46,11,20,48,32,31,43,
47,1,4,51,29

-do- 2 13 1410 21,52,12,55,54,10,33,
50,18,14,19, 36,35

-do- 3 15 1414 8,15,16,25,49,27,24,9,42,
28,53,3,45, 37,41

-do- 4 14 1404 22,5,13,17,6,39,26,
23,34,44,40,38, 2, 30

Eight 1 7 708 7,39,9,28,14,
37,41

-do- 2 6 704 21,27,23,44,3,29
-do- 3 7 704 8,11,54,33,18,19,45
-do- 4 7 704 22,25,48,31,47,38,51
-do- 5 7 704 15,12,49,32,43,4,2
-do- 6 7 702 5,17,55,26,34,53,35
-do- 7 7 700 46,16,20,10,50,40,30
-do- 8 7 712 52,13,6,24,42,1,36
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Unþ1
h ;wh

� 	
¼ U n

h ;wh

� 	
þ4t FLW ðUn

h Þ;
dwh

dz

� �
�4t2

2
BU ðUn

h Þ
@F ðU n

h Þ
@z

;wh

� �

�4t2

2
HðU n

h Þ
@F ðUn

h Þ
@z

;
dwh

dz

� �
þ4t BLW ðU n

h ;whÞ
� 	

8wh 2 V 0
h

ð18Þ

subjected to the boundary conditions defined earlier.

Here,

FLW ðUÞ ¼ F ðUÞ þ 4t
2

HðUÞBðUÞ and BLW ðUÞ ¼ BðUÞ þ 4t
2

BU ðUÞBðUÞ

Linear stability analysis [17] suggests that the following condition should be
satisfied:

Fig. 5. Actual arterial tree model employed in numerical computations
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4t �
ffiffiffi
3
p

3
min
0�i�N

hi

maxðk1;i; k1;iþ1Þ

� �
ð19Þ

where k1;i denotes the value of k1 at ith mesh node. The interval ½za; zb� is divided
into N linear elements ½zi; ziþ1�; i ¼ 0; 1; . . . ;N with zi ¼ aþ ihi, hi being local
element size.

The various steps involved in the sequential computation of the solution of ðA;QÞ
for the entire arterial tree are presented schematically through the computational
flow diagram in Figure 3.

Fig. 6. Comparison of ‘A’ values obtained from sequential and parallel computation corresponding to
the proximal ends of (a) Ascending Aorta, (b) External Carotid Artery, (c) Abdominal Artery and (d)

Anterior Tibial Artery

Fig. 7(a). Speedup factor vs. PEs number obtained in the parallel computation with sinusoidal inflow
waveform

Fig. 7(b). Efficiency factor vs. PEs number obtained in the parallel computation with sinusoidal inflow
waveform

c
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4 Parallel Implementation

In view of the explicit nature of the computational scheme discussed under Sec-
tion 2 and the geometry of the domain (Arterial tree) under consideration, one
may think of two different strategies for the parallel computation of the solution
to the mathematical model, namely, (a) Data Parallelization and (b) Algorithmic
Parallelization. Under the former approach one would essentially partition the
grid and distribute the same among various Processing Elements (PEs) to con-
currently carry out all the computations related to those grid points primarily on
those PEs with the necessary communications. Whereas, under Algorithmic
Parallelization one would to begin with segregate the computations related to
various field variables of the model under study, which in this case happens to be
two (i.e. A;Q), and assign a cluster of PEs to carry out all the computations
pertaining to each of these variables. Further, on each of these clusters a data
parallelization strategy is adopted. This approach would lead to memory eco-
nomic computations on PEs. But assigning the A and Q component of a grid node
to different processors would result in a lot of communication. Typically, one
needs to that communication cost should grow asymptotically slower than
computation cost for an increasing problem size (number of dofs). This can be
achieved by the data parallel approach. Also, owing to the 1-D nature of the
model and memory not being an issue we have adopted the former strategy in
preference to the later, as it would avoid the extra book-keeping related to the grid
partitioning on different clusters and the need for a special communication layer
for inter and intra data transactions among the various PEs sitting in different
clusters.

As a first step towards the development of a suitable MIMD parallel algorithm
under the paradigm of data parallelism approach one has to carry out a through
data flow analysis to trace out the exact data dependencies between the various
stages of the sequential computation procedure. For this purpose data flow
graphs depicting the data dependencies among various modules constituting the
sequential code have been generated. Under the current sequential solution
strategy, the data dependency graphs for either of the field variables (i.e. A;Q)
turn out to be one and same. Hence, it is enough to trace he dependency graphs
w.r.t. one of these variables say, A. The various states in the data flow graphs for
the variable A in Figure 4(a–c) correspond to various modules in source code as
follows:

1. i/o modules: (1) read-data (artery geometry, arterial wall properties, control
parameters, inflow details etc.)

2. Solution Process modules: (2) prep_bc (setting arterial network connectivity for
applying boundary conditions), (3) define artery geometry (discretizing the

Fig. 8a. Speedup factor vs. PEs number obtained in the parallel computation associated with realistic
inflow waveform

Fig. 8b. Efficiency factor vs. PEs number obtained in the parallel computation associated with realistic
inflow waveform
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domain, checking the presence of a stenosis or a vascular prosthesis or a stent
etc.), (4) put_bc (setting the interface boundary conditions for various arteries
to maintain the continuity of solution in the arterial tree during temporal
evolution of periodic solution), (5) init-modelle1D (initializing various data
structures related to special computations during temporal evolution of peri-
odic solution), (6) Solver (carries out the actual Taylor-Galerkin sequential
scheme on various arterial segments, (7) update_W12_n (update the charac-
teristic variables after every special computation before progressing to the next
time step), (8) store_sol (stores the solution history).

The data flow graph depicting the data dependencies between the eight modules
listed above is shown in Figure 4(a). Here the arrows emerging from state 0i0 to
0j0 indicate the data dependency of state 0j0 on 0i0. The space and the time
control loops decide the modules involved in temporal evolution of spatial
solutions. Here, firstly one would investigate the possible parallelism in the
modules under time and space control loops. Under the time-marching
numerical scheme, the temporal loop is not parallelizable. However the data-
dependencies among the modules 5, 6 and 7 under spacial loop are local, i.e.
confined to individual arteries in the arterial tree, and hence are amenable to
data parallelization. One has to investigate the presence of any data parallelism
within other left out modules (i.e. 1, 2, 3, 4 and 8). As modules 1 and 8 are
related to i/o operations, no further investigation is needed other than checking
the hardware parallel i/o capability on the target parallel computing platform, if
it is an i/o intensive computation. Clearly the current 1-D calculations are not
an i/o intensive computation. Modules 3 and 4 are to be further investigated.
Module 4 being inside the time loop will be the first one to be considered. It
has two sub-modules, namely, (4.1) W_interface_2t (to fix the boundary con-
ditions at the interface between the two arteries) and (4.2) W_interface_3t (to
fix the boundary conditions at the interface between the main artery and the
two arteries bifurcating from it). Each of these sub-modules again has the
similar set of sub-sub-modules. The sub-sub-modules under (4.1) and (4.1.1)
compute-eig (computes eigen values), (4.1.2) interpolate (carries out interpola-
tion of characteristic values), (4.1.3) var_to_Riemann (evaluates characteristic
variables from A and Q), (4.1.4) calculate_F2 (Evaluates flux terms), (4.1.5)
calculate-JF (evaluates Jacobian associated with flux calculations), (4.1.6)
DGETRF, (4.1.7) DGETRI (LAPACK routines). The data flow graphs cor-
responding to the modules under (4) are provided in Figures 3(b-c). From
Figure 3(b) one may notice that the modules (4.1) and (4.2) may be executed
concurrently. Data flow graph in Figure 3(c) depicts very little scope for further
parallelism under module (4.1).

Fig. 9(a). Speedup factor vs. PEs number obtained in the parallel computation to assess the influence
of CFL number with sinusoidal inflow waveform

Fig. 9(b). Speedup factor vs. PEs number obtained in the parallel computation to assess the influence
of CFL number with realistic inflow waveform

b
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The second step towards the development of parallel algorithm is to build a time
profile table for the sequential code. The time profile data of the sequential exe-
cution when 4t ¼ 0:000025;4x ¼ 0:1 is presented in Table 2. From the time
profiles it is clear that most of the execution time is devoted to the time loop and
of this more than 90% of time is taken by the space loop consisting of modules 5,
6 and 7. Dataflow graphs suggest that space loop is amenable to data parallelism.
Now an appropriate load-distribution strategy has to be devised to maximize the
computation on all PEs and to simultaneously minimize the communications
among PEs.

Greedy Algorithmic approach has been used to devise a load distribution strat-
egy. A Greedy algorithm or a ‘‘single minded’’ algorithm is an algorithm that
gobbles up all its favorites first. The idea behind it is to perform a single procedure
in the recipe over and over again until it can’t be done any more and see what kind
of results it will produce. It is one of the ways of approaching the problem and it
may lead to very good results at times. Sometimes it may not completely solve the
problem too. In the current situation of distributing arteries with different lengths
and with different degrees of freedom to PEs a greedy load distribution strategy
seems to work. The idea behind this Greedy approach is to first arrange the
arteries in a descending order with respect to their associated degrees of freedom

Fig. 10. Time history plots of (a) pðx; tÞ, (b) Qðx; tÞ, (c) W1ðx; tÞ and (d) W2ðx; tÞ over a period of 4T
associated with Ascending Aortic Artery in the absence of terminal resistance
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(or length) and keep assigning the load (i.e. arteries) to the first identified PE with
least load (i.e. First PE with least load is allowed to snatch the load for compu-
tation). This Greedy approach is seen to lead to an acceptable and nearly even
load-distribution in the present situation. Table 3 presents the load-distribution
achieved by this approach when applied to our simplified arterial tree model. In
Table 3 load distribution pertaining to the arterial tree model with total degree of
freedom (i.e. 2818 � 2) on 2, 4, 8 PEs are presented. Here one may note that the
Greedy load distribution strategy has been implemented in a static manner i.e.
load-distribution module is run as a pre-processing module on all the PEs. Fur-
ther, it assumes that there are more arteries than processors and load difference
between the arteries is not too much. In case of any significantly large variation in
the load between arteries, for parallel computations one may think of segmenting
such arteries with very large loads, with due consideration made to the commu-
nication overheads, into smaller ones with suitable interface conditions. It is also
to be noted that the module 4 has not been parallelized because of the following
reasons- (1) it takes less than 8% of the time control loop execution time, (2) its
parallelization demands a involved communication transactions which may
effectively lead to a loss in speedup factor as quantum of data-parallelism under it
is insignificant.

Fig. 11. Time history plots of (a) pðx; tÞ, (b) Qðx; tÞ, (c) W1ðx; tÞ and (d) W2ðx; tÞ over a period of 4T
associated with Ascending Aortic Artery in the presence of terminal resistance

On Parallel Computation of Blood Flow in Human Arterial Network 341



The parallel computations have been carried out on parallel computer
MASG68 at EPFL, Lausanne. MASG68 is a Silicon Graphics Deskside Origin
2000 class of machine with eight R10000 Processing Elements under IRIX
6.5.4f operating system. It uses Silicon Graphics distributed shared-memory
multi-processing architecture i.e. S2MP. The current parallel implementation is
primarily based on Message Passing Interface libraries (MPI 3.1.X.15) as on
MASG68 machine.

5 Results and Discussions

The actual human vascular tree model employed in the numerical computations is
depicted in Figure 5. One may note here that in the flow model the arteries are
treated as linear segments and no bifurcation angle is accounted for. For a dis-
cussion on how to include bifurcation angle into consideration, the reader may
refer to [6]. For the numerical simulations in our simplified human vascular model
two different inflow pressure impulses [6, 7], have been considered at the proximal
end of Ascending Aorta. In the discussion to follow the first of these inflow
conditions, defined by:

Fig. 12. Time history plots of pðx; tÞ corresponding to (a) Right Carotid Artery, (c) Abdominal Artery,
(e) Left Femoral Artery with sinusoidal inflow waveform in the absence of terminal resistance.

Corresponding Qðx; tÞ plots are in Figures 12(b, d, f)
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Að0; tÞ ¼ P0 þ 20000 sinð400pðt � t0ÞÞð Þ
4b2

ð19Þ

will be referred to as sinusoidal inflow. The second inflow condition given by

Að0; tÞ¼ 1:01�0:02sinð400pðt� t0ÞÞ�0:02sinð800pðt� t0ÞÞ�0:01cosð800pðt� t0ÞÞ
ð20Þ

shows a more realistic waveform and will be referred to as ‘‘realistic inflow’’.

In view of periodic nature of the inflow waves all the computations have been
carried out for a period of four cycles i.e. 4T , T being the period of one cycle
which in this case happens to be unit value. Results to be discussed clearly indicate
that the simulations for four cycle time stretch is adequate to ensure the period-
icity in solution.

To begin with, the parallel code has been validated by solving the system of
equations (1–2) representing the flow in our human arterial tree model and
comparing the results obtained by the validated sequential code [6]. For this

Fig. 13. Time history plots of pðx; tÞ corresponding to (a) Right Carotid Artery, (c) Abdominal Artery,
(e) Left Femoral Artery with sinusoidal inflow waveform in the presence of terminal resistance.

Corresponding Qðx; tÞ plots are in Figures 13(b, d, f)
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comparison we have chosen four different arteries namely, Ascending Aorta,
External Carotid Artery, Abdominal Artery and Anterior Tibial Artery repre-
senting the top, middle and the bottom portions of the arterial tree model. In
Figures 6(a–d) the values of A and Q corresponding to these four arteries obtained
with the parallel computations are in 100% agreement with those from the
sequential computations. For these numerical computations a sinusoidal pressure
pulse (i.e. for A) as inflow condition from heart to proximal end of Ascending
Aorta has been considered. One may notice that despite the initial data is A ¼ A0

and Q ¼ 0 everywhere, the periodicity of the solution established in the second
cycle itself.

Now the performance of the parallel code in terms of speedup and efficiency
factors will be discussed in detail. For this purpose, four different cases consisting
of (1) 5636, (2) 9800, (3) 14700 and (4) 29400 degrees of freedom (dof)
have been considered. These four cases correspond to the grid size 4x or
h ¼ 0:2ð0:5Þ; 0:15; 0:1; 0:05. The corresponding 4t values are 3e-05, 5e-05, 25e-06
and 3e-06. These values have been chosen in view of the stability criteria. Pri-
marily numerical simulations have been carried out on 0n0 number of PEs
(n ¼ 1; 2; 3; 4) of MASG68. The speedup factor is measured as the ratio of CPU
time taken to run the code on one processor to the time taken to run the code on

Fig. 14. Time history plots of W1ðx; tÞ corresponding to (a) Right Carotid Artery, (c) Abdominal
Artery, (e) Left Femoral Artery with sinusoidal inflow waveform in the absence of terminal resistance.

Corresponding W2ðx; tÞ plots are in Figures 14(b, d, f)
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‘n’ processors. The efficiency factor is measured by the ratio of speedup factor to
the number of PEs. The speedup and efficiency factors corresponding to the
parallel implementations with sinusoidal inflow condition are presented in Figures
7(a–b). In Figures 8(a–b) the speedup and efficiency factors corresponding to
realistic wave inflow condition are presented. From Figures 7(a) and 8(a) it may
be noted that as the data size is increased from 5636 dof to 29400 dof there is a
definite increase in the speedup factor. With the increase in data size i.e. as we
move from case (1) to case (4) the speedup factor, on four PEs, in Sine wave
inflow case increases from 2.865 to 3.49 and in realistic wave case it increases from
2.89 to 3.482. In Figures 7(b) and 8(b) the corresponding efficiency factors are
presented. Clearly with the increase in data size parallel code gets more efficient.
As we move from case (1) with 5636 dof to case (4) with 29400 dof on four PEs,
with both the inflow conditions more than 87% efficiency has been achieved. With
29400 dof on eight PEs the efficiency drops down to 68%. With the further
increase in data size an improvement in efficiency level is noticed. Since there is
only a marginal variation in the solution as one moves from 9800 dofs to higher
dofs the idea of further increasing the data size is not followed up.

Next the influence of CFL number on the speedup factor is analysed. On keeping
the grid-size 0h0 constant and on decreasing 04t0 the stability criteria is satisfied to

Fig. 15. Time history plots of W1ðx; tÞ corresponding to (a) Right Carotid Artery, (c) Abdominal
Artery, (e) Left Femoral Artery with sinusoidal inflow waveform in the presence of terminal resistance.

Corresponding W2ðx; tÞ plots are in Figures 15(b, d, f)

On Parallel Computation of Blood Flow in Human Arterial Network 345



an increased extent. However this will lead to an increase in the bulk of the
computational work. This increase in computational load is due to the increase in
number of time steps and not due to the increase in dof. To assess its influence on
the performance of the parallel code settings based on case (b) i.e.
4x ¼ 0:15;4t ¼ 0:00005 have been considered. The speedup factors corre-
sponding to this case, as 4t is decreased from 0.00005 to 0.000025 both for
sinusoidal inflow and realistic inflow conditions, are presented in Figure 9(a) and
9(b). From these two figures it is clear that as the CFL number is decreased by
decreasing4t keeping4x (i.e. h) fixed, there is a gain in the speedup factor due to
the increase in computational load. Though actually the ratio of computation to
communication is not changed there is a change in the ratio of computation time
to communication time. This is due to faster communication enabled by the
tightly coupled shared memory architecture of SGI 2000 series of machines with
high bandwidth inter connectors called NUMAlinkTM.

In Figures 10(a–d) and 11(a–d) time histories of pðx; tÞ;Qðx; tÞ;W1ðx; tÞ;W2ðx; tÞ
over a period of 4T for Aortic artery with sinusoidal inflow pressure wave pattern
in the absence and presence of terminal resistance are presented respectively. The
pattern of W1ðx; tÞ in Figures 10(c) and 11(c) match very well with those presented
by Sherwin et al. [7]. From Figures 10(a) and 11(a) corresponding to the pressure

Fig. 16. Time history plots of (a) pðx; tÞ, (b) Qðx; tÞ, (c) W1ðx; tÞ and (d) W2ðx; tÞ corresponding to the
Left Anterior Tibial Artery in the absence of terminal resistance
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waves in Aortic artery one may clearly find that introduction of a terminal
resistance into the arterial tree model leads to more oscillations specially in the
vicinity of peak pressure locations. One may also notice that in the presence of
terminal resistance the minimum values reached by the pressure are positive and
the manner in which the pressure waves reach their minimum values is also dif-
ferent. From Figures 10(d) and 11(d) corresponding to the characteristic waves
W2, one may notice that the spikes get flattened (with small oscillations) when
terminal resistance is introduced. Also the minimum value attained by the char-
acteristic waves is enhanced.

Now in Figure 12(a–f) and 13(a–f) time histories of pðx; tÞ and Qðx; tÞ over a
period of four cycles for Right Carotid artery, Abdominal Artery and Left
Femoral Artery with sinusoidal inflow pressure wave pattern in the absence and
presence of terminal resistance are presented respectively. The corresponding
characteristic waves W1ðx; tÞ and W2ðx; tÞ both in the absence and presence of
terminal resistance are presented in Figures 14(a–f) and 15(a–f) respectively. In
Figures 16(a-d) and 17(a-d) time histories of pðx; tÞ;Qðx; tÞ;W1ðx; tÞ and W2ðx; tÞ
corresponding to the Left Anterior Tibial Artery are presented. Clearly the time
history plots depict that the pressure, flow and characteristic wave patterns in the
entire arterial network are very sensitive to the pressure of terminal resistance.

Fig. 17. Time history plots of (a) pðx; tÞ, (b) Qðx; tÞ, (c) W1ðx; tÞ and (d) W2ðx; tÞ corresponding to the
Left Anterior Tibial Artery in the presence of terminal resistance
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The inclusion of resistance to the terminal arteries increases the number of waves
in the system due to the forward traveling waves being reflected at the terminal
vessels and introduces backward traveling waves, W2, which are re-reflected at the
bifurcations, hence a complex pattern of waves occur in the network. Introducing
resistance has changed the shapes of all the waves throughout arterial network.
The shape of the waves varies significantly from vessel to vessel whereas the
shapes of the waves in the network with no terminal resistance were all very
similar. For perfectly matched arteries there should be no backward traveling
wave, W2, if there is no terminal resistance because there should be no reflections
at the bifurcations and there are no reflections at the terminal vessels. Figure 16(d)
shows that there is no W2 wave at the Left Anterior Tibial Artery. But from
Figures 10(d), 14(b), 14(d), 14(f) and 16(d) one may find small W2 wave in some of
the arteries because they are not perfectly well-matched forward waves and
consequently small reflections occur at the bifurcations. Since the reflection co-
efficients are close in terminal vessels, W2 is similar in magnitude to W1 and will
have a large effect on the waveforms, particularly in the end vessels (Figure 17(d)).
All these observations agree well with those reported by Sherwin et al. [7].

Next in Figures 18(a–d), 19(a–f) and 20(a–d) time histories of pðx; tÞ;Qðx; tÞ;
W1ðx; tÞ;W2ðx; tÞ, in Ascending Aorta, Left Carotid Artery, Abdominal Artery,
Femoral Artery and the Tibial Artery when the inflow pressure wave is a realistic

Fig. 18. Time history plots of (a) pðx; tÞ, (b) Qðx; tÞ, (c) W1ðx; tÞ and (d) W2ðx; tÞ corresponding to the
Ascending Aorta in the presence of terminal resistance when the inflow pressure wave is a realistic wave
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wave, as described in equation (21) are presented in the presence of terminal
resistance. On comparing the peak values in pressure and flux plots corresponding
to the case of sinusoidal inflow pressure with terminal resistance (i.e. Figures
11(a–d), 13(a–f), 17(a–d)) with those in Figures 18(a–d), 19(a–f) and 20(a-d) one
may notice that the influence of sinusoidal wave inflow condition is more pro-
nounced than that of realistic wave inflow condition even as far as Tibial Artery.

6 Conclusions

A MIMD parallel flow computation of blood flow in a simplified arterial network
consisting of 55 main arteries has been successfully carried out by Taylor Galerkin
Finite Element Method. Data flow graphs in conjunction with time profiles of
sequential algorithm have been found to be effective in developing the parallel
algorithm. The Greedy approach in load distribution has lead to a nearly equal
automatic static load distribution on all PEs. Presence of terminal resistance is
found to influence pressure and velocity waveforms in the entire human arterial
network. The parallelization of the 1D code is an important step towards multi-
scale model based cardio-vascular flow simulations.

Fig. 19. Time history plots of pðx; tÞ corresponding to (a) Right Carotid Artery, (c) Abdominal Artery,
(e) Left Femoral Artery with realistic inflow waveform in the presence of terminal resistance.

Corresponding Qðx; tÞ plots are in Figure 19(b, d, f)
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