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Abstract Polarization analysis of multi-component
seismic data is used in both exploration seismology
and earthquake seismology. In single-station polari-
zation processing, it is generally assumed that any
noise present in the window of analysis is incoherent,
i.e., does not correlate between components. This
assumption is often violated in practice because
several overlapping seismic events may be present
in the data. The additional arrival(s) to that of interest
can be viewed as coherent noise. This paper quanti-
fies the error because of coherent noise interference.
We first give a general theoretical analysis of the
problem. A simple mathematical wavelet is then used
to obtain a closed-form solution to the principal
direction estimated for a transient incident signal
superposed with a time-shifted, unequal amplitude
version of itself, arriving at an arbitrary angle to the
first wavelet. The effects of relative amplitude, arrival
angle, and the time delay of the two wavelets on
directional estimates are investigated. Even for small

differences in angle of arrival, there may be signifi-
cant error (>10°) in the azimuth estimate.
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1 Introduction

The arrival direction of a seismic event, in terms of
azimuth and inclination, can be estimated directly
from measurements at a single triaxial station. Such
direction finding is important in earthquake seis-
mology in connection with hypocenter location and
arrival identification, and in seismic exploration for
imaging of reflectors and directional filtering. The
problem has been tackled by a number of researchers
(Flinn 1965; Montalbetti and Kanasewich 1970;
Vidale 1986; Magotra et al. 1987; Cichowicz et al.
1988; Roberts et al. 1989; Jurkevics 1988; Jackson
et al. 1991, 1999; Wagner and Owens 1991; Cho and
Spencer 1992; Perelberg and Hornbostel 1994; Lilly
and Park 1995; Ananat and Dowla 1997; Claassen
2000; Richwalshi et al. 2001; Greenhalgh et al. 2005).
There are cases in which the angular resolution
obtained by triaxial polarization analysis is better
than that obtained by beam-forming with an extended
array (Suteau-Hensen 1990; Gal’perin 1983; Ruud
et al. 1988; Harris 1990; Bataille and Chiu 1991;
Jarpe and Dowla 1991). For example, a single triaxial
sensor has superior direction finding capability to a
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60-channel, 30-wavelength-long linear array when the
source lies on boresite (perpendicular to the array).
For an endfire configuration (e.g., a vertical seismic
profiling), the array would need to be 1,700 wave-
lengths long to achieve comparable acuity. This is
important for it is sometimes physically impossible to
create a large receiving array of this aperture.

While there exist many large networks of seismic
stations (global and regional) to accurately determine
hypocenters of earthquakes, single-station earthquake
location is still of interest for locating small magni-
tude local events detected by a single station. With
isolated earthquake observatories or small sparse
arrays, there is no alternative in locating events but
to work with three-component seismograms. In these
situations, one depends totally on understanding the
interrelationships between the triaxial records forming
a seismic wavetrain. The importance of estimating
errors in arrival direction is related to improving
location techniques and improving error estimates.
This is true not only for single stations but also for
arrays and networks of stations.

There are several approaches to estimating the
direction of arrival of a seismic event from vector
particle motion records at a single station, as revealed
in the references cited above. Nearly all methods start
by using the multi-component data to form a
covariance matrix (or its equivalents: the cross-
spectral matrix in the frequency domain and the
coherency matrix when using the complex analytic
signal). This matrix is constructed by forming the
outer product of the multi-component data vector with
itself at each data point within a nominated data
window. This produces individual matrices for each
data point, which are then averaged over the data
window. The form of the averaged matrix indicates
any linear dependencies between the data components
within the averaging window. The eigenvectors of the
matrix are a primary source of directional informa-
tion. Its eigenvalues measure the amplitude and
scatter of the data vectors.

Theoretical studies by Harris (1990) and Greenhalgh
et al. (2005), and numerical/empirical studies by Jarpe
and Dowla (1991), Walck and Chael (1991), Hearn
and Hendrick (1998), Knowlton and Spencer (1996),
Claassen (2000), Richwalshi et al. (2001), and others
suggest that three-component stations exhibit a
gradual decay of performance with respect to azimuth
and inclination estimation as the signal-to-noise ratio

(SNR) decreases. The error in arrival direction seems
to vary inversely with the SNR, being around 3° at a
SNR of 1 and dropping to 0.5° at a SNR of 8.
However, systematic and potentially large errors in
estimated arrival direction arise if the noise is
coherent between the recording channels, if seismic
modes are incorrectly identified, and if multipath
arrivals share the same averaging window (Rutty and
Greenhalgh 1993, 1999; Wagner 1996; Claassen
2000). The multi-path problem becomes important
in the presence of near-source and near-receiver
scatterers or significant inhomogeneities along the
propagation path. The scattered phases and other
events on the seismic section may overlap and,
hence, interfere with each other. This is the reason
that polarization processing performed on real
seismic data has been more successful when applied
to the first P-wave arrivals, which suffer less from
interference than do the later arrivals. Errors in
system calibration (e.g., interchannel gain varia-
tions), poor sensor coupling to the ground (which
can change the relative amplitudes on the different
components, as well produce phase distortion), and
refractions at local interfaces also contribute system-
atic direction finding errors. Accurate station cali-
bration is, therefore, essential. A rigorous treatment
of the multipath problem and how to handle coherent
noise really requires an array of three component
sensors to exploit time differences (moveout), as
well as polarization properties of the wavefield.
Multichannel vector processing analyses have been
given by Greenhalgh et al. (1992), Wagner (1996),
and Claassen (2000) but are beyond the scope of the
present study. Furthermore, they require that the
array stations are at a spacing significantly less than
the coherence aperture of the wavefield, which
cannot always be assured. A single-station approach
is often all that can be done.

In this paper, we quantify the direction of arrival
error because of coherent noise interference at a single
triaxial station. We begin by looking at the problem of
polarization direction estimation in the presence of
purely random noise. Next, we give a general triaxial
analysis of the coherent noise problem for unequal
wavelets (arbitrary directions and pulse shapes) that
provides insight to the direction finding issue. We
then use a simple mathematical wavelet to obtain a
closed form solution to the two-component (biaxial)
station problem for determining the dominant eigen-
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vector for the case of a transient incident signal
superposed with a time-shifted, unequal amplitude
version of itself, arriving at an arbitrary angle to the
first wavelet. The effects of relative amplitude, arrival
angle, and the time delay of the two wavelets on
directional estimates are investigated. Graphs are
presented that characterize the magnitude of the error
in practice. The only solution to the coherent noise
problem is to utilize additional triaxial stations in
the form of a vector interferometer (see Rutty and
Greenhalgh 1999).

2 Single-station polarization directional estimates
in random noise

The basic theory of polarization processing is based
on a model, assuming only a single arrival, f1ðtÞ, plus
random noise, n(t), within the selected window of
data under examination. This model is stated mathe-
matically as

r tð Þ ¼ f 1 tð Þ : ĉ þ n tð Þ ð1Þ

where c is the polarization direction and may be
complex. Processing relies on the linear dependence
of the signal and the incoherence of the noise over the
window of data in forming the covariance matrix.

The polarization direction estimated by the princi-
pal eigenvector of the covariance matrix, formed from
a three-component data set, is an unbiased estimate of
the polarization direction of a rectilinear event in truly
random noise, whatever the amplitude of the noise.
This is shown below.

Without loss of generality, consider a rectilinear
signal, f, arriving at a detecting station with direction,
c, given by the direction ratios (1:1:1). This is a
general case for a single signal at an arbitrary
direction, as the co-ordinate axes may be rotated such
that the signal direction lies along c. Any covariance
matrix, R, formed from the noise-free traces will be of
the form

R ¼ σ cc* ¼ σ
1 1 1
1 1 1
1 1 1

2
4

3
5 ð2Þ

where σ is the mean signal energy. The covariance
matrix of any random noise to be superposed on the

signal will be a diagonal matrix (Born and Wolf 1975;
Kanasewich 1981) of the form

N ¼
k 0 0
0 k 0
0 0 k

2
4

3
5 ð3Þ

The combined signal and noise may, therefore, be
described by

Rtot ¼ σ
1þ r 1 1
1 1þ r 1
1 1 1þ r

2
4

3
5 ð4Þ

where r is the noise-to-signal ratio (k/σ).
This matrix has characteristic equation

3 r � lð Þ2 þ r � lð Þ3 ¼ 0 ð5Þ

which implies eigenvalues l equal to r, r and r+3.
Since r>0, the principal eigenvalue is clearly r+3. By
substitution in the eigenequation,

Rtot u ¼ r þ 3ð Þu ð6Þ

its corresponding eigenvector, u, is trivially shown to
be

u ¼ 1ffiffiffi
3

p
1
1
1

0
@

1
A ð7Þ

Thus, the polarization direction is correctly esti-
mated in totally random noise, irrespective of the
amplitude of the noise-to-signal ratio r. This impor-
tant property is one of the major reasons for the
success of single-station polarization analysis of such
data. The major concern with this type of analysis
is how well the data fit the assumption of random
noise.

Consider now the effect of random noise having
different amplitudes on each channel. This may be
illustrated analytically by a simple two-dimensional
example. The covariance matrix of a polarized event
arriving in 2D space with direction ratios (1:1) and
relative random noise levels, δ and ε, on each
component may be represented as

R ¼ 1þ δ 1
1 1þ "

� �
ð8Þ

J Seismol (2008) 12:377–385 379



This has principal eigenvalue

l1 ¼ 1þ d þ "

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d � "ð Þ2þ4

q
2

ð9Þ

with corresponding non-normalized eigenvector:

2

"� δ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"� δð Þ2 þ 4

q !
ð10Þ

The estimated polarization direction will, therefore,
only be correct (2, 2) if the noise amplitude is equal
on each channel (ε=δ), a point often ignored in
polarization analysis.

We showed above on purely theoretical grounds
that an eigendecomposition of the covariance matrix
should succeed in finding the direction of any signal
in purely random noise no matter how high the levels
of random noise. In practice, this is not the case. The
concept of noise being totally random is purely a
statistical notion. Noise added to the signal is less
likely to cancel when averaged over a small time
window than it would using a larger one. We expect
the error to be inversely proportional to the time-
bandwidth product (window length). It is the variance
of the estimated direction that is determined by the
SNR. If an experiment could be repeated an infinite
number of times or if the time window used in

forming the covariance matrix were infinitely long,
then there would be no error in the polarization
direction estimate no matter how small the SNR is.
This is not possible in practice. The computed
azimuth will have an error related to the variance of
the noise distribution. This is the reason why
polarization processing is generally unsuccessful with
single-mode data with a SNR less than 1.

3 Interfering events and coherent noise

When two purely polarized events overlap (and,
therefore, interfere) within the window used for
polarization analysis, a composite nonpolarized parti-
cle motion is produced. This may be visualized by
examining the hodograms of three windows of a
synthetic seismogram (Fig. 1). The hodogram is a
crossplot of the various two components of motion
(e.g., X–Y, X–Z, Y–Z) over a time window to gain an
impression of the 3D particle displacement as a
function of time. In window a, there is no signifi-
cantly polarized signal, producing a scattered hodo-
gram. In window b, there is a strong linear event,
indicated by the corresponding hodograms. In win-
dow c, two linearly polarized events overlap, pro-
ducing a composite signal producing complicated
hodograms.

Fig. 1 A three-component
trace illustrating hodogram
for a wave, b a single
rectilinearly polarized event,
c overlapping rectilinear
events
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If polarization analysis is applied to data with
significant interference such as in case c above, then
in general, none of the principal directions obtained
from an eigenanalysis will then point along the
direction of the individual event directions. All that
is then known is that the original direction vectors of
the two signals both lie in the plane spanned by the
two principal directions of the covariance matrix. Any
signal interfering with the signal of interest is then a
form of coherent noise and is a major problem in a
standard single station covariance analysis.

4 General triaxial analysis

Consider a model involving two superposed signals
f1(t) and f2(t), arriving at vector directions given by
the direction cosines c1 and c2:

r tð Þ¼c1f1 tð Þþc2f2 tð Þ ð11Þ

where r is the composite signal and t denotes the time
dependency of the unequal wavelets f1ðtÞ and f2ðtÞ. If
the signals are defined on the interval [O, L], then the
sample covariance matrix is

R� ¼ c
σ2
1 σ1σ2γ

σ1σ2γ σ2
2

� �
cT ð12Þ

where the signal energies are

s2
i ¼

ZL
0

f 2i tð Þdt i ¼ 1; 2 ð13Þ

and the correlation coefficient or coherence function
between the two signals is

g ¼
ZL
0

f1 tð Þf2 tð Þdt
s1s2

ð14Þ

and the matrix c has as its two column vectors, c1 and
c2.The covariance matrix can be decomposed into the
form

R� ¼ σ1c1 σ2c2½ � 1γ
γ1

� �
σ1 cT1
σ2 cT2

" #
ð15Þ

By means of the decomposition

1 γ
γ 1

� �
¼ 1

2
1 1
1 �1

� �
1þ γ 0
0 1� γ

� �
1 1
1 �1

� �
ð16Þ

the covariance matrix takes the following form:

R� ¼ σ1c1 þ σ2c2 σ1c1 � σ2c2½ �
1þγ
2 0

0 1�γ
2

" #
σ2c2 þ σ1c1ð ÞT
σ1c1 � σ2c2ð ÞT

� �

ð17Þ
We expect the error in estimated azimuth (so-called

bearing swing—see Gething 1991) to be maximal when
the two orthogonal arrivals are 180° out of phase. In
this case, the correlation coefficient is γ=−1 and

R ¼ s1c1 � s2c2ð Þ s1c1 � s2c2ð ÞT ð18Þ
For signals of equal amplitude (σ1=σ2), the prin-

cipal eigenvector is c1–c2. As the incident waves are
orthogonal, the azimuth (bearing) swings 45 or 135°
from the two incident wavefield directions.

For the case of two in-phase arrivals (γ=1) the
covariance matrix is

R ¼ s1c1 þ s2c2ð Þ s1c1 þ s2c2ð ÞT ð19Þ

and a similar result obtains for the computed azimuth.

5 A simple mathematical model for biaxial data

To quantify the errors on azimuth estimation, we will
now consider a very simplified mathematical model
involving two-component (biaxial) data in which the
same transient wave defines each pulse. The wavelet
is defined by

f tð Þ ¼
4t
L 1� t

L

� �
t 2 o; L½ �

¼ 0 otherwise:
ð20Þ

where L is a constant defining the wavelet period or
duration. The wavelet and a delayed version of itself
are shown in Fig. 2. It is taken to be unipolar and of
positive sign for ease of treatment. We are not
supposing that actual seismic signals are of such
simple form. They are obviously much more compli-
cated. Nevertheless, the simplified model will allow
us to illustrate the multipathing effect and comple-
ment the more general treatment given earlier.
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The effect of interference of two such wavelets
may be investigated by considering the two compo-
nent data r¼ X ; Yð Þ defined below:

X ¼ a1f tð Þ cos θ1 þ a2f t � t1ð Þ cos θ2
Y ¼ a1f tð Þ sin θ1 þ a2f t � t1ð Þ sin θ2 ð21Þ

These represent two similar signals (f1=a1f(t), f2=
a2f(t− t1)) with respective amplitudes a1 and a2, angles

of arrival around θ1 and θ2, and times of arrival 0 and
t1. Note that in the previous analysis (see Eq. 1),

c�1
¼ cos θ1; sin θ1ð Þ

c�2
¼ cos θ2; sin θ2ð Þ ð22Þ

Without loss of generality, we may allow the first
event to arrive along the x-axis (i.e., θ1=0 as plotted
in Fig. 2). We can now examine the covariance matrix
formed from such a data set, and note its dependence
on relative amplitudes, time delays, and angle
between arrival directions of the two wavelets. The
closed form of the principal eigenvector of this matrix
yields the apparent direction of arrival. By comparing
with the true (known) direction of the event in
question, we gain insight into how interference by
another arrival affects directional errors even in an
environment totally free of random noise.

The covariance matrix (Eq. 12) formed from the
model in Eq. 21, with θ1 set to zero and limits of
integration from 0 to L, is

R ¼ 16

30
L

a21 þ 2a1a2 cos θ2ð ÞIxy þ a22 cos
2 θ2ð ÞIyy a1a2 sin θ2ð ÞIxy þ a22 cos θ2ð Þ sin θ2ð ÞIyy

a1a2 sin θ2ð ÞIxy þ a22 cos θ2ð Þ sin θ2ð ÞIyy a22 sin
2 θ2ð ÞIyy

� �
ð23Þ

where

Ixy ¼
ZL
0

f :f t � t1ð Þdt ¼ 1� u� 5u2 þ 5u3 ð23AÞ

Iyy ¼
ZL
0

f 2 t � t1ð Þdt ¼ 1� 10u3 þ 15u4

� 6u5 ð23BÞ
and u ¼ t1

L :

The eigenvalues, λ1 and λ2, of a 2×2 symmetric
matrix:

M ¼ A B
B D

� �
ð24Þ

may be written in closed form as

li ¼ Aþ Dð Þ
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� Dð Þ2þ4B2

2

s
i ¼ 1; 2 ð25Þ

The eigenvector, ν1, corresponding to the principal
eigenvalue is given in nonnormalized form as

v1 ¼
2B

D� Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� Dð Þ2 þ 4B2

q
2
4

3
5 ð26Þ

or in normalized form as

v1 ¼ cos =
sin =

� �
ð27Þ

where ψ is the apparent polarization direction and

tany ¼
D� Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� Dð Þ2þ4B2

q
2B

ð28Þ

An eigenanalysis can, therefore, be directly per-
formed on the covariance matrix given in Eq. 23 and
the variation of the principal eigenvector, ν1, ob-
served. The apparent azimuth of arrival given by
Eq. 28 depends on the quantities A, B, C, and D,

Fig. 2 The simple transient wavelets defined in Eq. 21 with θ>
0 used for a two-dimensional analytical test. Two correlating
orthogonal events arrive on X and Y components with a time
delay t1
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which are functions of the amplitude ratio of the two
interfering arrivals a1=a2, the actual arrival direction
q2, and the time delay t1 for the two signals.

6 Azimuth error

Figure 3 shows the variation of computed direction
(apparent azimuth) against delay time of the second
event, expressed as a fraction of a period. The
amplitudes of the two events were made equal (a1=
a2), and their true arrival directions were orthogonal
(θ1=0°, θ2=90°). The covariance matrix is computed
over a fixed time window length L. When the events
arrive simultaneously (t1=u=0), the two components
of data have equal amplitude and phase with the
composite motion being rectilinear. The apparent
polarization direction is then 45° (intermediate be-
tween the two wave directions).

When there is no interference from the second
event (no overlap, i.e., t1=L or u=1), only the first
event contributes to the covariance matrix, and again,
the rectilinear motion is correctly detected with a
correctly estimated arrival direction of 0°. However,
at other time delays, there is significant variation from
either of the known signal arrival directions or their
average, as shown in Fig. 3. The most significant

variation occurs for time delays of around 0.4–0.5 of
the duration of the unipolar pulse.

This effect, known as bearing swing, has been
studied for monochromatic electromagnetic signals
(Gething 1991) and appears to have maximum effect

Fig. 3 Single-station direction finding in coherent noise. The
estimated direction of arrival for the transient events in Fig. 2 is
plotted as their delay time varies. The two events have equal
amplitude and arrive at an angular separation of 90°. The true
arrival direction of event 1 is 0°

Fig. 4 Bearing variation with relative amplitude for two
wavelets arriving at an angular separation of 90°. The bearing
swing is most apparent (i.e., contours are closest) for equal
amplitude event. The azimuth error is severe at small delays

Fig. 5 The variation of estimated bearing with difference in
angle of arrival for two equal amplitude events. As the
difference in arrival angle increases, the azimuth error worsens.
The maximum gradient occurs at a delay of about half a period
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when the phase difference between interfering waves
is 180°. Of course, for such sinusoidal signals, there
are positive and negative amplitudes, and interference
can be destructive or constructive. Similarly, when
polychromatic transient waves are being analyzed,
there are several oscillating cycles of the waveform
and one might expect maximum effect when the
interfering waves have a phase shift of 180°. This
corresponds to a time shift of about half the dominant
period (≈0.5 L). The result displayed in Fig. 3 is,
therefore, consistent with this observation.

If the ratio of the amplitudes of the wavelets, a1/a2,
is allowed to vary, the bearing swing will change.
Figure 4 is a contour plot of apparent polarization
direction (i.e., principal eigenvector) as a function of
both time delay (linear phase shift) and relative
amplitude. Again, the arrival directions of the events
are separated by 90°. The variation of the calculated
bearing with time delay has a similar shape for all
values of the relative amplitude but is less pronounced
for small relative amplitude. This is because of the
stronger signal dominating the data. The higher the
amplitude ratio, the more closely the calculated angle
of arrival will track the true arrival direction of the
stronger signal, and the less the influence of the weaker
the signal on the apparent polarization direction.

If the angle of arrival of the delayed event is
allowed to vary but the amplitude ratio of the two
signals is kept constant, the plot shown in Fig. 5 is
obtained. By contrast to Fig. 4, the delay giving
steepest gradient is no longer constant. As the angle
between arrival directions increases from 0 to 90°, the
time delay producing the greatest bearing swing
moves from 0.6 to 0.4 of a period. The most extreme
bearing swing is seen to occur for orthogonal events
of equal amplitude; this case was shown in Fig. 3.

7 Conclusions

A major advantage of using three-component seismic
stations is that directional information can be inferred
from a single location in space. All single-station
triaxial direction finding techniques search for pure
modes of vibration and assume that the noise on the
signal is random. This paper shows analytically that
totally random noise cannot affect directional estima-
tion in a single-station polarization analysis. How-
ever, the direction finding ability will be severely

affected by any overlapping signals within the analysis
window.

In this paper, we give a formal theoretical analysis
of the coherent noise problem for two dissimilar
wavelets arriving from different directions at a single
triaxial station. Equations are derived that show the
form of the covariance matrix. We then consider a
particularly simple form of wavelet for the biaxial
problem of azimuth estimation and give closed form
expressions for the eigenvector corresponding to the
dominant eigenvalue. This direction estimate is cast in
terms of the amplitudes, arrival directions, and phase
lags for the two interfering arrivals. The azimuth error
is most severe when interfering events have approx-
imately the same amplitude. The effect is also
dependent upon the difference in polarization angle
of the two signals and is strongest when they have
orthogonal polarization. However, even for small
differences in angle of arrival (<5°), there may be a
significant (>20°) error in the direction estimate.

The direction estimate of interfering events not
only has an error, but it also varies dramatically with
relative time delay or phase difference. The estimated
azimuth direction swings most from its true value for
time delays of about 0.4–0.5 of the dominant period
between interfering events.

We have shown that, in the case of random noise,
when the SNR is low or if there are multiple
interfering arrivals (coherent noise), the single triaxial
station approach to direction finding will not be of
benefit. A multi-station approach, which allows
separation of interfering events, is then imperative. It
is the only way to effectively combat coherent noise
and allow an accurate estimate of azimuth and
inclination for a given seismic arrival.
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