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Abstract We consider a novel class of art gallery problems inspired by wireless lo-
calization that has recently been introduced by Eppstein, Goodrich, and Sitchinava.
Given a simple polygon P , place and orient guards each of which broadcasts a unique
key within a fixed angular range. In contrast to the classical art gallery setting, broad-
casts are not blocked by the edges of P . At any point in the plane one must be able
to tell whether or not one is located inside P only by looking at the set of keys re-
ceived. In other words, the interior of the polygon must be described by a monotone
Boolean formula composed from the keys. We improve both upper and lower bounds
for the general problem where guards may be placed anywhere by showing that the
maximum number of guards to describe any simple polygon on n vertices is be-
tween roughly 3

5n and 4
5n. A guarding that uses at most 4

5n guards can be obtained
in O(n logn) time. For the natural setting where guards may be placed aligned to
one edge or two consecutive edges of P only, we prove that n − 2 guards are always
sufficient and sometimes necessary.

Keywords Computational geometry · Art gallery problems

1 Introduction

Art gallery problems are a classic topic in discrete and computational geometry, dat-
ing back to the question posed by Victor Klee in 1973: “How many guards are nec-
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essary, and how many are sufficient to patrol the paintings and works of art in an
art gallery with n walls?” Chvátal [2] was the first to show that �n/3� guards are al-
ways sufficient and sometimes necessary, while the beautiful proof of Fisk [6] made
it into “the book” [1]. Nowadays there is a vast literature [13, 15, 17] about varia-
tions of this problem, ranging from optimization questions (minimizing the number
of guards [11] or maximizing the guarded boundary [7]) over special types of guards
(mobile guards [12] or vertex pi-guards [16]) to special types of galleries (orthogonal
polygons [9] or curvilinear polygons [10]), to mention just a few classical and some
more recent examples.

A completely different direction has recently been introduced by Eppstein,
Goodrich, and Sitchinava [5]. They propose to modify the concept of visibility by
not considering the edges of the polygon/gallery as blocking. This changes the prob-
lem quite drastically because it breaks up a certain locality where the shape of the
polygon dictates the possible placement of guards.

The motivation for this model stems from communication in wireless networks
where the signals are not blocked by walls, either. For illustration, suppose you run a
café (modeled, say, as a simple polygon P ) and you want to provide wireless Internet
access to your customers. But you do not want the whole neighborhood to use your
infrastructure. Instead, Internet access should be limited to those people who are lo-
cated within the café. To achieve this, you can install a certain number of devices, let
us call them guards, each of which broadcasts a unique (secret) key in an arbitrary
but fixed angular range. The goal is to place guards and adjust their angles in such a
way that everybody who is inside the café can prove this fact just by naming the keys
received and nobody who is outside the café can provide such a proof. Formally this
means that P can be described by a monotone Boolean formula over the keys, that is,
a formula using the operators AND and OR only, negation is not allowed.

It is convenient to model a guard as a subset of the plane, namely the area where
the broadcast from this guard can be received. This area can be described as an in-
tersection or union of at most two halfplanes. Using this notation, the polygon P is
to be described by a combination of the operations union and intersection over the
guards. (See Fig. 1.)

Natural Guards Natural locations for guards are the vertices and edges of the poly-
gon. A guard which is placed at a vertex of P is called a vertex guard. A vertex guard
is natural if it covers exactly the interior angle of its vertex. But natural vertex guards

Fig. 1 A polygon described by (a ∪ b) ∩ c ∩ d and a polygon that cannot be guarded using natural vertex
guards only
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alone do not always suffice [5], as the polygon shown in Fig. 1 to the right illustrates:
No natural vertex guard can distinguish the point p inside and the point q outside the
polygon. On the other hand, if P is a convex polygon, putting a natural vertex guard
on every second vertex is sufficient to describe P as their intersection.

A guard placed anywhere on the line given by an edge of P and broadcasting
within an angle of π to the inner side of the edge is called a natural edge guard. Of
course, we can place a natural edge guard on one of the vertices of its incident edge.
Hence a natural edge guard can always be realized as a (not necessarily natural)
vertex guard. Dobkin, Guibas, Hershberger, and Snoeyink [4] showed that n natural
edge guards are sufficient for any simple polygon with n edges.

Vertex Guards Eppstein et al. [5] proved that any simple polygon with n edges
can be guarded using at most n − 2 (general, that is, not necessarily natural) vertex
guards. More generally, they show that n + 2(h − 1) vertex guards are sufficient
for any simple polygon with n edges and h holes. This bound is not known to be
tight. Damian, Flatland, O’Rourke, and Ramaswami [3] describe a family of simple
polygons with n edges which require at least �2n/3� − 1 vertex guards.

General Guards In the most general setting, we do not have any restriction on the
placement and the angles of guards. So far the best upper bound known has been
the same as for vertex guards, that is, n − 2. On the other hand, if the polygon does
not have collinear edges then at least �n/2� guards are always necessary [5]. The
lower bound construction of Damian et al. [3] for vertex guards does not provide
an improvement in the general case, where these polygons can be guarded using at
most �n/2�+ 1 guards. As O’Rourke wrote [14]: “The considerable gap between the
�n/2� and n − 2 bounds remains to be closed.”

Results We provide a significant step in bringing the two bounds for general guards
closer together by improving both on the upper and on the lower side. On one hand,
there is an O(n logn)-algorithm to construct a guarding using at most �(4n − 2)/5�
guards for any given simple polygon with n edges. The result easily generalizes to
a finite number of polygons combined in some way by the operations intersection
and/or union. In particular, any simple polygon with h holes can be guarded using at
most �(4n− 2h− 2)/5� guards. On the other hand, we describe a family of polygons
which require at least �(3n − 4)/5� guards. Furthermore we obtain tight bounds for
the case of natural guards. An extension of a result of Dobkin et al. [4] shows that
n − 2 natural (vertex or edge) guards are always sufficient. Somewhat surprisingly, it

Table 1 Number of guards needed for a simple polygon on n vertices

Natural General

vertex guards guards vertex guards guards

Upper bound does not exist [5] n − 2 a n − 2 [5] �(4n − 2)/5� a

Lower bound does not exist [5] n − 2 a �2n/3� − 1 [3] �(3n − 4)/5� a

aIndicates the results of this paper
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turns out that this bound is tight. The same construction as for general guards yields
a family of polygons which require n − 2 natural (vertex or edge) guards.

The different problems and results are summarized in Table 1.

2 Notation and Basic Properties

We are given a simple polygon P ⊂ R
2. A guard g is a closed subset of the plane,

whose boundary ∂g is described by a vertex v and two rays emanating from v (see
Fig. 2). The ray that has the interior of the guard to its right is called the left ray, the
other one is called the right ray. The angle of a guard is the interior angle formed by
its bounding rays. For a guard with angle π , the vertex is not unique.

A guard g covers an edge e of P completely, if e ⊆ ∂g and their orientations
match, that is, the inner side of e is on the inner side of g. We say e is covered partly
by g, if their orientations match and e ∩ ∂g is a proper sub-segment of e that is not
just a single point. We call a guard a k-guard, if it covers exactly k edges completely.
As P is simple, a guard can cover at most one edge partly. If a guard covers an edge
partly and k edges completely, we call it a k′-guard. Assuming there are no collinear
edges, a guard can cover at most two edges; then a natural vertex guard is a 2-guard
and a natural edge guard is a 1-guard.

The Wireless Localization Problem A guarding G(P ) for P is a formula composed
of a set of guards and the operators union and intersection that defines P . The wire-
less localization problem is to find a guarding for a given simple polygon with as
few guards as possible. The same problem is sometimes referred to as guard place-
ment for point-in-polygon proofs or the sculpture garden problem [5]. The following
statements are reformulations of results in [5].

Fig. 2 A guard g with
vertex vg , left ray �g and right
ray rg and a guard g′ with its
vertex and rays

Fig. 3 Examples of guards: (1) a 2-guard, but not a vertex guard, (2) a 1-guard (and a natural edge guard),
(3) a 2-guard (and a natural vertex guard), (4) a 2-guard, (5) a 0-guard, (6) a 0-guard (wrong orientation),
(7) a 1-guard (and not a 1′-guard since the orientation is wrong), (8) a 1-guard (a non-natural vertex guard),
(9) a 1′-guard
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Observation 1 For any guarding G(P ) and for any two points p ∈ P and q /∈ P

there is a guard g ∈ G(P ) which distinguishes p and q , that is, p ∈ g and q /∈ g.

Proof Suppose there is no such guard, that is, p ∈ g implies q ∈ g for all g ∈ G(P ).
Then the same holds for any union and intersection of guards from G(P ). Therefore,
no monotone formula built from the guards can describe P . �

Lemma 2 In any guarding G(P ), every edge of P must be covered by at least one
guard or it must be covered partly by at least two guards.

Proof Let e be an edge of P . Suppose there is no guard that covers e completely and
at most one guard that covers e partly. Then we can find a point p ∈ e such that no
guard ray passes through it. As P is simple, there is a point q close to p and located
outside P such that every guard that contains p contains q as well, in contradiction
to Observation 1. �

Lemma 3 Any simple polygon with n edges no two of which are collinear requires
at least �n/2� guards.

Proof As there are no collinear edges, a guard can cover at most two edges (partly or
completely). The bound follows from Lemma 2. �

3 Upper Bounds

In this section we will derive upper bounds for the number of guards needed to cover
any simple polygon. In fact, we obtain much more general results, which apply to
any set that can be obtained from a finite collection of simple polygons by some
combination of the operations intersection and union.

Following Dobkin et al. [4] we use the notion of a polygonal halfplane which is
a topological halfplane bounded by a simple bi-infinite polygonal chain with edges
(e1, . . . , en), for n ∈ N. For n = 1, the only edge e1 is a line and the polygonal half-
plane is a halfplane. For n = 2, e1 and e2 are rays which share a common source but
are not collinear. Note that polygonal halfplanes with one or two edges are exactly
the same as guards. For n ≥ 3, e1 and en are rays, ei is a line segment, for 1 < i < n,
and ei and ej , for 1 ≤ i < j ≤ n, do not intersect unless j = i + 1 in which case they
share an endpoint. For brevity we use the term chain in place of simple bi-infinite
polygonal chain in the following.

For a polygonal halfplane H define γ (H) to be the minimum integer k such that
there exists a guarding G(H) for H using k guards. Similarly, for a natural number n,
denote by γ (n) the maximum number γ (H) over all polygonal halfplanes H that are
bounded by a chain with n edges. Obviously γ (1) = γ (2) = 1. The results of Dobkin
et al. [4] imply that γ (n) ≤ n. Our main goal within this section is to improve this
bound.

The following lemma makes the connection between guardings for polygonal half-
planes and simple polygons explicit.
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Lemma 4 Any simple polygon P on n ≥ 4 vertices can be expressed as an intersec-
tion of two polygonal halfplanes each of which consists of at least two edges.

Proof Let p− and p+ be the vertices of P with minimal and maximal x-coordinate,
respectively. If they are not adjacent along P , split the circular sequence of edges
of P at both p− and p+ to obtain two sequences of at least two segments each.
Transform each sequence into a chain by linearly extending the first and the last
segment beyond p− or p+ (whichever of the two is incident) to obtain a ray. As
p− and p+ are opposite extremal vertices of P , the two chains intersect exactly at
these two points (and nowhere else). Thus, the polygon P can be expressed as an
intersection of two polygonal halfplanes bounded by these chains.

Now consider the case that p− and p+ are adjacent along P . Without loss of
generality assume that P lies above the edge from p− to p+. Rotate clockwise until
another point q has x-coordinate larger than p+. If q and p− are not adjacent along
P , then split P at these points as described above. Otherwise the convex hull of P is
the triangle qp−p+. In particular, q and p+ are opposite extremal vertices as well and
they cannot be adjacent along P because P has more than three vertices. Therefore
we can split at q and p+ as described above. �

The closure of the complement of a polygonal halfplane H , call it H , is a polyg-
onal halfplane as well. In particular, the closure of the complement of a guard g,
denoted by g, is a guard as well.

Observation 5 Any guarding for H can be transformed into a guarding for H using
the same number of guards.

Proof Use de Morgan’s rules and invert all guards (keep their location but flip the
angle to the complement with respect to 2π ), see Fig. 4. �

Note that the resulting formula is indeed monotone because only guards com-
plementary to the original ones appear (in SAT terminology: only negated literals);
a formula is not monotone only if both a guard g and its complementary guard g

appear in it. In this way guarding the exterior of a simple polygon can be done in the
same way as guarding its interior.

Our guarding scheme for chains is based on a recursive decomposition in which
at each step the current chain is split into two or more subchains. At each split some

Fig. 4 A polygonal halfplane H with a guarding H = (a ∩ b) ∪ c. Using de Morgan’s rules we get a
guarding of the complement H = (a ∩ b) ∪ c = (a ∪ b) ∩ c
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Fig. 5 A polygonal halfplane
whose bounding chain C has a
degenerate convex hull h(C)

segments are extended to rays and we have to carefully control the way these rays
interact with the remaining chain(s). This is particularly easy if the split vertex lies
on the convex hull because then the ray resulting from the segment extension cannot
intersect the remainder of the chain at all. However, we have to be careful what we
mean by convex hull. As observed by Dobkin et al. [4], it is not the polygonal half-
plane that matters but only its bounding chain. If the unbounded part of the halfplane
(look at the plane from a point very high above) forms an angle greater than π , its
convex hull is the entire plane. Only if the unbounded part of the halfplane forms
a convex angle (≤ π ), its convex hull is bounded by a finite chain which starts and
ends with a ray parallel to (possibly identical to) the rays of the chain bounding the
halfplane. That said, instead of looking at the convex hull of a polygonal halfplane
H we work with the convex hull of its bounding chain C. The convex hull h(C) of
a chain C = (e1, . . . , en), for n ≥ 2, is either the convex hull of H or the convex hull
of H , whichever of these two is not the whole plane, which solely depends on the
direction of the two rays of C. The boundary of h(C) is denoted by ∂h(C). There is
one degenerate case, when the two rays defining C are parallel and all vertices are
contained in the strip between them; in this case, h(C) is a strip bounded by the two
parallel lines through the rays and thus ∂h(C) is disconnected (see Fig. 5).

3.1 Natural Guards

Theorem 6 Let H be a polygonal halfplane bounded by a simple bi-infinite polyg-
onal chain with n ≥ 2 edges. Then H can be guarded using at most n − 1 natural
guards.

Proof We proceed by induction on n. We follow the proof of Dobkin et al. [4] with
the only difference in the base case: A chain with 2 edges can be guarded by one
natural vertex guard. Now let H be bounded by the chain C with n ≥ 3 edges.

Denote the sequence of edges along C by (e1, . . . , en) and let vi , for 1 ≤ i < n,
denote the vertex of C incident to ei and ei+1. The underlying (oriented) line of ei ,
for 1 ≤ i ≤ n, is denoted by �i . For 2 ≤ i ≤ n − 1, let e+

i be the ray obtained from ei

by extending the segment linearly beyond vi . Similarly e−
i refers to the ray obtained

from ei by extending the segment linearly beyond vi−1. For convenience, let e+
1 = �1

and e−
n = �n.

Let vi be a vertex on ∂h(C). Split C at vi into two chains C1 = (e1, . . . , e
+
i ) and

C2 = (e−
i+1, . . . , en). If 1 < i < n − 1, then by induction there is a natural guarding

G(C1) using at most i − 1 natural guards and a natural guarding G(C2) with at most
n − i − 2 guards. So depending on vi being reflex or convex we obtain a natural
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guarding G(C1) ∪ G(C2) or G(C1) ∩ G(C2), respectively, using at most n − 2 guards.
In the special cases i = 1 or i = n − 1, that is, if vi is the first or last vertex of C

and one of the chains C1 and C2 is just a line, we still obtain a guarding using n − 1
natural guards, because we can guard one chain with n − 2 guards and the line with
one natural edge guard. �

As a consequence we obtain the following upper bound on the number of natural
guards needed for a simple polygon. This bound turns out to be tight, as shown in
Sect. 4. Observe that the statement is false for triangles which require two guards
even without the restriction to natural guards.

Corollary 7 Any simple polygon P with n ≥ 4 edges can be guarded using at most
n − 2 natural (vertex or edge) guards.

Proof By Lemma 4 P can be described as an intersection of two polygonal halfplanes
each of which consists of at least two edges. By Theorem 6 we can guard each of them
by one guard less than it has edges. �

Corollary 8 Let P1, . . . ,Pm be a collection of m ≥ 1 simple polygons, t of which
are triangles, for 0 ≤ t ≤ m. Let R be a region that can be described as a formula
composed of the operations intersection, union, and complement over the variables
{P1, . . . ,Pm} in which each Pi appears exactly once. Then R can be guarded using
at most n − 2m + t natural (vertex or edge) guards, where n is the total number of
edges of the polygons Pi , for 1 ≤ i ≤ m. �

Also, one can easily treat polygons with holes and obtain a better bound as Epp-
stein et al. [5] give for general (not necessarily natural) guards. On the other hand,
their result is slightly more general (triangles allowed) and stronger in the sense that
the obtained formula is concise (a disjunction of conjunctions of constant size).

Corollary 9 Any simple polygon with n ≥ 4 edges and h non-triangular holes can
be guarded using at most n − 2(h + 1) natural (vertex or edge) guards.

3.2 General Guards

Theorem 10 Let H be a polygonal halfplane bounded by a simple bi-infinite polyg-
onal chain with n ≥ 2 edges. Then a guarding for H that uses at most �(4n − 1)/5�
guards can be obtained in O(n logn) time.

Proof We first show the existence of a guarding with at most �(4n − 1)/5� guards
by induction on n. The statement is easily checked for 2 ≤ n ≤ 3. Let C be any chain
with n ≥ 4 edges. We use the same notation as in the proof of Theorem 6. Without
loss of generality (cf. Observation 5) suppose that either the vertices of C that lie on
∂h(C) are reflex, that is, h(C) is the convex hull of H , or, in the degenerate case (see
Fig. 5), that v1 is reflex.

If there is any vertex vi on ∂h(C), for some 1 < i < n − 1, then split C into
two chains C1 = (e1, . . . , e

+
i ) and C2 = (e−

i+1, . . . , en). We obtain a guarding for
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Fig. 6 The case where both e1
and en are part of ∂h(C). The
small “brushes” mark the
interior of the polygonal
halfplane

Fig. 7 The chain C can interact with the shaded region � in three possible ways. The label ∅ marks an
area which does not contain any vertex from C

C as G(C1) ∪ G(C2) and thus γ (C) ≤ γ (i) + γ (n − i), for some 2 ≤ i ≤ n − 2.
As both i ≥ 2 and n − i ≥ 2, we can bound by the inductive hypothesis γ (C) ≤
�(4i − 1)/5�+ �(4n− 4i − 1)/5� ≤ �(4i − 1)/5 + (4n− 4i − 1)/5� ≤ �(4n− 1)/5�.

Else, if both e1 and en are part of ∂h(C) and �1 intersects �n, then we place a
guard g that covers both rays at the intersection of �1 and �n to obtain a guarding
g ∪ G(e−

2 , . . . , e+
n−1) for C (see Fig. 6). Therefore, in this case γ (C) ≤ 1 + γ (n − 2).

Observe that this is subsumed by the inequality from the first case with i = 2.
Otherwise, either �1 does not intersect �n and v1 and vn−1 are the only vertices of

∂h(C) (the degenerate case where ∂h(C) is disconnected, see Fig. 5) or without loss
of generality (reflect C if necessary) v1 is the only vertex of ∂h(C). Let � denote the
open (convex) wedge bounded by e1 and e+

2 . We distinguish three cases.

Case 1 There is a vertex of C in � and among these, a vertex furthest from �2

is vi , for some 3 ≤ i ≤ n − 2 (Fig. 7(a)). Split C into three chains, C1 = (�1), C2 =
(e−

2 , . . . , e+
i ), and C3 = (e−

i+1, . . . , en). By the choice of vi there is no intersection
between C2 and C3 other than at vi . A guarding for C can be obtained as G(C1) ∪
(G(C2) ∩ G(C3)). Therefore, in this case γ (C) ≤ 1 + γ (j) + γ (n − j − 1), for some
2 ≤ j ≤ n − 3. Since j ≥ 2 and n − j − 1 ≥ n − (n − 3) − 1 = 2, we can apply
the inductive hypothesis to bound γ (C) ≤ 1 + �(4j − 1)/5� + �(4n − 4j − 5)/5� ≤
�(4n − 1)/5�.

Case 2 There is a vertex of C in � and among these, the unique one furthest from �2

is vn−1 (Fig. 7(b)). We may suppose that �1 intersects �n; otherwise (the degenerate
case where ∂h(C) is disconnected), exchange the roles of v1 and vn−1. We cannot
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Fig. 8 Either there is a vertex of C in �′ or there is none. If there is none, we distinguish two subcases
depending on whether e+

n−1 intersects e1

end up in Case 2 both ways. Let �′ denote the open (convex) wedge bounded by en

and e−
n−1.

If there is any vertex of C in �′, let vi be such a vertex which is furthest from �n−1
(see Fig. 8(a)). Split C into two chains, C1 = (e1, . . . , e

+
i ) and C2 = (e−

i+1, . . . , e
+
n−1).

Both C1 and C2 are simple, except that their first and their last ray may intersect (in
that case split the resulting polygon into two chains). Put a guard g at the intersection
of �n with e1 such that g covers en completely and e1 partially. A guarding for C can
be obtained as g∩(G(C1)∪ G(C2)). Again this yields γ (C) ≤ 1+γ (i)+γ (n− i−1),
for some 2 ≤ i ≤ n − 3, and thus γ (C) ≤ �(4n − 1)/5� as above in Case 1.

Otherwise there is no vertex of C in �′. We distinguish two sub-cases. If e+
n−1

intersects e1 then put two guards (see Fig. 8(b)): a first guard g1 at the intersection
of �n with e1 such that g1 covers en completely and e1 partially, and a second guard
g2 at the intersection of �n−1 with e1 such that g2 covers en−1 completely and e1
partially. Together g1 and g2 cover e1 and g1 ∩ (g2 ∪ G(C′)) provides a guarding for
C, with C′ = (e−

2 , . . . , e+
n−2). In this case we obtain γ (C) ≤ 2 + γ (n − 3) and thus

by the inductive hypothesis γ (C) ≤ 2 + �(4n − 13)/5� ≤ �(4n − 1)/5�.
Finally, suppose that e+

n−1 does not intersect e1 (see Fig. 8(c)). Then for the chain
C′ = (e1, . . . , e

+
n−1) there is some vertex other than v1 on the convex hull boundary

h(C′). Thus we can obtain a guarding for C′ as described above for the case that there
is more than one vertex on the convex hull. Put a guard g at the intersection of �n with
e1 such that g covers en completely and e1 partially. This yields a guarding g ∩ G(C′)
for C with γ (C) ≤ 1 + γ (C′) ≤ 1 + γ (i) + γ (n − i − 1), for some 2 ≤ i ≤ n − 3. As
in Case 1 we conclude that γ (C) ≤ �(4n − 1)/5�.

Case 3 There is no vertex of C in � (Fig. 7(c)). Let �′′ denote the open (convex)
wedge bounded by e−

2 and e+
3 . If e−

3 does not intersect e1 then put a natural ver-
tex guard g at v1 to obtain a guarding g ∩ G(C′) for C, where C′ = (e−

3 , . . . , en).
This yields γ (C) ≤ 1 + γ (n − 2) and thus by the inductive hypothesis γ (C) ≤
1 + �(4n − 9)/5� ≤ �(4n − 1)/5�.

Now suppose that e−
3 intersects e1. We distinguish two subcases. If there is no

vertex of C in �′′, then place two guards: a natural vertex guard g1 at v1 and a
guard g2 at the intersection of e−

3 with e1 such that g1 covers e3 completely and e1
partially (see Fig. 9(a)). A guarding for C is provided by g1 ∩ (g2 ∪ G(C′)), with
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Fig. 9 The subcase where �′′ is empty and the subcase where it is not

C′ = (e−
4 , . . . , en). In this case we obtain γ (C) ≤ 2 + γ (n − 3) and thus in the same

way as shown above γ (C) ≤ �(4n − 1)/5�.
Otherwise there is a vertex of C in �′′. Let vi , for some 4 ≤ i ≤ n − 1, be a vertex

of C in �′′ which is furthest from �3. First suppose e−
i+1 does not intersect e2. Then

neither does e+
i and hence we can split at vi in the same way as if vi would be on

∂h(C). If i = n − 1, e−
n must intersect e2 (otherwise, en would be on ∂h(C)). Thus

we have i < n − 1 and both chains consist of at least two segments/rays.
Now suppose that e−

i+1 intersects e2 and thus e1, and denote the point of inter-
section between e−

i+1 and e1 by v′. Let e∗
1 be the ray originating from v′ in direc-

tion e1, and let e∗
i+1 denote the segment or ray (for i = n − 1) originating from

v′ in direction e−
i+1. Place a natural vertex guard g at v1. See Fig. 9(b). Regard-

less of whether or not e+
i intersects e2 and e1, a guarding for C is provided by

g∩(G(C1)∪ G(C2)), with C1 = (e−
3 , . . . , e+

i ) and C2 = (e∗
1, e∗

i+1 . . . , en) (if i = n−1
then C2 = (e∗

1, e∗
n)). Observe that by the choice of vi both C1 and C2 are simple and

γ (C) ≤ 1 + γ (j) + γ (n − j − 1), for some 2 ≤ j ≤ n − 3. As above, this yields
γ (C) ≤ �(4n − 1)/5�.

We have shown that in every case γ (C) ≤ �(4n − 1)/5� and as C was arbitrary
it follows that γ (n) ≤ �(4n − 1)/5�. (One might be tempted to believe that the same
analysis yields a better upper bound of �(2n − 1)/3�. But note that this bound does
not hold for n = 3, which is the reason why the proof would break down.)

The above analysis yields a recursive algorithm to construct a guarding using at
most �(4n − 1)/5� guards. It remains to prove the claimed running time. Store the
input chain C as an array (e1, . . . , en) of its edges. Each edge ei in turn is repre-
sented by its direction di and its target vertex vi (the latter being undefined for en).
A subchain (ei, . . . , ej ) of C is represented by its bounding indices i and j .

Apart from constant time geometric primitives, such as testing whether two given
rays intersect, the algorithm needs to find an extreme point among a contiguous sub-
sequence Vi,j := (vi, . . . , vj ), for some 1 ≤ i ≤ j < n, of vertices from C. Using a
compact interval tree [8] on the vertices of C, we can find extreme points for any Vi,j ,
1 ≤ i ≤ j < n, in O(logn) time after O(n logn) preprocessing. No other ingredients
are needed for the algorithm, any test whether a certain region is empty boils down
to an extreme point query on a suitably chosen subsequence of vertices. For instance,
to test whether the region � is empty of points in Case 1, it is enough to know the
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extreme point of V3,n in direction e1. Therefore, any single step of the algorithm can
be handled in O(logn) time. As in each step the current chain is split, the number of
steps is linear and the overall runtime is O(n logn). �

Corollary 11 For any simple polygon P with n edges a guarding using at most
�(4n − 2)/5� guards can be obtained in O(n logn) time.

Proof Triangles can be guarded with two guards and for n ≥ 4 the bound follows
from Lemma 4 and Theorem 10. �

Corollary 12 Let P1, . . . ,Pm be a collection of m ≥ 1 simple polygons with n edges
in total, and let R be a region that can be described as a formula composed of the
operations intersection, union, and complement over the variables {P1, . . . ,Pm} in
which each Pi appears exactly once. Then R can be guarded using at most �(4n −
2m)/5� guards.

Corollary 13 Let P be any simple polygon with h holes such that P is bounded by
n edges in total. Then P can be guarded using at most �(4n − 2h − 2)/5� guards.

4 Lower Bounds

For any natural number m we construct a polygon Pm with 2m edges which requires
“many” guards. The polygon consists of spikes S1, S2, . . . , Sm arranged in such a
way that the lines through both edges of a spike cut into every spike to the left (see
Fig. 10).

Denote the apex of Si by wi and its left vertex by vi . The edge from vi to wi is de-
noted by ei , the edge from wi to vi+1 by fi . We can construct Pm as follows: Consider
the two hyperbolas {(x, y) ∈ R

2 | x ≥ 1, y = 1
x
} and {(x, y) ∈ R

2 | x ≥ 1, y = − 1
x
}.

Let v1 := (1,1) and w1 := (1,−1). Then choose f1 tangential to the lower hyperbola.
Let v2 be the point where the tangent of the lower hyperbola intersects the upper hy-
perbola, that is, v2 = (1 + √

2, 1
1+√

2
). Choose w2 to be the point where the tangent

Fig. 10 Example consisting of
four spikes
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of the upper hyperbola in v2 intersects the lower hyperbola, and proceed in this way.
When reaching wm, draw the last edge fm from wm to v1 to close the polygon. Due
to the convexity of the hyperbolas, Pm has the claimed property.

No two edges of Pm are collinear. Consider the line arrangement defined by
the edges of Pm. No two lines intersect outside Pm, unless one of them is the line
through fm. This leads to the following observation.

Observation 14 In any guarding for Pm every 2-guard that does not cover fm is a
natural vertex guard.

In other words all the 2-guards lie on vertices of Pm except for 2-guards that may
lie on the line that bounds Pm from above.

4.1 Natural Guards

Theorem 15 For any even natural number n there exists a simple polygon with n

edges which requires at least n − 2 natural guards.

We prove the theorem by counting the guards in an optimal solution. We say a
guard belongs to a spike Si if it is a natural edge guard on ei or fi or if it is a natural
vertex guard on vi or wi . As only natural guards are allowed, every guard belongs to
exactly one spike. The basic idea is that most spikes must have at least two guards
which belong to them. Obviously every spike Si must have at least one guard which
belongs to it, since the edge ei must be covered (Lemma 2).

Lemma 16 Consider a guarding G(Pm) using natural guards only, and let i ∈
{1, . . . ,m − 1}. If only one guard from G(Pm) belongs to Si , then this guard must
be on vi or on ei . If there is no guard at wi nor a guard on fi in G(Pm), then both a
guard at vi+1 and a guard on ei+1 are in G(Pm).

Proof Assume only one guard from G(Pm) belongs to Si . It cannot be the natural
edge guard on fi , because this would leave ei uncovered (Lemma 2). If we had a
guard at wi only, there would be no guard to distinguish a point near vi outside Pm

from a point near vi+1 located inside Pm and below the line through fi (see the two
circles in Fig. 11). This proves the first part of the lemma. Now assume there are
no guards at wi nor on fi . Then to cover the edge fi there must be a vertex guard
at vi+1. Furthermore, the edge guard on ei+1 is the only remaining natural guard to
distinguish a point at the apex of Si near wi from a point located to the right of the
apex of Si+1 near wi+1 and above the line through ei+1 (depicted by two crosses). �

This lemma immediately implies Theorem 15. Proceed through the spikes from
left to right. As long as a spike has at least two guards which belong to it, we are fine.
Whenever there appears a spike Si with only one guard, we know that there must be
at least two guards in Si+1 namely at vi+1 and on ei+1. Either there is a third guard
that belongs to Si+1, and thus both spikes together have at least four guards; or again
we know already two guards in Si+2. In this way, we can go on until we either find
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Fig. 11 A spike of Pm

a spike which at least three guards belong to or we have gone through the whole
polygon. So whenever there is a spike with only one guard either there is a spike with
at least three guards that makes up for it, or every spike till the end has two guards.
Hence there can be at most one spike guarded by one guard only that is not made up
for later. For the last spike Sm the lemma does not hold and we only know that it has
at least one guard. So all in all there are at least 2(m − 2) + 1 + 1 = n − 2 guards.

4.2 General Guards

Theorem 17 For any even natural number n there exists a simple polygon with n

edges which requires at least �(3n − 4)/5� guards.

Before proving Theorem 17 let us note that we can find a guarding for Pm using
roughly 2

3n guards. Put a natural vertex guard g1 on v1 and g2 on v2, then put a non-
natural vertex guard h2 on w2 that guards f2 with its right ray and whose left ray goes
down vertically. Continue with a natural vertex guard h3 on w3 and an non-natural
vertex guard g4 on v4 that guards e4 with its right ray and with its left ray going
up vertically. Then again put a natural vertex guard g5 on v5, a similar non-natural
vertex guard h5 on w5 as before, a natural guard h6 on w6, a non-natural guard g7
on v7, a natural vertex guard g8 on v8, and so on. Then, Pm can be described as
g1 ∩ g2 ∩ (h2 ∪ h3 ∪ (g4 ∩ g5 ∩ (h5 ∪ h6 ∪ (. . .)))).

Proof of Theorem 17 Consider a polygon Pm as defined above, and let G(Pm) be a
guarding for Pm. Define a to be the number of 2-guards in G(Pm), and let b be the
number of other guards. All the n edges of P have to be covered somehow. An edge
can be covered completely by a 2-guard, a 1-guard, or a 1′-guard. If no guard covers
it completely, then the edge must be covered by at least two guards partly (Lemma 2).
Moreover, at least one of these guards, namely the one covering the section towards
the right end of the edge, is a 0′-guard, because the orientation cannot be correct to
cover a second edge. So if an edge e is not covered by a 2-guard, then there is at least
one guard that does not cover any edge other than e. Therefore 2a + b ≥ n.
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Fig. 12 A guarding for Pm using roughly 2
3 n guards, the dotted lines should be seen as straight lines

For any i ∈ {1, . . . ,m − 2} let hi be the directed line segment on e−
i+2 from the

intersection of ei+1 and e−
i+2 to ei+2 (see Figs. 10 and 13). Similarly, let h′

i be the
directed line segment from wi+1 to the intersection of f −

i+1 and fi .
As in Lemma 16, consider pairs (p1, q1), . . . , (pm−2, qm−2) and (p′

1, q
′
1), . . . ,

(p′
m−2, q

′
m−2) of points infinitesimally close to the starting point or the endpoint of

the corresponding line segment, located as follows: pi,p
′
i ∈ Pm for all i, qi, q

′
i /∈ Pm

for all i, pi is outside the natural vertex guard at wi+1, whereas qi is inside the nat-
ural vertex guard at wi+2, and similarly, p′

i is outside the natural vertex guard at vi+2,
whereas q ′

i is inside the natural vertex guard at vi+1. There are n − 4 such pairs, and
they need to be distinguished somehow (Observation 1). Any natural vertex guard
can distinguish at most one pair, and the same is true for any (non-natural) 2-guard
located along the line through fm. Thus any 2-guard in G(Pm) distinguishes at most
one of the pairs (Observation 14).

We claim that every guard g in G(P ) can distinguish at most three of these pairs.
Denote the vertex of g by vg , and let �g and rg denote the left and right ray of g,
respectively. Assume g distinguishes pi from qi . There are three cases: If vg is to
the left of hi , then—in order to distinguish pi from qi—the ray rg must intersect hi .
Symmetrically, if vg is to the right of hi , then �g must intersect hi . Finally, if vg is
on the line through hi then it must be on the line segment hi itself. To distinguish
pi from qi , the endpoint of hi (i.e. vi+2) must be inside g (possibly on the boundary
of g), hence �g must point to the left side of hi or in the same direction as hi , and rg
must point to the right side of hi or in the same direction. Since the claim is trivial
for a degenerate guard with angle 0, we can assume without loss of generality that at
least one of the two rays is not collinear to hi .
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Fig. 13 The pairs (pi , qi ) and (p′
i
, q ′

i
) must be distinguished. See also Fig. 11. The directed line segments

hi and h′
i

form a convex curve C and C′, respectively

Fig. 14 Different ways g can distinguish p and q . In every case �g intersects h leaving to the left side or
rg intersects h leaving to the right

Now assume g distinguishes p′
i and q ′

i . Again there are three cases: If vg is to the
right of h′

i , then �g must intersect it, if it is to the left rg must intersect it. If vg lies
on h′

i , �g leaves to the left and rg to the right, or either or both rays lie on h′
i .

In any case either �g intersects hi (h′
i , respectively) coming from the right side of

hi (h′
i ) and leaving to the left side, or rg intersects hi (h′

i ) coming from the left side
and leaving to the right, or �g starts on hi (h′

i ) itself leaving to the left or rg starts
on the line segment itself leaving to the right (see Fig. 14). If rg leaves an oriented
line segment to the right side of the segment or if �g leaves an oriented line segment
to the left side, we say the ray crosses the line segment with correct orientation. So
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Fig. 15 A guard g with three
and a guard g′ with two
correctly oriented crossings
(marked with a circle)

whenever a pair (pi, qi) or (p′
i , q

′
i ) is distinguished by g, then at least one of the rays

�g or rg has a correctly oriented crossing with hi (h′
i , respectively).

The line segments h1, . . . , hm−2 lie on a oriented convex curve C, which we obtain
by prolonging every line segment until reaching the starting point of the next one.
Extend the first and last line segment to infinity vertically on the left and horizontally
on the right. In the same way define a curve C′ for h′

1, . . . , h
′
m−2 (see Fig. 13). Any

ray can cross a convex curve at most twice. Because of the way C and C′ are situated
with respect to each other (a line that crosses C twice must have negative slope, a
line that crosses C′ twice must have positive slope) a ray can intersect C ∪ C′ at
most three times. But we are only interested in crossings with correct orientation. If
a ray crosses a curve twice, exactly one of the crossings has the correct orientation.
If a ray crosses both C and C′ once, exactly one of the crossings has the correct
orientation. Therefore any ray can have at most two correctly oriented crossings (see
Fig. 15). If one of the rays rg or �g has two correctly oriented crossings, the other
ray can have at most one. Thus both rays together can have at most three correctly
oriented crossings and therefore distinguish at most three pairs. This leads to the
second inequality a + 3b ≥ n − 4. Both inequalities together imply a + b ≥ 3n−4

5 . �
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