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Abstract

Reliable detection and matching of visual features is an important

problem in the field of computer and robotic vision. It mimics the be-

haviour and function of the parts of the visual cortex required for ob-

ject recognition, scene understanding and 3-dimensional reconstruc-

tion. Feature detection and matching can be influenced negatively

by a number of environmental and optical effects such as occlusions,

duplicate features, motion, illumination changes, image noise and 3-

dimensional transformations and distortions. Methods of improving

the matching results for these situations have been proposed with lim-

ited success. A probabilistic feature matching and correction frame-

work is proposed, that uses insights provided by the geometric rela-

tionships observed between different features to allow Super-feature

clusters to be constructed. These Super-feature clusters allow features

to be matched using visual similarity as well as geometric consistency,

enabling many matching issues to be resolved. The geometric rela-

tionships are combined in a translation, scale, rotation and affine in-

variant manner, allowing features experiencing global as well as local

motion, such as can be found on dynamic, non-rigid and morph-able

objects, to be matched. Invalid feature matches can be detected and

corrected using the probability density distribution derived from the

geometric observations. An efficient method of constructing and eval-

uating the probability density distribution of the position estimates

is provided, allowing the modes of the distribution to be located. The

Super-feature matching and correction framework can be used in con-

junction with many state of the art feature detectors that provide

feature position, rotation and description information, allowing their

feature matching accuracy and feature usage to be improved.
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Chapter 1

Introduction

1.1 Background

Object recognition in the human visual system using features can be motivated

from cell level observations in the visual cortex of mammals [1], and also in a

number of other species such as the Cephalopod [2] and the Sesarma leptosoma

[3]. Visual features act as a form of data compression in the early stages of

the visual system allowing only important image information to be processed and

retained, and unimportant information to be discarded [4]. This simplifies and re-

duces the amount of processing resources required for complex vision tasks. Since

many Computer Vision algorithms attempt to mimic the behavior and function of

the visual cortex, a similar approach is followed for high-level Computer Vision.

Matching of features and establishing correspondences between different images

is an important problem and forms the basis of many high level vision tasks such

as:

• Object recognition and classification [5]

• Content based image retrieval [6]

• Image registration [7], alignment [8], mosaicing [9] and panorama stitching

[10]

• Pose estimation [11] and Camera motion tracking [12]
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• 3-dimensional reconstruction and modelling [13]

• Robotic and vision based navigation and control [14]

• Augmented reality [15]

Feature detection in digital images consist of detecting and localizing small

regions in an image which are considered information rich. The image informa-

tion surrounding these localized regions are then described in a compact form

that enables matching of features. The way in which the compact description

is generated can improve matching performance under varying illumination and

noisy images. This is achieved by normalizing the description and introducing

invariance in the feature descriptor to these variable conditions. The compact

form or compressed description of the feature’s information also improves the

processing requirements when matching large numbers of features. The feature

matching process usually involves finding the best match for each feature in one

set of features compared to another set of features, using appearance similarity.

Each feature is then matched, one by one, using the Manhattan, Euclidean or

Hamming distance metrics until the best candidate feature is found that matches

the template feature. Feature sets can be obtained from a single image, a range

of images, video sequences [16] or pre-trained features of an object captured from

multiple views [17].

A number of methods and techniques for detecting and matching features in

a digital image have been proposed. These algorithms range from simple binary

detectors designed for fast execution times to advanced detectors with sub-pixel

localization and invariance to affine transformations. The most well known and

most popular of these feature detectors are:

• Scale-invariant feature transform (SIFT) [18]

• Speeded Up Robust Features (SURF) [19]

• Maximally Stable Extremal Regions (MSER) [20]

• Features from Accelerated Segment Test (FAST) [21]

• Binary Robust Independant Elementary Features (BRIEF) [22]
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• Oriented FAST and Rotated BRIEF (ORB) [23]

• Binary Robust Invariant Scalable Keypoints (BRISK) [24]

1.2 Feature detection and matching difficulties

There are a number of challenges that feature detectors need to address. Since

images represent a 3-dimensional scene projected onto a 2-dimensional image

plane, features could exhibit appearance changes and distortions related to noise,

affine transformations, rotation, scale changes and occlusions. These distortions

and artefacts can hinder reliable detection and description of visual features [25].

Occlusion of image regions can occur naturally when motion is present while

matching features from different feature sets. Moving objects can occlude image

regions located in the background as well as itself and other objects. This will

result in a large number of previously observed features to become unobservable,

limiting the matching of these features.

Features detected close to motion boundaries will have weak descriptions since

motion can cause large parts of the feature’s description region to change, making

matching of these features difficult. The same problem can occur due to dynamic

shadows and atmospheric effects, which can change the local image region used

for describing a feature. The feature description is the primary information that

is used to match features, while position information can be used as well when

only small, predictable motion is present or the motion model is known or has

been estimated. This is not normally the case for most applications, therefore

weak feature descriptions will have a severe effect on the matching accuracy.

Another problem is duplicate features. Since only a small local region sur-

rounding a feature is used for feature description during the matching process,

many similar features with similar descriptions can occur simultaneously in a fea-

ture set detected from an image. The severity and likelihood of duplicate features

occurring in a natural photograph can be observed in Figure 1.1. The occurrences

of duplicate features can severely impact the matching performance of a feature

detector. Since multiple copies of the same feature might be present, selecting

the correct feature to match might appear to be a difficult task. Some feature
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Figure 1.1: Examples of different sets of duplicate features detected in a natural
image

detection algorithms realize that these features are difficult to match and choose

to discard and ignore features that have multiple possible matches [18]. This is a

poor solution to the problem, as many good and descriptive features are removed

from the dataset.

A number of techniques have been proposed to improve the matching results.

These methods attempt to alleviate these issues by thresholding, discarding and

constraining the detected features and matches. The most popular and simplest

technique that can be integrated into a feature matching algorithm method is

to threshold poor feature matches. Valid feature matches are only made when
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a match was found with a sufficiently small matching error. Unfortunately, this

only works for some situation; features located on motion borders have poor

descriptions that will not produce high matching scores. Similarly, duplicate

features might have high matching scores, but have a high probability of being

matched incorrectly.

An improvement to this is to determine what the best and second best match-

ing score is, when these match scores are sufficiently close, then the match will

be discarded since it cannot be reliably matched as multiple possible match so-

lutions exist [26]. This reduces the number of features that can be matched

successfully, which might limit the usefulness of the specific feature detector for

some applications.

Methods of tracking features between frames of a video sequence have also

been proposed, these methods use position as well as description information to

predict a feature’s motion, allowing for more accurate matching to be performed

[27]. This method of improving feature matches is unfortunately limited to appli-

cations that use continuous video sequences and usually only function well when

the motion is coherent and predictable.

The method that currently produces the best matching results is based on

estimating the motion model from the feature match observations. The type of

motion that can be estimated is limited to static scenes that have been trans-

formed by camera motion, where Epipolar geometry and RANSAC is employed

to estimate the motion model [10]. Matching features in a scene that is expe-

riencing camera motion as well as having different objects, each with their own

dynamic motion, cannot be solved using this technique. Matching of features on

dynamic, morphable and non-rigid objects such as the human face or body also

pose some difficulty for this method.

1.3 Research Hypothesis

The geometric relationship between a selected primary feature and its neigh-

bouring features, observed in one coordinate frame, can provide insight into the

location of the transformed version of that primary feature in another coordinate

frame. Grouping of features and their corresponding feature matches will allow
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these geometric relationships to be applied to and strengthen the matching pro-

cess. Each primary feature and its neighbouring features can be grouped to form

a Super-feature cluster around the primary feature, which will allow features to

be matched using visual similarity and geometric consistency, which will enable

stronger, more reliable feature matches to be made.

• Integrating geometric consistency into the feature matching process pro-

vided by the Super-feature cluster will allow incorrectly matched features

such as features affected by duplicate features, occlusion and motion bound-

aries to be classified and removed resulting in an increase in the matching

accuracy.

• Incorrectly matched features can be improved and corrected, due to the

matching search space constraints proposed by the Super-feature cluster,

enabling an increase in feature usage.

• The geometric relationships between the different features in the Super-

feature cluster, which can be used to localize the primary feature, can be

applied in a translation, rotation, scale and an affine invariant manner when

the features in a feature sets have been detected to provide feature position

and orientation information.

• The feature matching accuracy will improve when features are matched

using appearance similarity as well as geometric consistency for scenes ex-

periencing local and global motion of dynamic, non-rigid objects where the

motion model is unknown.

1.4 Research methodology

A Design-science research methodology approach will be applied in this thesis.

Design-science is a research methodology that is concerned with the development

and design of effective artefacts to achieve set objectives, the primary goal of

Design-science is utility [28]. On the other hand Natural-science has the primary

goal of finding truths, this is achieved by attempting to understand and explain

phenomena as a research objective.

6



Figure 1.2: Design science research framework [28]

An overview of the Design-science framework is provided in Figure 1.2. It

has three primary pillars: the Environment, Design-science research and the

Knowledge base, which is connected through the Relevance and Rigour cycle.

The environment is composed of the people, business organizations as well as

the technology where the problem space or phenomena of interest can be found.

This environment contains a number of problems and opportunities also known

as business needs defined by the entities in this environment [29]. A benefit of

addressing business needs using research ensures that the research is relevant.

There are two primary processes in the Design-science research pillar: Con-

struction and Evaluation which form part of the Design cycle. First, a product

or an artefact is built to solve an identified environmental problem defined by

the Relevance cycle. This artefact can be one of four different products that are

produced by design science research: constructs, models, methods and implemen-
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tations [30]. During the artefact design process, scientific theories and methods

can be drawn from the knowledge base, this is known as the Rigour cycle.

The next step is to test, assess and evaluate the utility of the solution in

solving the problem. Extensive simulations, experimentation and studies can

then be used to evaluate the problem solution. The results can then be compared

against the original business needs and requirements, allowing the product to

be refined and the process of construction and evaluation to be repeated until a

desired solution is achieved.

During the Design cycle research, all contribution and additions to the Knowl-

edge base can be produced by building on prior theories and methods. The

Design-science research model can contribute in two ways, it can produce design

artefacts to benefit and solve problems for the environment or it can improve and

extend the current Knowledge base [31].

1.5 Dissertation outline

In Chapter 2, an overview of the feature detection and matching process will be

provided as well as the development progress of feature detection, description and

matching. The Mean-shift mode finding and clustering algorithm is discussed in

Chapter 3. Chapter 4 will provide some insight into feature matching issues and

problems and will introduce the Super-feature algorithm, including implementa-

tion details. In Chapter 5 the experimental setup and the test datasets will be

discussed and the feature matching results obtained with the Super-features algo-

rithm will be provided. Chapter 7 will provide an analysis and breakdown of the

observed results and discuss future development opportunities and improvements

of the Super-feature algorithm.
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Chapter 2

Feature detection and matching

2.1 An overview of the feature detection and

matching process

Feature detection is one of the primary functions used in many computer vision

algorithms and applications [32]. It enables large amounts of visual data to

be processed in an effective and efficient manner by focusing only on regions

that are information rich. An overview of the steps involved in the traditional

feature detection and matching process, implemented by many vision applications

is described and provided in Figure 2.1.

The main objective of feature detection and matching is to find regions or

locations that correspond to each other in different images or feature sets. This

is achieved by first detecting features in an image or image set. As a minimum

requirement, each detected feature requires the position where it was detected

as well as a visual description of the feature. The feature description is used for

matching features and provides a compact representation that describe the visual

appearance of the region surrounding the feature’s position. Usually, features that

have similar descriptions are related visually and could potentially be matched to

each other. Other feature related information can also be derived and included,

such as the direction vector, orientation angle, scale and affine transformation of

the detected feature [33].

The next step is to find feature matches between different feature sets. The
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Figure 2.1: Overview of the feature detection and matching process used by many
computer vision applications
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feature description information is then used to find the best match for each fea-

ture. This will result in a match list that provides the feature matching infor-

mation from one feature set to another. This matching information can then be

used to do image processing and computer vision tasks such is alignment, pose

estimation or classification. Unfortunately, a large number of incorrect or invalid

matches can be present in the match list after the initial feature detection and

matching process. These mismatches are usually associated with, or the results

of:

• The presence of duplicate features

• Occlusion produced by motion [34]

• Features located on motion boundaries that are poorly localized and have

weak descriptions

• Features experiencing extreme scale and affine transformations

• Image noise [35] and compression artefacts [36] degrading feature localiza-

tion and description

• Out-of-focus blurring and motion blur [37]

• Features affected by dynamic shadows, illumination changes and atmo-

spheric effects [38]

• Insufficient feature descriptiveness

• Poor feature localization repeatability

The addition of a feature match elimination and correction process is employed

by most feature detectors to reduce or minimize the effect of the feature match

outliers present in the initial feature matches, this extension can be seen in Figure

2.1. To reduce the effect of the invalid feature matches, many algorithms discard

features and reduce the match list to only contain the strongest and most stable

features.

The two most common techniques used are thresholding of the feature re-

sponses and the thresholding of the feature descriptor match error. Thresholding
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of the feature response, discards weak features according to the feature’s corner,

DoG (Difference-of-Gaussians) or LoG (Laplacian-of-Gaussian) response deter-

mined by the feature detector. This allows features, which the feature detector

believes it will have difficulty localizing in other images, to be removed from the

feature lists. Thresholding of the feature descriptor match error, removes poor

feature matches from the match list where a matching feature could not be found

that was sufficiently similar.

Feature detectors such as SIFT attempt to remove duplicate features from the

match list, which it will have difficulty matching reliably [18]. Duplicate features

tend to have similar feature descriptions that make them hard to distinguish from

each other. These duplicate features will result in invalid matches even if they

have high feature responses and descriptor match scores. To be able to determine

if there are any duplicate features present in the matching list, the difference

between the best feature match error and the second best feature match error is

used. If this difference is small, it can be a good indicator that a duplicate feature

might exist, and if this difference is large it shows that the feature is unique and

that there is a good chance that it will provide a reliable feature match.

Some applications that can constrain the environment and camera, or are

able to describe the model of the observed motion, can use the additional motion

information to limit the feature matching search space which will improve the

matching accuracy [75]. This is typically limited to static scenes and images

captured where only camera motion is experienced. When the motion of objects

in a scene dominates the image area, the algorithms that estimate the motion

model tend to fail, producing poor feature matching results. Tracking of visual

features between consecutive frames of a continuous video sequence can also help

to limit the feature matching search space [40]. Improving matching through

feature tracking can only be used by some applications where continuous video

sequences are available and the motion is consistent and predictable.

2.2 Feature detection development

There are three primary types of features that are used in image processing:

Edges, Corners and Blobs. Edge features are considered the simplest of the
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three feature types and were the first features investigated by computer vision

researchers. Marr and Hildreth proposed in 1979 an edge detector based on the

early processing stages of the human visual system [41]. Edges were detected

in an image by searching for zero-crossings after filtering with different sized

Laplacian-of-Gaussian (LoG) kernels. The proposed edge detector suffered from

poor localization of curved edges and sometimes detected false or invalid edges.

In 1983 Canny improved on this work by providing a well formulated method

for determining edges in images [42]. His method was based on first-order deriva-

tives where he localized the gradient magnitude local maximums of a Gaussian

smoothed image. Gaussian filtering was applied as a pre-processing step to reduce

the effect of noise on the edge detection process. Non-maximum suppression and

hysteresis processes were also applied to remove unwanted edge responses and

improve the localization of edges.

Moravec proposed one of the first corner detection algorithms and introduced

the concept of “interest points” [43]. He defined a corner as a point in an im-

age with low self similarity. An interest measure was calculated using directional

variance over small image regions. The local-maximum of these interest measures

were then classified as “interest points”. He developed this technique to detect

and locate the same features in different images. This method provided poor de-

tection results when corners were at specific angles due to the directional variance

calculation being performed only at predefined directions.

A rotation invariant corner detector was proposed by Forstner, which used the

ratio between the trace and determinant of the covariance matrix to calculate the

local corner response [44]. Pixels with the strongest curvature response in a local

region were classified as corners. Forstner also introduced a formal approach

to matching sets of interest points between different images using a similarity

measure.

A combined corner and edge detector was proposed by Harris and Stephens

which is a contour curvature method similar to the corner detector proposed by

Forstner [45]. Classification between flat regions, edges and corners could be made

using the proposed method. A Hessian matrix or structure tensor was used to

measure curvature, where areas of large curvature along a contour were classified

as corners and areas of low curvature were classified as edges. The Harris corner
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detector is sensitive to scale changes and produced poor detection repeatability

in these situations [18]. Multi-scale Harris corner detectors were later introduced

to improve the detection rate when scale changes were present [46].

In 1994, Shi and Tomasi extended on the work of Harris and Stephens, and

showed how a structure tensor based corner detector can be improved by intro-

ducing small modifications to the way that the corner response is calculated [47].

Instead of calculating the trace and determinant of the covariance matrix they

calculated and used the minimum eigenvalue as a corner response.

The Smallest Univalue Segment Assimilating Nucleus (SUSAN) feature de-

tector was introduced in 1997. It places a circular mask over every local image

region, from which it calculates the size, centroid and second moment [48]. The

benefits of this method are that it provides some invariance to noise and that

no noise reduction pre-processing steps need to be performed. Other methods

typically require pre-smoothing of the image with a Gaussian filter to reduce the

impact of noise. SUSAN is also unique compared to other corner detectors in the

sense that it does not require the calculation of image derivatives. The SUSAN

operator was later improved by introducing an iterative adaptive threshold se-

lection method to calculate an optimal similarity threshold [49]. A ring shaped

mask was also introduced to allow the SUSAN operator to detect special and

complex corner shapes that its first implementation had difficulty detecting.

High-speed feature detectors based on an Accelerated Segment Test (AST)

were recently proposed by Rosten and Drummond which share many similarities

with the SUSAN corner detector [21]. The circular mask used by SUSAN was

reduced to the border pixels of a circle, thus reducing the amount of pixels that

need to be considered when classifying a corner. The border pixels around a

candidate corner are evaluated to determine the number of contiguous pixels that

occur on the circle. This process is accelerated even further by using machine

learning to construct an optimized decision tree. The decision tree is used to

stop the processing of potential candidate regions as soon as the likelihood of it

being a feature becomes too low. A number of feature detectors based on the AST

detector have been proposed, such as FAST [21], FAST-ER [50] and AGAST [51].

These feature detectors differ primarily in how the decision tree is constructed

and used. The AST range of detectors share the same goal of low processing
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requirements and real-time execution speeds.

Scale invariant corner detectors were introduced in the late Nineties. By

repeating the corner detection process on multiple scales of an image, different

sized corners could be detected [52]. A drawback of this approach is that the same

corner can be detected at multiple scales. The determinant of the Hessian (HoG)

was introduced to improve this problem; corners are localized by detecting scale-

space maxima of the Hessian corner responses [53]. In 1998 Lindeberg extended

this concept by proposing a systematic methodology for selecting appropriate

scales for features by observing how normalized Gaussian derivatives change from

one scale-space level to another [54].

Instead of detecting corners as features, some researcher experimented with

Blob detectors based on Laplacian of Gaussian (LoG) and Difference of Gaussians

(DoG) operators. These feature detectors are naturally suited to scale invariant

features but do not provide features that are as stable, compared to features

detected using corner detectors since these operators respond to corners as well

as edges. A method for searching for feature response maximums in the 3D

representation or scale-space of an image was originally developed by Crowley

and Parker in 1984 [55]. They demonstrated how local maxima in a scale-space

representation of bandpass images can be detected and used as landmarks to

align and match detected object shapes.

Lowe improved on the work by Crowley and Parker in 1999 by introducing

a feature detector invariant to scale, translation, rotation and partially invari-

ant to affine transformations and illumination changes [5]. The Scale Invariant

Feature Transform (SIFT) allowed accurate matching between features from dif-

ferent images and demonstrated similar properties to assemblies of neurons used

for object recognition in the inferior temporal cortex of primates. SIFT detects

features using the DoG blob detector at successive scales and the eigenvalues of

the second-order Hessian matrix is used to remove edge responses. One of the

primary contributions of SIFT was the introduction of a local histogram of gra-

dients descriptor calculated from the image region surrounding a feature. This

helped to reliably identify a feature in another image and simplified the feature

matching process. Lowe further improved on the method by adding sub-pixel and

sub-scale-level localization for detected features [18].
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A number of improvements to SIFT have been proposed, the majority of

which made changes to the way that the features are described. Ke and Suk-

thankar modified the descriptor proposed by Lowe by adjusting the histogram

weights using Principal Component Analysis (PCA) [56]. PCA-SIFT produced

a more compact local feature descriptor which is more resilient to image defor-

mations and also improves on the computational performance. An updated de-

scriptor with color invariant characteristics based on the color invariance model

of Geusebroek et al. [57] was proposed by Abdel-Hakim and Farag [58]. The

CSIFT descriptor provided a more descriptive feature description with improved

reliability against photometrical distortions. The Pyramid Histogram Of visual

Words (PHOW) descriptor was proposed by Bosch et al. in 2007, this descriptor

combines appearance and shape information [59]. The PHOW feature descrip-

tion is generated over multiple image scales using the Hue, Saturation and Value

(HSV) colourspace. Affine-SIFT (ASIFT) was introduced in 2009 and simulates

the affine distortion in an image by varying the camera’s longitude and latitude

angle over its optical axis [60]. SIFT is then applied to each of the transformed

images creating a fully affine invariant feature detector. This can be an expensive

process, since it requires the re-detection of features for every simulated image

transformation. The Local Intensity Order Pattern (LIOP) feature descriptor was

introduced which explores the local intensity relationships of the sample points.

Local and global ordinal information surrounding a feature is captured using this

method [61]. It was shown that this type of descriptor provided additional invari-

ance to monotonic intensity changes, JPEG compression artifacts and blurring.

Some alternative methods to SIFT have also been proposed. The Noise In-

variant Feature Transform (NIFT) was proposed by Roodt et al., the proposed a

new feature detector that improved feature detection reliability in the presence of

large levels of image noise [62]. The NIFT algorithm made use of an image noise

estimation algorithm to determine the level of noise present in the original input

image. This initial noise estimate was then used to estimate the amount of noise

present in the Gaussian and Difference-of-Gaussian (DoG) scale-space levels that

is used to detect features. The noise estimates for each scale-space level was then

used to adaptively change the thresholding parameters for that level to allow

only strong features to be detected as local extrema that were weaker than the
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detected noise could then be discarded. This allowed the noise invariant ability

of a feature detector to be improved.

Speeded-Up Robust Features (SURF) was proposed as an improvement over

SIFT in 2006, where integral images and filter kernel approximations were used

to speed up the feature detection process [19]. An integer approximation to the

HoG operator, accelerated with integral images, were used to detect features, and

Haar wavelets were used to build the feature descriptors. Similar accuracy and

robustness were promised at a reduced computational complexity.

Matas et al. proposed a feature detector based on Maximally Stable Extremal

Regions (MSER). This method has many similarities to watershed based segmen-

tation [20]. A connected set of pixels are classified as a maximally stable region

when they are brighter or darker then the pixels surrounding the group. MSER

provides stable detection results for scenes with viewpoint changes, scale changes

and lighting changes but provides poor detection repeatability when blurring is

introduced.

2.3 Feature description progress

Lately, a large number of vision researchers focused their efforts on attempt-

ing to improve the feature matching process by altering the way image features

are described. They released methods and techniques that do not specify how

features should be detected, but rather how compact, distinct and repeatable

feature descriptions can be generated. Binary Robust Independent Elementary

Features (BRIEF), as proposed by Calonder et al., showed how a highly discrim-

inant binary feature descriptor can be constructed using intensity difference tests

of constant random sample locations [22]. The features were stored as binary

strings that could be compared efficiently using Hamming distance. BRIEF did

not provide any scale or rotation invariance. Rublee et al. provided rotation

invariance, improved noise invariance and combined this with the FAST detector

to create the Oriented FAST and Rotated BRIEF(ORB) feature detector [23].

Binary Robust Invariant Scalable Keypoints (BRISK) proposed by Leutenegger

et al. incorporated scale-invariance by calculating a FAST-based detector on dif-

ferent layers of an image pyramid [24]. The feature descriptor used by BRISK
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resembles the uniform sampling pattern proposed by Tola et al. in the DAISY de-

scriptor, where pairwise comparisons are performed on the samples to construct

the descriptor string [63]. Binary Features from Robust Orientation Segment

Tests (BFROST) provided by Cronje, improved on the work of Calonder et al.

and Rublee et al. It implemented a FAST-like detector accelerated by using a

Graphics Processing Unit (GPU), where the feature descriptor was generated by

sampling and comparing the accumulated intensity values of rectangular regions

calculated using an integral image [64]. A fast, compact and robust feature de-

scriptor inspired by the retina of the human visual system was introduced by

Alahi et al. in 2012 [65]. The Fast Retina Keypoint (FREAK) used a sampling

pattern with varying sized receptive fields similar to the ganglion cell distribution

in the eye to measure accumulated intensity differences.

2.4 Feature matching progress

Even though much effort has been focused on improving the quality of feature

descriptors, feature detectors still have difficulty ensuring that feature matching

takes place correctly. When we consider that feature descriptions are generated

for a small region surrounding a feature’s position, we realize that the descrip-

tion cannot be unique and a number of similar features can occur in the same

image. A number of feature matching algorithms and methods based on appear-

ance similarity and geometric consistency have been proposed in an attempt to

improve matching results. The majority of feature detectors we have discussed

up to this point, ignore spatial layout and rely only on appearance similarity

obtained by matching descriptor information. Geometric consistency can be con-

strained locally as well as globally. Local geometric consistency considers that

neighboring features have undergone similar transformations that can be modeled

where a global geometric consistency considers that all features in an image have

been displaced by a consistent transformation that can be modeled such as the

transformation produced by a camera moving through a static scene.

GSIFT, proposed by Mortensen et al., allowed features that were not unique,

to be matched by including a global context into the local image feature descrip-

tions [66]. This reduces the number of mismatches of similar features and helps
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to resolve local appearance ambiguities. The global context descriptor, however,

is not as effective when scale changes are introduced and scale invariance was

marked as a potential future improvement. Kai et al. also investigated how the

feature matching accuracy of SIFT can be improved by employing a maximum of

minimum distance clustering approach [67]. This algorithm is able to cluster re-

lated features, which enables it to remove noisy feature matches as well as feature

matches that are structurally unrelated.

A number of voting techniques based on Random Sample Consensus (RANS-

AC) and its variations have been proposed [68]. It enables the estimation of the

model parameters produced by the camera’s pose changes from the feature cor-

respondence information, even in the presence of large numbers of outliers [69].

Every feature match is then evaluated against the estimated transformation model

to determine if it is correct. Bazin et al. extended this idea by formulating the

feature matching problem for an unknown parametric model as a mixed integer

program that can be solved using linear programs that use the branch-and-bound

procedure [70]. Geometric and appearance constraints are combined by globally

optimizing a RANSAC-like criterion to simultaneously estimate a global geomet-

ric transformation, feature correspondences and classifying potential outliers.

Graph matching optimization techniques have also been proposed. Torresani

et al. formulated the matching process as an energy minimization problem of

the local appearance and the spatial arrangement of features [71]. This method

uses a sub-gradient ascent scheme which suffers from a slow convergence rate,

therefore they proposed alternate optimization techniques as a possible direction

for future work. An efficient algorithm based on linear programming techniques

was introduced by Li et al. Each feature point is represented using an affine

combination of its neighboring features where the graph weights are solved using

a least squares minimization process [73]. Their method did not specify if feature

matches were correct, but was rather used for object recognition using multiple

grouped features. This method also had difficulty handling occlusions.

Grauman and Darrell proposed an efficient method of comparing images using

an approximation of the Earth Mover’s Distance between bags of features present

in images [74]. The discrete feature distributions or bags of features are derived

from the distinct local invariant features as well as their number of occurrences in
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an image, this is achieved without clustering of the features. This algorithm does

not allow feature matching to be improved, since the geometric relationships

between features are discarded, but it provides an efficient method of finding

images with similar feature distributions.

A new technique of detecting and describing features through interest point

grouping was proposed by Brown and Lowe [75]. Every possible combination of

small groups of interest points is grouped to form features, this results in a very

large number of detected features of which only a few are useful. Feature outlier

rejection thus forms an important part of this algorithm. Consistent sets of fea-

tures are found using a Hough transform in a 2-dimensional transformation space.

Addition rejection steps are also employed, which make use of the fundamental

matrix and epipolar geometry to reject outliers. Many of the original detected

features are discarded and the functionality to correct invalidly matched features

is not provided by this feature detection method.

An iterative robust feature matching algorithm based on an Alternate Hough

and an Inverted Hough transform was proposed by Chen et al. in 2013 [72]. They

believe that features located close to each other share coherent homographies

that can be used to determine the correctness of matched features. The proposed

matching algorithm can only be used with affine invariant feature detectors that

are able to detect features that have local affine transformation information and

as such, this excludes a large number of the discussed feature detectors, which

limits its usefulness.

2.5 Conclusion

An overview of the feature detection and matching process as well as the factors

that are responsible for possible feature mismatches, were discussed. A summary

of the methods and techniques used to improve feature matching in these situ-

ations were also provided, including an extensive overview of the development

progress of feature detection, description and matching.

The Super-feature algorithm will allow features to be matched using visual

similarity as well as geometric consistency. A similar belief, proposed by Chen et

al., where features located close to each other might share coherent transforma-
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tions is used by the Super-feature algorithm. The Super-feature algorithm uses a

new technique to derive the geometric consistencies that is less constrictive and

can be used with any feature detector that provides position, rotation and de-

scription information whereas the method proposed by Chen et al. can only be

used with affine invariant feature detectors that are expensive to calculate.

The Super-feature algorithm also make use of the Mean-shift algorithm to

find the strongest modes in a 2-dimensional probability distribution derived for

each feature. In Chapter 3, the application areas and a mathematical description

of the Mean-shift algorithm will be provided as well as a visual demonstration

of the kernel motion produced by the Mean-shift iterations for a 2-dimensional

problem.
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Chapter 3

Mean-shift clustering and mode

estimation

The following theory will be required to combine the estimation probabilities

obtained from the geometric relationships provided by the neighbouring feature

matches in the Super-feature cluster, allowing a selected primary feature to be

located in a different coordinate frame. A detailed description and breakdown

of how the Mean-shift method was used in the Super-feature algorithm will be

provided in Chapter 4.

The Mean-shift algorithm is an iterative mode-seeking technique used to esti-

mate the locations of the local maxima or modes of the underling density distribu-

tion [76]. It is a non-parametric estimation technique that uses the neighbouring

feature space samples to calculate the gradient of the density distribution, allow-

ing it to iteratively ascend to the highest local maximum. Mean-shift is usually

used as a clustering technique allowing arbitrary distributed points to be grouped

together in the feature space [77]. Typically samples that have converged to the

same local maxima are grouped together to form a cluster.

Alternatively, the Mean-shift algorithm is also useful for estimating the global

maxima of the probability density distribution of a feature space. A search and

comparison is performed to the detected local maxima, allowing the largest max-

ima to be found. Estimation of the local and global maximums of the density

distribution is obtained without physically discretizing and calculating the prob-
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ability density distribution from the sample points using a predefined selected

filter kernel. Discretizing and sampling the probability density distribution can

be an expensive process when a large number of samples are available, especially

when feature spaces with higher dimensions are considered.

Clustering of data as well as the estimation of the density distribution modes

is an important problem in the fields of machine learning [78] and computer

vision [79]. The Mean-shift algorithm has been applied successfully to a number

of problems such as:

• Deformable model fitting and alignment [80]

• Classification through clustering [81]

• Image and colour segmentation [82; 83]

• Object tracking [84; 85]

The Mean-shift algorithm does not require knowledge of the number of modes

of the density distribution, such as the k-means clustering algorithm, which can

be difficult to know and must sometimes be found through experimentation. Only

the kernel bandwidth needs to be selected; either a fixed bandwidth can be se-

lected for the Mean-shift algorithm or a dynamic bandwidth parameter can be

determined for each sample by deriving the bandwidth from the k-nearest neigh-

bours.

3.1 Deriving the Mean-shift algorithm

Kernel density estimation, also known as the Parzen window density estimation

technique, is a method of estimating the probability density distribution from a

set of arbitrary distributed points.

f̂(x) =
1

nhd

n∑
i=1

K
(x− x1

h

)
(3.1)

Given a set of d-dimensional points defined as xi=1..n where n is the number of

points, sampled from an unknown density distribution f . Then the multivariate
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kernel density estimator f̂ for these points are defined in Equation 3.1 for a

filtering kernel K, assuming a single bandwidth parameter h.

Gaussian: K(x) = e−
x2

2σ2

Rectangular: K(x) =

1, if a ≤ x ≤ b

0, otherwise

Student’s t: K(x) =

(
1 +

x

α

)−α+D
2

Epanechnikov: K(x) =

3
4
(1− x2), if |x| ≤ 1

0, otherwise

(3.2)

The kernel K(x) is a d-variate kernel, which should be non-negative, non-

increasing and piecewise continuous [86]. A number of kernels with different

characteristics have been proposed such as the Gaussian, Rectangular, Student’s

t and Epanechnikov kernels, provided in Equation 3.2. The Epanechnikov kernel

is considered as an optimum kernel for most applications, as it minimizes the

mean-integrated-square-error (MISE) [87].

K ′ = dK/dt

f̂h,K(x) =
ck,d
nhd

n∑
i=1

K ′
∥∥∥x−x1

h

∥∥∥2 (3.3)

5̂fh,K(x) ≡ 5f̂h,K(x) =
2ck,d
nhd+2

n∑
i=1

(x− xi)K ′
∥∥∥x−x1

h

∥∥∥2 (3.4)

By employing the kernel profile notation, the density estimator can be rewrit-

ten as Equation 3.3 [88]. The next step in trying to analyse the feature space and

the probability density distribution of the feature space would be to estimate the

modes of the distribution. The modes of the underlying density distribution will

be located where the gradient approaches 0 such that5f(x) = 0. The Mean-shift
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algorithm provides an intuitive manner of locating these regions where the gra-

dient approaches 0 without physically calculating the density distribution. The

density distribution is typically calculated by discretizing the domain and sam-

pling the density distribution to be able to find the modes. This results in the

density gradient estimator provided in Equation 3.4 derived from the gradient of

the density estimator in Equation 3.3.

G(x) = −K ′(x)

mh,G(x) =

∑n
i=1 xiG

∥∥∥x−xi
h

∥∥∥2∑n
i=1G

∥∥∥x−xi
h

∥∥∥2 − x
(3.5)

where:

x is the center of the kernel window

h is the selected bandwidth parameter

When we consider a radially symmetric kernel that satisfies the conditions

previously specified, then the resulting Mean-shift is defined by Equation 3.5 for

a set of data points [89]. This method is guaranteed to converge to zero gradient

regions. The step size will be large in regions with low density values and small

in regions with high densities, resulting in an adaptive gradient ascent algorithm.

yj+1 =

∑n
i=1 xiG

∥∥∥yj−xi
h

∥∥∥2∑n
i=1G

∥∥∥yj−xi
h

∥∥∥2 , j = 1, 2, ... (3.6)

where:

yj is the current position of the kernel

yj+1 is the updated position

j represents the iteration number

The bandwidth parameter h changes the size of the kernel, allowing modes

from different scale resolutions to be detected, depending on the application.

The final step is to apply the Mean-shift procedure iteratively by computing the
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Mean-shift vector mh,G(x) and then translating the position of kernel G by the

Mean-shift vector as demonstrated in Equation 3.6. This process is repeated

until the system converges and the kernel is not translated any more by further

iterations [90]. Depending on the application, either the kernels that have settled

on the same mode can either be grouped together to form a cluster, or the unique

modes can be found from the grouped kernels. Once the unique modes have been

found, the mode with the largest density response can be located as the global

maximum.

3.2 Demonstration of Mean-shift iterations in

2-dimensions

A demonstration of the results obtained by running the Mean-shift algorithm a

number of times on a 2-dimensional problem can be seen in Figure 3.1. This

example shows how a single kernel starting on one of the initial sample positions

slowly moves towards the local extrema. At every iteration it calculates the

gradient of the probability distribution at its current location by accumulating

and weighting the neighbouring samples using its kernel function. The gradient

allows it to calculate a shift position that will move the current kernel toward the

mode or local extrema. The gradient vector enables it to slowly ascend on the

probability density function until it has reached the highest position. This region

is where the gradient approaches zero as well as where the local extrema is located.

Once a zero gradient has been found, the kernel will cease to move, allowing the

algorithm to stop performing any further iteration. Typically, a kernel is created

for all of the initial samples. This process will then be performed until all the

kernels have converged to their respective local maxima of the probability density

function.

3.3 Conclusion

The application areas and uses of the Mean-shift algorithm has been provided,

including the mathematical derivation and demonstration of the Mean-shift it-
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Figure 3.1: Example of kernel shifts produced by the Mean-shift algorithm for
different iterations

erations for a 2-dimensional problem. In the next chapter, the Super-feature

matching framework will be introduced, which will include a detailed description

of the implementation details for each of the algorithm processing steps.
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Chapter 4

The Super-feature matching

framework

The following is a description of the implementation details of the Super-feature

matching and improvement algorithm. The Super-feature algorithm is a new

technique, which can be used to group neighbouring features into feature clus-

ters, allowing feature matching to be improved. A method of observing the

geometric relationships between different features in a feature cluster in a trans-

lation, scale, rotation and affine invariant manner will be provided. After which,

a robust and efficient technique of combining these geometric relationships to

estimate the transformed location of a selected feature from the feature cluster,

located in another coordinate frame in the presence of match outliers will be pre-

sented. Finally, an iterative approach will be introduced to detect and correct

invalid feature matches by comparing the matched position obtained through

visual similarity and the estimated positions derived from the geometric rela-

tionships observed between the features in the feature cluster. This will allow

features to be matched by not only using visual similarity, but also by incorpo-

rating geometric consistency, enabling stronger and more reliable matches to be

established.

A problem with integrating geometric consistency into the matching process is

that it can limit the types of motion and transformations that can be dealt with, if

integrated incorrectly. As previously discussed, current solutions limit processing

28



to either static scenes with global motion or they require affine information for

each feature. Another problem is that the matching algorithms that can handle

local motion provide poor invariance to rotation, scale and affine transformations.

The proposed technique combines the geometric consistency information in such

a way that local as well as global motion of non-rigid, dynamic and morph-able

objects can be handled with invariance to translation, scale, rotation and affine

changes. In situations where the geometric consistency becomes weak, such as

when features are located on motion boundaries, the Super-feature algorithm

will provide Multi-mode position estimates. This method can also be integrated

and used in conjunction with a wide range of current state of the art feature

detectors. To understand the Super-feature algorithm an introduction to feature

clusters will now be provided.

4.1 Introduction to feature clusters

Each neighbouring feature match surrounding a selected feature can provide some

insight into the transformed location of that feature. The geometric relationship

between a selected feature’s position and a set of neighbouring feature positions

remains relatively constant in a 3-dimensional environment when scale, rotation

and translation transformations are applied and the shape is transformed back

to a set coordinate frame, thus reversing the effect of these transformations.

An example of a feature cluster created for a selected primary feature using

neighbouring features can be seen in Figure 4.1.a. After the features in the cluster

have experienced some 3-dimensional transformation, the resulting feature cluster

can be seen in Figure 4.1.b. Even though the features in the feature clusters have

been transformed, they can still provide some insight into the location of the

missing primary feature. As an example the location of the primary feature

can be determined visually by observing that the primary feature was located

somewhere near the centre of all the neighbouring features, as seen in Figure

4.1.a, thus the primary feature will probably again be located relatively close to

the centre of the three transformed neighbouring feature matches in the feature

cluster observed in Figure 4.1.b. This will allow the feature matching search

space to be limited to the region determined by the feature cluster. The cluster
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(a) Feature cluster frame 1 (b) Feature cluster frame 2

Figure 4.1: A demonstration of the same feature cluster experiencing 3-
dimensional transformations

can constrain the search space by observing the positional relationships between

the primary feature and its neighbouring features. These insights, provided by

the neighbouring feature matches, can then help locate the primary feature in

Figure 4.1.b. This is an oversimplified example of a feature cluster, since it will

not always be the case that the neighbouring features will be located around the

primary feature. When all neighbouring features are located only on one side of

the feature, it will have difficulty estimating the position of the primary feature

using the demonstration provided. However, this simplified explanation conveys

the idea of how a cluster of features can be constructed and the insight that these

features can provide into estimating the position of other features in the same

feature cluster, allowing the matched and estimated positions to be compared

to determine incorrect feature matches. All features might have been matched
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and located in the new coordinate frame, but invalid matches might be present,

estimating the position of a selected feature from other features in the feature

cluster allows some of these invalid matches to be classified and corrected.

4.2 An overview of the Super-feature match im-

provement framework

The Super-feature algorithm extends on the concept of feature clustering by

matching features using appearance similarity as well as using local geometric

consistency provided by the neighbouring features to improve the feature match-

ing accuracy and limit the matching search space. A Super-feature or cluster

of features are constructed for each feature using a set number of neighbouring

feature matches. The insight provided by the neighbouring features on the ge-

ometric relationships of the primary feature will be combined in a translation,

scale, rotation and affine invariant manner to estimate the location of the selected

feature in a transformed coordinate frame. The Super-feature cluster should re-

main functioning even when only partial data is available, since all features in

the cluster will not always be present or visible and some features might contain

incorrect matching information. The Super-feature cluster should thus be able to

exist in part and does not have to be whole or complete to be useful. After the

position has been estimated from the geometric relationships, then the estimated

position can be compared against the matched position of the primary feature

to determine if a valid match have occurred. The Super-feature algorithm will

provide a new matching framework that can be used with many current state-

of-the-art feature detectors. Any feature detector that provides feature position,

description and rotation information can make use of the Super-feature algorithm

by providing the feature and match lists.

An overview of the feature match improvement framework used by the Super-

feature algorithm is provided in Figure 4.2; this proposed framework is part of

the feature match elimination and correction process techniques. First, the fea-

tures are detected using the selected feature detector, and then the initial feature

matches can be found between these feature sets. The resulting feature lists and
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Figure 4.2: Overview of the feature match improvement framework used by the
Super-feature algorithm
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match list can then be provided as input to the Super-feature algorithm. The

Super-feature algorithm will attempt to separate and classify the feature matches

into two categories: correct and incorrect matches. The matched position of each

feature is extracted and compared against the estimated position derived from the

insights provided by the neighbouring features in the Super-feature cluster. When

the matched position and the estimated position is similar, the corresponding fea-

ture match is marked as a valid match. A disagreement between the matched

position and estimated position will result in the feature being marked as invalid.

Each of the feature matches that were classified as being incorrect can then

be re-evaluated and the algorithm will attempt to find and improve the invalid

matches using the insight provided by the Super-feature cluster. This will reduce

the matching search space as the description and estimated position can be used

during the matching process. Alternatively, when a true match cannot be found,

then additional features can be created at the estimated position of a feature. This

can only be done when the estimation reliability is high and the actual feature

that should have been matched was not found due to poor feature detection

repeatability. This will allow valid feature matches to be created, when the

features sets are incomplete and a valid match does not exist. Poor feature

sets can occur when low quality feature detectors were used, or when the feature

matching problem was difficult due to the image complexity. When a valid match

was found that was coherent with the estimated position and the description

information, then these corrected feature matches can be included in the valid

feature match list which can be used for further processing. Bad matches that

could not be corrected are discarded and removed from further processing steps.

The Super-feature algorithm allows two modes of operation. The algorithm

can be set to exclude and discard invalid feature matches or can exclude features

as well as attempt to correct invalid matches. Depending on the application and

processing resources available, the appropriate mode can be selected.

Once the Super-feature match improvement process has been completed, then

the entire process can be repeated by using the corrected match list as input

rather than the original match list. Mismatched outliers would have been removed

from the match list, these outlier could have negatively influenced the estimation

process of the previous iteration. In the next iteration, these outliers will no longer
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be present, and a more stable estimation solution can be found. By iterating

the Super-feature match improvement process a number of times, the system will

converge as more and more outliers are removed from the match list and incorrect

features matches are corrected, this will result in a more reliable estimation and

classification process. Each of the processing steps involved will now be discussed

in more detail.

4.3 Initial detection and matching of features

The Super-feature algorithm improves the feature matching and correction pro-

cess, but does not dictate how features should be detected. This allows the

Super-feature algorithm to work in conjunction with a number of feature detec-

tors, as long as these feature detectors provide as a minimum feature position,

orientation and description information. The feature orientation provided by the

different feature detectors does not necessarily have to provide the exact direction

of the corner, it might for instance provide the reverse direction of the corner.

These are all valid feature orientations, the only requirement for the feature direc-

tions are that they should provide a constant direction for features even though

transformations have been applied.

When matching features using the Super-feature algorithm, the first step is

to detect features in both frames using the selected feature detector. The initial

feature matches should also be established, this can be achieved by performing

a brute force nearest-neighbour search using only the description information of

each feature. The feature lists for each frame as well as the feature match list can

then be sent to the Super-feature algorithm to allow it to improve and correct

the feature correspondences.

4.4 An overview of the Super-feature position

estimation algorithm

The next step in the Super-feature algorithm, is that each feature of the first

coordinate frame’s feature list is selected as a primary feature and a Super-feature
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cluster will be constructed for each of these primary features. To start building the

Super-feature for each primary feature, the k-nearest neighbours of each primary

feature need to be found. The k-nearest neighbouring features of the selected

primary feature for reference frame 1 is found by performing an index preserving

partial selection sort on the distance values obtained by calculating the Euclidean

distance between the primary feature’s position and its neighbouring feature’s

position. The geometric relationship between the neighbouring features and the

primary feature can then be observed by constructing a voting vector from the

position difference. A demonstration of the detected k-nearest neighbour features

and the corresponding voting vectors for a selected primary feature can be seen in

Figure 4.3. The voting vector’s position and rotation are then normalized using

Figure 4.3: An example of the voting vectors derived from the k-nearest neigh-
bours of a selected primary feature
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Figure 4.4: An example, demonstrating how the intersection positions of the
voting lines were used to estimate the true location of the mismatched primary
feature

the neighbouring feature’s position and direction, this will allow the voting vector

to be transformed and applied to a new coordinate frame. After the voting vectors

for each neighbouring feature in reference frame 1 have been constructed, then the

voting vectors and their geometric relationships can be applied in reference frame

2. The voting vectors are first, rotated and transformed using the direction and

position of the feature in reference frame 2 that was matched to the corresponding

neighbouring feature match in reference frame 1.

The next step is to convert each voting vector in reference frame 2 to a vot-

ing line starting at the matched neighbouring feature’s position and pointing in

the direction in which the neighbouring feature believes the primary feature is

located. A demonstration of the voting vectors, transformed and applied to the
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Figure 4.5: The probability density function constructed from the voting line
intersections using a Gaussian kernel

neighbouring feature matches for a transformed reference frame 2 can be seen in

Figure 4.4. The intersection position between each combination of voting lines

can then be determined and used to estimate the position of the primary feature

using the geometrical observations of the neighbouring features. Neighbouring

features that have been matched incorrectly will generate invalid intersections

that do not agree with the true location of the primary feature as seen in Figure

4.4.

Since many outliers can be present, the different intersection estimates need

to be combined in an effective and robust manner. A Gaussian kernel with a

tune-able bandwidth sigma is placed and accumulated at each intersection posi-

tion, allowing a probability density function to be constructed representing the
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probability of the primary feature’s location. The resulting probability density

function of the intersections positions can be seen in Figure 4.5. Note how the

highest probability response was produced at the true position of the primary fea-

ture in the new coordinate frame, and that a low probability response is present

at the position in the probability density distribution where the primary feature

was incorrectly matched to. Some low probability peaks can be produced by

invalid matches, but only the strongest modes are used as possible estimates of

the primary feature’s location.

Constructing and discretizing the 2-dimensional probability function to find

the peaks is a processing resource expensive process, but since only the locations

of the local extrema in the probability density distribution are important. A com-

putationally efficient Gaussian weighted Mean-shift algorithm could be employed.

The Gaussian weighted Mean-shift algorithm was used to find the locations of the

modes of the distribution without constructing the probability density distribu-

tion. A list of the strongest modes is found, each representing a possible location

for the primary feature in reference frame 2. The final step is to compare the

estimated positions to the matched position, allowing the feature matches to be

classified as either, valid or invalid.

The primary feature in Figure 4.3 was matched incorrectly in Figure 4.4,

but the Super-feature algorithm was able to locate the highest response in the

probability density function as seen in Figure 4.5, allowing the mismatched feature

to be corrected to the true matching position. Each of the Super-feature position

estimation algorithm steps and their implementation information will now be

discussed in detail.

4.5 Finding the k-nearest neighbour features and

feature matches

The first step is finding the indices in the feature list of the first coordinate

frame of the K-nearest neighbours for each of the input features. This can be

accomplished, by selecting a feature and then calculating the Euclidean distance

from the selected feature’s position to all other features in the feature list. A
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partial selection sort can then be applied to these distance values to sort them

into ascending order up to K + 1 elements [91].

To reduce the memory and processing requirements of the algorithm as well

as limiting unnecessary memory swaps, the current selected feature is not re-

moved from the feature list before the distance calculations are performed on

each element. Therefore, there will always be an element with a distance of 0

that corresponds to the current selected feature itself. This is the reason why

the distance values are sorted up to K + 1 and not K values, since only the first

K-elements with the smallest distances to the primary features need to be found.

The first element is discarded and the nearest neighbour index list can then be

constructed from the elements of 2 up to k + 1, which will result in K elements

selected.

Input A as list of unsorted values;

Input K as the number of sorted elements;

Set N as the number of elements in A;

Initialize index with [1..N];

for i ← 1 to K do

for j ← i+1 to N do

if A[index[j]]<A[index[i]] then

Swap index[i] and index[j];

end

end

end

Algorithm 1: Index preserving partial Selection sort

The selected sorting algorithm needs to preserve the indexing information of the

neighbouring features associated with the distance values. This will enable and

allow access to the feature and match information stored in the data structure

lists used by later processing steps. For this reason, the index preserving partial

selection sort algorithm was applied to the distance values. It swaps indexing

information instead of the physical stored values, the sorting algorithm steps are

presented in Algorithm 1. This sorting algorithm allows complex programming
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structures to be sorted up to a specified K without unnecessary memory transfer

of information stored in complex data structures, reducing processing overhead.

It returns a list of index positions that represent the distance values in ascending

sorted form.

feature1 SubList = feature1 List[KNN IDs[1..K]]

feature2 SubList = feature2 List[match List[KNN IDs[1..K]]]
(4.1)

The next step is to compile the feature sub-lists from the nearest neighbour

index list, original feature lists as well as the matching lists as seen in Equation

4.1. Since only the first K-elements with the smallest distances to the primary

features need to be found. A compact feature list of the K-nearest features are

compiled from the sorted index list. A specific index in feature1 SubList is

related to that same index in feature2 SubList as a match from the one feature

set to the next.

4.6 Calculating the voting vector from the geo-

metric relationships between the neighbour-

ing features and the primary feature

θ = −NFrotation

v =

[
cosθ −sinθ
sinθ cosθ

]
(PFposition −NFposition)T

(4.2)

where:

PFposition is the position of the selected primary feature

NFposition is the position of the neighbouring feature

NFrotation is the detected feature orientation of the neighbouring

feature provided by the feature detector

Now that the feature sub lists have been created from the neighbouring fea-

tures, the geometric relationship between each neighbouring feature and the se-

lected primary feature can be determined. To ensure scale, rotation and affine
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Figure 4.6: Generating a voting vector from the neighbouring feature to the
primary feature

invariance, a voting vector is calculated from a neighbouring feature to the pri-

mary feature where the rotation is then normalized to a set coordinate frame

by transforming the voting vector by the rotation of the neighbouring feature’s

direction.

For each feature in the neighbouring feature1 SubList, the rotationally nor-

malized voting vector v can be found using Equation 4.2. In the first feature

list’s coordinate frame, the voting vector can be constructed by subtracting the

neighbouring feature’s position NFposition from the primary feature’s position

PFposition. A rotation transformation is then applied to this voting vector to

remove the detected direction of the neighbouring feature, resulting in a vec-

tor that is located on a normalized coordinate frame. A demonstration of how

a voting vector can be constructed from the geometric relationship between a

neighbouring and primary feature can be seen in Figure 4.6.

To be able to apply the voting vector to another coordinate frame, the result-

ing vector needs to be stored after the rotation was normalized using the feature’s

direction. The inverse of the neighbouring feature’s rotation NFrotation is used to
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Figure 4.7: Normalization of the rotation of the voting line using the neighbouring
feature’s rotation

rotate the voting vector so that the neighbouring feature’s direction is 0 degrees

while preserving the angle between the feature’s direction and the determined

voting vector, this process can be seen in Figure 4.7. The resulting voting vector

v can then be applied to a new coordinate frame when the matching process is

initiated on another feature set.

β = NF rotation

w =

[
cosβ −sinβ
sinβ cosβ

]
(v/
∣∣∣v∣∣∣)T (4.3)

where:

NF rotation is the direction of the neighbouring feature matched

in the new coordinate frame

v is the voting vector
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Figure 4.8: Voting line transformed to new coordinate frame

To be able to apply the normalized voting vector v to a new coordinate frame,

the voting vector needs to be rotated using the feature orientation of the feature

that was matched to the neighbouring feature that was used to construct this

voting vector, this will produce a new transformed voting vector w. Transforming

the voting line into a new coordinate frame can be calculated using Equation

4.3. The vector w will provide information regarding the direction in which the

neighbouring feature believes the primary feature is located.

A demonstration of the voting vector transformed using the direction of the

neighbouring feature in a new coordinate frame can be seen in Figure 4.8. Each

neighbouring feature can provide some insight into the direction of the primary

feature relative to that neighbouring feature. The directional relationship can be

detected in one coordinate frame and transferred and applied in a new coordinate

frame allowing the primary feature to be located.
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4.7 Finding the intersection positions between

all voting line combinations

The next step is locating the intersection positions between the different voting

vectors, each intersection position provides an estimate of the location of the pri-

mary feature in the new coordinate frame. A voting line needs to be constructed

from the voting vector to limit the intersections between two voting vectors to

only be possible in front of both voting vectors. Currently any intersection be-

tween the two infinitely long voting vector will be considered valid.

4.7.1 Calculating the intersection position of two lines

Each voting direction vector has a direction as-well as a position that corresponds

to the neighbouring feature’s position that was responsible for that specific vector.

The voting direction vector can be converted into a line that starts at the vector’s

position and points in the direction of the direction vector. To be able to construct

a line from a vector, two points are defined that lie on this line.

p1 = (x1, y1) = NF2position

p2 = (x2, y2) = p1 + w
(4.4)

where:

NF2position is the neighbouring feature’s position in frame 2

w is the voting direction vector

p1 and p2 are points that lie on the first voting line

The first point is set to be equal to the direction vector’s position and the

second point can be defined as the vector’s position combined with the vector’s

direction itself, this is demonstrated in Equation 4.4. Similarly, this technique
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can be used to define the points p3 and p4 located on the second voting line L2.∣∣∣∣∣∣∣
Px Py 1

x1 y1 1

x2 y2 1

∣∣∣∣∣∣∣ = 0 and

∣∣∣∣∣∣∣
Px Py 1

x3 y3 1

x4 y4 1

∣∣∣∣∣∣∣ = 0 (4.5)

The next step is developing an algorithm to find the intersection position of

two selected voting lines. The intersection position P = (Px, Py) of two lines L1

and L2 can be calculated by simultaneously solving Equation 4.5, where each line

was constructed using two distinct points on the voting line such as p1 = (x1, y1)

and p2 = (x2, y2) for L1 and p3 = (x3, u3) and p4 = (x4, y4) for L2 [92].

Px =

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣x1 y1

x2 y2

∣∣∣∣∣
∣∣∣∣∣x1 1

x2 1

∣∣∣∣∣
∣∣∣∣∣x3 y3

x4 y4

∣∣∣∣∣
∣∣∣∣∣x3 1

x4 1

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
/

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣x1 1

x2 1

∣∣∣∣∣
∣∣∣∣∣y1 1

y2 1

∣∣∣∣∣
∣∣∣∣∣x3 1

x4 1

∣∣∣∣∣
∣∣∣∣∣y3 1

y4 1

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

Py =

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣x1 y1

x2 y2

∣∣∣∣∣
∣∣∣∣∣y1 1

y2 1

∣∣∣∣∣
∣∣∣∣∣x3 y3

x4 y4

∣∣∣∣∣
∣∣∣∣∣y3 1

y4 1

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
/

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣x1 1

x2 1

∣∣∣∣∣
∣∣∣∣∣y1 1

y2 1

∣∣∣∣∣
∣∣∣∣∣x3 1

x4 1

∣∣∣∣∣
∣∣∣∣∣y3 1

y4 1

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

(4.6)

These equations can be combined and solved by calculating the determinants

of the points that lie on the individual lines [93], resulting in Equation 4.6.

(Px, Py) =

(
(x1y2 − y1x2)(x3 − x4)− (x1 − x2)(x3y4 − y3x4)

(x1 − x2)(y3 − y4)− (y1 − y2)(x3 − x4)
,

(x1y2 − y1x2)(y3 − y4)− (y1 − y2)(x3y4 − y3x4)
(x1 − x2)(y3 − y4)− (y1 − y2)(x3 − x4)

) (4.7)
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Further decomposition results in Equation 4.7. Unfortunately, this equation

assumes infinite lines passing through the selected points, the ideal configuration

is that the voting lines should start at the vector position and point in the di-

rection of the vector. Another problem with this solution is that it has difficulty

handling parallel lines, the intersection position becomes undefined, but does not

provide an appropriate, stable response. There are also a number of duplicate cal-

culations that can be precomputed to reduce the overall processing requirements.

To better handle all of these special cases, some changes and improvements were

made.

a = x1y2 − y1x2
b = x3y4 − y3x4
c = x3 − x4
d = x1 − x2
e = y3 − y4
f = y1 − y2
g = de− cf

P = (Px, Py) =

(
ac− bd

g
,
ae− bf

g

)
L1 Proj = (d, f) · (Px − x1, Py − y1)

L2 Proj = (c, e) · (Px − x3, Py − y3)

I(p1, p2, p3, p4) =

1, if g 6= 0 and L1 Proj < 0 and L2 Proj < 0

0, otherwise

(4.8)

where:

L1 Proj and L2 Proj are signed distance measures of the

projection of the calculated intersection

position onto the lines L1 and L2, respectively

I(p1, p2, p3, p4) is an intersection flag used to specify if a valid

intersection occurred
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To ensure that intersections cannot occur behind the voting vectors, a new

point is calculated by projecting the intersection position determined using Equa-

tion 4.7 onto the two voting lines. This will result in a signed distance measure-

ment that provides the distance of the intersection position on the line from the

lines starting position or origin. If this signed distance measurements is positive,

then the intersection occurred behind the vector, the intersection is then clas-

sified as an invalid intersection. When both signed distance measurements are

negative, the intersection is valid and occurred on the two lines starting at their

respected origins.

Convert vector directions and positions into point p1, p2 on L1 and p3 and

p4 on L2;

Calculate c, d, e, f and g;

if g 6= 0 then

Calculate a and b;

Determine intersection position P ;

Calculate point-to-line projections L1 Proj and L2 Proj;

if L1 Proj < 0 and L2 Proj < 0 then

Return valid intersection at point P ;

else

Return invalid intersection;

end

else

Return invalid intersection;

end

Algorithm 2: Calculating the intersection position of two lines defined by

vectors

In Equation 4.8, the inclusion of the intersection point to line projection com-

parisons are demonstrated, the pre-computation and reuse of some of the math-

ematical terms were also introduced. An optimal method of implementing the

vector line to vector line intersection function is presented in Algorithm 2. It al-

lows some of the processing steps to be delayed or skipped when parallel lines are
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Figure 4.9: Multiple neighbouring features, each observing a single geometric
relationship for the primary feature

encountered improving the processing performance. It also limits intersections

on infinite lines, producing only intersection in-front of the voting vectors.

4.7.2 Estimating the position of the primary feature using

neighbouring feature voting lines

Each neighbouring feature provides insight on the direction in which it believes

the primary feature is located. When the directional insights from multiple fea-

tures are combined it allows the algorithm to estimate the position of the primary

feature from the intersections of the individual voting lines. Insights observed

from one coordinate frame needs to be transferred to another coordinate frame

in a scale, affine, translation and rotation invariant manner.

An example of three different neighbouring features observing a geometric re-

lationship for a selected primary feature in one coordinate frame can be seen in

Figure 4.9. Every combination of two neighbouring features provides a single es-

timate of the position of the primary feature. Thus a number of possible position

estimates can be derived that need to be combined to determine the global posi-

48



Figure 4.10: Multiple neighbouring features, each applying their geometric rela-
tionship in an attempt to locate the primary feature

tion estimate. Some feature matches might have been matched incorrectly, which

will result in some of the position estimates to be incorrect when the intersection

positions are determined. The algorithm should cater for outliers and incorrect

position estimates by fusing the local position estimates in a robust manner to

ensure that a reliable position estimate is derived.

When the geometric relationships from multiple neighbouring feature matches

derived from one coordinate frame is applied to another, the primary feature can

be located. An example of how the intersection positions of the voting lines from

multiple neighbouring feature can be used to estimate the location of the primary

feature in another coordinate frame can be seen in Figure 4.10. Note that the

angle relationship between the feature’s direction and the voting angle is preserved

to a high degree when translation, scale, rotation and affine transformations are

applied between the different coordinate frames as can be observed in Figure 4.9

and Figure 4.10. Handling of affine transformations are the most difficult of the

four different transformations, increasing the number of neighbours used by the

estimation process will improve the Super-feature algorithms ability to handle

this type of transformation.
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4.8 Finding the modes of the probability den-

sity distribution using a 2-dimensional Gaus-

sian weighted Mean-shift algorithm

Create kernels Ki=1..n at each sample point position;

Create copy of initial kernels K̂ = K;

for iteration ← 1 to max iterations do

convergence flag = 1;

for i ← 1 to n do

Waccumilated = 0;

Kaccumilated = 0;

for j ← 1 to n do

d =
√∑

(Ki − K̂j)2;

Wgaussian = e
(d/σ)2

−2 ;

Waccumilated = Waccumilated +Wgaussian;

Kaccumilated = Kaccumilated + (K̂j ∗Wgaussian);

end

Ki = Kaccumilated

Waccumilated
;

if
∑
|Ki −Ki| > ε then

convergence flag = 0;

end

Ki = Ki;

end

if convergence flag = 1 then

Algorithm has converged, no more iterations are required;

end

end

Algorithm 3: Gaussian weighted Mean-shift kernel propagation algorithm

The final step in the position estimation algorithm is to combine the differ-

ent position estimates provided by each voting line pair. A probability density
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function of the estimated positions can be constructed through kernel density esti-

mation. A Gaussian kernel is accumulated at each intersection position provided

by the insights of the neighbouring feature matches and their corresponding vot-

ing lines. This is a computationally expensive process as the resulting probability

density function needs to be constructed in 2-dimensions and this process need

to be repeated for each of the original feature matches that need to be evaluated.

The Gaussian weighted Mean-Shift algorithm (GWMS) can be used to com-

bine the different position estimates allowing the regions with the strongest prob-

ability responses in the probability density function to be located without con-

structing the probability density function. The local gradients of the probability

density function are calculated from the intersection positions and the Gaussian

kernel, allowing the kernels of the GWMS algorithm to converge on the modes

or local extrema of the distribution.

An overview of the steps involved in the GWMS kernel propagation algorithm

is provided in Algorithm 3. The first step is to create kernels at each voting line

intersection position. An initial unaltered copy of these kernels will be stored as

K̂, since the Kernel positions will be updated after each iteration and the original

kernel positions are required by some of the algorithm’s processing steps. A

number of iterations will be performed until the system converges or the maximum

number of iterations have been performed. The max iterations parameter was

introduced to ensure that the GWMS algorithm always terminates in a timely

fashion, the max iterations was set to 1000 for this implementation.

The next step in the GWMS algorithm is to calculate and accumulate the

Gaussian weighted positions for all the initial unaltered neighbouring kernels K̂j

compared to the current selected kernel Ki. The Euclidean distance is calculated

from the position of the current kernel Ki to the positions of the neighbouring

kernels K̂j. A fixed kernel bandwidth σ, as well as the distance is then used to

sample the current kernel’s Gaussian function to calculate the Gaussian weight

Wgaussian. The normalization coefficient used to ensure that the traditional Gaus-

sian kernel integrates to 1 was removed to save computation time, the normalized

kernel that was used in this implementation will have a maximum response of 1.

The calculated Gaussian weight will have a stronger weight for kernels that are

closer and a smaller weight for kernels that are placed far apart. The different
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Gaussian weights calculated for each neighbouring kernel are then accumulated

and stored in Waccumilated.

A new position for the selected kernel Ki needs to be calculated, this is

achieved by accumulating the positions of each neighbouring kernel, scaled by

the calculated weight for that neighbour. After each neighbouring kernel has

been evaluated, the new updated position Ki for the selected kernel Ki can then

be calculated by dividing the weighted position accumulation Kaccumilated by the

accumulated weights Waccumilated.

Now convergence can be checked, the Manhattan distance is calculated be-

tween the previous kernel position Ki and the update kernel position Ki. If this

distance is larger than the convergence bias ε, then the specific kernel has not yet

converged and it is still busy ascending toward the local extrema. If the motion

distance of all the kernels, between different iterations are less than the conver-

gence bias, then the execution of the Mean-shift iterations can be terminated

since a state of convergence has been achieved. As a final step, the update kernel

position Ki is then set as the kernels new position Ki for the next iteration of

the GWMS algorithm.

Initialize all Ui=1..n as true;

q = 0;

for i ← 1 to n do

if Ui is true then

q = q + 1;

Mq = Ki;

for j ← i+1 to n do

if
√∑

(Ki − K̂j)2 <= β then

Uj = false;

end

end

end

end

Algorithm 4: Finding the distribution modes from the converged kernels
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Now that the kernel propagation algorithm has converged and the intersection

kernels have settled on the local extrema. A position list of all the local extrema

needs to be constructed by linking the grouped kernels that have settled on the

same extrema. An overview of the mode finding algorithm that operates on the

converged kernels is provided in Algorithm 4.

A flag Ui is created for each converged kernel Ki, the value of the flag repre-

sents, if that kernel is still eligible to be used as a unique mode of the distribution.

Since each kernel would have converged on the same position as the modes of the

distribution, a number of kernels would have settled on the same local extrema.

We want to construct a list of only the unique modes or kernels, thus some kernels

that share a local extrema will be discarded. Initially, all kernels are eligible for

use as a mode and Ui is initialized as true for every kernel. The first kernel that

is found to be eligible is added to the mode list M , its linked cluster partners

need to be found and their eligibility need to be removed. The Euclidean distance

between the current mode and the rest of the remaining kernels are calculated,

if this distance is smaller than the clustering distance threshold β, it means that

the kernel was also located on the same mode and its eligibility would be removed

by setting Uj equal to false. This process will systematically construct the list

of unique modes by excluding kernels where the local extrema have already been

added to the list.

Only the locations of the strongest modes should be used as position estimates.

The probability response of the global maximum is found and used to locate all the

local extrema that have similar high responses to the global extrema. Local modes

that have probability density responses within 10% of the maximum response

were also added to the position estimate list. Therefore, more then one position

estimate can be obtained for a feature match, allowing the system to function as

a multi-mode estimator.

4.9 Conclusion

The concept of feature clusters were introduced as well as the implementation

details of the Super-feature matching and improvement framework. Each of the

processing steps involved in the Super-feature algorithm were discussed in detail.
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The presented Super-feature algorithm allows neighbouring feature matches to

be clustered and the observed geometric relationships between the features in the

cluster to be applied to the matching process allowing features to be matched

using appearance similarity and geometric consistency. Matching features us-

ing appearance similarity and geometric consistency allow more reliable feature

matches to be established and the feature matching search space to be reduced.

The proposed feature matching framework allows geometric relationships to be

obtained and applied in a reliable and robust manner, even when a large number

of feature matches in the Super-feature cluster is missing or provide invalid fea-

ture match information. Another benefit of the Super-features algorithm is that

it was designed to function in a translation, scale, rotation and the affine invariant

manner and that it can be used in conjunction with many state-of-the-art feature

detectors that provide feature location, rotation and description information.

In Chapter 5 the testing methodology will be presented and experimental tests

will be performed to find optimal parameters for the Super-feature algorithm. A

number of experiments will also be performed to determine the feature matching

reliability and performance results of integrating the Super-feature algorithm to

a number of current state-of-the-art feature detectors.

54



Chapter 5

Results

5.1 Experimental setup

A number of tests were developed and performed to tune and test the capabilities

of the Super-feature algorithm and its ability to handle different situations. An

overview of the tests that will be performed is provided in Table 5.1. The Super-

feature algorithm has a number of parameters that can be tuned. Therefore the

first set of tests was performed where the different algorithm parameters were

varied over a range of different values, the accuracy results for these configuration

settings could then be determined. This allowed us to determine and select a

generic set of parameters that will provide reliable results in a wide variety of

processing conditions and situations. As a result, these selected parameters were

then used for the rest of the testing procedures.

The next set of test that were performed was the transformation invariance

tests. These tests allowed us to determine the ability of the Super-feature algo-

rithm to handle Scale, Rotation and Affine transformations, and to what degree

the Super-feature algorithm was invariant to these transformations. Individual

tests were performed for these simple transformations because it can be difficult

to determine where a problem or limitation of the Super-feature algorithm might

lie when using a complex or composite transformation test, which might include

a combination of different transformations. Consequently, if the Super-feature

algorithm is lacking in one of these areas, it could be observed and a potential
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Test category Category sub-tests
1.) Selection of Super-feature i.) Gaussian Sigma parameter

algorithm parameters ii.) Number of neighbours parameter
iii.)Number of iterations parameter
iv.) Weight threshold parameter

2.) Simple global image motion i.) Rotation transformation invariance
transformations ii.) Scale transformation invariance

iii.)Affine transformation invariance
3.) Complex global and local

motion transformations
i.) Dominant scene motion with possible oc-

clusions
ii.) Motion present on foreground as well as

background
iii.)Dynamic, non-rigid and morph-able ob-

jects and environments
iv.) Fast object and camera motion with mo-

tion blurring

Table 5.1: Overview of the test categories as well as the sub-tests that will be
performed

improvement could be developed.

The last set of tests consisted of composite local as well as global transforma-

tions, these tests ranged from simple to complex transformations of the observed

scene as well as the objects in the scene. The first tests in this testing category will

be simple with dense sets of descriptive features and predictable motion. Each

set of tests in this category is increasingly more difficult as the features become

less descriptive and the feature sets become more sparse due to the complexity of

the observed scene and the motion of the objects in the scene. The MPI-Sintel

optical flow dataset was used, this dataset provides the motion vector of each

pixel, from one frame to another [94]. Allowing us to compare and test differ-

ent feature detectors based on different feature detection methodologies to each

other using the same dataset. Even though, the MPI-Sintel dataset is synthetic

it exhibits the characteristics of natural scenes, it provides a rich set of features

that is sufficiently difficult to match. The images in this dataset contain large

motions, occlusions, specular reflections, dynamic shadows, motion blurs, defocus

blur and atmospheric effects such as blooming, smoke and fog.
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5.1.1 Feature detector, implementation information and

settings

The Super-feature algorithm doesn’t provide the ability to detect features, and

should be integrated with current generation feature detectors. Therefore, three

different feature detectors were selected and used for testing purposes: SIFT,

SURF and MSER. These feature detectors are based on different theories and

use different methods of detecting and localizing features. As a result, a common

set of detected features between these methods cannot be expected, consequently

a dense optical flow field is used to establish a ground truth that can be used

to evaluate the feature detectors using a common framework. For SURF [95]

and MSER [96], the built-in implementations provided by Matlab R2013A was

used to test the application of Super-features in-conjunction with these detectors.

The original C implementation of SIFT provided by Lowe was used for testing

the SIFT based Super-feature algorithm [97], the compiled version of Lowe’s

implementation was called using a Matlab wrapper. The default setting proposed

by the respected Authors of these feature detection methods was used to perform

the tests. Here is a breakdown of the setting used for each feature detection

method used for testing.

The SIFT detector was configured with the following setting:

• Feature description size = 128

• Prior smoothing sigma = 1.6

• Number of Octaves = 4

• Number of scales per octave = 3

The SURF detector was configured with the following setting:

• Feature description size = 64

• Metric threshold = 1000

• Number of Octaves = 3

• Number of scales per octave = 4
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The MSER detector was configured with the following setting:

• Feature description size = 64 (Based on SURF Descriptor)

• Threshold delta = 2

• Region area range = 30 to 14000

• Maximum area variation = 0.25

5.1.2 Interpreting the results

To understand the result figures, a brief description of each label’s meaning and

descriptions is provided. In each figure, three different sub-results will be provided

per feature detector, nl. Original, Exclusion and Inclusion. Here is a breakdown

of each of these figure terms and their descriptions:

• Original - Results obtained by the traditional feature detectors before the

Super-feature algorithm were integrated, this usually forms the baseline.

• Exclusion - Super-feature algorithm applied to the original feature matches

to exclude features the algorithm believes is incorrect.

• Inclusion - After Super-feature Exclusion was applied, an optional second

processing stage can be employed, where the matching position of incorrect

features are corrected using the estimated position. Inclusion provides the

results of the full Super-feature algorithm.

Applying only Super-feature Exclusion to the original feature matches will

result in the most reliable feature detectors, but the feature count might be lim-

ited. This is important for some applications, where feature matching reliability is

more important than feature count. The Super-feature algorithm with Inclusion

of corrected features will perform the second processing stage after Super-feature

Exclusion was applied, this will give rise to a higher number of valid features

detected, but might result in a slight decrease in reliability and classification ac-

curacy. Applications with a need for a denser set of features will benefit most

from the Super-feature Inclusion algorithm.
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The matching accuracy is a reliability percentage measure calculated from the

number of correct feature matches. Each feature is evaluated against the ground

truth motion to determine if it was correctly or incorrectly matched. This is

achieved by calculating the positional difference of each feature’s matched posi-

tion to the ground truth transformation position. The ground truth transformed

position of a feature is calculated from the feature’s original position combined

with the ground truth optical flow vector at that pixel location provided by the

specified testing dataset. This position error is then compared to a maximum

position error threshold selected as a 5 pixel radius around a feature to make the

final classification.

The True-positive usage is calculated from the ratio of the number of cor-

rect features found after the Super-feature algorithm has been applied, to the

number of correct features of the original algorithm without Super-feature inte-

gration. This is an important measure since the Super-feature algorithm attempts

to maximize the number of True-positive feature usage. The Super-feature Ex-

clusion algorithm will attempt to classify each feature as being either correct

or incorrect according to neighbouring feature support, without changing any

feature matches. The Super-feature Inclusion algorithm will work similarly to

the Exclusion algorithm but it will also try to improve the True-positive usage

rate by altering incorrect feature matches which it believes has a high estimation

reliability.

The classification accuracy is determined by comparing the classification re-

sults of each algorithm to the ground truth feature classifications, determined

from the ground truth transformed position. It is important to evaluate a feature

detection algorithm on both the classification accuracy as well as the matching

accuracy. This is because a poor feature matching method can discard almost all

of the present features in an attempt to improve its matching accuracy. However,

since it has discarded the majority of its features, it will reduce its usefulness.

In this example case the matching accuracy might be high, but classification

accuracy will be low since a large number of useful True-positive features were

unnecessarily discarded. An ideal feature detector should have a high matching

accuracy as well as a high classification accuracy to ensure that the matching

data is used optimally.
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5.2 Selection of the Super-feature algorithm pa-

rameters

To determine appropriate parameters for the Super-feature algorithm, a natu-

ral image dataset was generated by synthetically transforming and fusing pho-

tographs of the foreground and the background to form a new image where the

ground truth motion is known. This dataset was designed to exhibit composite

complex transformations between different foreground and background objects as-

well as contain image region occlusions. To be able to compare the algorithm’s

performance, the synthetically transformed natural dataset needed to provide

the ground truth motion vector for each pixel from the Primary image to the

Transformed image. Consequently, enabling the testing of different feature de-

tectors based on different feature detection methodologies. Natural photographs

of an Aircraft and the Grand Canyon were manually segmented, transformed and

composited together to form the test dataset images as seen in Figure 5.1.a and

Figure 5.1.b. Different known rotations, scales and affine transformations were

applied to the foreground as well as the background image. Occlusions can occur

naturally due to the different transformations applied, especially on the borders

between the foreground and background. The resulting transformed foreground

and background images were then composited together to form the Transformed

image presented in Figure 5.1.b. This dataset also contains a number of duplicate

features due to the symmetry of the Aircraft as well as the near-stochastic nature

of the Canyon image. Since the different applied transformations are known, an

optical flow image can be generated that represents the motion of each pixel of

the Primary image to the Transformed image, allowing feature matches from the

Primary image to the Transformed image to be evaluated. A demonstration of

some of the flow vectors can be seen in Figure 5.1.c. The generated dataset was

then used to test the effect of changing each algorithm parameter over a range of

values and its effect on the matching accuracy.
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(a) Primary image used as Frame 1 (b) Transformed image used as Frame 2

(c) Example motion vectors from the Primary image to the Transformed image

Figure 5.1: An example of the constructed natural test images that were created
by transforming the foreground and background using known transformations
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5.2.1 Selection of Gaussian Sigma

The Gaussian Sigma parameter of the Super-feature algorithm determines the size

of the influence region of each pair of neighbouring feature’s position estimates on

the Probability density function. A larger sigma will relax the accuracy constraint

of individual local estimates created by neighbouring feature sets, which will allow

them to contribute to a potential global estimate even if they contain some error.

This may improve the algorithm’s ability to estimate the matching position of a

selected feature, even if only a few neighbouring features were matched correctly

or complex local transformations are present in the input images. Unfortunately,

a negative effect of a larger sigma is that it will reduce the localization accuracy of

the final globally estimated position of the feature match. A smaller sigma on the

other hand will have the opposite effect, the globally estimated position will be

localized more accurately, but individual local estimates may be discarded since

the Super-feature algorithm believes that they may contain some estimation error

determined from its weak global consistency compared to other local estimates.

Therefore a smaller sigma is more ideal for feature detectors that provide a dense

set of reliable features and a larger sigma will work better when a sparse set

of weak features need to be matched. This is due the fact that the estimation

accuracy produced by the neighbouring feature matches decrease as the distance

between the neighbours and the primary feature increase. The angle between the

neighbouring feature matches and the primary feature can also have an effect,

angles close to a right angle tend to produce more accurate estimates.

The results obtained by adjusting the Gaussian Sigma parameter of the Super-

feature algorithm over the range of 1 to 10 sigma is provided in Figure 5.2 and

Figure 5.3. In these figures, “Original” represents the results of the original

feature matches before the Super-features algorithm was applied, “Exclusion”

represents the results after the weak feature matches have been removed using the

Super-feature algorithm and “Inclusion” represents the results where the Super-

features algorithm attempts to correct bad feature matches.

Super-feature Exclusion provided the most reliable results in this test with an

average matching score of close to 100% over the entire range of tested Gaussian

Sigmas compared to the Original matching accuracy obtained by SIFT, which
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(a) Number of Features

(b) Matching Accuracy

Figure 5.2: The number of features and matching accuracy results obtained by
adjusting the Gaussian Sigma parameter of the Super-features algorithm
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(a) Percentage of True-positives used

(b) Classification Accuracy

Figure 5.3: The percentage of True-positives used classification accuracy results
obtained by adjusting the Gaussian Sigma parameter of the Super-features algo-
rithm
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was only 59.4%. Super-feature Exclusion removed poor feature matches from the

match list, it removed only feature matches that had a high probability of being

incorrect. As a result 58.7% of the total detected features were matched using

Super-feature Exclusion. This result comes close to the number of correct features

present in the ground truth where only 59.4% of the features were correct, which

means that less than 1% was misclassified by the Super-features algorithm and

it had a classification accuracy of 99.2% as seen in Figure 5.3.a.

The greatest effect of changing the Gaussian Sigma was the increase of the

number of features, as observed for the Super-features Inclusion algorithm. Super-

features with Inclusion attempts to correct and improve the features it believes

were matched incorrectly and includes them in the final match list. It can be

seen that as the Sigma is increased the Super-feature algorithm is better able to

estimate the positions of mismatched features. Resulting in more features being

corrected and matched, negatively some incorrect matches might be included in

the final match list, which could result in a possible decrease in matching accuracy.

Therefore a larger Sigma resulted in more feature matches being corrected and

included with a slight decrease in matching accuracy.

The increase of the Gaussian Sigma negatively impacted the classification

accuracy, on the other hand it dramatically improved the percentage of True-

positives used as can be observed in Figure 5.3.a. A Gaussian Sigma of 4 was

empirically selected as an effective value for the Gaussian Sigma parameter of the

Super-feature algorithm, it resulted in an increase of 34.4% more features being

detected with only a 1.2% decrease in matching accuracy.

5.2.2 Selection of the number of neighbours

The correct selection of the “number of neighbours” parameter that the Super-

feature algorithm will use, is an important issue. A larger “number of neigh-

bours” value will improve the algorithm’s ability to provide reliable estimates

in the presence of outliers. This will unfortunately come at the expense of in-

creased processing time. Another problem with the selection of a large “number

of neighbours” value is that small moving objects that only contain a small set

of features can be misclassified as being incorrect. This happens because the
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background behind the object will provide more support for the features on the

object than the features on the object. This will result in position estimates that

assume that the features on the object should be part of the background and

thus will be constrained to the motion of the background. The Super-feature

algorithm does handle this situation to some extent by providing multi-mode es-

timates of the underlying density distribution, for each feature where required.

In these situations an estimated position proposed by the background and the

foreground will be provided, but the Super-feature algorithm is unable to distin-

guish which one of these possible solutions are correct. The selection of a smaller

“number of neighbours” value will allow the Super-feature algorithm to function

on smaller objects, but will result in less support being provided for the Super-

feature position estimator. Consequently, this can result in an algorithm with

poor classification accuracy when large numbers of outliers exist in the match

set. On the other hand it will improve and reduce the processing requirements,

while increasing its ability to function in situations where the feature sets are

sparse or when there are small moving objects present in the images.

The results obtained by changing the “number of neighbours” parameter are

provided in Figure 5.4 and Figure 5.5 The Original matching accuracy provided

by the feature detector was 59.4%, after Super-feature Exclusion was integrated

it provided stable results close to a 100%. Consequently, it shows that even

when using only a small number of neighbours, such as 4, in situations where less

than 40% of the Original matches are incorrect the Super-features algorithm can

provide an improvement over the traditional method. The results obtained by the

Super-feature with Inclusion of corrected features unfortunately suffered when a

large number of neighbours were selected. Accordingly, it can be observed in

Figure 5.4.b that there is a slow decline of the matching accuracy as the number

of neighbours are increased. Increasing the number of neighbours can have a

positive effect on the number of True-positives used as well as the number of

features matched albeit with a reduced matching and classification accuracy as

seen in Figure 5.5.a. One of the reasons for the decrease in matching accuracy

of the Super-feature Inclusion algorithm is that more multi-mode solutions can

occur as the number of neighbours are increased. Unfortunately the Super-feature

algorithm can only correct features with single, reliable solutions even if it can
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(a) Number of Features

(b) Matching Accuracy

Figure 5.4: The number of features and matching accuracy results obtained by
adjusting the “number of neighbours” parameter of the Super-features algorithm
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(a) Percentage of True-positives used

(b) Classification Accuracy

Figure 5.5: The percentage of True-positives used and classification accuracy
results obtained by adjusting the “number of neighbours” parameter of the Super-
features algorithm
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provide the information of multiple possible solutions when they occur. Another

possible reason for the reduced matching accuracy is that the support provided

by sparse feature regions can be overwhelmed by the feature support provided by

stronger neighbouring regions. A “number of neighbours” parameter of 10 was

determined to be an effective selection which provided an increase to the number

of features detected and the True-positive usage percentage, while maintaining a

good matching accuracy as well as reducing the processing requirements.

5.2.3 Selection of the number of iterations

The number of iterations parameter of the Super-feature algorithm allows it to

repeat the voting process a number of times. Each iteration will repeat the

Super-feature process, but will only use feature matches that it believes have a

high reliability confidence derived from the previous iteration. During the first

iteration, all available features matches will have to be used which could result

in some misclassifications, as some potentially incorrect features will provide in-

valid support for other features. The succeeding iterations improve on the prior

iteration’s results by providing more insight around the validity of features, re-

sulting in the improvement of the feature matching classification accuracy. This

can be attributed to the fact that each iteration is able to remove more and more

weak features from the valid feature set, excluding them from the Super-feature

algorithm’s voting process allowing only strong feature matches to contribute

and provide support. In general the Super-feature algorithm tends to converge

quickly, usually within only a few iterations after which no further benefit is

apparent.

The Super-features algorithm converged completely after 3 iterations for this

test dataset, after which no real improvement was visible as seen in Figure 5.6

and Figure 5.7. There was only a slight improvement observed by executing an

addition iteration after the second iteration was completed. In some applications

where processing resources are constrained, 2 iterations can be used without a

significant decrease in matching and classification accuracy. A single iteration

is sufficient when only Super-feature Exclusion is required, providing a reliable

feature set requiring only a third of the processing resources. From these results
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(a) Number of Features

(b) Matching Accuracy

Figure 5.6: The number of features and matching accuracy results obtained by
adjusting the number of iterations parameter of the Super-features algorithm
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(a) Percentage of True-positives used

(b) Classification Accuracy

Figure 5.7: The percentage of True-positives used and classification accuracy
results obtained by adjusting the number of iterations parameter of the Super-
features algorithm
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the number of iterations of 3 was selected as an effecting parameter selection for

the Super-feature algorithm, this selected number of iterations will provide the

best results for most applications.

5.2.4 Selection of weight threshold

The weight threshold parameter is specific to the Super-feature correction and

Inclusion process and does not impact the Super-feature Exclusion algorithm.

Therefore, the Super-feature Exclusion results should not have been included in

the results since this parameter does not affect the algorithm’s operation, but it

was included to provide a baseline against which to compare the Super-feature

Inclusion algorithm when the weight threshold is adjusted. In the Super-feature

Inclusion algorithm the weight threshold is used to trim and discard incorrect

features that have poor estimation reliability, calculated from the Probability

density function of the local neighbour feature match votes. Feature matches

that have been classified as being incorrect and that have an estimated reliabil-

ity stronger than the selected weight threshold are corrected by changing their

matched positions to the Super-feature’s estimated positions derived through the

neighbouring feature match voting process. When a higher weight threshold is

selected it will result in a strict correction policy, only allowing incorrect features

with a strong estimation reliability to be corrected and included in the process.

By selecting a low weight threshold the correction policy will be relaxed, result-

ing in an algorithm that is more lenient when correcting features matches, some

errors might occur because of this relaxed constraint.

As previously explained and can be observed in Figure 5.8.a, the number

of features produced by the Super-feature Inclusion algorithm decrease as the

weight threshold parameter is increased. Consequently, by adjusting the weight

threshold, it also has an effect on the matching accuracy, which improved due to

the strict thresholding criteria as seen in Figure 5.8.b. When selecting a strict

weight threshold (such as 40), only the strongest features will be corrected and

included, resulting in a small number of features being selected. An ideal weight

threshold value will provide a high matching accuracy, but also correct and include

a large number of features. For this reason, a weight threshold of 30 was selected,
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(a) Number of Features

(b) Matching Accuracy

Figure 5.8: The number of features and matching accuracy results obtained by
adjusting the Weight Threshold parameter of the voting scheme
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(a) Percentage of True-positives used

(b) Classification Accuracy

Figure 5.9: The percentage of True-positives used and classification accuracy re-
sults obtained by adjusting the Weight Threshold parameter of the voting scheme
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it produced 34% more features than Exclusion but only reduced the matching

accuracy by less than 1%. This weight threshold will also allow more True-

positives to be used compared to the Original and Super-feature Exclusion feature

matches as can be seen in Figure 5.9.

5.3 Simple global image motion transformations

(a) Bridge image (800x600 pixels)[98] (b) Nature image (1024x768 pixels)[99]

(c) Aircraft image (1280x1024 pixels)[100]

Figure 5.10: Dataset images used for testing global synthetic image transforma-
tions
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The test dataset images that will be used for testing the ability of the Super-

features algorithm are Bridge, Nature and Aircraft, they can be seen in Figure

5.10. These three images have different resolutions and image information densi-

ties, which will result in different amounts of features being detected. Since the

sparsity of features can influence the Super-features algorithms accuracy results,

these images were selected to test a wide range of feature densities. The feature

detectors that we used for testing, detected the least amount of features in the

Aircraft image, this can be attributed to the large amount of regions in the image

that contain low frequency information as-well as man made structure. There is

close to double the amount of features in the Bridge image and two and a half

times more feature in the Nature image compared to the Bridge image. This is

because the Nature image contains a large amount of high frequency image infor-

mation, which typically produces a large number of small features. The three test

images demonstrate a wide variety of real world environments, from man made

structures to natural high frequency information common in nature. All three

test images also contain a large number of duplicate features such as the windows

and door arches that can be seen in the Bridge image, the rocks and grass regions

in the Nature image as well as the symmetrical features on the aircraft in the

Aircraft image.

To test the Super-features algorithms ability to handle specific situations, we

will test the effect of single global image transformations such as scale, rotation

and affine transformation on the accuracy results of the different feature detector

before and after the Super-features algorithm has been integrated. Complex com-

binations of these transformations on multiple moving objects and environments

will also be tested later. This will demonstrate to what level the Super-features

algorithm has invariance to these transformations and as a result show that reli-

able feature matching can be established in these situations. Each test requires

different amounts of rotation, scale and affine transformations to be applied before

the accuracy results are determined, a range of transformations will be tested.

The test dataset images will be synthetically transformed according to a selected

rotation, scale or affine transformation. Since the transformation is known, it

allows us to establish a ground truth that can be used to determine if a feature

match or the transformation of a feature from the one coordinate frame to the
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next is correct. The current generation of feature detectors has some difficulty

in accurately localizing features. Therefore, if a feature’s matched position is

within a 5 pixel radius of the ground truth position, it will be considered a valid

match and will be classified as correct. The accuracy results are determined by

matching all features from the original untransformed image to the transformed

image. Three different feature detectors will be used to detect the feature sets,

these feature detectors will be SIFT, SURF and MSER. These feature detectors

are well known and common in the field of image processing and computer vision.

5.3.1 Rotation transformation invariance

To be able to test the rotation handling ability of the Super-features algorithm,

the input test images were rotated synthetically over the range of 0 to 360 degrees

in 10 degree intervals. Example images of the tested rotation transformations

applied to the Aircraft image are provide in Figure 5.11. Features were detected

using SIFT, SURF and MSER in the original untransformed image and then

matched with the same features detected in each of the rotationally transformed

images. Thereafter, the matching and classification accuracy was calculated from

Figure 5.11: Example images of the Aircraft rotation dataset
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(a) Original SIFT matching results

(b) SIFT based Super-feature matching results

Figure 5.12: A comparison of the feature matching results of 20 degree Rotation
transformed features by the SIFT and Super-feature algorithm
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(a) Number of Features

(b) Matching Accuracy

Figure 5.13: The number of features and matching accuracy results obtained by
the SIFT based Super-features algorithm for Rotation transformations
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(a) Percentage of True-positives used

(b) Classification Accuracy

Figure 5.14: The percentage of True-positives used and classification accuracy
results obtained by the SIFT based Super-features algorithm for Rotation trans-
formations
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the ground truth flow vectors between these images, which were calculated from

the known ground truth rotation angles. It can be observed that more features

were detected by the different feature detectors at rotation angles of 0, 90, 180,

270 and 360 compared to the other angles as seen in Figure 5.13.a. Some features

were lost because some of the corner regions of the rotated image were transformed

outside the image region. Another reason for the observed decrease in the number

of features was caused by the blurring that was introduced by sub-sampling of

the pixel values caused by the image rotation algorithm. Usually only small high

frequency features are lost as a result of the re-sampling process.

The SIFT based Super-feature algorithm produced consistent results over the

entire range of tested rotation angles, it maintained a matching accuracy close to

a 100% for all rotations. A visual demonstration of the feature matching results

of the SIFT and SIFT based Super-feature algorithm can be seen in Figure 5.12.

By integrating Super-features in the matching process of SIFT, it produced a

substantial matching accuracy improvement of more than 20% compared to the

original SIFT feature matching algorithm as seen in Figure 5.13.b. Super-features

with inclusion and correction produced similar results to the Super-feature Ex-

clusion algorithm except that the Super-feature Inclusion algorithm was able to

make use of more features since it was able to recover some miss-matched fea-

tures. Consequently, Super-feature Inclusion was able to produced close to a

100% matching and classification accuracy as well as increase the feature count

by more than 20% for the majority of the tested rotations. The number of True-

positives used also improved after Super-features were integrated compared to

the original SIFT feature detection algorithm as seen in Figure 5.14.a. SIFT pro-

duced a dens set of features which boosted the performance of the Super-feature

algorithm. Neighbouring feature matches were relatively error free with only 20%

miss-matches. This allowed the Super-feature algorithm to use the support pro-

vided by the neighbouring feature matches to accurately classify feature matches

as either correct or incorrect. Similar results were obtained for all three test im-

ages which showed that the Super-feature algorithm provides a strong invariance

to rotation transformations in many scenarios.

Super-features based on the SURF feature detector produced similar results to

the SIFT based Super-feature algorithm, the results are provided in Figure 5.15
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(a) Number of Features

(b) Matching Accuracy

Figure 5.15: The number of features and matching accuracy results obtained by
the SURF based Super-features algorithm for Rotation transformations
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(a) Percentage of True-positives used

(b) Classification Accuracy

Figure 5.16: The percentage of True-positives used and classification accuracy
results obtained by the SURF based Super-features algorithm for Rotation trans-
formations
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and Figure 5.16. The default configuration and settings of SURF did not detect

as many features as SIFT, also the feature matches that were found contained

a substantial amount more mismatches. This makes feature match classification

and correction using the Super-feature algorithm more difficult, since more out-

liers will be present during the estimation process. As seen in Figure 5.15.b the

Original SURF matches did not provide strong rotation invariance compared to

SIFT, a large number of features were matched incorrectly for rotations between

the intervals of 90 degree angles. The poor rotation invariance of the SURF

method, negatively impacted SURF’s original matching accuracy, for some rota-

tions the matching accuracy dropped by more than 50%. This resulted in a poor

matching accuracy of the Original SURF detector which introduced more outliers

in the estimation process of the Super-feature algorithm. Thus the impact of the

increased number of outliers on the classification accuracy can be seen in Figure

5.16.b. The matching accuracy remained high as seen in Figure 5.15.b but some

True-positives were lost since the neighbouring feature matches provided poor

support and these features were misclassified and discarded as incorrect matches.

The Super-feature algorithm was still able to substantially improve the matching

accuracy of SURF even if the SURF detector included more outliers. Conse-

quently, the results obtained by the SURF based Super-feature algorithms were

not as good as the results obtained for the Super-feature SIFT algorithm, but

it consistently produced results higher than 98% for all rotation angles. From

these test results we can observe that the Super-feature algorithm is able to con-

tinue functioning reliably even when 50% of the neighbouring feature matches

were incorrect. This allowed the Super-feature algorithm to improve on the poor

rotation invariant property of the SURF feature detector.

The MSER feature detector, detected the least amount of features compared

to SIFT and SURF, these features were sparse in nature which can cause some

feature matches to be poorly supported by their neighbouring feature matches.

The same decrease in feature count artefact for some rotations observed for SIFT

and SURF was also seen for the MSER features, where the amount of features

decrease for rotation intervals between 0, 90, 180, 270 and 360 degrees. The

MSER and MSER based Super-feature algorithm results can be seen in Figure

5.17 and Figure 5.18. As can be observed from these results, the rotation invari-
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(a) Number of Features

(b) Matching Accuracy

Figure 5.17: The number of features and matching accuracy results obtained by
the MSER based Super-features algorithm for Rotation transformations
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(a) Percentage of True-positives used

(b) Classification Accuracy

Figure 5.18: The percentage of True-positives used and classification accuracy
results obtained by the MSER based Super-features algorithm for Rotation trans-
formations
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ance ability of MSER was slightly better than SURF but provided less reliable

feature matches compared to SIFT. Consequently, this will have a positive effect

on the Super-feature’s classification accuracy compared to SURF, as less fea-

ture match outliers will be present and included in the estimation process. The

original MSER features could be matched with an average matching accuracy

of 70%, which was improved by the Super-feature algorithm by almost 30% for

the majority of the tested rotation angles. As a result, both the Super-feature

Exclusion and Inclusion algorithms based on MSER features produced matching

accuracy results close to 100% as seen in Figure 5.17.b. Some True-positives were

lost as seen in Figure 5.18.a which negatively impacted the classification accu-

racy provided in Figure 5.18.b. This can be attributed to the 30% outliers rate

in the Original feature matches as well as the sparsity of the features detected

by the MSER method. The Bridge and Nature image contained larger amounts

of features which could improve performance, compared to the Aircraft image

which was more sparse. The lack of features in the Aircraft test image reduced

the classification accuracy by 10% compared to the other two test images. From

this we can observed that in general, more feature matches provide better sup-

port which improves the Super-feature algorithm’s ability to handle outliers and

miss-matches. This will improve the classification and matching accuracy. From

this we can see that the Super-features algorithm favours non-sparse feature sets,

but do still work and provide an improved matching accuracy even on sparse

datasets. Only on the Bridge test image which had the most detected features

could the Super-feature algorithm with inclusion and correction sometimes match

more True-positives than what was originally detected. The Super-feature algo-

rithm with inclusion and correction still detected more feature matches than the

Super-feature with Exclusion algorithm.

5.3.2 Scale transformation invariance

Scale invariance was tested by matching the features located in the original un-

transformed image to the features located in the scale transformed images ranging

from half-size to double the original size images. Example frames of the image

scale transformations applied to the Bridge test dataset image can be seen in Fig-
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Figure 5.19: Example images of the Bridge scale dataset

ure 5.19. As can be observed, some of the image features are occluded and lost

because they are transformed outside the image borders on the magnification

tests. The three feature detectors SIFT, SURF and MSER and their Super-

feature variants will be tested on the scale transformed versions of the three test

images Nature, Bridge and Aircraft to determine the Super-feature’s ability to

handle scale transformations.

The Scale invariance test results obtained for the SIFT feature detector per-

formed on the test images can be seen in Figure 5.21 and Figure 5.22. In Figure

5.20, an example of the feature matching results of the SIFT and SIFT based

Super-feature algorithm can be seen. As the scale decreases the number of fea-

tures detected by SIFT remains relatively similar but as the scale is increased

the number of features decrease. This is because this synthetic dataset does not

include new high frequency features as the scale is increased, some feature is also

lost due to occlusion on the image borders since some image regions are trans-

formed outside the usable image region. The original feature matching accuracy

of SIFT was very similar between the three test images, SIFT struggled to handle

smaller scales with the matching accuracy dropping rapidly to as low as 20% and

30% for matching of features to a half-size image. A scale increase was not as se-

vere as scale decrease with the matching accuracy remaining at about 75%. The

results improved dramatically after the Super-feature algorithm with Exclusion

of poor features and Inclusion of corrected features was applied. As a result, the
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(a) Original SIFT matching results

(b) SIFT based Super-feature matching results

Figure 5.20: A comparison of the feature matching results of 0.8x Scale trans-
formed features by the SIFT and Super-feature algorithm
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(a) Number of Features

(b) Matching Accuracy

Figure 5.21: The number of features and matching accuracy results obtained by
the SIFT based Super-features algorithm for Scale transformations
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(a) Percentage of True-positives used

(b) Classification Accuracy

Figure 5.22: The percentage of True-positives used and classification accuracy
results obtained by the SIFT based Super-features algorithm for Scale transfor-
mations
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matching accuracy of both methods remained close to 100% for all tested scale

transformations as seen in Figure 5.21.b.

The Super-features Exclusion algorithm had almost a 100% classification ac-

curacy and was able to detect almost all of the True-positive features as can

be seen in Figure 5.22. Super-features Inclusion was able to detect 25% more

features than the Super-feature Exclusion algorithm for larger scale increases.

Matching on decreased scales suffered from poor matching accuracy, this allowed

the Super-feature algorithm to correct a larger number of incorrectly matched

features. It can be observed that there was a steady increase in the number of

True-positives used by the SIFT based Super-features Inclusion algorithm as the

scale was decreased. A good result that can be seen from these tests are that the

classification accuracy remained constant over the whole range of tested scales.

The SURF based Super-features algorithm provided similar results to the the

SIFT based feature detector. As previously observed in the Rotation transforma-

tion tests, the SURF feature detection algorithm did not provide feature matches

that were as reliable as the features produced by SIFT. Consequently, more out-

liers were present during the estimation process of the SURF based Super-feature

algorithm making it more difficult to classify and correct bad feature matches.

The original SURF feature matches showed a steady decrease in matching accu-

racy similar to SIFT, as the scale was decreased, a matching accuracy of only 25%

was obtained for matching feature to the half-resolution image as seen in Figure

5.23. An increase of image scale also resulted in a slight decrease of matching

accuracy for the SURF algorithm, SIFT was better able to handle scale increases

and its matching accuracy remained relatively constant.

The Super-feature Exclusion algorithm as-well as Super-features Inclusion al-

gorithm improved the original matching accuracy by 35% to 75% for decreased

scales and an improvement of 35% to 45% was observed for increased scales. The

Super-features algorithm had more difficulty with larger scale increases when it

was applied to SURF features, overall the maximum decrease of matching accu-

racy of only 3% was observed. This is because the SURF algorithm provided poor

feature matches for these scales as well as sparse feature sets compared to the

SIFT algorithm on similar scales. A dens set of features with a similar percentage

of outliers, compared to a sparse set of features can provide more support to the
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(a) Number of Features

(b) Matching Accuracy

Figure 5.23: The number of features and matching accuracy results obtained by
the SURF based Super-features algorithm for Scale transformations
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(a) Percentage of True-positives used

(b) Classification Accuracy

Figure 5.24: The percentage of True-positives used and classification accuracy
results obtained by the SURF based Super-features algorithm for Scale transfor-
mations
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features matches which will improve the classification accuracy. As seen in Fig-

ure 5.24.b the classification accuracy of the Super-feature algorithm on increased

scales were negatively impacted be the reduced number of features detected and

the increased number of mismatches present. The SURF based Super-features

Inclusion algorithm was able to detect a large amount more True-positive features

than the original SURF method for the different tested scale transformations as

seen in Figure 5.24.a. It had some difficulty with the large scale increases but

still provided superior results compared to the original SURF algorithm.

The MSER feature detector provided better matching accuracy results than

SURF and it provided similar matching accuracy results to SIFT but with a re-

duction to the number of features detected. It detected about three times less

features than the SIFT method, which could negatively affect the reliability of

the MSER based Super-feature algorithm. The Super-feature algorithm favours

a dense set of features compared to the sparse feature sets provided by the MSER

feature detector on natural photographs. The MSER based Super-feature algo-

rithm provided consistent results on the Aircraft and Nature test images over

the entire range of tested image scale transformations. Invalid feature matches

caused by duplicate feature clusters introduced some problems on the Bridge test

image as can be observed by the decrease in matching accuracy observed on some

scales as seen in Figure 5.25.b. A denser set of features could have provided some

variation between the duplicate feature clusters allowing the Super-feature algo-

rithm to distinguish better between them, resulting in the improvement of the

matching results. Overall, the Super-feature Exclusion algorithm as well as the

Super-features Inclusion algorithm provided a dramatic improvement over the

traditional MSER algorithm by providing a classification accuracy above 90%

for the majority of the tested scales as seen in Figure 5.26.b. Unfortunately,

some True-positives were misclassified by the Super-feature algorithm due to the

poor support provided by the sparse feature set as seen in Figure 5.26.a. Conse-

quently, the Super-feature Exclusion algorithm missed some True-positives while

the Super-feature Inclusion algorithm detected more True-positives compared to

the Original algorithm for most of the tested image scale transformations, except

for the largest increased scales.
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(a) Number of Features

(b) Matching Accuracy

Figure 5.25: The number of features and matching accuracy results obtained by
the MSER based Super-features algorithm for Scale transformations

96



(a) Percentage of True-positives used

(b) Classification Accuracy

Figure 5.26: The percentage of True-positives used and classification accuracy
results obtained by the MSER based Super-features algorithm for Scale transfor-
mations
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5.3.3 Affine transformation invariance

Figure 5.27: Example images of the Nature affine transformation dataset

Since a natural photo captured using a camera projects a 3-dimensional scene

onto a 2-dimensional camera plane, affine transformations can be introduced in

an image. Affine transformation can distort the local image region surrounding

a feature, which makes feature description difficult. The state-of-the-art feature

detectors have difficulty matching features when large affine transformations are

present, most are limited to extreme affine transformation less then 30 degrees

before the accuracy results decline dramatically. Example frames from the syn-

thetic affine transformation Nature dataset is provided in Figure 5.27. Features

will be detected in the original untransformed image, these features will then

be matched to the features detected in each affine transformed version of the

image. This will allows us to determine the Affine invariance capability of the

tested feature detector as well as the Super-feature algorithm, and the potential

improvement that can be gained by using Super-features in these situations.

A comparison between the results obtained by SIFT and the Super-feature

based SIFT algorithm is provided in Figure 5.28. As the amount of affine trans-

formation is increased the number of detected features should decrease as the

image information is compressed to fit into smaller regions, this can be seen in

Figure 5.29.a. Very few of the Original features are still present above 60 degree

affine transformations, after which the matching accuracy tends to drop quickly.
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(a) Original SIFT matching results

(b) SIFT based Super-feature matching results

Figure 5.28: A comparison of the feature matching results of 30 degree Affine
transformed features by the SIFT and Super-feature algorithm
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(a) Number of Features

(b) Matching Accuracy

Figure 5.29: The number of features and matching accuracy results obtained by
the SIFT based Super-features algorithm for Affine transformations
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(a) Percentage of True-positives used

(b) Classification Accuracy

Figure 5.30: The percentage of True-positives used and classification accuracy
results obtained by the SIFT based Super-features algorithm for Affine transfor-
mations
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The matching accuracy results for SIFT is provided in Figure 5.29.b. The Origi-

nal SIFT algorithm provided a very similar decrease in matching accuracy on the

Aircraft, Bridge and Nature test dataset images as the affine transformation is

increased.

Super-feature Exclusion as well as Inclusion of corrected features provided

a matching accuracy of more than 95% for affine transformations of up to 50

degrees at which point the original SIFT algorithm only had a matching accu-

racy of about 40%, this can be observed for all three test dataset images. For

affine transformations larger that 50 degrees, which can be considered as extreme

transformation angles, the feature sets become very sparse which reduces the

usefulness of applying Super-features. The SIFT based Super-feature algorithm

allowed SIFT features to be matched more accurately even on feature sets with se-

vere affine transformation of up to 55 degrees, which is 25 degrees more than what

was originally capable by the SIFT algorithm. Almost all original True-positives

can be found up to 40 degrees by the Super-features Exclusion algorithm, the

Super-feature algorithm with Inclusion of corrected features can find 20% to 30%

more features up to this angle, this can be seen in Figure 5.30.a. After 40% a

large number of features are lost and the number of True-positives found decrease

as well as the classification accuracy as seen in Figure 5.30.b.

The affine transformation results of the SURF feature detector is provided in

Figure 5.31 and Figure 5.32. The affine invariance properties of SURF was very

similar to SIFT, there was a constant decrease in accuracy as the affine transfor-

mation angle was increased. The number of features detected also decrease with

larger affine transformation angles.

Super-feature Exclusion and Inclusion based on SURF provided above 95%

matching accuracy for affine transformation angles of up to 50 degrees where

the original SURF matching algorithm was only able to maintain 35% to 40%

matching accuracy on the three test images as seen in Figure 5.31.b. This is a big

improvement which allows accurate matching of features even if extreme affine

transformations have been applied. The matching accuracy obtained by SURF

based Super-features, up to 50 degrees is very similar to what was obtained using

SIFT features, even if less features was detected.

For angles up to 30 degrees a strong increase in the number of True-positive
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(a) Number of Features

(b) Matching Accuracy

Figure 5.31: The number of features and matching accuracy results obtained by
the SURF based Super-features algorithm for Affine transformations
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(a) Percentage of True-positives used

(b) Classification Accuracy

Figure 5.32: The percentage of True-positives used and classification accuracy
results obtained by the SURF based Super-features algorithm for Affine transfor-
mations
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features can be observed for the Super-features with Inclusion algorithm as can

be seen in Figure 5.32.a. Only a slight increase in True-positives are observed

between 30 degrees and 40 degrees, after which the number of features decrease

drastically. As the number of features decrease, it has an impact on the classifi-

cation accuracy, since the matching accuracy remains high but the classification

accuracy decreased for angles between 20 and 60 degrees as seen in Figure 5.32.b.

This can be attributed to the fact that some True-positives were misclassified but

that most True-negatives were correctly classified and discarded.

The results obtained for the MSER based Super-feature algorithm can be seen

in Figure 5.33 and Figure 5.34. MSER features suffered from the same problem

that SIFT and SURF struggle with, as the affine transformation angle increased,

a large number of features were lost. Usually at about 50 degrees, less then 10%

of the original features can still be detected, but these features are difficult to

match accurately. At these extreme angles, large amounts of distortion would

have been introduced in the feature descriptions which make them less reliable

to match.

The affine invariance was increased to 50 degrees for the Aircraft and Nature

image, the Bridge test image provided good results up to 40 degrees. The rea-

son for the reduced accuracy exhibited in the Bridge image was due to duplicate

feature regions supported by a sparse set of detected features. As seen in Figure

5.33.b, reliable feature matching with an accuracy of above 95% was possible for

affine transformation of 40 degrees and smaller. Also, the Super-feature algo-

rithm provided a matching accuracy improvement of between 20% and 30% for

affine angles up to 40 degrees. Super-features with Inclusion was able to pro-

vide more True-positives compared to the original feature matches provided by

MSER as seen in Figure 5.34.a. Due to the large loss of features at extreme affine

transformation angles, the classification accuracy is affected negatively compared

to the matching accuracy as seen in Figure 5.34.b. Some True-positives that the

Super-feature algorithm was unsure of was discard to keep the matching accuracy

high at the expense of classification accuracy
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(a) Number of Features

(b) Matching Accuracy

Figure 5.33: The number of features and matching accuracy results obtained by
the MSER based Super-features algorithm for Affine transformations
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(a) Percentage of True-positives used

(b) Classification Accuracy

Figure 5.34: The percentage of True-positives used and classification accuracy
results obtained by the MSER based Super-features algorithm for Affine trans-
formations
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5.4 Complex global and local motion transfor-

mations

Figure 5.35: Example frames with ground truth motion from the MPI-Sintel
dataset [94]

The MPI-Sintel optical flow dataset was used to test the ability of the tradi-

tional feature detectors and the Super-feature based detectors to handle complex

motion transformations. This dataset is traditionally used to test different opti-

cal flow estimation algorithms, but provide sufficiently complex image data and

ground truth motion data to allow the testing of feature detectors, example frames

can be seen in Figure 5.35. Different feature detectors can be based on different

feature detection theories and thus do not necessarily detect the same type of

features, different types of features such as blobs, corners or interest points can

be detected. This makes testing of these different feature detectors difficult using

the same testing framework. An optical flow dataset provides ground truth infor-

mation on how every local region moves between the different frames in a video

sequence. Motion vectors for each pixel is provided allowing different feature de-

tectors based on different feature types and techniques to be evaluated using the

same framework.
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The MPI-Sintel dataset is a synthetic dataset built from sequences from an

animated feature film. Even though the images are synthetic, they exhibit the

characteristics and complexity of natural scenes [101]. A rich set of features can

be detected in the frames of the MPI-Sintel video sequences which are sufficiently

difficult to match. Some of the characteristics, complexities and effects that might

be present in the frames of the MPI-Sintel dataset are:

• Dynamic and morph-able objects

• Complex texturing

• Large and fast motion of objects

• Occlusions

• Specular reflections

• Dynamic shadows and illumination changes

• Motion blurring and defocus blur

• Atmospheric effects (blooming, smoke and fog)

The three feature detectors, SIFT, SURF and MSER including their Super-

features counterparts was tested using this testing framework. Only feature de-

scription information will be used for feature matching, no tracking information

was used to improve the matching results. The video sequences of the MPI-Sintel

dataset was grouped into 4 categories, determined by the complexity of the fea-

ture matching problem for that specific video sequence. The results obtained,

including an analysis of the results will be provided for some of the sequences

tested in each category.

5.4.1 Dominant scene motion with possible occlusions

5.4.1.1 Mountain1 test sequence

The first set of test sequences does not contain any moving objects except domi-

nant scene motion, some occlusion can occur between motion boundaries. These
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Figure 5.36: Example frames from the mountain1 video sequence

tested sequences will be the simplest of the tested MPI-Sintel sequences, the

transformation model is constant over the entire image and can be determined by

algorithms such as RANSAC. The Mountain1 sequence contains a large amount

of forward motion, but the features are not very discriminant since no complex

structures containing colour are present. Example frames extracted from the

Mountain1 sequence can be seen in Figure 5.36, some motion blurring can be

observed on nearby image regions.

Only a few features were detected by the tested feature detectors as seen in

Figure 5.38.a, SIFT detected on average 1200 features, SURF detected 400 and

MSER only detected 180. The feature sets were sparse and there were large

empty regions located between feature dense regions.

The matching accuracy was relatively constant between the different feature

detection algorithms, except MSER had a slight reduction in accuracy at some

points in the video sequence. This can be attributed to the small number of

features detected by MSER, this will result in less support by neighbouring fea-

tures used by the Super-feature algorithm. Feature support will also have to be

enforced over longer distances which can be more difficult to do reliably. Match-

ing results close to a 100% were obtained by the Super-feature algorithm for all

tested feature detectors over the entire video sequence. Super-features provided

a matching accuracy improvement of about 15% for SIFT and SURF and it pro-
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(a) Original SIFT matching results

(b) SIFT based Super-feature matching results

Figure 5.37: A comparison of the feature matching results obtained by the SIFT
and Super-feature algorithm for frame 1 to 2 of the Mountain1 test sequence
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(a) Number of Features

(b) Matching Accuracy

Figure 5.38: The number of features and matching accuracy results for the Moun-
tain1 test sequence
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(a) Percentage of True-positives used

(b) Classification Accuracy

Figure 5.39: The percentage of True-positives used and classification accuracy
results for the Mountain1 test sequence
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vided a matching accuracy improvement of 25% for MSER, as can be seen in

Figure 5.38.b.

SIFT and SURF was able to maintain a classification accuracy of 95% and

higher, while MSER suffered due to its limited feature count as seen Figure

5.39.b. It was only able to maintain a classification accuracy of roughly 85% with

some dips for some frames in the tested sequence. This was still an improvement

over the original results obtained using SIFT, SURF and MSER. The Super-

feature algorithm prefer denser sets of features, this can clearly be seen between

the results obtained for SIFT and SURF compared to MSER. A comparison of

the feature matching quality, between the original SIFT algorithm and the Super-

feature based SIFT algorithm can be seen in Figure 5.37. Super-features based on

SIFT and SURF provided consistently good results over the entire test sequence

while MSER was less reliable. A large number of True-positive features were lost

by the MSER based Super-features algorithm as is seen Figure 5.39.a.

5.4.1.2 Sleeping1 test sequence

Example frames extracted from the Sleeping1 dataset can be seen in Figure 5.40.

The Sleeping1 test sequence contains a dense set of distinct features, transformed

primarily by camera motion of a static scene. There are only small object motions

Figure 5.40: Example frames from the sleeping1 video sequence
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present in this sequence, the dragon head, wing and arm moves slightly.

As the video sequence progresses the number of features becomes less as the

camera zooms into the scene as can be seen in Figure 5.41.a. SIFT detected

3-6 times more features than SURF and MSER, the low number of features

can negatively impact the performance of the Super-features algorithm based on

SURF and MSER features.

The matching accuracy results presented in Figure 5.41.b. show that all three

tested feature detectors were able to achieve a matching accuracy close to 100%,

the MSER based Super-features algorithm was the only feature detector that

dropped below 98% accuracy on some sequence frames. This was due to the sparse

nature of the feature set detected by MSER. A matching accuracy improvement

of 15%-20% was observed by adding the Super-features algorithm compared to

the original matching scores. The Super-feature Inclusion algorithm based on

SIFT and SURF provided some benefit in recovering mismatched features, more

than 100% True-positives were detected. MSER on the other hand detected less

than a 100% as seen in Figure 5.42.a.

It can be observed in Figure 5.42.b that the more dense the feature set de-

tected, the more likely it will be that the Super-feature algorithm’s classification

accuracy will be higher. SIFT performed the best performance since it had the

most dense feature set while SURF was second and MSER had the worst results.

5.4.1.3 Sleeping2 test sequence

The Sleeping2 video sequence contained only scene motion, but large parts are

occluded in this sequence as the foreground scene occludes the background, ex-

ample frames are provided in Figure 5.43. This scene contained a large number

of distinct features which were easily matched, the traditional Feature detec-

tion algorithms maintained a matching accuracy above 80% as is seen in Figure

5.44.b. The Super-features algorithm was able to provide some improvement on

the matching and classification accuracy while improving the number of True-

positives used as seen in Figure 5.45. The SIFT based Super-feature algorithm

was able to detect 18% more feature while maintaining a classification accuracy

close to 100%.
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(a) Number of Features

(b) Matching Accuracy

Figure 5.41: The number of features and matching accuracy results for the Sleep-
ing1 test sequence
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(a) Percentage of True-positives used

(b) Classification Accuracy

Figure 5.42: The percentage of True-positives used and classification accuracy
results for the Sleeping1 test sequence
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Figure 5.43: Example frames from the sleeping2 video sequence

As seen from the results obtained by testing the Super-feature algorithm on

the Mountain1, Sleeping1 and Sleeping2 test video sequences. The Super-features

algorithm had no difficulty handling features detected in images with dominant

scene motion and occlusions. It provided superior results for all three of the

tested feature detectors, improving the matching accuracy when small motion

was introduced into the video sequences.

5.4.2 Motion present on foreground as well as background

The next level of video sequences that will be used for testing, contain two or more

dominant motions. Usually the scene is transformed while some moving objects

are present as well. This is a difficult matching problem, as many features located

on the borders between motion boundaries can become occluded. The description

of these border features can also change as part of the feature’s description region

lies in an image region that will change due to a different motion being applied to

it. The Super-feature algorithm can also potentially have some difficult matching

and classifying features when more than one dominant motion is present, since

only features detected in a single image are observed at a time by the feature

detectors and no prior motion information is encoded. Neighbouring features

surrounding a feature can exist on objects that are experiencing different motions
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(a) Number of Features

(b) Matching Accuracy

Figure 5.44: The number of features and matching accuracy results for the Sleep-
ing2 test sequence
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(a) Percentage of True-positives used

(b) Classification Accuracy

Figure 5.45: The percentage of True-positives used and classification accuracy
results for the Sleeping2 test sequence
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and transformations. This will result in a multi-modal solution provided by the

estimator.

5.4.2.1 Alley1 test sequence

Figure 5.46: Example frames from the Alley1 video sequence

Example frames of the Alley1 video sequence are provided in Figure 5.46.

This test sequence contains dominant horizontal motion on the background with

some duplicate features caused by the man made structures. It has some dynamic

foreground motion, as different parts of the foreground will experience different

motions at the same time. Some blurring can also be observed as the motion

speed is increased.

The number of features detected in this sequence varies over the frames of

the sequence as different parts of the scene are occluded and move outside the

image boundaries as can be seen in Figure 5.48.a. There are two dips in the frame

count that can be observed in the region of frame 7 and 23. Some features will

also be lost due to the blurring introduced by fast moving objects. An average

matching accuracy of only 75% was achieved by the original SIFT, SURF and

MSER feature detectors as can be seen in Figure 5.48.b. SURF achieved a 5%

increase in matching accuracy compared to SIFT and MSER in the last half of

the test sequence, but it was only able to detect a third of the features detected by
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(a) Original SIFT matching results

(b) SIFT based Super-feature matching results

Figure 5.47: A comparison of the feature matching results obtained by the SIFT
and Super-feature algorithm for frame 12 to 13 of the Alley1 test sequence
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(a) Number of Features

(b) Matching Accuracy

Figure 5.48: The number of features and matching accuracy results for the Alley1
test sequence

123



(a) Percentage of True-positives used

(b) Classification Accuracy

Figure 5.49: The percentage of True-positives used and classification accuracy
results for the Alley1 test sequence
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SIFT. The detectors based on the Super-feature algorithm was able to improve the

matching accuracy above 90% for all three tested feature detectors. A matching

accuracy above 95% was obtained for SIFT and SURF for the majority of the

frames in the sequence.

The number of True-positives used are presented in Figure 5.49.a, the Super-

feature Inclusion algorithm based on SIFT and SURF was able to utilized the

most number of True-positives. Integrating the Super-feature algorithm produced

an improvement to the matching accuracy, a comparison between the original and

Super-features method using SIFT features can be seen Figure 5.47. The MSER

based Super-feature algorithm with Inclusion was not able to maintain a True-

positive usage of more than 100%, it fluctuated between 80% when the least

number of features were present to 108% when the most number of features were

detected. Very sparse feature sets can drastically reduce the effectiveness of the

Super-feature algorithm.

The classification accuracy results that can be seen in Figure 5.49.b show that

the Super-feature algorithm provided an improvement over the traditional feature

detection methods. The feature detectors that were able to provide a dense set

of features were better able to utilize the Super-feature algorithm, these feature

detectors such as SIFT and SURF maintained a classification accuracy of above

90% while MSER dropped and fluctuated between 82% and 98%.

5.4.2.2 Bamboo1 test sequence

Example frames from the Bamboo1 test video sequence can be seen in Figure 5.50.

This test sequence contains a number of duplicate features due to the similarities

present on the background. There are also a large number of thin moving objects

which can cause occlusions, the features located on these moving objects can also

suffer from changes to their description since regions used for description can

be found on other moving objects. This can pose some problem for the feature

detectors which will make accurate matching difficult. Some moving shadows are

also present, which can cause darkening of features, which will test the lighting

normalization ability of the different feature detectors.

There was a big difference between the number of features detected by the dif-
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Figure 5.50: Example frames from the bamboo1 video sequence

ferent feature detection methods as can be seen in Figure 5.50. SURF and MSER

only detected, on average 1400 features where SIFT detected 5500 features. The

three original feature detection methods performed similarly over the sequence

of video frames, there was only between 5% to 10% matching accuracy differ-

ence as can be seen in Figure 5.51.b. SIFT, SURF and MSER had an average

matching accuracy of 75%. Incorporating the Super-feature algorithm into these

feature detectors allowed for an improvement of 25% of the matching accuracy.

Even though different amounts of features were detected between the three fea-

ture detection methods, above 98% matching accuracy was obtained consistently

for the entire test sequence. The Super-feature algorithm relied less on a single

feature’s description information which might have been corrupted, but rather

focused on a group of feature descriptions which enable more reliable matching

which can be seen from these results. This produced a dramatic improvement

over the traditional methods.

The classification accuracy for the different Super-feature algorithms provided

in Figure 5.52.b was also maintained at a high level of accuracy. Better than 93%

classification accuracy was produced by the MSER based Super-feature algo-

rithm. The SIFT and SURF based Super-feature algorithm for inclusion as-well

as exclusion of poor features, both produced classification accuracy results in

access of 98%.
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(a) Number of Features

(b) Matching Accuracy

Figure 5.51: The number of features and matching accuracy results for the Bam-
boo1 test sequence
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(a) Percentage of True-positives used

(b) Classification Accuracy

Figure 5.52: The percentage of True-positives used and classification accuracy
results for the Bamboo1 test sequence
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SIFT based Super-features with Exclusion of invalid features detected 99%

of the original True-positives as can be seen in Figure 5.52.a, by correcting and

including the corrected features, the True-positive usage was boosted to between

117% to 124%. The SURF based Super-feature algorithm was able to use 97% of

the original True-positives which could be boosted to 107% True-positive usage

if corrected features were included. MSER on the other hand struggled and was

only able to achieve more than 100% True-positive usage for some of the tested

sequence frames.

5.4.2.3 Bamboo2 test sequence

The Bamboo2 test sequence once again has many duplicate features due to the

abundance of bamboo in the video frames. A large number of new features are

introduced since new regions have become visible due to camera motion. Some

feature will also be lost as regions move outside the camera frame. The features

located on the foreground moving object will be difficult to match because of the

large amounts of motion blur and the dynamic nature of the motion. Example

frames of this sequence can be observed in Figure 5.53, note the large number of

similar regions that can produce duplicate features.

As the video sequence progresses the number of features detected decrease

Figure 5.53: Example frames from the bamboo2 video sequence

129



(a) Number of Features

(b) Matching Accuracy

Figure 5.54: The number of features and matching accuracy results for the Bam-
boo2 test sequence
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(a) Percentage of True-positives used

(b) Classification Accuracy

Figure 5.55: The percentage of True-positives used and classification accuracy
results for the Bamboo2 test sequence
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because the foreground object affected by motion blur occupies more image space.

This decrease in the number features also affected the matching accuracy as

can be seen in Figure 5.54.b. As the number of features decrease the matching

accuracy of the original feature detectors dropped from 80% down to 60%. The

Super-feature based feature detectors did not suffer from this problem and a

matching accuracy of above 97% was maintained for the entire test sequence.

Features classified as incorrect was removed from the matching process, while

some incorrect features that could be corrected was added back into the match list.

This reduced the number of features, but improves the matching and classification

accuracy.

The True-positive usage percentage of the different tested algorithms are pro-

vided in Figure 5.55.a. The Super-feature algorithm with Inclusion based on

SIFT, SURF and MSER, all improved the number of True-positives used. An

increase of between 4% to 33% True-positive usage was observed, with an average

increase of 8% for MSER, 10% for SURF and 25% for SIFT.

Similar to the matching accuracy, the classification accuracy remained stable

for the entire range of tested video sequence frames. Even though the classifica-

tion accuracy of the original feature detectors drops down to as low as 60%, the

Super-feature algorithm for both Inclusion as well as Exclusion achieved above

95% accuracy for all the tested feature detector. A slight accuracy increase was

visible for SIFT compared to SURF and MSER which was able to maintain a clas-

sification accuracy of above 99%. The Super-feature algorithm provided reliable

results for scenes with different foreground as well as background motion.

5.4.3 Dynamic, non-rigid and morph-able objects and en-

vironments

Since a global model of the transformations applied to image features are not

required by the Super-feature algorithm, it has the ability to work on scenes that

contain different local motion such as morph-able and dynamic objects. A number

of tests that contain non-rigid moving objects will be performed to determine the

Super-feature algorithm’s ability to handle these situations.
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5.4.3.1 Bandage1 test sequence

Figure 5.56: Example frames from the bandage1 video sequence

The bandage1 sequence will be the first sequence that will be tested, sample

frames from the sequence can be seen in Figure 5.56. This test sequence con-

sists primarily of dynamic moving objects, where every local region is exhibiting

motion different from the neighbouring local regions. What makes this matching

problem difficult is that the image regions described by a features description can

become distorted and stretched due to the different local motions and transfor-

mations. A number of image regions can also become occluded, or may exhibit

some motion blurring.

The number of features located in the test sequence frames increase toward

the end of the sequence, this is visible in Figure 5.58.a. This can be attributed to

the fast motion and blurring visible in the first half of the sequence, the motion

of the dynamic objects becomes more stationary toward the end of the sequence

and motion speed is reduced. The detection of low numbers of features can

negatively affect the matching and classification accuracy of both the original

feature detectors as well as the improved Super-feature algorithms.

The matching accuracy of the original feature detector is low for the initial

frames, which contain fast motion, stretching of local regions and motion blurring.

The different feature detectors had some difficult detecting features, only sparse
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(a) Original SIFT matching results

(b) SIFT based Super-feature matching results

Figure 5.57: A comparison of the feature matching results obtained by the SIFT
and Super-feature algorithm for frame 13 to 14 of the Bandage1 test sequence
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(a) Number of Features

(b) Matching Accuracy

Figure 5.58: The number of features and matching accuracy results for the Ban-
dage1 test sequence
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(a) Percentage of True-positives used

(b) Classification Accuracy

Figure 5.59: The percentage of True-positives used and classification accuracy
results for the Bandage1 test sequence
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sets of feature were detected by them. A demonstration of the feature matching

difficulty experienced by the tradition feature detector and the Super-feature

counter part of SIFT can be seen in Figure 5.57. The matching accuracy results

are provided in Figure 5.58.b. The original SIFT, SURF and MSER matching

accuracies dropped to close to 50% which is substantially less than any of the

minimum matching accuracies obtained in the simpler complex transformation

tests. By incorporating the Super-feature algorithm for SIFT, SURF and MSER

features, the matching accuracy could be improved to higher that 88% for the

difficult parts of the test sequence and above 95% for the simpler parts. Matching

accuracy increases of up to 45% were observed in this test video sequence.

Only Super-feature Inclusion based on SIFT was able to make use of more than

a 100% True-positives, it was able to reach True-positive usage of close to 120%.

SURF and MSER struggled, their True-positive usage dropped substantially for

the difficult first half of the sequence and increased in the second half to above

90%. The same decrease in accuracy for the first half of the sequence was also

observed for the classification accuracy results provided in Figure 5.59.b. Super-

features based on SIFT achieved the best results, it only dipped below 90%

classification accuracy in the most extreme cases and provided results in the

range of 90% to 100% for the majority of the tested frames in this sequence. The

second best feature detector was Super-features based on SURF, which provided

a classification accuracy of above 80% even on the difficult frames in the sequence.

5.4.3.2 Bandage2 test sequence

The Bandage2 test sequence is very similar to the Bandage1 sequence, a number of

local transformations can be observed which can make feature matching difficult.

Example frames from the Bandage2 sequence can be seen in Figure 5.60, note the

occlusions caused by the motion of the dragon head as well as the hand which is

affected by depth-of-field blurring.

MSER and SURF detected a similar number of features, they detected on

average 400 features per frame as can be seen in Figure 5.61.a. SIFT on the other

hand detected three times more features and was able to detect 1200 features

per frame. There were some fluctuations in the number of features detected as
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Figure 5.60: Example frames from the bandage2 video sequence

features became occluded and small features were lost due to blurring.

The original matching accuracy of SIFT, SURF and MSER was in the range

of 60% to 83% and averaged at 72%. The matching accuracy results are provided

in Figure 5.61.b. MSER performed slightly better than SIFT and SURF but

at a reduced number of features. The Super-feature algorithm applied to the

different feature detectors was able to improve the matching accuracy. Results

above 90% was obtained for all the tested detectors with MSER in the lead,

maintaining a matching accuracy above 95% for all tested frames. Super-features

based on SURF were the worst performing of the Super-feature algorithms when

the matching accuracy is considered.

The SIFT based Super-feature with Inclusion algorithm was the only Super-

feature algorithm that was able to maintain a True-positive usage of more than

a 100% at an average of 121%. The Super-feature algorithm with Inclusion of

corrected features performed poorly on this test sequence as can be seen in Figure

5.62.a. It was able to correct some features which improved the feature usage of

the Super-feature Exclusion algorithms.

Since fewer True-positives were used because they were misclassified, the clas-

sification accuracy was affected as seen in Figure 5.62.b. The classification ac-

curacy of the Super-feature based algorithms remained high compared to the

traditional feature detection methods. An average increase of 25% classification
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(a) Number of Features

(b) Matching Accuracy

Figure 5.61: The number of features and matching accuracy results for the Ban-
dage2 test sequence
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(a) Percentage of True-positives used

(b) Classification Accuracy

Figure 5.62: The percentage of True-positives used and classification accuracy
results for the Bandage2 test sequence
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accuracy was obtained by applying Super-features to this problem, which is still

a big improvement over the original results.

5.4.3.3 Market2 test sequence

The Market2 test sequence contains a number of dynamic objects that at times

produce local occlusions as they pass behind and in front of each other. Motion

and out of focus blur can also be observed as seen in the example frames provided

in Figure 5.63.

The number of features detected by the three different methods increased

during the progression of the test video sequence as seen in Figure 5.64.a. MSER

detected slightly more features compared to SURF in the first half of the sequence,

after which SURF detected more features than MSER. Improved results can

be expected for the test frames that contain more feature whereas a decreased

matching and classification accuracy can be expected when the feature count is

low.

All three feature detectors based on the Super-features algorithm with Exclu-

sion as well as Inclusion shows a substantial improvement over their traditional

counterparts. Only a small difference in matching accuracy was observed between

SIFT, SURF and MSER after Super-features were applied as can be seen in Fig-

Figure 5.63: Example frames from the market2 video sequence
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(a) Number of Features

(b) Matching Accuracy

Figure 5.64: The number of features and matching accuracy results for the Mar-
ket2 test sequence
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(a) Percentage of True-positives used

(b) Classification Accuracy

Figure 5.65: The percentage of True-positives used and classification accuracy
results for the Market2 test sequence
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ure 5.64.b. MSER obtained the highest matching accuracy of 99.38%, SURF

produced the second highest score of 99.23% and SIFT was last with 99.19%.

Even though SIFT produced the lowest matching accuracy, it was able to achieve

this with an average increase of 15% True-positive usage as well as the detection

of three times more features than SURF and MSER. The True-positive usage

results are provided in Figure 5.65.a. It can be seen that SURF was only able

to produce a 6% increase and MSER a 1% over their original feature detection

counterparts.

A slight reduction of 4% in the classification accuracy can be observed in

Figure 5.65.b for the Super-feature based algorithms in the first half of the test

sequence. The traditional feature detectors had a more extreme decrease in clas-

sification accuracy of between 10% to 15%. This increase in match outliers was

responsible for the slight drop in matching accuracy, observed for the Super-

feature algorithms. The Super-feature algorithm provided a consistent average

classification accuracy of 97% for the three different feature detector as well as

never dropping below 91%.

These results show that Super-features work well for matching problems with

morph-able, non-rigid objects with occlusion and blurring. Even if a number of

dynamic moving objects are present, the Super-features algorithm can reliably

increase the matching and classification accuracy.

5.4.4 Fast object and camera motion with motion blurring

The last set of tests will be performed to test the Super-feature algorithm’s ability

to handle feature matching in extreme cases. These test sequences contain fast

motion of foreground objects as well as background objects, the majority of the

foreground objects are dynamic, non-rigid and morph-able. Motion blurring and

occlusions make feature matching difficult in these sequences.

5.4.4.1 Market5 test sequence

Example frames for the Market5 video sequence can be seen in Figure 5.66. Fea-

ture matching in this sequence is difficult due to the directional blurring effect

produced by the fast motion and motion blurring that make feature description
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Figure 5.66: Example frames from the market5 video sequence

difficult. Weak feature descriptions can negatively impact the matching perfor-

mance, which will increase the number of outliers present during the estimation

process of the Super-feature algorithm.

Only a sparse set of features were detected in the Market5 test sequence by

the three feature detectors as seen in Figure 5.68.a. The original SIFT feature

detector only detected 386 features on average, SURF detected 156 and MSER

detected the least number of features with 147 features for the video sequence.

The number of features detected, changed dramatically between the different

frames of the sequence. This can be attributed to the extreme amounts of motion

blur introduced by the fast motion, usually blurring as a side effect discards

smaller high-frequency features.

The matching accuracy results are provided in Figure 5.68.b and a visual

demonstration of the the difference between SIFT and the Super-feature coun-

terpart can be seen in Figure 5.67. The traditional feature detectors performed

poorly on this sequence, matching accuracies as low as 20% was recorded with an

average of 40% was common for the first half of the sequence. A slow increase in

matching accuracy towards the end of the test sequence can be observed as the

camera motion starts to stabilise and less motion is apparent on the background.

The SIFT and SURF based Super-feature algorithms improved the matching ac-

curacy to above 90%. The MSER based Super-feature algorithm’s results on
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(a) Original SIFT matching results

(b) SIFT based Super-feature matching results

Figure 5.67: A comparison of the feature matching results obtained by the SIFT
and Super-feature algorithm for frame 7 to 8 of the Market5 test sequence
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(a) Number of Features

(b) Matching Accuracy

Figure 5.68: The number of features and matching accuracy results for the Mar-
ket5 test sequence
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(a) Percentage of True-positives used

(b) Classification Accuracy

Figure 5.69: The percentage of True-positives used and classification accuracy
results for the Market5 test sequence
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the other hand fluctuated a lot, performing poorly on some tested frames. It

did though, always provide an improvement over the original MSER method, in-

creasing the matching accuracy between 22% and 50% for the entire tested video

sequence.

The True-positive usage results can be seen in Figure 5.69.a, only Super-

features Inclusion based on SIFT features was able to provide a slight improve-

ment of more than 100% True-positive usage for some of the tested frames. A

large number of features were discarded to increase the matching and classifica-

tion accuracy, some features were misclassified due to the large number of match

outliers.

Even though the feature matching accuracy of the original feature detectors

were low, the classification accuracy of the Super-feature algorithm remained high

as seen in Figure 5.69.b. An average of 88% was achieved by the three feature

detectors, with SIFT performing the most reliable with a minimum obtained

classification accuracy of 88%. This resulted in an improvement of between 15%

to 55% when Super-features was applied to the feature matches of these feature

detection methods.

5.4.4.2 Market6 test sequence

Figure 5.70: Example frames from the market6 video sequence

149



The Market6 test sequence contains fast forward motion, where objects that

are far away contain less motion blurring, while object that are close contain large

amounts of blurring. There is also a number of dynamic, non-rigid, rapid moving

objects present, these objects can create occlusions of features. They also move

into and out of shadows which could complicate the matching of the features

located on these objects.

A dense set of features are located in this sequence, which should provide

better support for the Super-features algorithm. The number of features detected

by the different methods can be seen in Figure 5.71.a. There is some feature

count variation between the different frames of the sequence for the different

feature detection methods. MSER detected the least amount of features with

550 features on average, SURF detected slightly more with 736 features and

SIFT provided the densest feature set with 1691 features on average.

All three feature detection methods achieved a matching accuracy above 90%,

after the Super-features algorithm was integrated, these results can be seen in

Figure 5.71.b. The original feature detectors performed poorly and only had

an average matching accuracy slightly above 50%. Due to the dense set of fea-

tures provided by the original SIFT feature detector, it provided the most stable

and consistent results between the tested feature detectors. MSER detected the

least number of features, this resulted in a slight decrease in matching accuracy

compared to SIFT and SURF. A large matching accuracy improvement can be

observed when Super-features are used to improve the accuracy of SIFT, SURF

and MSER for this extreme test sequence.

It can be seen from the True-positive usage results provided in Figure 5.72.a,

that the density of the features used by the Super-feature algorithm affects the

number of features that can be corrected and included in the matching process.

SIFT which was the densest feature detector, combine with Super-features re-

sulted in the maximum True-positive usage, ranging from 106% to 129%.

The classification accuracy results of the original feature detectors were be-

tween 23% and 48%, which was lower than their Super-feature counterparts. The

classification results can be seen in Figure 5.72.b. The Super-feature based detec-

tors provided consistent results between 85% and 98% even when the matching

and classification accuracy of the original methods decreased. The SIFT based
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(a) Number of Features

(b) Matching Accuracy

Figure 5.71: The number of features and matching accuracy results for the Mar-
ket6 test sequence
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(a) Percentage of True-positives used

(b) Classification Accuracy

Figure 5.72: The percentage of True-positives used and classification accuracy
results for the Market6 test sequence
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Super-feature algorithm provided the best classification results over the entire

Market6 test sequence.
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Chapter 6

Conclusion

The use of geometric consistency observed between different neighbouring fea-

tures to improve feature matching, was investigated. It was believed that the

geometric relationship between a selected primary feature and its neighbouring

features in one coordinate frame can provide insight into the location of that

feature in another, transformed coordinate frame. The estimated position deter-

mined by the geometric relationships allows the feature matching search space

to be reduced, which will minimize the matching of invalid features produced by

occlusions, duplicate features and poor feature detection repeatability. Further,

the geometric relationships can also be used to correct previously mismatched

features.

The Super-feature matching and correction framework was proposed, provid-

ing a robust probabilistic method for integrating feature appearance similarity

and geometric consistency into the feature matching process in a translation, ro-

tation, scale and affine invariant manner. Super-feature clusters were constructed

for each feature using the geometric relationships provided by the neighbouring

features of a selected primary feature. Each pair of neighbouring feature matches

in a Super-feature and their corresponding transformed geometric relationships,

provided a single solution to the primary feature’s position in a new coordinate

frame. These position estimates can be combined with kernel density estimation

using Gaussian kernels to construct a probability density distribution. The modes

with the highest probability responses in the probability density distribution are

located using a Gaussian weighted Mean-shift algorithm. These detected position
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estimates are selected as possible solutions to the primary feature’s position in the

new coordinate frame. A comparison between the dominant estimated positions

and the matched position of the primary feature, allowed feature mismatches to

be identified. Mismatched features can be corrected by finding the best feature

match near the estimated position or creating a new feature to match to when a

valid feature match is not available in the search region. Super-features can be

used to improve feature matching even when a large number of features that form

part of the Super-feature cluster have been matched incorrectly or are missing.

6.1 Overview of results

The ability of matching features using Super-features in the presence of rotation,

scale and affine transformations was demonstrated for features detected using

SIFT, SURF and MSER. The integration of the Super-feature algorithm pro-

duced a substantial improvement over the original feature detector counterparts,

improving the matching results for increased and decreased scale and rotation

changes. It also allowed features to be matched that were transformed by ex-

treme affine transformations of up to 60 degrees. It was observed that the Super-

feature algorithm preferred dense sets of features compared to sparse feature sets.

A decrease in accuracy was observed when sparse sets of features were matched.

Super-features from sparse feature sets still provided an accuracy improvement

compared to the traditional feature detectors, but matching results were not as

stable as when denser feature sets were used for testing.

A number of tests were performed to demonstrate the ability of Super-features

to match features experiencing complex global as well as local transformations.

Some of these feature sets contain multiple dynamic, non-rigid and morph-able

objects where the motion model was unknown. Matching accuracies of close to

100% were achieved on the simpler matching problems such as scenes that con-

tained dominant scene motion or motion on the foreground as well as the back-

ground. For feature sets with dynamic, non-rigid and morph-able objects and

environments, a substantial increase of between 20% and 50% was observed for

the Super-feature algorithms based on SIFT, SURF and MSER features. Fast ob-
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ject and camera motion with motion blurring was the most difficult of the tested

sequences. The blurring produced by the motion resulted in only sparse feature

sets being detected. These features were also poorly described since the motion

blurring affected the image regions used for describing the features. The blurring

direction could also change between the different frames of the sequence, changing

the feature description, which resulted in poor feature matches. Some improve-

ment was observed compared to the original feature detection methods, but a

large number of detected features were lost and could not be matched correctly.

Overall, the results demonstrated that matching of features using Super-features

produced an improvement to the matching accuracy and feature usage compared

to the traditional algorithms over the entire range of test sequences, which ranged

from simple to complex scenes.

6.2 Contributions

The contributions made in this work can be summarized as follows:

6.2.1 An efficient method of determining the geometric

relationships between different features

An efficient method of constructing the geometric relationships observed between

neighbouring features, was proposed using only feature position and rotation in-

formation. This method of calculating the geometric relationships was shown

to be invariant to translation, rotation and scale changes and provided a large

degree of affine invariance when multiple geometric relationships from neighbour-

ing features were combined. Due to the limited feature information required to

construct the geometric relationships, this method can be applied in conjunction

with many state-of-the-art feature detectors that provide as a minimum, feature

position and rotation information.
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6.2.2 A reliable method of classifying valid and invalid

feature matches without prior knowledge of the mo-

tion model

A method of determining and integrating the geometric relationships observed

between neighbouring feature matches clustered into a Super-feature to enable

the estimation of a selected feature’s position in another transformed coordinate

frame, was presented. This technique enabled feature matches to be corrected and

classified as valid or invalid matches without prior knowledge of the motion models

present in the feature sets, which allowed features to be matched using visual

similarity as well as geometric consistency, enabling stronger and more reliable

feature matches to be established. Since no prior motion model is required, this

technique can be used to improve feature matching when global and local motion

is present between multiple moving objects, as well as where some objects are

dynamic, non-rigid and morph-able between the different feature sets.

6.2.3 A technique of improving invalid feature matches by

estimating the true matching position

An efficient and robust technique of combining the weak position estimates pro-

duced by the observed geometric relationships in a Super-feature cluster, was

provided. A probability density function of each feature’s matching position was

constructed allowing the locations with the highest probabilities to be used to

improve invalid feature matches. Its successful application to SIFT, SURF and

MSER features was demonstrated, allowing their matching accuracy to be im-

proved in the presence of weak descriptions, poor feature detection repeatability,

occlusions, duplicate features, illumination changes, shadows, image noise, at-

mospheric effects and distortions produced by extreme scale, rotation and affine

transformations.
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6.2.4 Accelerating the process of finding the extrema in

a probability density distribution

Originally, a probability density function needed to be constructed for each fea-

ture that needed to be matched in a feature set, using the kernel density estima-

tion technique. This was a computationally complex problem, as the probability

distribution had to be sampled and discretized to a 2-dimensional grid that had

to be fine-grained enough to allow the required position estimation accuracy to

be achieved. A new probabilistic position estimation framework was introduced

that made use of a Gaussian weighted Mean-shift algorithm to find the largest ex-

trema of the underlying probability density function, without physically sampling

the probability distribution. This enabled the geometric relationships observed

in each Super-feature to be combined in an efficient and effective manner.

6.2.5 Using optical flow datasets for the evaluation and

testing of feature detectors

Super-features can be used in conjunction with many different feature detectors,

each based on different techniques of detecting interest points or features. This

made it difficult to establish a ground truth feature dataset that could be used

for testing the different feature detectors, since a common set of features between

the different feature detectors was highly unlikely. An experimental setup was

required to allow different feature detectors based on different feature detection

methodologies to be compared and tested using the same framework. For this rea-

son the use of optical flow datasets were proposed, since they provide the ground

truth motion of each individual pixel between the frames in a video sequence. It

allowed a common testing framework to be established.
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6.3 Future work

Since each feature cluster is constructed and matched independently, the Super-

feature algorithm can be accelerated using parallel processing architectures such

as Graphics processing units (GPU) and multi-core processors. A parallel pro-

cessor implementation of the Super-feature algorithm will enable reliable feature

matching for real-time image processing applications such as required by visual

aided navigation and control, object recognition for robotic platforms and 3-

dimensional reconstruction.

The Super-feature algorithm provides a method of providing multi-mode po-

sition estimates. Multiple possible solutions can occur when a feature is located

close to overlapping objects, each with their own motion. The neighbouring fea-

tures located on each of these objects provide a different solution to the selected

feature’s position. When only a single estimate is available, the algorithm is able

to select it as the best possible solution to the position estimation problem. On

the other hand, when multiple position estimates are available, the Super-feature

algorithm can then use the different solutions to classify a feature as either a valid

or invalid match, but cannot correct the feature match, since determining which

of the possible solutions is correct, is a difficult problem. A future investigation

for correcting features with multi-mode solutions are required.

The current generation of feature detectors were developed without the avail-

ability of Super-features. These feature detectors use large feature descriptors

and provide sparse feature sets in an attempt to improve feature matching re-

liability. A new computationally efficient feature detector can be designed and

developed to work with and take advantage of the Super-feature algorithm’s fea-

ture correction ability. The new feature detector can make use of less complex

feature descriptors and should provide a dens set of features. Alternative methods

of determining sub-pixel localization and feature orientation can be derived from

the Super-feature cluster rather than the local image region surrounding a fea-

ture. This could improve the computational complexity and increase reliability,

as information from a larger region is used to determine the feature’s attributes.

Another possible future improvement is that the current Super-feature algo-

rithm can only classify and correct the position of invalidly matched features.
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Sometimes a valid feature could have been detected at the correct location but

its attributes such as scale and rotation, which would influence the feature’s de-

scription, could have been incorrectly calculated. More intelligent systems can

be developed for the Super-feature cluster to enable it to correct the rotation and

scale of features when a problem was encountered and a possible feature match

was found at the correct location but a valid match could not be established.
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Appendix

.1 Parameter selection results and videos

SIFT
Original feature matches Video
Super-feature exclusion matches Video
Super-feature exclusion and inclusion matches Video
Matlab figures and MAT-file of results Folder

Table 1: Selection of the Gaussian sigma parameter

SIFT
Original feature matches Video
Super-feature exclusion matches Video
Super-feature exclusion and inclusion matches Video
Matlab figures and MAT-file of results Folder

Table 2: Selection of the number of neighbours parameter

SIFT
Original feature matches Video
Super-feature exclusion matches Video
Super-feature exclusion and inclusion matches Video
Matlab figures and MAT-file of results Folder

Table 3: Selection of the number of iterations parameter
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SIFT
Original feature matches Video
Super-feature exclusion matches Video
Super-feature exclusion and inclusion matches Video
Matlab figures and MAT-file of results Folder

Table 4: Selection of the weight threshold parameter

.2 Global image motion transformation results

.2.1 Rotation transformation invariance results and videos

Aircraft Bridge Nature
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 5: Rotation transformation invariance tests for MSER based Super-features

Aircraft Bridge Nature
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 6: Rotation transformation invariance tests for SIFT based Super-features

Aircraft Bridge Nature
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 7: Rotation transformation invariance tests for SURF based Super-features

162



.2.2 Scale transformation invariance results and videos

Aircraft Bridge Nature
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 8: Scale transformation invariance tests for MSER based Super-features

Aircraft Bridge Nature
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 9: Scale transformation invariance tests for SIFT based Super-features

Aircraft Bridge Nature
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 10: Scale transformation invariance tests for SURF based Super-features

.2.3 Affine transformation invariance results and videos

Aircraft Bridge Nature
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 11: Affine transformation invariance tests for MSER based Super-features
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Aircraft Bridge Nature
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 12: Affine transformation invariance tests for SIFT based Super-features

Aircraft Bridge Nature
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 13: Affine transformation invariance tests for SURF based Super-features

.3 Complex global and local motion transforma-

tions results and videos

MSER SIFT SURF
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 14: The results and videos for the Alley1 test sequence

MSER SIFT SURF
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 15: The results and videos for the Alley2 test sequence
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MSER SIFT SURF
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 16: The results and videos for the Ambush2 test sequence

MSER SIFT SURF
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 17: The results and videos for the Ambush4 test sequence

MSER SIFT SURF
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 18: The results and videos for the Ambush5 test sequence

MSER SIFT SURF
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 19: The results and videos for the Ambush6 test sequence

165



MSER SIFT SURF
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 20: The results and videos for the Bamboo1 test sequence

MSER SIFT SURF
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 21: The results and videos for the Bamboo2 test sequence

MSER SIFT SURF
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 22: The results and videos for the Bandage1 test sequence

MSER SIFT SURF
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 23: The results and videos for the Bandage2 test sequence
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MSER SIFT SURF
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 24: The results and videos for the Cave2 test sequence

MSER SIFT SURF
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 25: The results and videos for the Cave4 test sequence

MSER SIFT SURF
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 26: The results and videos for the Market2 test sequence

MSER SIFT SURF
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 27: The results and videos for the Market5 test sequence
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MSER SIFT SURF
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 28: The results and videos for the Market6 test sequence

MSER SIFT SURF
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 29: The results and videos for the Mountain1 test sequence

MSER SIFT SURF
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 30: The results and videos for the Shaman2 test sequence

MSER SIFT SURF
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 31: The results and videos for the Shaman3 test sequence
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MSER SIFT SURF
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 32: The results and videos for the Sleeping1 test sequence

MSER SIFT SURF
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 33: The results and videos for the Sleeping2 test sequence

MSER SIFT SURF
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 34: The results and videos for the Temple2 test sequence

MSER SIFT SURF
Original feature matches Video Video Video
Super-feature exclusion matches Video Video Video
Super-feature exclusion and inclusion matches Video Video Video
Matlab figures and MAT-file of results Folder Folder Folder

Table 35: The results and videos for the Temple4 test sequence
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