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COUNTING HYPERBOLIC MANIFOLDS

M. Burger, T. Gelander, A. Lubotzky and S. Mozes

Introduction

A classical theorem of Wang [W] implies that for a fixed dimension n ≥ 4,
and any V ∈ R, there are only finitely many complete hyperbolic manifolds
without boundary of volume at most V up to isometries. Let ρn(V ) be the
number of these manifolds. In this note we establish the following estimate
for ρn(V ):

Theorem. For every n ≥ 4, there are two constants a = a(n) > 0 and
b = b(n) > 0 such that for all sufficiently large V

aV log V ≤ log ρn(V ) ≤ bV log V .

This estimate answers a question asked by S. Carlip. Carlip has shown
(cf. [C1,2]) that the lower bound estimate has some applications in theo-
retical physics.

Of course the theorem is not true for dimension n = 2 or 3. If n = 2
there is a continuum of different hyperbolic surfaces of bounded (even the
same) area. When n = 3, there may be countably many hyperbolic 3-
manifolds of bounded volume. In the last section we discuss some recent
results and some problems concerning other locally symmetric spaces.

The Lower Bound

For every n ≥ 2, Gromov and Piatetski-Shapiro [GrP] constructed a non-
arithmetic cocompact lattice Γ = Γn in PO(n, 1) the group of isometries
of the n-dimensional hyperbolic space H

n. In [L3], Lubotzky showed that
Γ has a finite index subgroup ∆, which is mapped onto a non-abelian
free group F on 2 generators. By Selberg’s lemma ∆ can be arranged
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to be torsion free. Thus ∆ defines a hyperbolic n-dimensional manifold
M = H

n/∆ whose volume is, say, v0. Now, every finite index subgroup
of F of index r defines an index r subgroup of ∆, which in turn gives an
r-sheeted covering of M . The free group F has at least r · r! subgroups
of index ≤ r (see [H] or [L1]). Thus, M has at least this number of cover-
ings of volume ≤ rv0. Some of these covering spaces may be isometric,
but if, say, M1 and M2 are isometric manifolds which correspond to sub-
groups ∆1 and ∆2 of ∆, respectively, then there exists an element
g ∈ PO(n, 1) with g−1∆1g = ∆2. Hence, by definition, g belongs to the
commensurability group of ∆, Comm(∆)={h∈PO(n, 1):[∆:h−1∆h∩∆]<∞,
[h−1∆h : h−1∆h ∩ ∆] < ∞}. Since ∆ is a non-arithmetic lattice, it follows
from Margulis’ Theorem ([M, Theorem 1, p. 2]) that [Comm(∆) : ∆] = m1

< ∞. Thus, the orbit of ∆1 under conjugation by elements of Comm(∆)
consists of at most m1 · r groups. This shows that there are at least
(r · r!)/(m1 · r) = 1

m1
r! non-isometric hyperbolic manifolds of volume at

most r · v0, establishing the required lower bound. �

We remark that the constants may be explicitly estimated. This requires
also an estimate of the index of the lattice ∆ in its commensurator. This
may be obtained using the lower bound, given by Kazhdan–Margulis to the
covolume of the lattice(!) Comm(∆) ≤ PO(n, 1).

The Upper Bound

Recall the Thick-Thin decomposition of a manifold M . For any ε > 0
denote by M>ε the subset of M consisting of those points for which the
injectivity radius is larger than ε/2. Let M≤ε = M \ M>ε. We shall need
the following:

Theorem (The thick-thin decomposition) (cf. [T, Theorem 4.5.6]). For
each n ≥ 2 there exists ε(n) > 0 such that for any ε < ε(n) the thin part M≤ε

of a complete hyperbolic manifold is a finite union of components of one of
the following types: neighborhoods of short closed geodesics homeomorphic
to ball bundles over the circle or neighborhoods of cusps, homeomorphic to
products of a Euclidean manifolds with a half infinite interval. For n ≥ 3
the thick part M≥ε is a connected compact manifold with boundary. �

Corollary. Let M be a complete hyperbolic manifold of dimension n ≥ 4
and ε = ε(n) as above. Then π1(M) = π1(M>ε) where M>ε is the thick
part of M .
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Proof. Let Y be a connected component of the thin part M≤ε. Note that
when the dimension is at least 4 we have π1(Y ) = π1(∂Y ). Indeed when Y
is a ball bundle over a circle its fundamental group coincides with that of
its boundary (as n ≥ 4, note that this fails for n ≤ 3). Similarly when Y
is a product of a Euclidean manifold with a half infinite interval (in which
case there is no need for a restriction on the dimension).

By a successive use of Van Kampen’s theorem we can remove the compo-
nent of the thin part M≤ε one by one, and obtain the desired statement. �

Remark. As noted in the proof, the corollary holds for n = 3 if the
manifold has no “short” closed geodesics. In fact the main theorem has
a version which is still true for dimension 3: Given δ > 0, the number of
3-dimensional hyperbolic manifolds without closed geodesic of length ≤ δ
is at most V bδV , and if δ > δ0 then this number is at least vaδv.

In the sequel we shall need to look more closely at the geometric struc-
ture, rather than just the topology, of the connected components of the
thin part. It is convenient to look at the preimage of such a component
in the universal covering H

n of the manifold. We shall use the “Upper
half space” model of the hyperbolic space, which we denote by H

n
+. In

this model the preimage of a cusp thin component is a half space consists
of a union of convex neighborhood of a unique point, say ∞, of the ideal
boundary ∂(Hn

+). The preimage of a compact connected thin component
is (up to isometry) a cone, around the line (0,∞), over a finite union of
concentric coaxial ellipsoids. We refer to the book [BP, section D.3] for a
detailed discussion.

By Mostow rigidity a hyperbolic manifold of dimension at least 3 is
determined by its fundamental group. Thus to bound the number of hy-
perbolic manifolds of given volume it suffices to bound the number of possi-
ble fundamental groups. The basic idea in counting the number of possible
fundamental groups of hyperbolic manifolds of a fixed dimension whose vol-
ume is bounded by V is to associate with each of them a two dimensional
complex with the same fundamental group and count these complexes. For
the purpose of clarity let us first give a WRONG argument which has the
advantage of avoiding some technical difficulties and then give the correct
argument.

Fix n ≥ 4 and some ε, ε0, ε1 (ε1 ≤ ε0 ≤ ε = ε(n)/10). Given a complete
hyperbolic n-manifold M of volume at most V we can choose a finite cover
CM of M≥ε by open balls of radius ε0 such that the balls having the same
centers and of radius ε1/2 are pairwise disjoint. (Considering a maximal
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collection of points which are at least ε1 apart from one another in M≥ε

yields such a collection of balls.) Notice that the number of balls in CM is
bounded by c1V where c1 = c1(n, ε1) is some fixed constant, namely 1 over
the volume of an ε1/2-ball. Observe also that the intersection of any of
these balls is either empty or convex and hence diffeomorphic to R

n. Thus
in the terminology of [BotT] it is a “good cover”. It follows (cf. [BotT,
Theorem 13.4]) that π1(∪CM ) = π1(N) where N = N(CM ) is the simplicial
complex corresponding to the “nerve” of the cover CM . I.e. the vertices of
N correspond to the open balls in the cover CM and a set of vertices forms
a simplex when the intersection of the corresponding balls is non empty.
Here lies the problem in this argument – we would have liked to be able
to claim that actually ∪CM and M≥ε have the same fundamental group.
However, note that some of the balls in CM may “extend” out of M≥ε,
alternatively if one tries to restrict each of the balls to M≥ε we encounter
the problem that the truncated balls are no longer convex and we do not
know that intersections of balls are contractible. As said above, let us first
ignore this problem and complete the argument. We will show afterwards
how to correct this argument by proving that one can choose ε0(n), ε1(n),
and the cover so that ∪CM and M≥ε are homotopic to one another.

Since the fundamental group of a simplicial complex is the same as that
of its 2-skeleton (cf. [S]) it is enough to consider the 2-skeleton of N which
we shall denote by N(2). Note that the 1-skeleton, N(1), is a finite graph
such that the degree of each vertex is at most d = d(n, ε0, ε1). This bound
may be deduced by considering the ratio of the volume of a ball of radius
2ε0 + ε1/2 to that of a ball of radius ε1/2 in the hyperbolic n-space. Thus
we have the following estimates:

Proposition. (1) The number of graphs obtained as the 1-skeleton N(1)

of a simplicial complex associated via the above process with a complete
hyperbolic manifold of volume at most V is at most ec2V log V for some
constant c2 = c2(d).

(2) The number of 2-dimensional simplicial complexes N(2) obtained
via the above process for manifolds of volume bounded by V is at most
ec3V log V for some constant c3 = c3(d).

Proof. Part (1) is just a crude estimate on the number of graphs having
c1V vertices and of degree bounded by d. Going through the vertices one
by one and for each one choosing at each step neighboring vertices from
the available vertices at that stage yields the required estimate.

Part (2) follows from part (1) combined with the observation that in
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each graph of degree at most d, the number of triangles, i.e. closed paths of
length 3, is at most d2 times the number of vertices. Thus for each graph as
in (1) we have at most 2d2#vertices = 2c′V possible 2-dimensional simplicial
complexes having it as their 1-skeleton. �

We can thus deduce that if M is a complete hyperbolic n-manifold
whose volume is at most V then its fundamental group is isomorphic to
the fundamental group of one of at most ec3V log V 2-dimensional simplicial
complexes. Now, as by Mostow rigidity theorem, π1(M) determines M ,
we conclude that the number of hyperbolic manifolds of a fixed dimension
n ≥ 4 having volume ≤ V is at most ec3V log V .

Let us now show how to modify the above construction so that we would
get coverings such that π1(∪CM ) = π1(M≥ε) = π1(M).

We shall need some notation. Let M = H
n/Γ be a hyperbolic manifold

of dimension n with fundamental group Γ. Let ε(n) be the constant from
the thick-thin decomposition theorem, and let ε = ε(n)/10. For γ ∈ Γ, the
set

T (γ) =
{
x ∈ H

n : d
(
γ(x), x

) ≤ ε
}

is convex. The preimage in H
n = M̃ of the ε thin part M≤ε is a union of

convex sets
M̃≤ε = ∪γ∈Γ\{1}T (γ) .

For a set A and t > 0 we denote by (A)t its t−neighborhood
(A)t =

{
x ∈ H

n : d(x,A) < t
}

.

If A is convex then (A)t is convex with smooth boundary. For xt ∈ ∂(M̃≤ε)t
we denote by {n̂i(xt)} the finite set of unit length external normals to
(M≤ε)t, i.e. to the convex sets (T (γi))t which contains xt on their boundary.

The following lemma is what we need

Lemma (Constructing a good cover). There exist constants η, δ > 0, b > 1,
depending only on n, such that:

(1) For a maximal δ-discrete subset F ⊂ M \ (M≤ε)η+δ the union of the
(b + 1)δ-balls ∪y∈FB(y, (b + 1)δ) covers M \ (M≤ε)η. We fix F and
denote this union by U = ∪y∈FB(y, (b + 1)δ).

(2) There is a deformation retract from the intersection U ∩ (M≤ε)η to
the boundary of (M≤ε)η.

(3) There is a homotopy equivalence between (M≤ε, ∂M≤ε) and
((M≤ε)η, ∂(M≤ε)η).

Assuming this lemma, our theorem follows by taking ε1 = δ, ε0 = (b+1)δ
and CM to be the cover of U by ε0 = (b + 1)δ balls whose centers form F .
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Indeed, (1) implies that U = ∪CM contains M \ (M≤ε)η, (2) implies that
U is diffeomorphic to M \ (M≤ε)η, and (3) implies that M \ (M≤ε)η is
homotopically equivalent to the thick part M≥ε.

Remark. We will look at points outside the ε-thin part, while our relevant
sizes are much smaller then ε (namely η, (b + 1)δ). Therefore we may lift
the picture to the universal covering M̃ = H

n of M without distorting it,
and prove some of our claims there. We work with the upper half space
model H

n
+. Notice that every hyperbolic ball is also an Euclidean ball (in

the standard metric induced from R
n ⊃ H

n
+) with different center and

radius. We identify the tangent space Tx(Hn
+) at each x ∈ H

n
+ with R

n

(equipped with its inner product and coordinates) in the obvious way. For
a subset X ⊂ M we denote by X̃ its pre-image in the universal covering H

n
+.

Proof. The proof, which will be carried out in a few steps, is based on the
existence of a nice vector field which is, in a weak sense, transversal to the
boundary of the thin part.

Step A (Constructing the vector field and determining the constant b):
Fix

b = max
{
n1/2, 1/ cos(arctan(2/ε))

}
.

We will show that there is a normalized vector field F , defined on
(M̃≤ε)2ε \ M̃<ε, and continuous on its integral curves, such that for any
x̃t ∈ ∂(M̃≤ε)t, 0 ≤ t ≤ ε, the inner product of F (x̃t) with each of the
normals n̂i(x̃t) to ∂(M̃≤ε)t at x̃t is ≥ 1/b.

Let M̃0
≤ε be a connected component of M̃≤ε. If M̃0

≤ε is a hyperbolic
component, i.e. one which corresponds to a hyperbolic isometry of H

n,
then it is a neighborhood of a geodesic line. Taking this line to be the
one connecting the origin to ∞, this neighborhood is a cone over a finite
union of concentric coaxial ellipsoids (note that the horospheres through
∞ inherit an (n − 1)-Euclidean structure from R

n in which our model H
n
+

sits). We may assume that the axes of these ellipsoids are the standard
coordinates of Rn−1 ⊂ H

n
+. In this case, at a point x = (x0, x1, ..., xn−1) ∈

H
n
+ = {x ∈ R

n : x0 > 0}, we take

F̃ (x) =
( − 1, sign(x1), sign(x2), . . . , sign(xn−1)

) ∈ R
n = Tx(Hn

+) ,

and normalize it

F (x) =
F̃ (x)

‖F̃ (x)‖ .

It is then easy to see that F (xt) · n̂i(xt) ≥ n−1/2 for any xt ∈ (M̃0
≤ε)t,

0 ≤ t ≤ ε.
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If M̃0
≤ε is a component of the pre-image of a cusp, i.e. it corresponds to

a group of parabolic isometries. We assume that ∞ is the fixed point of
the fundamental group of this component, and take

F (x) = (−1, 0, 0, . . . , 0) .

Notice that if γ is a parabolic isometry (which stabilize ∞ in H
n
+) then

the angle between the external normal to the boundary of T (γ) and the
vector (−1, 0, 0, . . . , 0) is at most arctan(2/ε): If d(γ(x), x) = ε and y is a
point at the same altitude (the same horosphere through ∞) at infinitesimal
distance τ from x, then d(γ(y), y) ≤ ε + 2τ . It follows that the point at
distance 2τ/ε above y is in T (γ).

Moreover in the parabolic case the inner product of F with each the
normals of (M̃≤ε)t is increasing with t, and thus > cos(arctan 2/ε) for any
t ≥ 0.

This completes Step A.

Remark. The axes of the concentric ellipsoids described above are not
necessarily uniquely defined, and hence, the vector field F is not necessarily
Γ-invariant, and does not project to a vector field on M . It is possible to
define a Γ-invariant vector field with the same properties. Alternatively,
we shall use F only when estimating distances and angles between things
which are lifted to M̃ .

Step B (Proving condition 1): The existence of the vector field F ,
constructed above, implies that for any η ≤ ε and δ < ε−η

b we have the
following:

1′) M \ (M≤ε)η ⊂ (
M \ (M≤ε)(η+δ)

)
bδ

, i.e. each point outside (M<ε)η is
at distance at most bδ from the complement of (M≤ε)(η+δ).

Indeed, for xt0 ∈ ∂(M≤ε)t0 (for t0 ≥ η) we take a lift x̃t0 ∈ ∂(M̃≤ε)t0
and let it flow bδ seconds on F to the point x̃t0+bδ ∈ M̃ \ (M̃≤ε)η+δ .

Now, it follows from the definition of F that its δ-neighborhood (F)δ
contains M \ (M≤ε)η+δ . It follows from 1′ that

M \ (M≤ε)η ⊂ (
M \ (M≤ε)(η+δ)

)
bδ

⊂ ((F)δ)bδ = (F)(b+1)δ ,

which is exactly the statement of condition 1.

We turn now to proving condition 2. We will do this in a few steps.
The following is easily verified:

Step C (Small curvature of the boundary): Let A ⊂ H
n be a convex

set (below, we shall take A = (T (γ))ε). Then for any boundary point
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x ∈ ∂(A)η the η-ball, tangent to ∂(A)η at x, with the same external normal,
is contained in (A)η .

Indeed, if we denote by PA(x) the projection of x to A then this ball is
no other then B(PA(x), η).

Step D (Existence of “large” ball tangent to any boundary point): If
η and δ are sufficiently small (so that (∗) and (∗∗) hold) then we have:

2′) For any point x in (M≤ε)η ∩U there is a unique closest point π(x) on
the boundary ∂(M≤ε)η, and (M≤ε)η contains the ball of radius η/4b
which contains π(x) on its boundary sphere and the normal at π(x)
to this sphere is tangent to the geodesic line xπ(x).

To prove 2′ take a closest point to x in the boundary of (M≤ε)η , and
denote it by π(x). We may assume that δ is small enough so that

(b + 1)δ < η/4b (∗)
and thus uniqueness of π(x) follows from the existence of this η/4b-ball
that we will show now. As noted above, since η, δ are much smaller the ε,
we may lift the picture to M̃ without distorting it. We shall lift x and π(x)
to M̃ without changing their names.

Sublemma. The tangent n̂ to the geodesic line xπ(x) at π(x) must be
inside the convex cone of the external normals {n̂i} to (M̃≤ε)η at π(x).

Proof. The point π(x) is on the boundary of a finite union of convex sets of
the form (T (γi))η. The finite set {n̂i} consists of the normals to the smooth
boundaries of these sets. As π(x) is closest to x the intersections of the half
spaces

∩i{v ∈ Tπ(x)M̃ : n̂i · v ≥ 0} ∩ {v ∈ Tπ(x)M̃ : n̂ · v ≤ 0}
has empty interior. Helley’s theorem implies that we may consider the
case where only k + 1 half spaces involved (one of them must be the one
defined by n̂) where k = dimspan{n̂i}. Thus there is a unique expression
n̂ = Σk

i=1αin̂i (Lagrange’s multipliers theorem implies that n̂ ∈ span{n̂i}).
Pass to the relevant subspace span{n̂i} of dimension k. We need to show
that αi ≥ 0 for all i. Assume the contrary, say, α1 < 0. Let N denote
the matrix with rows corresponding to n̂i and let α be the row vector
(α1, . . . , αk). We have n̂ = αN . Our condition that “the interiors have no
intersection” reads “Nv ≥ 0 implies n̂ · v ≥ 0”, but taking v which satisfies
Nv = (1, 0, 0, . . . , 0)t gives us a contradiction:

n̂ · v = αNv = α(1, 0, 0, . . . , 0)t = α1 < 0 .

Thus n̂ = Σk
i=1αin̂i with αi ≥ 0. �

We next claim
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Sublemma. Σk
i=1αi ≤ b.

Proof. 1 ≥ n̂ · F (
π(x)

)
= Σk

i=1αin̂i · F
(
π(x)

) ≥ 1/bΣk
i=1αi . �

This implies that if v ∈ R
n = Tπ(x)M̃ satisfies v · n̂ ≥ b then v · n̂i ≥ 1 for

some 1 ≤ i ≤ k. In other words, the half space {v : n̂ · v ≥ b} is contained
in the union of the half spaces {v : n̂i · v ≥ 1}. Applying inversion by the
sphere of radius 21/2 around 0 ∈ R

n we obtain:

Corollary. The Euclidean ball of radius 1/b with normal n̂ at π(x) is
contained in the union of the unit Euclidean balls tangent to π(x) with
normals n̂i’s.

Now move π(x) (or, more precisely, a pre-image of π(x) in H
n
+) to the

point (1, 0, 0, . . . , 0) ∈ H
n
+. If η is small enough, the Euclidean radius rE, of

a ball containing π(x) on its sphere, of hyperbolic radius rh ≤ η, satisfies

rh/2 < rE < 2rh . (∗∗)
Now it follows from Step C that the hyperbolic balls of radius η tangent

to the relevant T (γ)’s at π(x) are contained in (M≤ε)η. By the choice of
η we get that these balls have Euclidean radiuses > η/2, hence the η/2b
Euclidean ball, whose boundary sphere passes through π(x) with normal n̂,
is contained in (M≤ε)η. This ball has hyperbolic radius > η/4b. This
finishes the proof of 2′.

Step E (Positive direction): One can easily verify that, after b and η
are fixed, for any small enough δ the following is satisfied:

2′′) β < π/2, see Figure 1.

To see this, think of the following. Instead of shrinking δ (until it is
small enough), keep it as the fixed parameter, and let η tends to infinity
(by rescaling the Riemannian metric each time). We get, in the limit, two
parallel lines at distance δ and two points, one on each line, at distance
2(b + 1)δ. Thus, the limit angle is certainly < π/2. �

This together with 2′ implies:

Sublemma. If x ∈ U ∩ (M≤ε)η and y ∈ M \ (M≤ε)η+δ is a point for which
d(y, x) ≤ (b + 1)δ then (since d

(
x, π(x)

) ≤ d(x, y) ≤ (b + 1)δ) the angle
between the tangents at π(x) to [x, π(x)] and [π(x), y] is at most β < π/2. �

Step F (Proving condition 2): We have to show that there is a de-
formation retract from U ∩ (M≤ε)η to ∂(M≤ε)η. For this we let any x ∈
U ∩ (M≤ε)η to flow at constant rate d(x, π(x)) in the direction of π(x).
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β

(b + 1)δ

η
4b

δ

Figure 1: The figure shows two concentric circles of radiuses η/4b and η/4b + δ
and two points, one on each circle, at distance 2(b+1)δ, and the segment between
them. β is the angle between this segment and the external normal to the smaller
circle.

Uniqueness of π(x) implies continuity. We only need to show that the seg-
ment [x, π(x)] is contained in U∩(M≤ε)η. Clearly [x, π(x)] ⊂ (M≤ε)η . Since
x ∈ U there is y ∈ F with d(x, y) ≤ (b + 1)δ. Let c(t) be the geodesic line
which contains the segment [x, π(x)] with c(0) = x. The negative curvature
implies that ϕ(t = d(c(t), y) is a convex function of t. The above sublemma
implies that the derivative

ϕ̇
(
d(x, π(x))

) ≤ − cos β < 0 .

Since the derivative of a convex function is non-decreasing, it follows that
ϕ̇(t) < 0 for any t < d(x, π(x)), i.e. ϕ(t) is monotonically decreasing and

[
x, π(x)

] ⊂ B
(
y, (b + 1)δ

) ⊂ U .

Step G (Proving condition 3): Condition 3 follows from the “star-
shape” structure of every connected component of M≤ε, that enables us
to define an appropriate vector field which induces a deformation retract
which proves the homotopy equivalence. The hyperbolic components are
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“star-shaped” with respect to the line (0,∞) where the displacement func-
tion d(x, γ(x)) attains its minimum, i.e. the axis of γ. Denote this line
by L and let D(x) = d(x,L) be the distance function from this line. The
corresponding vector field is its gradient ∇(D)(x). The parabolic compo-
nents are “star-shaped” with respect to ∞, so we can use the “constant”
vector field (−1, 0, . . . , 0) which is the gradient of the associated Busemann
function. �

Remark. All the constants in the above proof may be estimated effec-
tively yielding an explicit constant depending on the dimension.

Some Concluding Remarks

A general theorem of Wang (see [W] and [Bo]) asserts

Theorem. Let G be a semisimple Lie group without compact factors, not
locally isomorphic to SL2(R) or SL2(C). Then for any V > 0, there are
only finitely many conjugacy classes of irreducible lattices in G of covolume
at most V .

The result of Wang quoted at the introduction is just the very special
case when G = PO(n, 1), n ≥ 4 and only torsion-free lattices are consid-
ered. Our work, thus, can be viewed as a first attempt towards a quanti-
tative version of Wang’s theorem, whose original proof is non-effective and
gives no estimate.

Let ρG(V ) denote the number of conjugacy classes of irreducible lattices
in G of covolume at most V . Denote by ρ◦G(V ) the number of those which
are torsion-free. An interesting problem is to estimate the growth of ρG(V )
as a function of V . Our theorem actually says that for G = PO(n, 1),
n ≥ 4, log ρG(V ) ≈ V log V .

One may expect that the growth of ρG(V ) and ρ◦G(V ) is essentially the
same, but this has not been verified yet even for PO(n, 1).

Recently Gelander extended the result of this paper by proving upper
bounds for ρ◦G(V ) (and for some classes of lattices with torsion) for almost
any (rank one and higher rank) semisimple Lie group G (see [G]). As above,
the upper bounds obtained in [G] are of the form V c(G)V .

However, it is hard to believe that the estimates in [G] are tight in the
general case, in the sense proved here. In fact, one may tend to believe that
if G is a higher rank semisimple, then log ρ◦G(V ) and even log ρG(V ) grows
like log2 V /log log V (which is much smaller then the bound V log V ). Let
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us explain the difference: The proof of the lower bound presented above
is based on the non-arithmeticity of the lattice ∆ and, more crucially, on
the fact that it has a large subgroup growth. There is not much hope for a
similar argument in the higher rank case. If rank(G) ≥ 2 then all lattices
are arithmetic. Given an arithmetic lattice Γ it has congruence subgroups.
The growth of the number of congruence subgroups was determined by
Lubotzky in [L2] where he showed that the number of index n congruence

subgroups grows like nc log n
log log n . It was conjectured by Serre (and proved

in most cases, cf. [PR]) that the congruence subgroup problem has an af-
firmative solution for higher rank arithmetic groups. If one expects “few”
maximal arithmetic groups, and the existence of a uniform bound on the
constant c (independent of the lattice) in the last expression (see [GoLP]),
then log ρG(V ) should grow at most like c(G) (log V )2

log log V . At this point we
do not know a better bound then O(V log V ) for any G. We even do not
know a better bound if one counts only the (conjugacy classes of) lattices
in SL3(R) commensurable to SL3(Z).
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