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Abstract Partial least squares regression (PLSR) is a method of finding a reliable
predictor of the response variable when there are more regressors than observations.
It does so by eliciting a small number of components from the regressors that are
inherently informative about the response. Quantile regression (QR) estimates the
quantiles of the response distribution by regression functions of the covariates, and so
gives a fuller description of the response than does the usual regression for the mean
value of the response. We extend QR to partial quantile regression (PQR) when there
are more regressors than observations. For each percentile the method provides a low
dimensional approximation to the joint distribution of the covariates and response with
a given coverage probability and which, under further linearity assumptions, estimates
the corresponding quantile of the conditional distribution. The methodology parallels
the procedure for PLSR using a quantile covariance that is appropriate for predicting
a quantile rather than the usual covariance which is appropriate for predicting a mean
value. The analysis suggests a new measure of risk associated with the quantile regres-
sions. Examples are given that illustrate the methodology and the benefits accrued,
based on simulated data and the analysis of spectrometer data.
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36 Y. Dodge, J. Whittaker

1 Introduction

Partial Least Squares Regression: Partial least squares regression (PLSR) is a
procedure that concentrates on dimension reduction to make prediction and originates
from work by Wold in the 1960 and 1970’s. To paraphrase Martens and Naes (1989,
p. 118–119) “PLS is a loose term for a family of …multivariate modelling methods
derived from Herman Wold’s basic concepts of iterative fitting of bilinear models in
several blocks of variables. The chemometric version …was originally developed as a
two block algorithm, consisting of a sequence of partial models fitted by least squares
…motivated by …geometrical considerations (a sequence of orthogonal projections)
rather than from a statistical optimization perspective.”

While there is no universal agreement on the best description of the PLS procedure,
if the variance matrix of the explanatory variables X is singular, it is acknowledged
that PLS performs well when ordinary least squares fails. The singularity may be due
either to collinearity or to so-called “fat” data when the size of the sample is less than
the number of variables. PLS succeeds by projecting the data onto a lower dimen-
sional subspace eliciting a relatively small number of components. In addition to its
predictive role, plots of the PLS components and their loadings, are often informa-
tive, providing a visual description of the relationship between X and Y replicable in
repeated experiments. PLS has many adherents, especially from chemometrics and
food science; it is a technique that works well in practise, especially for the analysis
of data incorporating spectrometer readings.

Martens and Naes (1989) give an extensive practical exposition. An excellent recent
theoretical review of the statistical basis for PLS is given by Helland (2001). It is
competitive with other similar statistical procedures, such as ridge regression (RR)
and principal components regression (PCR); see, for instance, Frank and Friedman
(1993) and more recently Hwang and Nettleton (2003). We note that the increasing
deployment of electronic monitoring technology that makes “fat” data applications
ever more common also makes PLS more relevant.

Quantile Regression: The seminal paper of Koenker and Bassett (1978) introdu-
ced the idea of regression quantiles that extend least absolute value, or L1, regression
with its robust qualities to the estimation of the quantiles of the residual distribution.
The method is based on the quantile loss function, or check function, ρ, defined for a
given τ ∈ (0, 1) by

ρτ (y) = y (τ − Iy<0(y)) (1)

where I is the indicator function. It has the property that minimising the expecta-
tion Eρτ (Y − α) with respect to α gives the τ th quantile, F−1(τ ), of Y . Quantile
regression finds the estimate of β that minimises

∑
j ρτ (y j − βT x j ) from a sample

of j = 1, 2, . . . , n observations on (x, y) where x is p-dimensional and y is scalar for
a given τ . With τ = 0.5 this becomes least absolute value regression estimating the
median of Y for given x , see Dodge and Jureckova (2000) for further discussion.

The set of regression estimates evaluated may elucidate a variety of queries.
Foremost is that plots of observed response values against median fitted values may
be augmented by the quantiles at these points, indicating how either the response
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Partial quantile regression 37

distribution or the residual distribution changes with the level of the response. Addi-
tionally, plots of the elements of β(τ) against τ determine whether the covariates have
a differing effect on the smaller values of the response variable compared to the larger.

Encouragingly the computational difficulties of large scale data analysis associated
with the L1 norm appear to be of a no greater order of magnitude than those associated
with least squares and the L2 norm, see Portnoy and Koenker (1997).

This paper develops partial quantile regression (PQR) which allows the computation
of regression quantiles within a PLS type procedure. The principal interest is to enhance
the fitted mean regression from PLSR with the additional information provided by
analysing the quantile behaviour. PQR, as QR itself, allows the examination of possibly
different regressions for each quantile, informative when the response distribution
departs from the standard homoscedastic normal. Additionally, if different components
are constructed for some quantiles it may lead to different interpretations of the way
underlying components affect the response variable. The advantage that QR has over
ordinary least squares (OLS) when the response variable is contaminated with outliers
is also inherited by PQR.

The question of how to best modify the PLS algorithm to compute the quantiles
and develop a procedure that separately estimates components for each quantile is
addressed. In standard PLS a component is determined by the covariance of each of
the individual explanatory variables with the response, using the ordinary covariance
operator which predicts a mean value of the response. The extension to PQR developed
here proposes a modification of the covariance, the quantile covariance, appropriate
for predicting the τ th quantile, and an associated measure of risk.

The algorithm for PQR is described in Sect. 2, and depends on the quantile
covariance which is defined in the Appendix. Examples are given in Sect. 3. The
first is a re-analysis of the well known Longley data to serve as a benchmark for PQR
computations. It is followed by some experimental data obtained from a simulation
from a bilinear factor model of interest to chemometricians, and simulations from a
multiplicative regression model and from a switching regression model that exhibit
variance heterogeneity and asymmetric tolerance intervals. Lastly, two examples of
spectrometer readings, one based on samples of corn and one on samples of fish are
analysed. In Sect. 4 the results of out of sample prediction are assessed and the paper
ends with a short discussion in Sect. 5.

2 Methodology

2.1 The PLS algorithm

There exist many descriptions and even several versions of the PLS algorithm, for
instance see Helland (1988), Martens and Naes (1989). These may differ in a variety
of ways including: the way in which the same calculation is performed, for instance,
from the output of a least squares fit or singular value decomposition, or by explicit
calculation; the way in which variables are initialised and intermediate coefficients
normalised; the way in which the successive steps are orthogonalised; additionally,
they may differ according to whether they apply to a multivariate response. That there
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38 Y. Dodge, J. Whittaker

is no universally agreed objective function for PLS is possibly the reason for a plethora
of approaches.

We describe the algorithms in population terms, that is, in terms of a p-dimensional
random vector X and a random scalar Y , rather than in terms of a sample. The advantage
is that we do not require the notation to handle the dimensions for the sample and
for the variables simultaneously. All the procedures may be described in terms of
expectations, so that sample, or empirical, versions are obtained by giving X and Y
the joint probability distribution that puts equal mass at the n sample observations
(x1, y1), (x2, y2), . . . , (xn, yn). The expectations and covariances become finite sums
over the n observations, and to make this clear the expectation is written as En .

The linear least squares predictor of Y from X ,

E(Y |X) = EY + cov(Y, X) var(X)−1[X − EX ], (2)

minimises the quadratic loss E(Y − α − βT X)2, see Whittaker (1990) or Christensen
(1991) for an exposition. It has its origins in the work of Doob who referred to it as a
linear expectation, see also Whittle (1983).

2.2 PLS: algorithm

The PLS algorithm is

0. Initialise: centre and scale the variables so that E(Xi ) = 0 and var(Xi ) = 1 for
i = 1, 2, . . . , p.

1. Repeat the steps:
1.1 Compute a direction c from ci = cov(Y, Xi ) for i = 1, 2, . . . , p, and nor-

malise so that cT c = 1.
1.2 Form the 1-dimensional component T = cT X and the least squares predic-

tors E(Xi |T ). Save T .
1.3 Adjust for T by replacing the elements of X by their residuals Xi− E(Xi |T ).

2. Stop: according to a given criterion, retaining the components (T1, T2, . . . , Tk)

and form the final predictor

E(Y |T1, T2, . . . , Tk).

2.3 PLS: remarks

There are some obvious remarks to make. The PLSR procedure reduces the dimension
of the predictand space from p to k components which are, by construction, inherently
informative about Y . The direction based on ci = cov(Y, Xi ) may be justified by the
fact that it is the solution to maximising cov(Y, cT X) subject to cT c constant. In
contrast to canonical correlation analysis, which employs the constraint cT var(X)c
constant, the computation of var(X)−1 is avoided.

The general form of the predictor (2) is employed at two points in the algorithm, at
step 1.2 with a 1-dimensional predictor, and at step 2 with a k-dimensional predictor.
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Partial quantile regression 39

The initialisation step may start by setting E(Y ) = 0. Some versions of the
algorithm may compute E(Y |T ) at step 1.2 and the residual Y − E(Y |T ) at step
1.3. However, this is strictly unnecessary as the subsequent iteration would compute

cov(Y − E(Y |T ), Xi − E(Xi |T ))

but this covariance equals ci = cov(Y, Xi − E(Xi |T )) due to the orthogonality of T
and Xi − E(Xi |T ). The final predictor E(Y |T1, T2, . . . , Tk) may be computed as a
sum because the resulting components are mutually orthogonal; in this case the whole
procedure only requires the fitting of 1-dimensional random variables.

As the iterations continue the residual variances of the adjusted explanatory
variables at step 1.3 decrease, and it is an important feature of PLS that these
variables are not rescaled to the initial value of 1 before recomputing ci at step 1.1. The
covariance used to compute ci is bilinear, and its relative size is directly proportional
to the size of the residual variation in the explanatory variables. Explanatory variables
with small residual variances are not well determined, and purely by chance may have
a high correlation with Y . If the variables were to be rescaled, for instance, by repla-
cing the covariance in step 1.1 by a correlation, the relative effect of the smaller ones
would be magnified.

2.4 The PQR algorithm

We wish to retain as many of the good properties of PLS as possible, including good
prediction, dimension reduction, the loadings plots, one dimensional computations,
but, in addition, to provide new information with a description of how the quantiles of
the response variable behave. Our strategy is to retain an identical algorithmic structure
but to replace the expectation and covariance operators used to calculate cov(Y, Xi )

and E(Y |T1, T2, . . . , Tk) by the quantile covariance covτ at (11) and the quantile
expectation Eτ defined at (10). The quantile expectation Eτ (Y ) is the τ th-quantile of
Y , and covτ (Y, X) is a covariance type measure of the association between Y and X
formulated in terms of predicting the τ th-quantile of Y from X . The details are given
in the Appendix.

2.5 Proposed PQR algorithm

Consider a p-dimensional random vector X = (X1, X2, . . . , X p) and a random scalar
Y . Fix the percentile τ . The PQR algorithm is

0. Initialise: centre and scale so that E(Xi ) = 0 and var(Xi ) = 1 for i = 1, 2, . . . , p.
1. Repeat the steps:

1.1 Compute a direction c from ci = covτ (Y, Xi ) for i = 1, 2, . . . , p, and nor-
malise so that cT c = 1.

1.2 Form the component T = cT X and the least squares predictor E(Xi |T ). Save
T .

1.3 Adjust for T by replacing the elements of X by their residuals Xi − E(Xi |T ).
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2. Stop: according to a given criterion, retaining the components (T1, T2, . . . , Tk)

and form the final predictor

Eτ (Y |T1, T2, . . . , Tk).

The algorithm for PQR follows the one for PLSR exactly with the redefinition of the
expectation and covariance operators at steps 1.1 and 2. A consequence is that, though
the retained components (T1, T2, . . . , Tk) remain mutually orthogonal, the quantile
expectation Eτ (Y |T1, T2, . . . , Tk) cannot be formed as a sum, and a k-dimensional fit
is required. Another difference is that it makes no sense to replace Y by its residual
adjusted for the component T at step 1.3, as is optional in the PLS algorithm. The
algorithm is repeated for a set T of values of τ ; in practise the number of values is
small.

2.6 The risk and number of components

It is now fairly widespread to use some form of cross validation (CV) to control model
complexity, here the number of components; for instance, Martens and Martens (2000).
The discussion of Hastie et al. (2001) makes clear that a CV type measure firstly, has
both to assess variation from estimation in the training sample and from prediction on
the test (or hold-out) sample; and secondly, is estimated empirically by resampling:
repeatedly separating the data set into training and test samples, either systematically
(e.g. traditional leave-one-out CV), or according using some form of randomisation.
We suppose the training sample size n and the test sample size n∗ are the same for all
repetitions of the resampling scheme.

The natural criterion to assess overall model fit is the risk, defined as the expected
loss for predicting Y from the k components. The risk for PQR is

Qτ (k) = 1

τ(1 − τ)
E ρτ [Y − Eτ (Y |T1, T2, . . . , Tk)], (3)

where the divisor in (3) attempts to standardise the risk for different values of τ , and
is exact for a uniform distribution. The risk for PLSR is the usual root mean square
error

Q(k) = √ E[Y − E(Y |T1, T2, . . . , Tk)]2. (4)

To make the dependence on the covariates in the predictor explicit we write µk
τ for

Eτ (Y |T1, T2, . . . , Tk) and note this is the linear combination µk
τ = X

′
βk

τ = µ(βk
τ , X)

say, where the β are the implied regression coefficients. Using this and definition (3),
the empirical PQR training risk is

Q̂τ (k) = 1

τ(1 − τ)
En ρτ [Y − µ(β̂k

τ , X)], (5)

based on a given training sample with coefficient estimates β̂k
τ .

123



Partial quantile regression 41

The test sample version gives X∗ and Y ∗ equal probability mass at the n∗ test
sample observations. For a given training and test sample, the PQR test risk is

1

τ(1 − τ)
En∗ ρτ [Y ∗ − µ(β̂k

τ , X∗)].

Finally, the CV measure for PQR is the average PQR test risk averaged over all
repetitions, r , of training and test samples in the resampling scheme

CVτ (k) = 1

τ(1 − τ)
Er En∗ρτ [Y ∗ − µ(β̂k

τ , X∗)]. (6)

A similar argument expresses the CV measure for PLSR

CV (k) = Er
√ En∗ [Y ∗ − µ(β̂k, X∗)]2. (7)

The decisions needed to implement this calculation include: the largest number
of components considered; the sizes of the training and test samples, n and n∗; and
whether the resampling is systematic or randomised and, if randomised, the number of
repetitions r . There seem to be no universal rules, and we are fairly agnostic about the
particular resampling scheme employed: one caveat is that an empirically determined
minimal value of n is needed to obtain a sensible training sample estimate of β̂k

τ , and
so the total sample size available is one constraint; another constraint is the computing
time taken to complete a single repetition.

We tend to favour a scheme that sets a minimal value of n, chooses n∗ to be
relatively large, and resamples randomly rather than systematically. This has the
advantages of limiting the number of repetitions and so fits (r around 20 seeming
adequate); and secondly, random resampling allows every configuration of test and
training sample to be drawn, at least in principle. For instance, leave-one-out CV
never considers predicting two observations, which if both aberrant, could give dif-
ferent assessments.

2.7 Interpretation of quantile regressions

PLSR approximates the joint distribution of (X1, . . . , X p, Y ) with p large by that
of (Tj , j = 1, . . . , k, Y ) with k small. PQR approximates the joint distribution of
(X1, . . . , X p, Y ) by that of (Tτ j , j = 1, . . . , k; Y ) for each τ ∈ T , and so provides
a set of approximations. These approximations are accurate for describing the condi-
tional distribution of Y given X , under further modelling assumptions.

Consider the PQR approximation, and take the simplest case in which k = 1 and
where the loadings corresponding to different percentiles τ are the same. Whatever
the percentile τ the PQR summary is (T1, Y ) where T1 is one dimensional.

Suppose the data are generated by the linear additive error model Y = α + γ T1 + E
where E⊥⊥T1. We use the symbol ·⊥⊥· to denote independence. The quantile of E is
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42 Y. Dodge, J. Whittaker

eτ = Eτ (Y − α − γ T1), whatever the distribution of T1. The regression quantile of
Y is interpretable as the quantile of E because of the conditional interpretation of
the model: for given T1 = t1 the quantile of Y is α + γ t1 + eτ . Plotted against t1 the
quantile regressions are parallel lines.

However, if E⊥⊥T1 is relaxed and, for instance, the error variance grows with T1,
a heteroscedastic regression model, the regression quantile of Y is ατ + γτ t1 and
the regression quantiles plotted against t1 fan out. In this case the regression line
(t1, y − ατ − γτ t1) can no longer be interpreted as a regression quantile of an error
E . But with the additional modelling assumption that the quantiles of the conditional
distribution of Y given X are linear in T1, the regression line becomes a statement
about the conditional distribution of Y given T1.

In general the conditional quantile differs from the linear regression quantile. In
this case the quantile regression line (t1, ατ + γτ t1) is interpretable as a coverage
property in the joint distribution of (T1, Y ), explicitly: the proportion of points in
(T1, Y ) that fall below the line is τ . The example in the Appendix illustrates this point,
and the quantile regression serves as a good approximation to the quantiles of the
conditional distribution.

We now turn to the interpretation of PQR components when components at different
values of τ are different linear functions of X . Suppose the two percentiles for which the
components are different are τ1 and τ2, again suppose k = 1 and drop the j = 1 suffix.
The approximating distributions are (Tτ1 , Y ) and (Tτ2 , Y ), and the regression quantile
of Y , at τ1 say, is ατ1 + γτ1 tτ1 . The coverage property interpretation is that in the joint
distribution (Tτ1, Y ) the proportion of points that lie below the line (tτ1, ατ1 + γτ1 tτ1)

is τ1.
Making the further modelling assumption that the conditional distribution of Y

given Tτ1 has linear quantile regressions, gives a stronger conditional interpretation
to the regressions.

A further example in the Appendix of a “triangular” distribution shows regression
quantiles that differ for different τ .

The coverage property interpretation extends to arbitrary values of k and τ . The
practical implication of different components for different τ is that different linear
combinations of X are best for predicting different quantiles of Y .

3 Examples

The four initial examples are chosen to exemplify the PQR technique. The first is the
small and well known Longley data set; the second is a simulation from a bilinear
latent variable model; the third is a multiplicative regression in which the variance
increases with mean; and the fourth is an instance of a non-linear switching model.
We then give two applications for data of interest to chemometrics.

The calculations for PQR require computation of quantile regression estimates and
were performed using the R software available from http://lib.stat.cmu.edu/R/CRAN,
and downloading the library for quantile regression, provided by Koenker, http://www.
econ.uiuc.edu/~roger/research/home.html.
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Table 1 Longley example: ordinary and implied regression coefficients

Coefficients a b1 b2 b3 b4 b5 b6

Fitting all variables

OLS 0 0.0463 −1.01 −0.538 −0.205 −0.101 2.48

0.25 −0.0546 0.302 −1.72 −0.625 −0.234 0.165 2.74

0.50 −0.0197 −0.0227 −1.48 −0.597 −0.231 −0.136 3.09

0.75 0.0425 −0.0401 −0.243 −0.452 −0.177 0.0577 1.58

Fitting 2 components

PLS 0 0.242 0.264 −0.092 0.129 0.228 0.236

0.25 −0.202 0.443 0.561 0.114 0.131 0.0240 −0.147

0.50 0.0422 0.212 0.134 0.00110 −0.0331 0.259 0.362

0.75 0.146 0.211 0.221 0.0624 0.0775 0.224 0.236

3.1 Example 1: Longley’s data

We analyse the data discussed by Longley (1967) in order to provide a simple
benchmark for the computations required for PQR. It is a well-known example of
collinear regression that consists of seven macroeconomic variables, observed yearly
from 1947 to 1962. It serves as a good example for a dimension reduction procedure
such as PLSR, because all explanatory variables appear informative, but when all are
included in the regression the results are unstable.

The explanatory variables are GNP price deflator, GNP, unemployment, armed
forces size, adult population, and year, and the number of people employed is taken as
the response. Here n = 16 and p = 6. All the explanatory and the response variables
are standardised to have mean zero and variance 1. This implies that coefficients from
single variable regressions may be interpreted as correlation coefficients and, in other
regressions, have the same order of magnitude as a correlation.

The upper half of Table 1 displays the regression coefficients for the 6 explanatory
variables, and the intercepts, obtained from a standard multiple regression (OLS) and
three standard quantile regressions with τ = 0.25, 0.5, 0.75. The pattern is similar for
all four regressions: several of the values are well outside (−1, 1) with, for instance,
large values of b6 in part compensated for by large negative values of b2 reflecting the
near collinearity of this data set.

The tables and plots obtained from a PLSR analysis, similar to the analyses of
Martens and Naes (1989), and parallel results from a PQR using the percentiles
τ = 0.25, 0.5, 0.75, are presented here.

The estimated least squares risk (4) and quantile risk (3) from fitting an increasing
number of components is plotted in Fig. 1a.

For both PLSR and PQR the risk is substantially reduced by including one com-
ponent and there may be an argument for including a second, or even a third, in the
predictor.

The standard deviations of the components are plotted in Fig. 1b. The standard
deviations of PLS components 2 and 3 are larger than their PQR counterparts, but
otherwise the pattern is similar for all regressions. The values for components 4, 5 and
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Fig. 1 PLS and PQR analysis for the Longley data: a estimated risk after fitting upto 6 components;
b standard deviations of the first 6 components; c PQR component plot for upper and lower quartiles plotted
against the median component (k = 1); d observed and fitted values based on k = 2 components plotted
against the fitted median. Colour code: observations yellow points; PLSR dotted black line, PQR τ = 0.25
red line or points, PQR τ = 0.5 dashed thick blue line, PQR τ = 0.75 green line or points

6 are near zero and reflect the collinearity in the data set. Further analyses here are
based on choosing two components for each of the four regressions.

The implied regression coefficients in the bottom half of Table 1 based on fitting just
two components are rather different from the OLS and QR estimates in the upper half of
the table. Their overall magnitude is now plausible. Since the variables are standardised
to mean 0, the intercepts are plausible with (−0.202, 0.042, 0.146) estimating the
quartiles of conditional distribution of the response at the mean value of the explanatory
variables. The regression equations for the PLSR and the PQR with τ = 0.5 and
τ = 0.75 are broadly similar. However, the regression equation for the lower quartile
with τ = 0.25 puts less weight on variables 5 and 6 and more on variables 1 and 2.

The loadings, the values of the coefficients c1 and c2, are displayed in Table 2.
The scatterplot of the two loadings (not shown) indicate that four of the 6 explanatory
variables cluster together, and a pairs plot (not shown) indicates that it is these variables
that account for the collinearity. The vector c1 is broadly the same for all regressions
but the second displays some somewhat complex differences.
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Table 2 Longley example: variable loadings of first two components

Variable 1 2 3 4 5 6

c1

PLS 0.472 0.478 0.244 0.222 0.467 0.472

0.25 0.478 0.471 0.269 0.186 0.457 0.483

0.50 0.485 0.465 0.245 0.284 0.465 0.438

0.75 0.377 0.402 0.240 0.554 0.425 0.388

c2

PLS 0.108 0.199 −0.962 0.122 0.0509 0.0805

0.25 0.294 0.499 −0.064 0.0443 −0.396 −0.708

0.50 0.426 0.284 0.0251 −0.0326 0.509 0.69

0.75 0.469 0.484 0.0472 −0.122 0.478 0.548

Figure 1c is the PQR component plot with the components for the upper and lower
quartiles for k = 1 plotted against the median component. It shows very little difference
between the three components.

Figure 1d plots the observed values of Y and the fitted quantiles against the median
fitted value E0.5(Y |T1, T2). These PQ regressions respect the monotonicity property:
that at a given x the fitted values with τ1 exceed those with τ2 whenever τ1 > τ2.

3.2 Example 2: bilinear factor model data

We sample from a bilinear factor model, described in the PLS literature by Martens
and Naes (1989)

X = AZ + E and Y = B Z + F,

where X and Y are linear combinations of a latent vector Z with independent standard
normal errors E and F . The data used below was generated with Z consisting of
independent standard normal variables. The A and B matrices are partitioned so that
X = (X1, X2) where X1 depends on (Z1, Z3), X2 depends on (Z2, Z3), but Y depends
on (Z1, Z2). The correlation induced by Z3 leads to two components extracted. The
sample size was n = 120 and the number of explanatory variables p = 32.

Figure 2 summarises the results. In panel (a) the risks for each quantile indicate
that k = 2 components are needed (confirmed by cross validation).

Figure 2b plots observed and fitted values based on k = 2 components against the
fitted median. The variation in the median is matched by the upper and lower fitted
quantiles, and this is more clearly displayed by Loess smoothing in Fig. 2d, using the
default settings of the R function. The smoothed quantiles are approximately parallel,
which reproduces a feature of the generating model.

The residuals, Y − E0.5(Y |T1, T2), together with the (smoothed) median adjusted
quantiles Eτ (Y |T1, T2) − E0.5(Y |T1, T2) for τ = 0.25, 0.75, are plotted against the
rank order of the residual in Fig. 2c. Approximately 1/4, 1/2 and 3/4 of the residuals fall

123



46 Y. Dodge, J. Whittaker

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

component

R
is

k

−1.0 −0.5 0.0 0.5 1.0 1.5

−
2

−
1

0
1

2

fitted median

ob
s 

&
 fi

tte
d

0 20 40 60 80 100 120

−
2

−
1

0
1

2

rank

re
si

ds
 &

 fi
tte

d

−1.0 −0.5 0.0 0.5 1.0 1.5

−
2

−
1

0
1

2

fitted median

ob
s 

&
 fi

tte
d

(a) (b)

(c) (d)

Fig. 2 Bilinear factor data, n = 120, p = 32: a estimated risk after fitting upto 6 components; b observed
and fitted values based on k = 2 components plotted against the fitted median; c rank plot of ordered
residuals with associated smoothed median adjusted fitted values; d observed and smoothed fitted values
based on k = 2 components plotted against the fitted median. Colour code: observations yellow points;
residuals orange points; PLSR dotted black line, PQR τ = 0.25 red line, PQR τ = 0.50 dashed thick blue
line, PQR τ = 0.75 green line

below the lower quantile, the median and the upper quantile, respectively, as expected
under this generating model.

Under this model the conditional distribution of Y given X is normal with homos-
cedastic error terms, and it is easy to verify that the theoretical loadings in PQR are
the same for each percentile τ . This is empirically verified in the plots of the PQR
loadings (not shown here). In this example the implied regression coefficients of Y
on X have a characteristic structure dependent upon A and B, which is reproduced
empirically in an index plot (also not shown). Interestingly this reveals that PLS es-
timates have smaller sampling variation than PQ estimates because sampling under a
Gaussian model makes LS most efficient.

3.3 Example 3: heteroscedastic regression data

A multiplicative model is generated using the log-normal distribution. A linear predic-
tor, η, is formed as an average of the elements of X which are generated independently

123



Partial quantile regression 47

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

component

R
is

k

0 20 40 60 80 100

−
1

0
1

2
3

index

ob
s 

&
 fi

tte
d

−1.0 −0.5 0.0 0.5

−
1

0
1

2
3

fitted median

ob
s 

&
 fi

tte
d

0 20 40 60 80 100

−
1

0
1

2
3

index

ob
s 

&
 fi

tte
d

(a) (b)

(c) (d)

Fig. 3 Heteroscedastic regression data, n = 100, p = 60: a estimated risk after fitting upto 6 components;
b index plot for observed and fitted quartiles; c observed and (smoothed) fitted quartiles based on k = 2 com-
ponents plotted against the fitted median; d index plot for observed and (smoothed) fitted quartiles. Colour
code: observations yellow points; PLSR dotted black line, PQR τ = 0.25 red line or points, PQR τ = 0.50
dashed thick blue line, PQR τ = 0.75 green line or points

standard normal, and Y is sampled by specifying log(Y ) is normal with mean η and
variance 1. The model is characterised by an increasing variance dependent on the
mean. A sample of n = 100 observations based on p = 60 explanatory variables was
generated, and the results are displayed in Fig. 3.

The declining risk from fitting upto 6 components is displayed in Fig. 3a. An index
plot of the observed and fitted quantiles is displayed in Fig. 3b. The smoothed version
of this panel is displayed in Fig. 3d below and the lack of symmetry in the response
distribution becomes evident.

In Fig. 3c the observations and the (smoothed) fitted quantile regressions are plot-
ted against the fitted median, and show (i) that the variation in the median is quite
substantial; (ii) the fitted quantile regressions separate with increasing median and
do not form parallel curves, and (iii) here the lower quartile and the median actually
intersect, in part a function of the Loess smoothing.

Clearly, given the generating model, a more efficient analysis would be to transform
the response by taking logs. The PQR components plot (not shown) display substantial
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Fig. 4 Switching model data, n = 120, p = 20: a estimated risk after fitting upto 6 components; b standard
deviations of the first 6 components; c PQR component plot for upper and lower quartiles plotted against
the median component (k = 1); d observed and smoothed fitted values based on k = 2 components plotted
against the fitted median. Colour code: observations yellow points; PLSR dotted black line, PQR τ = 0.25
red line or points, PQR τ = 0.50 dashed thick blue line, PQR τ = 0.75 green line or points

scatter among the components indicating different components are produced at the
three percentiles.

3.4 Example 4: data from a switching regression model

Underlying latent variables have distributions M ∼ Uniform, Z ∼ N and, to induce a
switch, S ∼ Bernoulli on {−1, 1}. The covariates are partitioned into X = (X1, X2),
and are related to the latent variables by X1|M ∼ N(m1, I ), X2|Z ∼ N(z1, I ), and
Y |S, M ∼ N(sm + z, 1). The non linear model generated shows that scatter plots of
elements of X1 with Y are somewhat triangular with the lower quantile decreasing
with X but the upper quartile increasing.

A sample of n = 120 observations based on p = 20 explanatory variables was
generated, and the results are displayed in Fig. 4.

The risks displayed in Fig. 4a indicate two components are needed. In Fig. 4c the
PQR components plot shows that the lower quantile and the median components are
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almost identical, but that the upper quantile component substantially differs. The effect
of different components is displayed in the final panel of Fig. 4d where the (smoothed)
upper quantile regression does not form a parallel curve.

The PQR loadings plot (not shown) of the loadings for the first components against
those for the second indicate that the plot corresponding to the upper quantile differ
from the other two.

3.5 Example 5: NIR spectra of corn samples

NIR (near-infra-red) spectrometer data on n = 80 samples of corn is available as a
Matlab file from http://software.eigenvector.com/Data. The file contains the absor-
bances of the samples at each of p = 700 wavelengths equally spaced in the range
1,100–2,498 nm, together with the measured percentage contents of moisture, oil,
protein and starch. Here we give the PQR for protein content on the wavelengths for
spectrometer M5.

The decline in risk plotted in Fig. 5a suggests that k = 5 components are needed for
PLSR and for PQR, irrespective of the quantile. This is verified by cross validation.
The first component accounts for the vast majority of variation in the explanatory
variables, and the standard deviations of the remaining components are roughly in
ratio of 1:25.

There are three additional plots in Fig. 5 to the previous examples. Panels (c) and
(d) show PQR loadings plot with p points representing the covariates for τ = 0.5; and
τ = 0.75 respectively. The plots for τ = 0.25 and for PLSR (both not shown) are very
similar to (c) with τ = 0.5 and consists of a single cluster at a fairly constant value of
first loading. In contrast the plot for τ = 0.75 indicates two clear clusters. The effect
of this difference makes itself apparent in the index plot of the implied regression
coefficients of Fig. 5e, where there is a noticeable difference for wavelengths between
225 and 375, for the upper quantile.

Features such as these clusters or different responses at different percentiles may
well arise from skew or heterogeneous distributions. One might further argue that this
is scientifically interesting, as such distributions may be manifested by some hidden
but scientifically meaningful feature of the data.

3.6 Example 6: dry weight determination of cod fillets

This data, Andersen and Rinnan (2002), gives measurements of the distribution of
water within fresh cod, as an example of heterogeneity within biological materials.
Five cod were caught in Aresund, Denmark, in August 2000. One fillet from each
fish was used for the analysis. The fillets were divided in squares of 1.5 cm2 retaining
information on the anatomical position of the squares. The NMR measurements were
performed on a pulsed NMR analyzer, and further details are given in the paper. Only
even echoes were recorded, which gives 512 echoes measured for each sample. All
measurements were taken at the same temperature.

The water content was determined on the same samples as used for the NMR
measurements, after the NMR relaxations were measured. The fish samples were kept
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Fig. 5 Corn sample data, n = 80, p = 700: a estimated risk after fitting upto 6 components; b standard
deviations of the first 6 components; c PQR loadings plot for k = 1 against k = 2 with τ = 0.5; d PQR
loadings plot for k = 1 against k = 2 with τ = 0.75; e index plot of implied regression coefficients based on
k = 5 components; f rank plot of ordered residuals with (smoothed) median adjusted fitted values. Colour
code: residuals orange points, covariates blue points; PLSR dotted black line, PQR τ = 0.25 red line, PQR
τ = 0.5 dashed thick blue line, PQR τ = 0.75 green line

in the small glass tubes, dried, and weighed before and after drying. The data consists
of the p = 512 NMR decays and the water content on the n = 254 samples from the
five fillets.

The principal objective is to predict water content directly from NMR measure-
ments.

The decline in risk plotted in Fig. 6a suggests that k = 3 components are needed for
PQR, irrespective of the quantile. The picture is not so clear for PLSR which exhibits a
rather smooth decline in risk. Cross validation supported k = 3 components for PQR,
and, in fact, for PLSR.

The explanation for the lack of determination in the PLSR risk can be seen Fig. 6c
where two outliers are apparent. While the fitted PQ regressions ignore the magnitude
of the residuals the PLS fitted values, joined by dots, attempt to approximate these
outlying points by introducing extra components.

The PQR component plot in Fig. 6b indicates a slight difference in orientation
between the component for the lower quartile and for the median (the latter and the
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Fig. 6 Cod fillet data, n = 254, p = 512: a estimated risk after fitting upto 6 components; b PQR com-
ponent plot for upper and lower quartiles plotted against the median component (k = 1); c observed and
smoothed fitted values based on k = 3 components plotted against the fitted median; d index plot of implied
regression coefficients based on k = 3 components. Colour code: observations yellow points; PLSR dotted
black line, PQR τ = 0.25 red line or points, PQR τ = 0.50 dashed thick blue line, PQR τ = 0.75 green
line or points

upper quartile component are approximately the same). The index plot of the implied
regression coefficients in Fig. 6d show there is a difference at the lower quantile. While
the pattern is similar, there is a shift to the lower wavelengths in predicting the lower
quantile.

4 Prediction results

We briefly summarise the empirical results for out of sample prediction on the examples
discussed in the previous section. The re-sampling method used is the same for the
assessment of both simulated data and published data.

At each percentile τ , quantile regression estimates Eτ (Y |x), a linear function
of the original predictands, x , that may be used to predict the quantile of Y at a
new value x = xo say. An assessment of the accuracy of our method may be made
by evaluating the frequency with which a new value yo lies in the inter-quantile
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Table 3 Out of sample prediction: numbers falling in the 4 inter-quartile intervals for predicting a hold
out sample of size 20, and two Pearson’s chi-squared statistics, based on 20 re-samples

Data Numbers in interval Chi-squares

0–0.25 0.25–0.50 0.50–0.75 0.75–1 3df 60df

(a) 133 72 83 112 23.1 92.4

(b) 115 101 80 104 6.4 82.4

(c) 116 64 107 113 17.7 72.4

(d) 112 90 98 100 2.5 52.8

Data: (a) heteroscedastic regression data, n = 60, p = 8; (b) heteroscedastic regression data, n = 60,
p = 20; (c) bilinear factor data, n = 60, p = 80; (d) corn sample data, n = 60, p = 700

intervals {Eτ1(Y |xo) < yo ≤ Eτ2(Y |xo)}, for chosen values of (τ1, τ2). In principle
this frequency should be τ2 − τ1.

We use a simple design to evaluate this assertion. The intervals are defined by
(0, 0.25), (0.25, 0.5), (0.5, 0.75) and (0.75, 1), making four equal probability intervals
in all. The predictions are made on a hold out sample consisting of a random 25%
subset of the original data, with 75% of the data used for estimating the regression
functions. In fact, for each of the data sets assessed, the hold out sample is of size
20 and the estimation is based on n = 60 observations. The observed numbers from
the hold out sample falling in these intervals should be uniformly distributed in the
intervals and the goodness of fit is measured by Pearson’s chi-squared statistic.

Each data set is a single sample of size 80 taken from: (a) the heteroscedastic
regression model with p = 8, (b) the heteroscedastic regression model with p = 20,
(c) the bilinear factor model with p = 80, and (d) the corn sample data with p = 700.

There are two χ2 statistics reported in Table 3. Each resample is classified into 4
inter quartile categories giving an observed Pearson χ2 statistic on 3 df, which are then
summed over the 20 resamples to give an overall χ2 statistic on 60 df. The reported
Pearson χ2 statistic on 3 df in Table 3 is obtained from the overall number of the 400
resamples falling into the 4 inter quartile intervals. The upper 95% quantile of the χ2

3
distribution is 7.82, and that of χ2

60 is 79.1.
In each of the four resampling experiments rather too many of the 400 outcomes fell

below the lowest quartile. There are also somewhat too many in the highest interval,
but this is not so marked. There are consequently too few in the two central inter-
quartile intervals, but this is not uniform. Interestingly the worst behaving data set (a)
is the one with the fewest covariates.

5 Discussion

Summary: We have extended PLSR to PQR so describing the quantiles of the response
variable in terms of regression functions when there are comparatively fewer obser-
vations than explanatory variables. The methodology parallels the procedure for PLS,
using a quantile covariance that is appropriate for predicting a quantile rather than the
usual covariance which is appropriate for predicting a mean value, and the analysis
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suggests a new measure of risk associated with the quantile regressions. For each
percentile the method provides a low dimensional approximation to the joint distribu-
tion of the covariates and response with a given coverage probability and which, under
further linearity assumptions, estimates the corresponding quantile of the conditional
distribution. Examples are given that illustrate the methodology based on simulated
data and on the analysis of spectrometer data.

Theory: While we have proposed the quantile extension to PLS, and shown by
example the interest, we have not established theoretical properties of the estimates.
In particular the verisimilitude of statements related to quantile coverage properties
such as P({(X, Y ) : Y ≤ γ1T1 + · · · + γk Tk}) = τ , when sample estimates are
substituted for population quantities remain to be demonstrated. Estimation variability
is important in small samples and needs to be taken into account. For instance, the
out-of-sample predictions for 25% of the data from the quantile regressions estimated
from 75% of the data, while in the right direction, are significantly different from the
predicted number in the inter-quartile intervals. There does seem to be some pattern
in deviations from predicted which suggest certain areas to research. We would point
out that PLS itself suffers from a similar lack of provable finite sample properties,
and while there is some asymptotic (in n) theory available it is not especially relevant.
Further work, both numerical and analytical, is needed.

A feature of the small sample sizes typical in chemometrics is the variability of the
fitted quantile regressions evident, say, in Fig. 2b, for τ = 0.25, 0.75, though it is no
larger than the variability of the fitted PLS regression. There are no QR algorithms, as
yet, that simultaneously estimate quantiles for a set of percentiles τ , see the discussion
to Portnoy and Koenker (1997).

Quantiles are only well defined when the response variable is one dimensional so
that one complication of the PLS algorithm is avoided.

Relationship to robust estimation: In this paper we have focussed on estimating
the quantile of the response variable. A rather different aim might be to develop a
similar methodology to robustify the PLSR procedure. The setting τ = 0.5 gives least
absolute value regression for Y and lessens the influence of outliers in the response
variable on the fitted model. Similar protection occurs for other values of τ . However,
if extreme values of the covariates are a concern then a better approach would be to
robustly estimate the joint variance matrix of these variables directly, see Hubert and
Branden (2003) and the references therein.

Remarks on the quantile covariance: The quantile covariance covτ is used at
two points in the PQR algorithm: to compute covτ (Y, Xi ) for the component loadings
and to calculate the predictor Eτ (Y |T1, T2, . . . , Tk) at the final stage. The overall
objective is to best estimate the quantile of Y , corresponding to the percentile τ , using
ancillary information from the covariates. The example in the Appendix makes clear
that covτ estimates the right quantity, and also shows that it may differ at different τ .
Consequently the PQR algorithm combines the covariates with proportional weights
calculated at the relevant quantile. The final predictor is linear in the components so
these weights directly feed through to the estimated quantile Eτ (Y |T1, T2, . . . , Tk)

in much the same way as the standard cov(Y, Xi ) feeds through to the final PLS
predictor.
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Several sets of components: By comparison with PLSR an additional
complication for PQR is that there may be more than one set of components to consi-
der, one for each τ . Not only may there be different components at different τ but
perhaps different numbers of components as well. If so this provides evidence that
the distribution of (X, Y ) is more complex than perhaps initially envisaged. While a
single set of components for the estimation of all quantiles is desirable in principle, it
should be an empirical finding of the analysis rather than a predicated outcome.

Additional inference: There are some features of PQR analysis that require addi-
tional investigation, especially those concerned with inference. The loadings plot with
spectrometry data indicate that certain parts of the spectrum may play a small role in
modifying the response, and testing that subsets of the loadings are zero in the fitted
components is of interest. Tests for the equality of some or all loadings at different
values of τ should govern how many sets of components need to be retained. The work
of Koenker and Machado (1999) may be useful here.

Acknowledgments We are grateful to the Editors and the Referees for remarks which have led to sub-
stantial improvements of this article, especially concerning the explanation of quantile covariance.

Appendix: quantile covariance

The quadratic covariance used to predict the mean values for given covariates, is
extended to a quantile covariance appropriate for predicting quantiles. We consider
the case where X is p-dimensional, though the application to PQR only requires p = 1
for the calculation of the loadings, and p = k for the calculation of the final predictor.

Linear least squares prediction, see Whittle (1983), Whittaker (1990), or Christensen
(1991), formulated as an optimisation problem leads to certain identities for expec-
tations and covariances. Suppose that X is p-dimensional random vector and Y is a
random scalar, with a joint distribution in which the relevant moments exist, then the
identities

E(Y ) = arg inf
α

E(Y − α)2, (8)

cov(Y, X)T = argβ inf
α,β

E(Y − α − βT var(X)−1[X − E(X)])2, (9)

are well known. The predictor (2) above is the solution to the optimisation problem
implied by (9). As such the optimising values of α and β obtained are summaries of the
joint distribution of (X, Y ) related to centering and covariation, and are not measures
on the conditional distribution of Y given X .

The quantile expectation and quantile covariance are defined by replacing the qua-
dratic loss function on the right of (8) and (9) by the quantile loss function at (1)
giving

Eτ (Y ) = arg inf
α

E ρτ (Y − α), (10)

covτ (Y, X)T = argβ inf
α,β

E ρτ (Y − α − βT var(X)−1[X − E(X)]). (11)
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The expectations on the right of (10) and (11) are standard. Retaining the multiplication
var(X)−1 in (11) maintains the right linearity properties for the covariance.

The linearity properties of these operators are summarised in

Eτ (α + βY ) = α + β Eτ (Y ),

covτ (α + βY, a + B X) = β covτ (Y, X)BT ,

where the constants α, β ≥ 0, a and B are of the appropriate dimension, and follow
from the linearity property of the quantile loss function

ρτ (βy) = βρτ (y) for β ≥ 0.

Several standard properties of the quadratic expectation and covariance do not hold
for the quantile covariance. In particular, the expectation Eτ (Y1 + Y2) is not additive,
and the covariance covτ is not symmetric. In the quadratic case the values of α that
minimises the implied objective function in (8) and in (9) are the same, but this is not
the case with the quantile objective functions, and the linear quantile predictor of Y
from X is

Eτ (Y |X) = α̂ + covτ (Y, X) var(X)−1[X − E(X)], (12)

where α̂ is the minimiser in (11), rather than

Eτ (Y ) + covτ (Y, X) var(X)−1[X − E(X)].

This point may be argued by deriving the normal equations for (11).
Take the simple case where p = 1, E(X) = 0 and var(X) = 1, the normal equa-

tions for α and β are

τ = EIY−α−β X≤0 and τ EX = EX IY−α−β X≤0, (13)

so that separate estimation of α and β is not in general possible.
Figure 7 illustrates the notion of quantile covariance.
In the upper left panel the joint distribution of (X, Y ) is a uniform distribution on a

polygon with the indicator of the region below an arbitrary line y = α + βx shaded,
where here β < 0. The point of the Figure is to emphasize that the quantile covariance
is a measure in the joint distribution of (X, Y ) and not in the conditional distribution of
Y given X = x . Symmetry considerations indicate that choosing α and β to minimise
(11) such that probability of the shaded region is τ , leads to the covariance covτ (Y, X)

taking the value equal to the slope of the polygon, whatever the value of τ .
In the upper right panel is a “triangular” distribution composed of two polygonal

regions having equal probabilities, and a uniform distribution within both regions. The
quantile regression lines show at τ = 1/3 that covτ (Y, X) = 0, while at τ = 2/3 that
covτ (Y, X) > 0. In fact covτ (Y, X) = 0 for all τ < 1/2 and covτ (Y, X) > 0 for all
τ > 1/2 in this example.
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Fig. 7 Contour plots of three joint distributions of (X, Y ). Upper left panel: a polygonal uniform distribution
with the indicator of the region below an arbitrary line y = α + βx . Upper right panel: a uniform distribution
over two polygonal regions with equal probability, together with the different quantile regression lines at
τ = 1/3 and τ = 2/3. Lower right panel: a uniform distribution over two regions with equal probability,
together with the conditional quantile function and linear quantile regression at τ (< 1/2), and another at
τ = 2/3

More generally, when p = 1 and X is standardised, covτ (Y, X) is interpretable as
the slope of the line minimising (11) in the joint distribution of (X, Y ) for a given τ .
The example also may be used to indicate why it would be wrong to base a measure
of covariance on minimising (11) without the intercept parameter as

E ρτ (Y − βT var(X)−1[X − E(X)])

would lead to a line with a given coverage probability in the joint distribution, but with
no obvious connection to the quantile of Y .

The third example shows that the linear quantile predictor may well differ from
the conditional quantile function. In the lower right panel the lower polygon of the
“triangular” distribution is replaced by a quadratically shaped region, again with uni-
form probability over this region. For τ < 1/2 the conditional quantile is a quadratic
function of X , while the linear quantile predictor is necessarily linear in X . The pro-
bability, in the joint distribution, of falling below the linear quantile regression is τ
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Finally we make two points: (i) we note that it is possible to show that Y⊥⊥X if
and only if covτ (Y, X) = 0 for all τ ; and (ii) the notation of linear expectation in
linear least squares and linear quantile prediction is useful, but does not lead to a more
general calculus of either least squares or of quantile expectation.

Computation

For a given distribution pXY , with p = 1, computation of covτ (Y, X) requires the
analytic solution to (13). For samples from pXY the solution needed is to τ =
En IY−α−β X≤0 and τ En X = En X IY−α−β X≤0, which in coordinate notation become

τ = n−1
n∑

i=1

Iyi −α−βxi ≤0 and τ

n∑

i=1

xi =
n∑

i=1

xi Iyi −α−βxi ≤0.

These, and the more general optimisation problem (11) with En replacing E, are
solved numerically.

References

Andersen C, Rinnan A (2002) Distribution of water in fresh cod. Lebensm. Wiss. U.Technol 35:687–696
Christensen R (1991) Linear models for multivariate, time series, and spatial data. Springer, New York
Dodge Y, Jureckova J (2000) Adaptive regression. Springer, New York
Frank I, Friedman J (1993) A statistical view of some chemometrics regression tools. Technometrics

35:109–135
Hastie T, Tibshirani R, Friedman J (2001) Elements of statistical learning. Springer, New York
Helland I (1988) On the structure of partial least squares regression. Commun Stat Simulation Comput

17:581–607
Helland IS (2001) Some theoretical aspects of partial least squares regression. Chem Intell Laboratory Syst

58:97–107
Hubert M, Vanden Branden K (2003) Robust methods for partial least squares regression. J Chemometrics

17:537–549
Hwang J, Nettleton D (2003) Principal components regression with data-chosen components. Technome-

trics 45:70–79
Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46:33–50
Koenker R, Machado J (1999) Goodness of fit and related inference processes for quantile regression. J Am

Stat Assoc 94:1296–1310
Longley J (1967) An appraisal of least-squares programs from the point of view of the user. J Am Stat

Assoc 62:819–841
Martens H, Martens M (2000) Multivariate analysis of quality. Wiley, New York
Martens H, Naes T (1989) Multivariate calibration. Wiley, Chichester
Portnoy S, Koenker R (1997) The gaussian hare and the laplacian tortoise: computability of squared-error

vs. absolute-error estimators, with discussion. Stat Sci 12:279–300
Whittaker J (1990) Graphical models in applied multivariate statistics. Wiley, Chichester
Whittle P (1983) Prediction and regulation by linear least-square methods. University of Minnesota Press,

Minneapolis

123


	Partial quantile regression
	Abstract
	1 Introduction
	2 Methodology
	2.1 The PLS algorithm
	2.2 PLS: algorithm
	2.3 PLS: remarks
	2.4 The PQR algorithm
	2.5 Proposed PQR algorithm
	2.6 The risk and number of components
	2.7 Interpretation of quantile regressions

	3 Examples
	3.1 Example 1: Longley's data
	3.2 Example 2: bilinear factor model data
	3.3 Example 3: heteroscedastic regression data
	3.4 Example 4: data from a switching regression model
	3.5 Example 5: NIR spectra of corn samples
	3.6 Example 6: dry weight determination of cod fillets

	4 Prediction results
	5 Discussion
	Acknowledgments


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


