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Abstract

Major histocompatibility complex class | (MHC-I) molecules are critical to adaptive immune
defence mechanisms in vertebrate species and are encoded by highly polymorphic genes.
Polymorphic sites are located close to the ligand-binding groove and entail MHC-I alleles
with distinct binding specificities. Some efforts have been made to investigate the relation-
ship between polymorphism and protein stability. However, less is known about the relation-
ship between polymorphism and MHC-I co-evolutionary constraints. Using Direct Coupling
Analysis (DCA) we found that co-evolution analysis accurately pinpoints structural contacts,
although the protein family is restricted to vertebrates and comprises less than five hundred
species, and that the co-evolutionary signal is mainly driven by inter-species changes, and
not intra-species polymorphism. Moreover, we show that polymorphic sites in human prefer-
entially avoid co-evolving residues, as well as residues involved in protein stability. These
results suggest that sites displaying high polymorphism may have been selected during
vertebrates’ evolution to avoid co-evolutionary constraints and thereby maximize their
mutability.

Author summary

Amino acid co-evolution represents cases of simultaneous substitution of amino acids at
distinct positions in protein sequences. In the MHC-I protein family, such co-evolution
could result from either amino acid changes across species or changes within species due
to the high polymorphism of MHC-I molecules. Here we show that signals captured by
global methods such as Direct Coupling Analysis (DCA) to estimate co-evolution primar-
ily result from changes across species. Moreover, our results indicate that polymorphic
sites in MHC-I molecules tend to be decoupled from co-evolving ones. This could suggest
that they have been selected to maximize their mutability, which is known to be function-
ally important to entail MHC-I molecules with a wide repertoire of binding specificities
for antigen presentation.
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Introduction

Major Histocompatibility Complex class I proteins (MHC-I), also referred to as Human Leu-
kocyte Antigen class I (HLA-I) in human, are expressed on the surface of cells. MHC-I pro-
teins form a complex with either ‘self ligands derived from the endogenous proteins or
‘foreign’ ligands (non-self) derived from invading pathogens or somatic alterations in cancer
cells. Upon presentation of non-self ligands from inside the cytoplasm, the complex can be
recognized by CD8 T-cells [1]. MHC-I proteins show a very high degree of polymorphism
especially around the peptide-binding groove and tens of thousands of different alleles are
reported in databases like PFAM [2] or IMGT/HLA [3]. Moreover, striking differences in
binding specificity are observed between different alleles. Several evolutionary events con-
tributed to MHC-I diversity in vertebrates. Duplication events occurred during the evolution
of jawed vertebrate, which led to MHC-I polygenicity in many species [4,5]. Following the
gene duplication events, the different gene copies diverged through separate evolutionary
processes, which allowed some MHC-I genes to gain different functions, while others
became dysfunctional or lost [6]. Consequently, the number of MHC-I loci differs between
vertebrate species [7]. These duplication events produced 6 MHC-I genes in human all
located on chromosome 6. Three of them (HLA-A, HLA-B and HLA-C) are broadly
expressed in most cell types and are the main contributors to class I antigen presentation.
The high level of allelic diversity of the MHC-I in vertebrate population is likely due to strong
selection because of the exposure of vertebrate populations to various infections across the
world [8] [9]. In particular, the polygenicity and polymorphism entails the immune system
of each individual with the ability to present at the cell surface a wide range of peptides from
foreign pathogens.

Despite their high polymorphism, MHC-I alleles share the same three-dimensional fold
across vertebrates. In particular, the peptide-binding groove is composed of two almost parallel
alpha helices and one beta sheet. This conserved structure across all MHC-I alleles suggests
that they undergo molecular constraints. Molecular constraints can be predicted using stability
models that investigate the impact of a mutation on the structure (e.g. alanine scanning) [10]
or conservation [11]. Recent studies have also demonstrated that simultaneously evolving sites
(also called co-evolving sites) can reveal structural contacts [12] folding intermediate [13], allo-
steric communication, core protein sites [14], or functionally important sites [15]. Several
models are available in the literature to predict co-evolving sites. Most of the models evaluate a
score to assess if a pair of sites simultaneously evolves regardless of the other residues. Some of
these models use statistical formalisms such as Mutual Information [16], Statistical Coupling
Analysis [17] or Coev [14,18] when others use combinatorial formalism [19,20]. The only
model that investigates co-evolving residues in the light of global alignment is Direct Coupling
Analysis (DCA) [12], also introduced in the EVfold suite [21]. This phylogeny-free method
was shown to accurately identify sites in contact in protein structures, and because of this,
DCA has been used to help predicting protein structures [21][22][23][24].

In this work, we study the co-evolving constraints on MHC-I across vertebrates’ species
using DCA. Despite the low number of species (<500), we observed that DCA could accu-
rately predict structural contacts directly from MHC-I protein sequence alignment. We then
investigated the relationship between polymorphism and co-evolution constraints. Our work
reveals that polymorphism within human does not contribute much to the observed co-evolu-
tion signal. Moreover polymorphic sites show little overlap with both co-evolving sites across
vertebrates and sites predicted to be most important in protein structural stability. We further
extended the DCA algorithmic framework to incorporate multiple MHC-I ligands per allele
and observed the same uncoupling between co-evolving and polymorphic residues. These
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results suggest that polymorphic residues in MHC-I molecules preferentially avoid sites dis-
playing strong stability or co-evolutionary constraints.

Results
Co-evolution among MHC-I residues

To investigate co-evolutionary constraints among MHC-I residues we retrieved all MHC-I
protein sequences from the PFAM v30 database (PF00129) [2]. This domain family covers the
MHC-I domains alphal and alpha2 (179 amino acid) and is present in 445 organisms [2]. We
excluded from the dataset 117 sequences from 14 bacterial and viral species (see Materials and
Methods). We ended up with 40’739 sequences, including 20’256 sequences from human
MHC-I alleles where the MHC-I polymorphism has been most studied (Fig 1). We then
applied DCA on the whole PFAM alignment. Considering pairs of residues that are distant
along the protein sequence (more than 4 residues apart), we observed a very strong enrich-
ment of structural contacts among pairs of residues with high DCA scores (Fig 2A). For
instance, among the top 44 DCA predictions (25% of MHC-I PFAM domain length), 31 corre-
spond to pairs of residues less than 8A apart in crystal structures (see Fig 2A and Materials and
Methods). For illustration the top 6 DCA predictions (pairs 3-29, 93-119, 47-60, 26-33, 148-
154 and 36-43, with residue numbering as in X-ray structures) are shown in Fig 2B. Similar
results were obtained using plmDCA [25][26](see S1 Fig). Overall, our results indicate that
high enrichment in structurally interacting pairs of residues can be obtained with DCA even
for a domain family spanning a relatively low number of species (in our case only vertebrates).

Co-evolutionary predictions and species predominance

To assess the contribution of the 20’256 human sequences to the co-evolution predictions, we led
two additional experiments: one where the co-evolving scores based on DCA are evaluated using
solely the 20256 human sequences (Fig 2C) and another where the co-evolving scores are evaluated
by excluding the human sequences from the analysis (Fig 2D). These experiments revealed that the
top predictions of DCA applied to human sequences did not highlight pairs of residues close in
protein structures (Fig 2C). Reversely, when excluding all human sequences DCA predictions of
co-evolving sites remained almost unchanged and still pinpointed mainly pairs of sites in the struc-
tural proximity (Fig 2D). Similar results are obtained using a threshold of 5A to define the contact
map (S2 Fig). Moreover when removing the sequences from species with more than 500 MHC-I
sequences (Homo sapiens (Human); Macaca mulatta (Rhesus macaque); Macaca fascicularis (Crab-
eating macaque) (Cynomolgus monkey); Acrocephalus schoenobaenus (sedge warbler); Parus major
(Great tit); Macaca nemestrina (Pig-tailed macaque); Bos taurus (Bovine); Sus scrofa (Pig), we still
observed that many of the top co-evolving sites are in structural proximity (53 Fig). Altogether
these experiments suggest that the co-evolution signal captured by DCA reflects molecular con-
straints in the course of vertebrate evolution, and not constraints on polymorphic sites within one
species. This is in line with the low weight on human sequences due to their high homology in
DCA within the full alignment (see Fig 1). Nevertheless, the lack of structurally meaningful corre-
lations when considering only human sequences suggest that little co-evolution is observed
among them, although polymorphic sites are contacting each other in the MHC-I binding site,
and therefore could potentially display some level of correlation reflecting structural constraints.

Polymorphism and co-evolving sites

To further investigate the relationship between polymorphism and co-evolving sites, we mea-
sured conservation in human using information content (see Materials and Methods) to derive
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Fig 1. Species tree with number of sequences. Topological species tree issued from phyloT that illustrates the 445 vertebrate species represented in
PFAM MHC-I alpha 1 and 2 domain family (PF00129). The number of sequences (column 2) and the number of species (column 1) per clade are
indicated on the right. In red, we highlighted the mammalian clades. The sum of the weights in DCA of all sequences in each clade is shown in the last

column.

https://doi.org/10.1371/journal.pchi.1006188.9001

a polymorphism score for each site. A position with a minimal score is rarely mutated in
human MHC-I alleles whereas a position with a high score is highly mutated. We then used

Enrichment Analysis (see Materials and Methods) to determine the overlap (or absence

thereof) between sites displaying strong co-evolutionary constraints across vertebrates as mea-
sured by DCA and polymorphic sites in human population. DCA scores were established for
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2BNR, pairs of residues at distance < 8A are shown in grey) summarizing DCA predictions (top 44) with all vertebrate MHC-I sequences (see Materials and Methods).
Blue squares represent structurally close pairs of sites predicted by DCA and red squares represent structurally distant pairs of sites predicted by DCA. The inset shows
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https://doi.org/10.1371/journal.pchi.1006188.9002
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each site based on the highest DCA values with any other site more than 4 amino apart in the
sequence, and sites where ranked based on these scores (x-axis in Fig 3A, lower panel) to com-

pute the enrichment (or absence thereof) in polymorphic sites among sites with highest DCA

scores. Using a threshold of 0.01 on the information content to define polymorphic sites, our
analysis showed that pairs of sites with the highest DCA score mainly comprise sites that are
non-polymorphic in human (Fig 3A, P = 0.008). This observation holds for threshold values of
0.02 and 0.03 (S4 Fig), or when defining polymorphic sites based on the most frequent MHC-I
alleles in Caucasian population (see Materials and Methods and S5 Fig). Similar results would
be obtain by taking a threshold of 0.1 on the DCA score and using Fisher’s exact test to probe
the depletion of points in the upper left part of Fig 3A (P = 0.003). The advantage of the enrich-
ment approach is that is does not require fixing a threshold on the DCA scores. We further
note that the cloud of points for DCA values lower than 0.08 in Fig 3A was expected since the
majority of DCA values obtained from any alignment are significantly bigger than zero. How-

ever, as observed in previous studies, only the top ranking pairs give meaningful information

about structural contacts. This is the reason why we used enrichment analysis in this work, as
opposed to correlation coefficient whose value would be dominated by the low DCA scores,
which cannot be interpreted in terms of biologically meaningful co-evolutionary constraints.

Polymorphism and stability

We then investigated the relationship between polymorphism and predicted importance for
structural stability. Stability score of each site was evaluated using FOLD-X AlaScan software
[10,27] using the X-ray structure of HLA-A02:01 in complex with a 9-mer ligand (PDB:

polymorphism score

0.0 0.1

. 0% oo o8 L
o © % e
> 9% .
° © oy 088
e T L
8 6 4 2 0 2
Stability (AAG) [kcal/mol]
0.6-
P=0.04
0.4-
0.2-
0.0
0 50 100 150

Stability ranked scores (AAG) [Kcal/mol]

02 03 04 05

polymorphism score

C

0.3 -
0.2 ;

0.1+

oo

o ooo
o
o

8

oo
000
oo
o
omoo o
o
amoo o o o
o®om o

T T T

02 03 04 05

polymorphism score

0.0 0.1

- @woo
oo
o1 owoo

10 1
Number of contacts

P=0.05

0 50 100 150
Number of contacts ranked scores

Fig 3. Polymorphic sites preferentially avoid co-evolving sites and sites involved in protein stability. Top. Plots of polymorphism scores versus: (A) DCA scores, (B)
stability scores measured using FoldX (AlaScan function), (C) number of structural contacts. Bottom. Enrichment analysis of non-polymorphic sites with respect to (A)
DCA scores, (B) stability scores and (C) number of structural contacts (x-axis shows the ranking of sites based on these values, sites with a polymorphism score lower

than 0.01 are shown in yellow).

https://doi.org/10.1371/journal.pchi.1006188.g003
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2BNR). Sites with different stability values were then used in the same enrichment analysis as
before to compare with polymorphic sites. Here as well, we observed that polymorphic sites
tend to be distinct from sites predicted to play a role in protein stability (Fig 3B, P = 0.04). This
observation holds when considering other alleles and their corresponding pdb structures to
evaluate stability score of each residue (Table 1). We further investigated the relationship
between polymorphism and the number of structural contacts made by each residue (Materials
and Methods). As expected from the stability analysis (Fig 3B), residues making many contacts
tend on average to be enriched in non-polymorphic sites (Fig 3C), although the enrichment
did not pass the 0.05 threshold for significance. In general, the fact that polymorphic sites that
do not lead to dysfunctional proteins, such as those in MHC proteins, are less implicated in
protein stability has been documented in many previous studies [28-32]. However, to our
knowledge, our work is the first to perform such analysis specifically on MHC proteins.

To assess whether co-evolving pairs of residues may simply reflect sites involved in protein
stability, we investigated the relationship between DCA scores and either stability or number
of contacts. We observed a very poor correlation between DCA scores and stability scores
(S6A Fig) or number of contacts (S6B Fig). As expected, we observed a higher correlation
between stability scores and number of contacts (S6C Fig). These results show that amino acid
correlation patterns are not simply recapitulating the importance of residues for protein stabil-
ity and could highlight distinct constraints that cannot be captured by stability predictions or
number of structural contacts.

Co-evolving constraints in the presence of peptide ligands

MHC-I molecules are known to interact with many peptides and the presence of a peptide is
required for MHC-I folding. To explore the effect of the presence of peptide ligands on DCA

Table 1. Enrichment of non-polymorphic sites with respect to stability evaluated in different structures. The p-
values of enrichment analysis (column 3, also see Fig 3B) of non-polymorphic residues among sites contributing most
to protein stability using different pdb structures (column 2) of MHC-I alleles (column 1) is shown below. For each
pdb structure, we merged the peptide and the MHC-I allele on the same chain and ran AlaScan to measure the stability
scores.

Allele PDB p-value
HLA-B51:01 1e27 0.01
HLA-C03:04 lefx 0.03
HLA-B44:02 1m6o 0.05
HLA-B44:03 1n2r 0.004
HLA-B27:05 logt 0.06
HLA-A11:01 1x7q 0.04
HLA-B35:08 2axf 0.02
HLA-B35:01 2cik 0.06
HLA-A01:01 3bo8 0.04
HLA-A02:03 30x8 0.02
HLA-A02:07 30xs 0.01
HLA-A03:01 3rll 0.02
HLA-A24:02 3vxn 0.05
HLA-A68:01 4hwz 0.03
HLA-A68:02 4hx1 0.09
HLA-B18:01 4xxc 0.03
HLA-B27:04 5def 0.07
HLA-B07:02 500 0.07
HLA-B57:01 5tow 0.04

https://doi.org/10.1371/journal.pchi.1006188.t001
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predictions, we built an expanded version of DCA, called DCApeptides, that can take as input
several peptide ligands for each protein sequence. The set of peptides interacting with a given
protein are used to compute the single and paired frequencies used in DCA, as described in
Materials and Methods. Although major efforts have been invested in the field to experimen-
tally characterize the MHC-I binding specificity repertoire in human and mice [33-36], the
vast majority of MHC-I molecules do not have experimental ligands. To fill this gap, we
selected 100°000 random 9-mer peptides from several organisms and evaluated the predicted
binding affinity of MHC-I sequences to each of these peptides using NetMHCpan3.0 [37] (see
Materials and Methods). For each MHC-I sequence we then selected the top 2% of the pep-
tides, following the cut-off currently suggested by the authors of NetMHCpan [37]. These
predicted ligands were included in the co-evolution calculations using the DCApeptides algo-
rithm. Overall, results did not change much and we still observed the decoupling between co-
evolving and polymorphic sites (Fig 4). However, it should be noted that these are predicted
ligands and the signal captured by DCApeptides reflects at best what is implicitly modelled in
the predictor and not necessarily the real inter-molecular constraints.

DCAPeptides for inter-molecular contact predictions

To further explore the DCApeptides algorithm in the case of experimental ligands, we restricted
the study to human MHC-I alleles having experimental ligands in IEDB [36] (see Materials and
Methods). The number of such alleles is much smaller (156) and, as expected, we did not
observe good structural contact predictions (Fig 5A). However, when restricting the analysis to
inter-molecular pairs, we observed that the top 4 inter-molecular DCA pairs mapped accurately
to existing structural contacts (Fig 5B). Moreover, these 4 pairs of sites involved residues P2 and
P9 in the MHC-I ligands, which are known to be the main specificity determining residues (so-
called anchor residues). Overall, our results indicate that DCApeptides predictions are stronger
among MHC-I residues then between MHC-I residues and their ligands. However, DCA pre-
dictions among MHC-I residues do not pinpoint structural contacts (as in Fig 2C), while DCA
predictions between MHC-I residues and their ligands revealed known interactions.

We further extended our benchmarking of the DCApeptides algorithm to the human PDZ
protein domains, which are also known to interact with several ligands (in our dataset, these
ligands came from a phage display experiment [38], see Materials and Methods). Here as well,
we observed stronger correlation among the PDZ domain residues (S7A Fig). Some of the DCA
predictions mapped to known structural contacts (15/27). More interestingly, when focusing
only on correlations between PDZ residues and their ligands, we saw that DCApeptides could
accurately predict some of the contacting pairs of residues. In particular, the top 2 predictions
involved both position -2 in the PDZ ligands (S7B Fig), which is known to be the main spec-
ificity determining position for PDZ ligands [39]. Altogether, our results suggest that, when
focusing on domains with available ligands from one species, intra-molecular DCApeptides
predictions are not able to identify residues in structural proximity (likely because of the much
lower number of sequences imposed by the constraint of having experimental ligands available),
but inter-molecular DCApeptides predictions can accurately pinpoint structural contacts.

Discussion

Co-evolution analyses have been widely used in biological studies, focusing mainly on co-evo-
lution across species [14,40]. To our knowledge, our work is the first co-evolution analysis

of a protein family that displays at the same time high variability between species and high
polymorphism within species. As MHC-I polymorphism is known to be functionally impor-
tant to entail different alleles with a wide range of binding specificities, our observation that
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Methods). B. Enrichment in non-polymorphic sites (threshold of 0.01) with respect to DCApeptides scores.

https://doi.org/10.1371/journal.pcbi.1006188.9004

polymorphic sites tend on average to show less co-evolutionary constraints may reflect the
importance of preserving high mutability of these sites. It is also interesting to note that the de-
coupling between polymorphic sites and co-evolving sites was even stronger than between
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on HLA-A02:01 structure (PDB: 2BNR, pairs of residues at distance < 8A are shown in grey) summarizing
DCApeptides predictions for the alignment of 156 human MHC-I molecules and their ligands. Chain A stands for the
MHC-I sequence and chain P (P1-P9) for the ligands. Blue squares represent structurally close pairs of sites predicted
by DCApeptides and red squares represent structurally distant pairs of sites predicted by DCApeptides. A. Co-
evolution signal using the full alignment of MHC-I and their ligands (top 44 pairs). B. Inter-molecular co-evolution
signal between MHC-I and their ligands (top 4 pairs).

https://doi.org/10.1371/journal.pcbi.1006188.9005

polymorphic sites and sites involved in protein stability (Fig 3), suggesting that co-evolution
constraints captured by DCA may be especially detrimental for polymorphic sites.

To predict co-evolving sites within MHC-I molecules, we used the DCA model introduced
in [12,23], [22]. DCA demonstrated its statistical power on protein domains for which many
homolog sequences are available (typically >10°000 sequences, ideally spanning both eukary-
otes and prokaryotes) [22]. This study demonstrates that DCA predictions are highly enriched
in structural contacts in MHC-I protein family, although the number of species is restricted to
445 (Fig 1). As in all DCA analyses, we focused here on sites that are distant in the sequence
(i.e., more than 4 amino acids apart), which ensures that predictions of structural contacts are
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not simply resulting from sequence proximity. As such our work suggests that polymorphic
sites tend to show less co-evolutionary constraints with sites distant in the primary sequence.
Importantly, polymorphic sites have similar numbers of structural contacts with residues dis-
tant in the sequence (S8 Fig) as other residues, and therefore the observations made in this
study could not simply be explained by the absence of such contacts.

The co-evolution signal detected in our analysis likely comes from the presence of divergent
vertebrate species in the dataset, since very similar predictions were obtained by excluding the
20’256 human sequences in the datasets (Fig 2C and 2D), or by excluding species with more
than 500 sequences in the dataset (S3 Fig). We anticipate that the fast evolutionary dynamic of
MHC-I proteins may contribute to generating a stronger co-evolutionary pattern compared to
other protein families, which could explain why we were able to detect it, although the MHC-I
family is restricted to vertebrates.

DCA does not consider the actual phylogeny and takes only the alignment of sequences as
input [14,18]. However, MHC-I evolution is difficult to characterize especially because it was
subject to several duplication events along vertebrate evolution. Moreover the rate of evolution
and the role of MHC-I in the immune system differ from one vertebrate species to another
[41-43]) making it even more challenging to use available phylogenetic-dependent methods to
predict co-evolving constrained sites since these models assume a homogeneous rate of substi-
tutions across species evolution.

Ligands binding to MHC-I molecules play a role in MHC-I binding stability, which is why
we included the ligands in stability predictions based on HLA-A02:01 structure. In vivo,
MHC-I molecules are known to interact with tens of thousands of different peptides [33,44]
and their specificity cannot be summarized with one single peptide. This is the reason why we
extended the DCA framework to consider multiple ligands per protein in the alignment (Fig
4). Unfortunately, due to the scarcity of experimentally determined MHC-I ligands in most
species except for human and mouse, the co-evolution analysis could not be carried out only
with experimental ligands for all alleles included in our dataset. We therefore used for each
allele 2°000 predicted ligands corresponding to the top 2% of a set of 100’000 peptides ran-
domly selected from different proteomes [37]. As such, it is likely that the inter-molecular co-
evolutionary signal observed in Fig 4 only captures the signal that is present in the NetMHC-
pan predictor, and may therefore not capture signals coming from more distant species that
are not included in the training set of this algorithm. Nevertheless, he fact that the decoupling
between polymorphic and co-evolving sites was observed both without and with ligands sug-
gests that our results do not depend significantly on the presence of ligands in our analyses.

Our extension of the DCA algorithm to consider multiple ligands of the same protein further
enabled us to analyse inter-molecular co-evolution for both MHC-I and PDZ proteins with
experimentally determined ligands. Remarkably, in both cases, the inter-molecular predictions
pinpointed structural contacts, whereas the intra-molecular predictions did not (for the major-
ity of them, at least). Similar results were recently reported in a study of Antibody-antigen inter-
actions [45], where maximum-entropy models such as DCA could help predicting affinity
between antigens and antibodies, but not structural contacts within antibodies. We anticipate
that our extension of DCA (available at: https://github.com/GfellerLab/DCApeptides) will con-
tribute to future analyses of the differences between inter- and intra-molecular amino acid co-
evolution patterns.

Conclusion

MHC-I molecules have emerged recently in life history and are mainly restricted to vertebrate
species. Despite the limited number of species that contain MHC-I genes, we observed that co-
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evolution constraints identified by statistical methods such as DCA accurately predicted sev-
eral structural contacts. Moreover, we found that the co-evolution signal was dominated by
inter-species amino acid changes and was not due to the variations between alleles within the
same species (e.g., human). To our knowledge, this work is the first co-evolution analysis of a
protein family that displays at the same time high variability between species and high poly-
morphism within species. Finally, our results suggest that MHC-I polymorphic sites, in addi-
tion to providing distinct binding specificities, preferentially avoid residues that show either
high amino acid co-evolution patterns or play an important role in protein stability.

Materials and methods
MHC-I domain alignment

In this study, we analysed the PFAM domain family named Histocompatibility antigen,
domains alpha 1 and 2 of class I with the identifier PF00129. In PFAM v30 the domain family
was composed of a total of 40’856 protein sequences [2]. We removed 117 bacterial and viral
sequences from the dataset and kept only vertebrate MHC-I for a total of 40’739 sequences.
The human sequences constitute 49.7% of the family followed by the Rhesus macaque
sequences that represent 4.9% of the family (Fig 1). We filtered highly gapped columns
(>70%), and the final alignment corresponds to positions 2 to 179 in HLA-A02:01 allele (resi-
due following the numbering in the crystal structures such as PDB:2BNR chain A).

We further collected the most frequent human alleles in the allele frequency database [46]
for USA NMDP European Caucasian population (comprising a total of 1,242,890 individuals).
331 alleles had a frequency exceeding 0.00001 (97 HLA-A, 181 HLA-B and 55 HLA-C alleles).

Direct coupling analysis

We used Direct Coupling Analysis (DCA) model [12] for the intra-molecular analysis of co-
evolving sites within MHC-I domain family alignment. DCA uses as input the frequency f;,(A)
of amino acid A in column i, the frequency f;(B) of amino acid B in column j, and the joint
frequency count f;;(A,B) for pairs of amino acid A and B in columns i and j within a protein
alignment, for all pairs of position i and j. These frequencies are computed including reweight-
ing of sequences with >80% sequence identity and pseudo counts equal to the effective num-
ber of sequences after reweighting, as described in [12]. The sum of weights displayed in Fig 1
for each clade corresponds to the sum of ‘m,’ values, where m, represents to the weight of
sequence a (see Morcos et al. [12]), and can be interpreted as the effective number of sequences
in this clade. Julia’s version of PImDCA [26][25] was run on the same alignment with default
parameters. The algorithm starts by removing the duplicate sequences. Once these sequences
were removed PImDCA analysed 22954 sequences, with an effective number of sequences
Meff equal to 173.44.

Mapping DCA prediction on contact maps

As a reference structure for MHC-I domain, we used the structure of HLA-A02:01 in complex
with a canonical 9-mer peptide (PDB: 2BNR; [47]). We consider that two sites are close in the
structure if the distance between any of the heavy atoms is smaller or equal to 8A, as suggested
by the authors of the original DCA study [12], and built the contact map (grey dots in Fig 2).
Similar contact maps were built using cut-off of 5A in S2 Fig. To analyse the predictions of
DCA with respect to structural contacts, we only considered pairs distant in the sequence (over
4 amino acids apart) and displayed in the contact maps of Fig 2 the top 44 predictions (25% of
the MHC-I domain length). The performance plot in the insets were computed as follows:
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1. Order the pairs of sites decreasingly based on DCA scores.

2. Compute the precision (i.e., true positives divided by the total number of DCA predictions)
for numbers of predictions ranging from 1 to 900.

DCA scores: From pairs to sites

DCA provides a score for every pair of sites. To reflect whether a site is under a co-evolution-
ary constraint we first ranked the scores in a decreasing order. We iteratively attributed indi-
vidual score for each site as follow:

1. At the beginning none of the sites has an individual score (I). Given a site s, I = 0.

2. Remove the first pair p composed of sites s; and s, on the top of the sorted list where pg;s; is
the pair score.

3. Checkif s; has an individual score. If it has an individual score then go to step 4. If not,
attribute an individual score to s; such that I;; = py;.

4. Checkifs; has an individual score. If it has an individual score then go to step 5. If not,
attribute an individual score to s, such that I, = pgs).

5. Re-iterate from 2 to 4 until all pairs of site from the list are considered.

Entropy and polymorphism

For human sequences in the PFAM alignment, we used one minus the Shannon entropy (i.e.,
1+ 3% fi(A)log{f(A)}/log{20}, where f,(A) stands for the frequency of amino acid A at
position i) to measure the polymorphism score at each position [48]. This score has a minimal
value of zero when all amino acid frequencies in a site are equal and a maximal score of one
when only one perfectly conserved amino acid is found at a given position. We omitted the
gaps from the entropy measure. The polymorphism analysis was also performed using only
the most frequent human MHC-I sequences (331 alleles, see before). To this end the human
alleles were aligned with MUSCLE [49] and amino-acid to compute the Shannon entropy
were weighted by the allele frequency in the USA NMDP European Caucasian population.

Stability score

To evaluate the structural stability impact of each residue, the AlaScan function of the
FOLD-X software [10,27] was used to calculate the energy contribution of each residue. The
structures were first repaired using RepairPDB function. The stability score of each site was
measured using a reformatted pdb structure of 2BNR [47] where MHC-I residues from posi-
tion 1 to 179 and the ligand were merged on chain A.

Number of contacts

The number of contacts of each site was measured using the pdb structure 2BNR (HLA-
A02:01 allele in chain A and the ligand). For a given site, the number of contacts is the number
of residues that are maximum 5A distant from this site in the crystallized structure.

Enrichment analysis

Enrichment Analysis was used to investigate the relationship between polymorphic sites and
sites displaying strong co-evolution constraints as estimated by DCA. A site was considered to
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be non-polymorphic in human alleles when its polymorphism score was lower than a thresh-
old of 0.01 (see S4 Fig for results with other thresholds). To compute enrichment curves, sites
were ranked based on their DCA score (x-axis in lower panels of Fig 3). Whenever a non-poly-
morphic site is encountered along the ranking (yellow bars), the enrichment curve goes up.
Whenever a polymorphic sites is found the enrichment curve goes down. The same enrich-
ment analysis was also applied to investigate the relationship between polymorphic sites
involved in structural stability or sites displaying many contacts in the crystal structure of
HLA-A02:01. For the enrichment analysis and p-value calculations, we use a weighted version
of the Kolmogorov-Smirnov statistic with exponent measure equal to 1, as in all standard
enrichment analyses [50].

Extension of DCA to consider multiple ligands

To model the existence of multiple (predicted) ligands for each MHC-I protein, the amino
acid frequencies f; and f; for all sites and joint frequencies f;; for all pairs of sites (i.e. including
both sites in the MHC and sites in the ligands) were computed. Following the nomenclature
used in [12] the point frequency for position i in ligand is computed as:

Mff+/1< ZmZN AL )

where L?, stands for the i amino acid in the n"™ ligand of protein a, and N* stands for the

fi(4) =

number of ligands of 4 and M stands for the number of MHC-I sequences. The joint frequency
between position 7 in the protein and position j in the ligand is computed as:

£(AB) = — i+i15 Nzal(s
BT Mg+ A\ me A7 < N¢ BL},

Where A¢ stands for the i amino acid in protein a. Finally, the joint frequency between two

ligand positions (i and j) is computed as:

sam =t (G e

The sequence reweighting (m“) corresponds to the number of sequences with more than
80% sequence identity to protein a, and was computed considering only the MHC-I sequence
identity. This implies that each ligand has a weight equal to the weight of its protein (1/m*)
divided by the number of ligands of this protein (N*), in order to ensure proper normalization.
The same pseudo-count 2 = M, = 3 1/m* was applied as in the standard DCA. In the
case of 9-mer MHC-I ligands, this resulted in a total alignment of 178+9 = 187 positions, where
the first 178 positions are characterized by a single amino acid at each position, while the last 9
positions are characterized by a distribution of amino acids for each MHC-I and each position
in the ligands. All the rest of the DCA algorithm remains the same (inversion of the (18720) x
(187*20) covariance matrix and estimation of the Direct Information scores). The script to run
these calculations can be accessed at: https://github.com/GfellerLab/DCApeptides.

Prediction of MHC-I ligands

To explore the impact of MHC-I ligands on the enrichment analysis of Fig 3A, we attempted
to run DCApeptides on the full alignment, including multiple peptide ligands for each MHC-I
protein. Since the MHC-I ligand repertoire for the vast majority of MHC-I alleles in different
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species is still not experimentally available, we generated 100’000 random 9-mer peptides from
7 proteomes (Anguilla anguilla, Bos taurus (Bovine); Gallus gallus; Homo sapiens (Human);
Larimichthys crocea; Mus musculus (mouse); Tinamus Guttatus) and predicted the binding
affinity of MHC-I alleles to each of these peptides using NetMHCpan3.0 [37]. We then selected
the top 2% predictions for each MHC-I allele in our alignment and computed the co-evolution
patterns including these ligands based on DCApeptides (see above). Only MHC-I sequences
without gaps at binding site positions used in NetMHCpan3.0 were considered (27,373
MHC-I sequences in total).

Experimental MHC-I and PDZ ligands
Experimental MHC-I ligands were retrieved from IEDB [36]. In total 156 human MHC-I

alleles had experimental ligands (annotated as “Positive-High”, “Positive-Intermediate”, “Posi-
tive-Low” or “Positive”). Only 9-mers were considered and these ligands were used with DCA-
peptides. X-ray structure of HLA-A02:01 (PDB:2BNR) in complex with a 9-mer peptide was
used to compute the contact maps of Fig 5.

Experimental PDZ ligands were retrieved from a large phage display screen performed for
54 human PDZ domains [38]. All ligands were aligned at their C-terminus. The contact map

in S7 Fig was computed based on the X-ray structure of DLG2 (PDB: 2HE2) [51].

Supporting information

S1 Fig. Predictions of plmDCA. A. Contact map based on HLA-A02:01 structure (PDB:
2BNR, pairs of residues at distance < 8A are shown in grey) summarizing PImDCA predic-
tions (top 44) with all vertebrate MHC-I sequences (see Materials and Methods). Blue squares
represent structurally close pairs of sites predicted by PImDCA and red squares represent
structurally distant pairs of sites predicted by PLImDCA. The inset shows the precision (number
of true positives divided by total number of predictions) for different numbers of PImDCA
predictions (see Materials and Methods). B. Venn-diagram of the overlap between the top 44
positions that are identified by either DCA or PImDCA.

(TIF)

$2 Fig. Contact map with 5A threshold. Contact map constructed as in Fig 2 but with 5A
threshold distance and summarizing DCA predictions. A. DCA prediction with all vertebrate
MHC-I sequences. B. Only human sequences. C. All vertebrates MHC-I sequences except
human sequences. Blue squares represent structurally close pairs of sites and red squares repre-
sent structurally distant pairs of sites among the top 44 DCA predictions. In A. B. and C., the
insets show the precision over different thresholds for the number of DCA predictions (see
Material and Methods).

(TIF)

S3 Fig. Species predominance. Contact map summarizing DCA predictions (top 44) with ver-
tebrate species that have less than 500 MHC-I sequences (see Fig 1) and using an 8A distance.
Blue squares represent structurally close pairs of sites and red squares represent structurally
distant pairs of sites (see Materials and Methods section).

(TIF)

S4 Fig. Enrichment analysis for different thresholds on the polymorphism score. Enrich-
ment plots (exponent = 1) of non-polymorphic sites with respect to DCA score, stability esti-
mates and the number of contacts using different thresholds to define polymorphic sites: 0.01
in A, 0.02 in B and 0.03 in C. Column 1: enrichment analysis using DCA scores measured
using all vertebrate sequences. Column 2: enrichment analysis using stability score measured
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using HLA-A02:01 allele and its associated peptide. Column 3: enrichment analysis using
number of contacts.
(TIF)

S5 Fig. Polymorphic sites preferentially avoid sites involved in protein stability and co-
evolving sites. Same analysis as in Fig 3, but using only the 331 most frequent human MHC-I
alleles (frequency >0.00001 in Caucasian population) to define polymorphic sites (same
threshold of 0.01 on the polymorphism score as in Fig 3).

(TIF)

S6 Fig. Correlation between DCA scores, predicted stability and number of structural con-
tacts. A. Correlation between DCA scores and stability predictions. B. Correlation between
DCA scores and the number of contacts for each residue. C. Correlation between stability pre-
dictions and the number of contacts for each residue.

(TIF)

S7 Fig. Co-evolution between PDZ domains and their ligands. Contact maps based on
2HE2 structure (pairs of residues at distance < 8A are shown in grey) summarising DCApep-
tides predictions based on the alignment of 54 PDZ domains and their ligands. Chains A
(PDZ domain) and P (ligands, positions -9 to 0) are both represented in the contact maps.
Blue squares represent structurally close pairs of sites predicted by DCApeptides and red
squares represent structurally distant pairs of sites predicted by DCApeptides. A. Co-evolution
signal using the full alignment of human PDZ and their associated ligands (top 25 pairs). B.
Inter-molecular co-evolution signal between PDZ sequences and their associated ligands (top
2 pairs).

(TIF)

S8 Fig. Polymorphism and structural contact. Comparison between the number of structural
contacts with residues distant in the sequence (more than 4 amino acids) for polymorphic and
non-polymorphic sites.

(TIF)
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