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ABSTRACT 

Risk models using fault and event trees can be extended with explicit factors, which are states of the 
system, its users or its environment that influence event probabilities. The factors act as parameters in 
the risk model, enabling the model to be re-used and also providing a new way to estimate the overall 
risk of a system with many instances of the risk. A risk model with parameters can also be clearer. 

1 Introduction 

The safety of a complex system depends on an understanding of the possible accidents of the system, 
including their causes, probability and severity.  This understanding is captured in risk models, which 
are used to support decisions about how to design, operate and manage a system, ensuring safety. One 
form of risk model identifies a ‘hazardous event’ as the starting point of a possible accident and then 
separately analyses: 

• the causes of the hazardous event, using a fault tree to specify the combinations of base events 
that lead to the hazardous event, 

• the events leading to accidents, starting from the hazardous event, using an event tree. 

The result of the accident is some loss or harm: the extent of the loss may depend on other factors as 
well as the outcome of the accident in which case a model of the severity of the loss is also needed. 

1.1 Aim 

Using an example, we show how a risk model represented using fault and event trees can be 
parameterised.  The parameters are states of a system that influence the probability of the events in the 
fault and event tree.  We argue that including parameters: 

• extends the usefulness of a risk model, and 

• makes the structure of the risk model clearer. 

We have explained elsewhere [1,2] how a parameterised fault and event tree risk model can be 
implemented using a Bayesian network (BN). The risk analyst continues to build the core of the model 
using the standard fault and event tree notations; the underlying BN, which can be derived 
automatically, is used for calculation. Explicit use of a BN is only required where the fault and event 
tree notations run out, providing no way to include parameters. 

The focus of this paper is to present the advantages of adding parameters to fault and event tree risk 
model. We do this in the context of a simple example (section 2). 

1.2 Bayesian Networks 

A Bayesian network [3] is a directed graph, without cycles (see Figures 3, 4). The nodes are uncertain 
variables and the arcs represent influence between variables. The parents of a variable X are the 
variables Y with an arc from Y to X. For each variable, the parents influence the variable’s value is 
specified as a probability distribution over the states of the variable, given the state of each parent. A 
variable with no parents has a ‘prior’ probability distribution over its states. When variables have 
discrete states, a table of conditional probabilities can be used to represent both prior probabilities and 
the influences of one variable on another.  

The network represents the joint probability distribution of a set of uncertain variables efficiently. The 
values of known variables can be entered and the probability distribution updated, providing a flexible 
form of reasoning from evidence. BN have been applied to safety and reliability analysis (Section 5). 

1.3 Outline 

The remainder of the paper is organised as follows: the use of parameters in a risk model using fault 
and event tress is described in section 2, using an example. Section 3 shows how parameters extend 
the uses of the risk model and section 4 how the construction of the model is made clearer. 
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2 Example Risk: Falls on Stairs 

The example risk model concerns falls on stairs. This is a common accident, with ~500 reported 
incidents a year in the UK [4]. Stair design, maintenance, the users’ characteristics (e.g. age) and 
behaviour influence safety. The more likely injuries are bruises and bone fractures; more serious are 
fractures to the skull. Despite the importance of this risk in practice, in this paper it is used only to 
illustrate the concept of a parameterised risk model. The reader is asked to think of ‘falls on stair’ as 
representing one of a family of risk models, modelling the possible accidents of a complex system.  

2.1 Modelling Causes of the Hazardous Event 

In this section, we describe the causes of the hazardous event.  Table 1 shows the base events and 
Figure 1 shows how the base events can combine to cause the hazard. As well as the standard fault tree 
gates, Figure 1 also shows five factors, which are listed in Table 2. 

Table 1: Base Events for Loss of Footing              Table 2: Factors influencing the Base Events 
Base Event Description  Factor Description Values 
TripHazard Condition of stair creates a 

trip hazard 
 Surface The material exposed on the 

floor. 
wood / concrete / 
carpet 

InAttention Lack of attention to possible 
trip hazard 

 Speed The speed of the person 
(before falling). 

normal / fast 

Imbalance Imbalance causes foot to 
slide on step 

 Visibility How easy it is to see the 
steps. 

enhanced / 
lighted / poor 

Slip Lack of friction causes foot 
to slip 

 Usage How many people are using 
the stairs. 

single / many / 
rush 

Misstep Foot not placed correctly on 
stair 

 Age Age of the person. young / old  

   Pitch The pitch of the staircase.  gentle / steep 

These factors influence the probability of the base events. Instead of each base event having a single 
probability of occurrence (per descent), different probabilities are used depending on the value of the 
factors. Table 3 shows an example, for the ‘Inattention’ event. These factors therefore act as 
parameters, since selecting the value of the parameter determines the event probability that is used. 

Table 3: Probability (per descent) of Inattention, given Visibility and Usage 
Visibility Enhanced Lighted Poor 
Usage Single Many Rush Single Many Rush Single Many Rush 
Inattention=True 0.001 0.005 0.01 0.002 0.008 0.02 0.0005 0.01 0.03 

2.2 Modelling the Outcome of the Hazardous Event 

Loss of footing does not always lead to a serious fall. Instead a range of outcomes is possible: the most 
serious scenario is toppling sideways in the stairwell, while the least serious is to grab hold of a 
banister and avoid falling, with other possibilities between these extremes. This analysis is captured in 
event tree (Figure 2) containing the events of Table 4. 

Table 4: Events Following Loss of Footing 
Events States Description 
Holds Holds, drops, sideways. The person catches the railing, falls, or overbalances into the stairwell  
Falls Forward, backward  Person falls forwards or backwards 
Breaks Yes, no Person breaks their fall at a landing 

The events in the event tree are also conditioned by factors. The factors ‘Age’ and ‘Pitch’ that also 
influence base events occurs, together with two further factors shown in Table 5. 

Table 5: Factors influencing the Base Events 
Factor Description Values 

Design An open staircase has no sidewall. A straight staircase is a single 
flight, not broken by landings. 

open / straight / landings 

Width  The width of the steps (not the width of the tread). wide / narrow 

The factors influence the probability distribution over the branches of the event tree, replacing fixed 
probabilities with a table such as the one shown in Table 6.  
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Figure 1: Fault Tree with Parameters 
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Figure 2: Event Tree with Parameters 
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   Figure 3: Model of the Estimated Loss    Figure 4: Relationships between Factors  

 

Table 6: Probability distribution of ‘Breaks’, given Design factor and Falls event 
Falls Backwards Forwards 
Design Open Straight Landings Open Straight Landings 
Breaks=No 60% 50% 10% 50% 25% 5% 
Breaks=Yes 40% 50% 90% 50% 75% 95% 

The ‘Breaks’ event in our risk model is notable because its probability depends on the preceding 
‘Falls’ event, as well as on the “Design’ factor. Traditional event trees show this dependence only by 



using different probabilities in different parts of the tree. Figure 2 also shows the six outcomes – in 
this case, each path through the event tree has a different outcome but this need not be the case.  

2.3 Estimate of the Loss 

The final stage of the model is to estimate the loss. In our example, we model this an expected injury 
scored on a (simplified) Accident Injury Score (AIS) [5], one of a number of such scores used by 
doctors. The score has values ‘minor (1-2)’, ‘serious (3-4)’, ‘critical (5)’ and ‘unsurvivable (6)’. Figure 
3 shows a BN in which the AIS depends on the outcome of the accident and two other factors. Again, 
this model is quantified by specifying conditional probability tables for each variable. 

The overall characteristics of the model are: 

• It calculates a probability of injury, by AIS, for each stair descent. 
• It is parameterised by factors, characterising the stairs, the way they are used and the user. 

3 How Parameters Extend the Use of the Risk Model 

The parameterised model can be used in different ways. In section 3.1, we describe how the model can 
be reused to calculate risk in different situations. In section 3.2, we change focus from specific 
instances to the problem of estimating the total risk created by many separate instances of the risk. 

3.1 Reusing the Risk Model 

The model can be used to estimate risk by giving a value to each factor, or to only some factors, 
provided that the others have a prior probability or are influenced by other factors. To illustrate this, 
we imagine (Figure 4) two factors influenced by other (‘Usage’, ‘Speed’), two with prior probability 
distributions (‘Age’, ‘Width’), perhaps because data is not available, and the rest observed (shown 
with dotted boundary in Figure 4). The values observed for 3 staircases are shown in Table 7. 

Table 7: Observed Values of Factors for Different Stairs 
Factor Design Length Pitch Surface Visibility 

Stair1 Landing Short Gentle Carpeted Poor 
Stair2 Straight Long Steep Wooden Enhanced 
Stair3 Open Long Gentle Concrete Lighted 

With this data, the model gives a probability for each AIS score, per stair descent, for each staircase, 
as shown in Figure 5. 
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Figure 5: AIS probability Distribution for 3 Staircases 

3.2 Risk Profiles and Aggregate Risk 

Suppose that an estimate is needed of the risk from falls on stairs for an institution, such as a 
University, with many buildings, each with many staircases. We can use the parameterised model to 
aggregate the risk for each instance of the risk. To do this, two issues must be addressed: 

1. Data must be collected for each instance of the risk. 
2. The estimated risks for each instance must be combined coherently. 

Data could be collected for each staircase, as described in Section 3.2, but other approaches are also 
possible. Suppose that we do not wish to carry out a full survey of the institution’s staircases, but can 
instead estimate the probability distribution of the factors for the staircases in each building. This 
might be done by a sample survey or from knowledge (e.g. of the building style at the time the 



building was constructed). Table 8 illustrates the form of this data for an imagined mathematics 
building; similar data is needed for other buildings. 

Table 8: Characteristics of the Staircases in one Building 
 Age Design Length Pitch Surface Visibility 
Maths Young: 80% 

Old: 20% 
Landing: 80% 
Straight: 15% 
Open: 5% 

Short: 50% 
Long: 50% 

Gentle: 25% 
Steep: 75% 

Carpeted: 0% 
Wooden: 25% 
Concrete: 75% 

Poor: 0% 
Enhanced: 20% 
Lighted: 80% 

To combine the risk estimated for each building, we need to estimate how the total stair descent events 
in the university are distributed between the different buildings. This information is used to combine 
the separate risk estimates in the correct proportion. The BN implementing the risk model can do 
almost all this calculation (except a final scaling by the total number of stair descent events) with the 
following additions: 

1. A ‘scenario’ variable in the BN, with one state for each risk scenario (a building, in the 
example). Arcs from this variable to the factors enable data such as Table 8 to be incorporated 
into the model. 

2. An additional base event in the fault tree, representing the stair descent event. An arc from the 
‘scenario’ variable to this event can encode the proportion of stair events for each scenario. 

The risk model calculates probability distributions, per stair descent, for the whole system (here, the 
buildings in the institution) weighted by the proportion of stair descents in each building. In our 
example, with three buildings, we estimate an AIS 1-2 accident rate of approximately 5 / year and AIS 
6 accident rate of 0.03 / year.  

In the remainder of this section, we describe two advantages of estimating whole system risk by 
aggregating separate instances of the risk. 

Having a Risk Profile 
When the whole system risk is calculated by aggregating separate instances of the risk, we can obtain 
a risk profile (similar to Figure 5). The whole system risk estimate is useful for acceptance but the risk 
profile provides much more information indicating how the risk can be reduced. 

Inaccuracy of Using Averages to Calculate the Aggregate Risk 
The calculation of the overall system risk by aggregating the contributions of separate risks takes 
account of correlations between the fault tree and the event tree parts of the model. In our example, 
suppose that: 

• one building has steep staircases but is used mainly by young people 

• another building has older users but the staircases are not steep. 

In our model, these factors (older age of users and steepness of staircase) increase both the probability 
of loss of footing and the relative probability of the more serious accidents. The BN calculates the 
joint probability of the hazardous event and the factors, so the probabilities of the accident outcomes 
are correctly calculated for each stratum (age and steepness) before being summed. If the fault tree and 
the event tree are separated, the marginal (or average) probability of the hazardous event is used, 
effectively over representing the combination ‘old’ and ‘steep’, which is rare. In our example, this 
leads to an over estimate of the probability of accidents for some AIS values of up to 8%. In general, 
however, the use of averages can over or under estimate risk. 

4 How Parameters Clarify the Structure of the Risk Model 

4.1 Assumptions Made Explicit 

The risk analyst must estimate the probability of each event from data or experience. The probability 
varies for different instances and it is likely that the analyst evaluates the differences using some 
causal reasoning – for example, a trip hazard on this staircase would be harder to notice because the 
lighting is poor. Without explicit factors, the basis for the judgement of probabilities is less clear. 

4.2 States and Events Distinguished 

Suppose that a risk analyst wishes to model the influence of age on the ‘falls’ event, without using 
explicit parameters. It is possible to do this simply by regarding ‘Age’ as an event (see Figure 6); this 
confusion quickly increases the size of the event tree as not only the branches for ‘falls’ are duplicated 



(as required) but also those for ‘break’, which is not influenced by ‘Age’. Similar techniques can be 
used in the fault tree, e.g. to distinguish fast and slow stair descents, with the same problems.  
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Figure 6: Event Tree with a Factor Treated as an Event 

5 Related Work and Conclusions 

Others have proposed parameterised risk models. For example [6, 7] describes a risk model of the Irish 
Railway. BNs have also been used in safety and reliability, for example for the probabilistic risk 
assessment (PRA) of nuclear waste disposal [8] and air transport [9, 10]. Ways of using BNs to 
incorporate organisational factors into safety assessment have been proposed, for example in [11] 
(nuclear power plants) and [12] (maritime transportation). 

We have used an example to show how a risk model can be made both clearer and more useful by the 
addition of explicit parameters. The analysis methodology (in this case, using fault and event trees) is 
unchanged, but more of the analyst’s reasoning is represented explicitly in the model. 
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