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Abstract

Introduction

Aim was to develop a full automatic clustering approach of the time-activity curves (TAC)

from dynamic 18F-FET PET and evaluate its association with IDH1 mutation status and sur-

vival in patients with gliomas.

Methods

Thirty-seven patients (mean age: 45±13 y) with newly diagnosed gliomas and dynamic 18F-

FET PET before any histopathologic investigation or treatment were retrospectively included.

Each dynamic 18F-FET PET was realigned to the first image and spatially normalized in the

Montreal Neurological Institute template. A tumor mask was semi-automatically generated

from Z-score maps. Each brain tumor voxel was clustered in one of the 3 following centroids

using dynamic time warping and k-means clustering (centroid #1: slowly increasing slope;

centroid #2: rapidly increasing followed by slowly decreasing slope; and centroid #3: rapidly

increasing followed by rapidly decreasing slope). The percentage of each dynamic 18F-FET

TAC within tumors and other conventional 18F-FET PET parameters (maximum and mean

tumor-to-brain ratios [TBRmax and TBRmean], time-to-peak [TTP] and slope) was compared

between wild-type and IDH1 mutant tumors. Their prognostic value was assessed in terms of

progression free-survival (PFS) and overall survival (OS) by Kaplan-Meier estimates.

Results

Twenty patients were IDH1 wild-type and 17 IDH1 mutant. Higher percentage of centroid #1

and centroid #3 within tumors were positively (P = 0.016) and negatively (P = 0.01) corre-

lated with IDH1 mutated status. Also, TBRmax, TBRmean, TTP, and slope discriminated
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significantly between tumors with and without IDH1 mutation (P range 0.01 to 0.04). Pro-

gression occurred in 22 patients (59%) at a median of 13.1 months (7.6–37.6 months)

and 13 patients (35%) died from tumor progression. Patients with a percentage of centroid

#1 > 90% had a longer survival compared with those with a percentage of centroid #1 < 90%

(P = 0.003 for PFS and P = 0.028 for OS). This remained significant after stratification on

IDH1 mutation status (P = 0.029 for PFS and P = 0.034 for OS). Compared to other conven-

tional 18F-FET PET parameters, TTP and slope were associated with PFS and OS (P range

0.009 to 0.04).

Conclusions

Based on dynamic 18F-FET PET acquisition, we developed a full automatic clustering

approach of TAC which appears to be a valuable noninvasive diagnostic and prognostic

marker in patients with gliomas.

Introduction

Gliomas constitute the most frequent brain tumors [1] and are heterogeneous in histology,

genetics, and outcome [2]. In particular, the prognostic information of mutations in isocitrate

dehydrogenase (IDH) 1 and 2 has been described by several studies [3]. IDH1 mutation is a

strong and independent predictor of survival [4]. A longer survival is observed in patients with

gliomas harboring the presence of IDH1 or IDH2 mutations [5], whereas the absence of IDH1

appears as a strong predictor for poor prognosis [6]. The World Health Organization has

recently updated Central Nervous System (CNS) classification by integrating these molecular

parameters for diagnostic and prognostic evaluation of gliomas [7].

Compared to 18F-Fluorodeoxyglucose (18F-FDG) which shows high tracer uptake in nor-

mal gray matter, radiolabeled amino acids such as 11C-methionine (11C-MET), 18F-fluoro-L-

dopamine (18F-FDOPA) and 18F-fluoro-ethyl-tyrosine (18F-FET PET) [8,9] exhibit a low

tracer uptake in the normal brain and can depict brain tumors with a high tumor to back-

ground contrast. These tracers are increasingly used in the diagnostic workup of patients with

gliomas, including differential diagnosis, evaluation of tumor extension, treatment planning

and follow-up [10]. They may add some value either for prognostic or classification purposes

[11,12]. The use of amino acid PET was recently recommended by the Response Assessment

in Neuro-Oncology (RANO) working group as an additional tool for evaluating gliomas [13].

As both 18F-FDOPA and 18F-FET are not integrated into any metabolic pathway, FET uptake

signal in tumors is mainly due to perfusion and to the expression of its specialized transporter

namely L-amino acid transporter (LAT) [14]. In particular, the correlation between IDH

mutation status and imaging metabolite remains unclear [15].

Dynamic 18F-FET PET showed some interest for tumor grading [16]. Procedures for imag-

ing with 18F-FET PET usually consist of a dynamic acquisition of 40 to 50 minutes immedi-

ately started after the radiotracer injection. From these acquisitions, time-activity curves

(TAC) can be computed based on regions of interest (ROI) such as 2-dimensional (2D) circu-

lar ROI, 3-dimensional (3D) spherical ROI of 2mL centered by the maximum standardized

uptake value (SUVmax) [17] or fixed threshold which can change but is classically 90% of

SUVmax [18]. From these TAC, some features may be extracted such as time-to-peak (TTP),

maximum activity, area under curve, shape of curve and can be correlated to clinical outcomes
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[19]. IDH1 and 2 mutations were more frequent in tumors with homogeneous increasing

(90%) and focal decreasing (79%) TAC [20]. The pathophysiological mechanisms of these

TAC are not fully known or understood, and may reflect many aspects of tumor microenvi-

ronment such as neoangiogenesis, microvessel density, perfusion and tumor phenotype [21–

23]. Therefore, the main reason for using TAC is a global integration of multiple factors that

could lead to a global tumor phenotype and an individual prognostic based on the shape of the

dominant curve [20]. The shape of curve is classically assessed by a visual analysis [16] and

may be complemented with objective criteria such as TTP or slope [17,20]. To the best of our

knowledge, most of studies have included an analysis of TAC at the tumor level (one TAC for

the whole tumor) but not at the voxel level. Then, aim was to develop a full automatic cluster-

ing approach of TAC from dynamic 18F-FET PET and evaluate its association with IDH1

mutation status and survival in patients with gliomas. Results were secondarily compared to

those of other conventional 18F-FET PET parameters.

Materials and methods

Patients

Between August 2009 and December 2015, a total of 52 patients with suspected primary brain

tumor on conventional magnetic resonance imaging (MRI) were retrospectively enrolled in

this study. Every patient underwent a 18F-FET PET/CT at an initial stage before any planned

subsequent surgical stereotaxic tumor biopsy or any treatment (tumor resection, chemother-

apy, radiotherapy). Patients who required rapid surgery (<2 weeks) due to mass effect or intra-

cerebral hemorrhage, as well as patients with history of brain biopsy, surgery or brain

treatment were excluded. Also, 15 patients with normal and non-segmentable 18F-FET PET

images by our semi-automatic technique were excluded. All patients underwent imaging pro-

cedures as standard care and gave written informed consent before the 18F-FET PET/CT. Col-

lection and analysis of data was retrospective and performed after de-identification. The local

Ethics Research Committee of the State of Vaud took into account the retrospective analysis of

our database, approved the protocol (no. 2017–00758) and waived the requirement for patient

informed consent for the study analysis.

18F-FET PET acquisition

Patients underwent a dynamic 18F-FET PET/CT on Discovery D690 time-of-flight (27

patients) and Discovery LS (10 patients) (GE Healthcare, Waukesha, WI, USA). They were

required to fast for at least 4 hours before undergoing the planned 18F-FET injection as recom-

mended by EANM guidelines [24]. After intravenous injection of 214±25 MBq (range 145–

295 MBq) of 18F-FET, PET images were acquired using a dynamic protocol over 50 minutes

(10 frames of 5 min; 3.3-mm or 4.2-mm section thickness; 24 cm field-of-view, matrix size of

256 × 256). Calibration for the two machines was the same. 18F-FET PET images were recon-

structed by the iterative method ordered-subset expectation maximization (3 iterations and 16

subsets) including a Gaussian post reconstruction filter of 5 mm in full width at half maximum

(FWHM). Raw data were corrected for attenuation by soft-tissue and skull bone using an

unenhanced CT brain (120 kV, 10 mAs), and normalized to the injected dose and body mass

by calculation of the SUV.

Dynamic 18F-FET PET segmentation

All dynamic 18F-FET PET brain image volumes were temporally realigned to the first dynamic

acquisition, coregistered and spatially normalized onto the Montreal Neurological Institute

Voxel-based analysis of 18F-FET PET in gliomas
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template (McGill University, Montreal, Canada). Dimensions of the resulting voxels were

2x2x2 mm3. Images were smoothed using a Gaussian filter (FWHM 8 mm). Preprocessing was

performed using the SPM (SMP12) software implemented in Matlab version R2015a (Math-

works Inc., Sherborn, MA). In order to perform a semi-automatic contouring, a mask for glial

tumor was obtained using Z-score maps (Fig 1A). Z-score maps were obtained from the differ-

ence between each patient static acquisition (which is a summation images from 40 to 50 min-

utes) and an averaged normal 18F-FET PET brain template generated from visually normal
18F-FET PET (absence of abnormal 18F-FET uptake detected by a trained nuclear physician on

static images and t-test parametric image) of 41 patients with untreated gliomas using a Z-

score > 2.5 at the voxel level for tumor delineation and k clusters� 250 voxels. Images and

masks were visually controlled by 2 expert brain 18F-FET PET interpreters in consensus, fol-

lowed by a dilatation (3x3x3 structure element with a square connectivity equal to one and 2

iterations) to not miss adjacent pertinent voxels (Fig 1B).

Voxel clustering and extraction of dynamic 18F-FET PET TAC

As we were interested in the shape of the TAC which have shown some interest in differentiat-

ing IDH mutation status [19,20], the tumor proportion of TAC shape was investigated. A non-

supervised approach with k-means clustering to classify each voxel of the tumor mask was

used. As recommended [25], we first normalized from the mean and standard deviation

dynamic 18F-FET PET. Each time series (corresponding to a tumor voxel over the 10-time

frames) was Z-normalized to have a mean set to 0 and a standard deviation to 1 using the fol-

lowing formula T = (T-mean(T)) / std(T) where T is the 10-dimensional vector of tumor voxel

activity over time. Z-normalization is critical to compare time series. Indeed, as empirically

demonstrated by Keogh et al. [26], similarity measure on unnormalized data gives wrong

results.

The number of clusters was fixed a priori and similar time series were clustered together

using dynamic time warping (DTW) Euclidian distance. DTW aims to find the optimal non-

linear alignment between two-time series. More details about DTW are given in S1 Appendix.

K-means algorithm was used for tumor voxel clustering. Therefore, the DTW algorithm with

k-means clustering returns the k centroids that maximize intra-cluster similarity and maxi-

mize inter-cluster dissimilarity. Each voxel was then classified in one of the k centroids based

on the maximization of similarity as measured with Euclidian distance. To find the optimal

number of centroids, in which we wanted that each voxel could be classified, the elbow method

was used (Fig 2A). The elbow method calculates for each value of k (where k is the number of

clusters) the sum of squared errors (SSE) which was obtained by summing the squared error

between each original TAC from tumor voxel and the cluster centroids (produced by the

DTW and k-mean clustering) from which it was the closest. The idea of the elbow method is

to choose the k when the SSE stops decreasing “abruptly”, which produces the so-called "elbow

effect" in the graphics of SSE. Indeed, adding any cluster after this would complicate more the

model without significantly improving performance as measure with SSE. According to the

findings of the elbow method and the well-known different types of tumor TAC which are cur-

rently used to differentiate low-grade gliomas from high-grade [20,27,28] a number of 3 was

set for k, returning 3 centroids and used as main TAC patterns in the current study (Fig 2B).

For convenience reason, we labeled each resultant centroids produced by the DTW algorithm

identically as already mentioned in previous papers [27,28] (Fig 2C): centroid #1: slowly

increasing slope; centroid #2: rapidly increasing followed by slowly decreasing slope; and cen-

troid #3: rapidly increasing followed by rapidly decreasing slope). Each voxel of patients’

tumors ROI was attributed to one of the 3 cluster centroids from which the TAC of that voxel

Voxel-based analysis of 18F-FET PET in gliomas
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was the closest. Then, the number and percentage of each type of centroids for each patient

was computed. To assess the performance of this analysis, results were compared to those of

other conventional 18F-FET PET parameters (maximum and mean tumor-to-brain ratios

[TBRmax and TBRmean], time-to-peak [TTP] and slope) between IDH1 wild-type and IDH1

mutant tumors. As previously described TBR were calculated by dividing the SUVmax and

SUVmean of the tumor by the SUVmean of a larger crescent shape ROI placed in the semioval

centre of the contralateral unaffected hemisphere [29,30]. TTP was the time in minutes from

the beginning of the dynamic acquisition up to the maximum SUV of the lesion. The slope of

Fig 1. Generation of the mask for each tumor. A. Z-score map obtained from SPM12 between each patient and a population-

averaged normal 18F-FET PET brain template. B. The mask obtained from connected regions of previous Z-score map, followed by a

dilatation to not miss adjacent pertinent voxels.

https://doi.org/10.1371/journal.pone.0199379.g001

Fig 2. Voxel clustering and features extraction from dynamic 18F-FET PET. A. The Elbow method, where the abscissa is the time series number and the ordinate

axis the sum of squared errors between each voxel real value and the associated centroid which fitted best the time-activity curve (TAC). Black arrow represents the

break point in the curve, corresponding to 3 clusters centroids. B. The 3 centroids included in the final model; centroid #1: slowly increasing slope; centroid #2:

increasing slope and slowly decreasing slope; centroid #3: rapidly increasing followed by rapidly decreasing curve. C. Centroid #1, centroid #2 and centroid #3 fitted

with 3 TAC (black curves) of voxels.

https://doi.org/10.1371/journal.pone.0199379.g002
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the TAC in the late phase of 18F-FET uptake was quantified by fitting a linear regression line to

the late phase of the curve (20–50 min post-injection) and expressed as SUV/hour [17]. All

these computations were performed using python 2.7 with nilearn- and scikit-learn packages

[31].

Histopathology and determination of IDH1 mutation status

Histopathologic classification and tumor grading were performed according to the World

Health Organization (WHO) guidelines at the respective time point of histopathologic assess-

ment by trained neuropathologists blinded to MRI and 18F-FET PET brain images. All tumors

were classified according to the 2007 WHO classification of tumors of the CNS [32]. IDH1

mutation status was analyzed via immunostaining against the common mutant protein IDH1

variant R132H (anti-IDH1 R132H/DIA-H09, mouse monoclonal anti-brain tumor marker;

Dianova GmbH, Hamburg, Germany).

Statistical analysis

Continuous variables were expressed as median with their 25th-75th interquartile range.

Categorical variables were presented with absolute and relative frequencies. Characteristics

of populations were compared by using Student’s t-test or a bilateral Mann Whitney U test

for quantitative variables and chi-squared for comparison between categorical variables. Prog-

nostic value of dynamic 18F-FET TAC and IDH1 mutation status was assessed in terms of pro-

gression free-survival (PFS) and overall survival (OS). PFS was defined as the time between

initial 18F-FET PET and demonstration of unequivocal tumor progression on follow-up imag-

ing with MRI based on RANO criteria [33] and/or death. OS was defined as time from the

baseline 18F-FET PET until death from any cause. Patients with no known progression or sur-

vival were censored as of their last visit or their last scan date. Survival functions were obtained

from Kaplan-Meier estimates and compared using the log-rank test. Using X-tile software ver-

sion 3.6.1 (Yale University School of Medicine, New Haven, CT) [34], the optimal tumor voxel

percentage of each TAC and the optimal TBRmax, TBRmean, TTP, and slope to predict PFS and

OS served as cutoff to separate high-risk and low-risk patients. All these statistical analyses

were performed using SPSS software (version 23 for Windows 2010, SPSS Inc., Chicago, IL,

USA). A P value < 0.05 was considered statistically significant.

Results

Patient characteristics

Clinical and histopathological data are given in Tables 1 and 2 respectively. Out of the 52

patients included, 37 patients (14 women; mean age: 45±13 y) with positive 18F-FET PET and

histologically proven brain tumor could be segmented and were retained in the final analysis.

Twenty patients were IDH1 wild-type and 17 IDH1 mutant. These subgroups differed in

terms of age (P = 0.04) and number of patients treated with radiochemotherapy (P = 0.003).

Extraction of dynamic 18F-FET PET TAC and association with IDH1

mutation status

For all tumors, the proportion of each centroid is given in Table 2. Example of 2 patients with

anaplastic oligoastrocytoma IDH1 mutant (patient #22) and anaplastic astrocytoma IDH1

wild-type (patient #24) and their spatial repartition of centroid is illustrated in Fig 3. It showed

a higher tumor proportion of centroid #1 (98.6%) in IDH1 mutant tumor and a higher tumor

proportion of centroid #2 and centroid #3 (47.6% and 37.9% respectively) in IDH1 wild-type

Voxel-based analysis of 18F-FET PET in gliomas
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tumor. As shown in Fig 4 using boxplots, the automatic voxel clustering based on the 3 fixed

centroids confirmed that a higher percentage of tumor voxel with centroid #1 and centroid #3

was positively (P = 0.016) and negatively (P = 0.01) correlated with the IDH1 mutant status

respectively. No difference was found with centroid #2 (P = 0.13). As shown in Table 3,

TBRmax, TBRmean, TTP, and slope discriminated significantly between IDH1 wild-type and

IDH1 mutant tumors (P range 0.01 to 0.04).

Association with survival

The median (25th-75th interquartile range) duration of follow-up was 22.5 months (11.8–38.4

months). Relapse/progression occurred in 22 patients (59%) at a median of 13.1 months (7.6–

37.6 months) and 13 patients (35%) died from tumor progression. As shown in Fig 5, Kaplan-

Meier estimates revealed that patients with IDH1 mutant tumors had a significant longer PFS

(P = 0.001) and OS (P = 0.004) than IDH1 wild-type. Also, using X-tile software, a single opti-

mal threshold was defined and showed that patients with a higher percentage of tumor voxel

with centroid #1> 90% had a longer PFS (P = 0.003) and OS (P = 0.028) due to the higher

number of IDH1 mutant tumors (77% vs. 29% in patients with tumor voxel percentage of cen-

troid #1 < 90%, P = 0.005). This remained significant after stratification on IDH1 mutation

status (P = 0.029 for PFS and P = 0.034 for OS). Compared to other conventional 18F-FET PET

parameters, only TTP and slope were associated with PFS and OS (P range 0.009 to 0.04, Fig

6).

Discussion

Using an automatic clustering of TAC, we aimed at investigating the association between

dynamic 18F-FET PET findings of whole-tumor voxels, IDH1 mutation status and survival in

patients with gliomas. This kind of approach already has been proposed for MRI or 18F-FDG

PET [35], however to the best of our knowledge, this is the first time it has been used for
18F-FET PET. This method can be easily applied for clinical routine. A trained physician can

perform all the necessary steps from spatial normalization to segmentation in less than 5 min-

utes. The automatic TAC clustering, once it is firstly trained (to get the main centroids), is a

matter of seconds. This method, as doesn’t involve physicians, is less subjective to bias com-

pared to visual analysis, appears more reproducible and becomes integrated perfectly into the

Table 1. Population characteristics.

Characteristics All patients

(n = 37)

IDH1 wild-type tumors

(n = 20)

IDH1 mutant tumors

(n = 17)

P value

Age 44.7 (36;53) 49.1 (40–59) 42.6 (36–45) 0.04

Female gender 14 (37.8) 8 (40) 6 (35.3) 0.77

Delay between 18F-FET PET and histopathological diagnosis� 1.1 (0.5;1.7) 0.8 (0.2–1.3) 1.4 (1.0–2.1) 0.49

Treatments

Surgery 6 (16.2) 1 (5) 5 (29.4) 0.05

Radiochemotherapy 11 (29.7) 10 (50) 1 (5.9) 0.003

Chemotherapy 9 (24.3) 4 (20) 5 (29.4) 0.51

Surgery + radiochemotherapy 8 (21.6) 3 (15) 5 (29.4) 0.65

None 3 (8.1) 2 (10) 1 (5.9) 0.29

Values are median (25th-75th interquartile range) or n (%).

�expressed as months

IDH, isocitrate dehydrogenase

https://doi.org/10.1371/journal.pone.0199379.t001
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Table 2. Histopathological and 18F-FET PET data.

Histopathological data 18F-FET PET data

# Type MIB-1 IDH1

mutation

WHO

grade

Centroid

#1�� (%)

Centroid

#2�� (%)

Centroid

#3�� (%)

SUVmax

(g/ml)

SUVmean

(g/ml)

TBRmax TBRmean TTP

(min)

Slope

(SUV/

h)

1 Oligodendroglioma 5 + II 98.2 0.1 1.7 3.6 2.1 4.1 2.4 45 1.23

2 Anaplastic

astrocytoma

20 - III 5.2 54.6 40.2 2.4 1.5 4.0 2.5 15 -0.72

3 Anaplastic

astrocytoma

5 - III 27.3 70.8 1.9 2.2 1.8 2.4 2.0 25 -0.43

4 Oligodendroglioma 15 + II 7.5 57.4 35.1 3.4 2.1 3.8 2.3 15 -0.28

5 Low-grade glioma 0 + I 97.2 0 2.8 1.4 1.1 1.6 1.2 30 0.14

6 Anaplastic

oligoastrocytoma

Unknown + III 95.3 4.7 0 4.0 2.2 3.1 1.7 45 0.05

7 Secondary

glioblastoma�
15 + IV 100 0 0 1.1 1.0 1.2 1.1 45 0.35

8 Anaplastic

oligoastrocytoma

10 + III 5.2 33.9 60.9 1.7 1.2 2.4 1.7 10 -0.32

9 Primary glioblastoma 30 - IV 99.9 0 0.1 3.7 2.1 4.4 2.6 45 0.79

10 Anaplastic

oligodendroglioma

60 - III 54.3 45.7 0 2.3 1.6 3.3 2.3 35 -0.26

11 Oligoastrocytoma 15 + II 71.7 28.3 0 2.2 1.7 2.8 2.1 40 0.11

12 Oligoastrocytoma 15 - II 10.9 24.8 64.3 2.9 2.1 3.3 2.5 10 -0.83

13 Primary glioblastoma 40 - IV 27.6 31.3 41.1 2.4 1.6 3.0 2.0 10 -0.61

14 Anaplastic

oligoastrocytoma

30 - III 89.9 9.7 0.4 2.4 1.9 2.0 1.6 45 -0.07

15 Anaplastic

oligodendroglioma

60 - III 15.5 33.5 51 2.5 1.8 3.2 2.1 10 -0.65

16 Oligoastrocytoma 10 - II 11.8 28.8 59.4 3.3 2.0 4.1 2.5 10 -0.96

17 Oligodendroglioma 10 + II 14.6 83 2.4 2.6 1.4 2.9 1.6 15 -1.01

18 Anaplastic

astrocytoma

10 + III 12.6 85.7 1.7 2.2 1.7 1.8 1.4 20 0.06

19 Anaplastic

astrocytoma

40 - III 81.9 10.2 7.9 4.0 2.3 6.7 3.8 40 0.55

20 Diffuse astrocytoma 5 - II 21.1 66.4 12.5 3.3 2.4 3.7 2.6 20 -1.16

21 Ganglioglioma 2 - II 1.8 28.9 69.3 2.6 1.5 4.3 2.5 10 -0.70

22 Anaplastic

oligoastrocytoma

2 + III 98.6 0.1 1.3 2.2 1.7 2.4 1.9 45 1.11

23 Low-grade glioma 3 - I 6.5 76.7 16.8 2.6 1.9 2.9 2.1 15 -0.50

24 Anaplastic

astrocytoma

10 - III 14.5 47.6 37.9 2.4 1.6 3.4 2.3 15 -0.68

25 Anaplastic

oligodendroglioma

20 + III 42.2 28.8 29 3.5 2.3 3.9 2.5 20 -0.91

26 Oligodendroglioma 3 + II 98.8 1.1 0.1 2.7 2.0 3.4 2.5 45 0.34

27 Gemistocytic

astrocytoma

0 + II 93.5 6.5 0 2.2 1.7 2.9 2.2 35 0.32

28 Oligoastrocytoma 1 + II 100 0 0 1.6 1.4 2.3 2.0 45 0.56

29 Oligoastrocytoma 10 + II 97.2 2.7 0.1 3.3 2.2 3.4 2.1 45 0.34

30 Primary glioblastoma 30 - IV 9.3 50.3 40.4 5.4 2.9 5.3 2.8 10 -0.94

31 Oligoastrocytoma 10 - II 93.5 3.3 3.2 4.5 3.3 4.9 3.8 40 0.43

32 Diffuse astrocytoma 3 - II 0 0.1 99.9 1.4 1.2 1.9 1.4 5 -0.66

33 SEGA 1 - I 100 0 0 2.9 1.8 4.1 2.6 45 0.54

34 Oligodendroglioma 5 + II 92.5 7.5 0 2.2 1.8 2.8 2.3 45 0.13

(Continued)
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new area of large database. Also, as data were normalized, this kind of approach is more homo-

geneous between different centers and allows more feasible multicenter clinical trials.

Advantages of voxel-wise analysis of TAC include more precise characterization of tumor

phenotypes and more precise assessment of survival. Indeed, when considering the whole

tumor ROI for extracting the TAC, in 34 patients out of 37, the TAC’s shape of the whole

tumor was in accordance with the predominant TAC (the one with the highest proportion).

The whole tumor TAC shape didn’t reflect the majority of the voxels shape TAC in 3 patients.

For example, in one patient with anaplastic astrocytoma IDH1 wild-type (patient #37), the

extracted TAC was centroid #2 when considering a ROI on the whole tumor. When consider-

ing the proportion of each centroid, his prognosis was more defined. With a predominant cen-

troid # 1 of 50.6%, the patient was classified as high-risk (as it was less than the threshold of

90%). Follow-up confirmed his worse survival with a low PFS and OS (3.4 and 13.8 months

respectively). This discrepancy between both analyses may be explained by the fact that when a

Table 2. (Continued)

Histopathological data 18F-FET PET data

# Type MIB-1 IDH1

mutation

WHO

grade

Centroid

#1�� (%)

Centroid

#2�� (%)

Centroid

#3�� (%)

SUVmax

(g/ml)

SUVmean

(g/ml)

TBRmax TBRmean TTP

(min)

Slope

(SUV/

h)

35 Anaplastic

oligoastrocytoma

8 + III 30.8 57.1 12.1 1.8 1.4 2.6 2.0 25 -0.08

36 Primary glioblastoma 80 - IV 73.5 26.5 0 1.9 1.4 2.7 2.0 45 -0.31

37 Anaplastic

astrocytoma

40 - III 50.6 22.5 26.9 2.1 1.8 2.2 1.9 20 0.04

IDH, isocitrate dehydrogenase; WHO, World Health Organization; SEGA, subependymal giant cell astrocytoma; SUV, standardized uptake value; TBR, tumor-to-brain

ratio; TTP, time-to-peak;

�malignant transformation from oligodendroglioma;

�� tumor proportion of each centroid

https://doi.org/10.1371/journal.pone.0199379.t002

Fig 3. Example of 2 patients with anaplastic oligoastrocytoma IDH1 mutant (patient #22) and anaplastic

astrocytoma IDH1 wild-type (patient #24) and their spatial repartition of centroid (blue: Tumor repartition of

centroid #1, green: Tumor repartition of centroid #2, grey: Tumor repartition of centroid #3).

https://doi.org/10.1371/journal.pone.0199379.g003
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full ROI is taken, data are summed and some local variations of voxel of lower intensity may

be lost. Then, retained information are the ones of the most actives voxels.

Shapes of TAC are not yet fully understood and are hypothesized to reflect many aspects of

tumor microenvironment and tumor phenotype. Using PET MRI scan, Zhang et al. [23]

reported that a positive correlation (r = 0.53; P = 0.002) was found on 2D ROI between
18F-FET PET tumor-to-brain ratio and regional cerebral blood flow as measured using arterial

spin labeling. Nevertheless, as shown with the Pearson product moment “r”, even if there

might be a positive correlation, it remained weak and didn’t fully reflect the pathophysiological

complexity of gliomas. Xiong et al. found that IDH mutant tumors had also a lower microvas-

cular density [36]. These findings are in accordance with our study as a lower microvascular

density could lead, all other things equal otherwise, to a lower perfusion and therefore to a

lower uptake and slope of shape. Our IDH1 mutant tumors had a lower 18F-FET uptake and as

they were composed of majority of centroid #1 (with the lowest initial slope) and less centroid

#3 (high initial slope). The centroid #3 is classically described as a high wash-out curve which

may reflect local tumor aggressiveness due to a higher perfusion and an increased metabolic

turnover in tumor cells. Also, our results are in line with those observed by Thon et al. [20], as

the ascending curves would correspond to our centroid #1 and had a better prognosis in term

of PFS (85% 2-year survival for homogeneous increasing TAC against 51% for focal decreasing

TAC and 28% for homogeneous decreasing TAC).

IDH1 mutant tumors had a lower 18F-FET uptake in our cohort (Table 3). IDH1 and IDH2

belong to the NADP+- dependent IDH isoforms which are found in the cytosol for IDH1 and

mitochondria for IDH2. IDH1 and IDH2 produce NADPH by catalyzing the oxidative decar-

boxylation of isocitrate to α-oxoglutarate (OG) outside of the Krebs cycle. NADPH plays a

substantial role in cellular control of oxidative damage. Loss of enzyme activity due to the

dominant negative effect of IDH mutants leads to a new enzymatic activity transforming α-

cetoglutarate into 2-hydroxyglutarate (2-HG). This leads to an inhibition of the 2-OG

Fig 4. Association with IDH1 mutation status. Boxplots with percentage of tumor voxels with centroids #1, #2 and #3 (from left to right) according to the IDH1

mutation status.

https://doi.org/10.1371/journal.pone.0199379.g004

Table 3. Association with IDH1 mutation status.

All patients IDH1 wild-type tumors IDH1 mutant tumors P value

TBRmax 2.9 (2.4;3.6) 3.3 (2.7;4.1) 2.6 (2.2;3.3) 0.02

TBRmean 2.1 (1.7;2.3) 2.2 (2;2.5) 1.9 (1.7;2.2) 0.02

TTP (min) 25 (15;45) 17.5 (10;40) 40 (20;45) 0.04

Slope (SUV/h) -0.08 (-0.66;0.34) -0.56 (-0.7;-0.05) 0.13 (-0.08;0.35) 0.01

Values are median (25th;75th interquartile range)

SUV, standard uptake value; TBR, tumor-to-brain ratio; TTP, time-to-peak

https://doi.org/10.1371/journal.pone.0199379.t003
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Fig 5. Kaplan-Meier estimates of progression-free survival (PFS) and overall survival (OS) according to IDH1 mutation (upper panel) status and

tumor percentage of centroid #1 (lower panel). � NR = Not reached due to the lack of event.

https://doi.org/10.1371/journal.pone.0199379.g005
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Fig 6. Kaplan-Meier estimates of progression-free survival (PFS) and overall survival (OS) according to other

conventional 18F-FET PET parameters (TBRmax, TBRmean, TTP, and slope). � NR = Not reached due to the lack of

event.

https://doi.org/10.1371/journal.pone.0199379.g006
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dependent enzymes and may act as an oncometabolite with alternative molecular pathways

[37] that may influence amino acid tracer uptake in the tumor [15]. Controversial results have

been described for the effect of IDH mutant on the hypoxia-inducible factor (HIF) pathway

which is known to stimulate the expression of glucose transporter (GLUT) and LAT. Indeed,

as 18F-FET is not metabolized nor stocked, its signal only depends on the expression of the

LAT and the intra/extracellular concentration of 18F-FET. IDH1 appears to function as a

tumor suppressor that, when mutationally inactivated, contributes to tumorigenesis in part

through the induction of the HIF-1 pathway. Zhao et al. reported that overexpression of IDH

mutant in U87M glioma cells increased HIF-1α target expression proteins [38]. Nevertheless,

another study showed that R-2HG that would promote the activation of EGLN1-2 or 3, which

would result in the degradation of HIF-1α. Analysis of the gene expression from the TCGA

data archives revealed that tumors expressing the IDH mutant had a reduced expression of

HIF target genes compared to tumors containing IDH wild-type [39]. HIF is known to be

related to the metabolism enzyme, particularly GLUT, but also LAT and even if its role remain

unclear, it have been described in other cancers such as mesotheliomas or lung cancer [40].

Other amino acid tracers have been investigated. Recently, in 109 patients with gliomas, Lopci

et al. showed that 11C-MET PET parameters were significantly correlated with histological

grade and IDH1 mutation status. In this cohort, even if it didn’t reach the significance level

(P = 0.05), SUVmax seemed to be inversely correlated with the presence of IDH1 mutation in

this cohort [41]. Also, Verger et al. [42] found that IDH mutations were paradoxically corre-

lated with a higher 18F-FDOPA uptake in diffuse gliomas. The apparent discrepancy between

the uptake pattern of 18F-FET, 11C-MET and 18F-FDOPA may be linked to the metabolomic

profile of IDH mutant tumors [15].

The current study had several limitations. The main limitation was the retrospective nature

of the data collection that may have introduced a selection bias. Secondly, as some 18F-FET

PET were visually normal and confirmed with normal Z-score maps, it was impossible to

delineate 15 patients out of the 52 patients initially included. This may also have included a

selection bias. Thirdly, we may criticize the generation of the “normal FET population” using

41 patients with visually normal 18F-FET PET and untreated gliomas. Indeed, those patients

had abnormal MRI but which didn’t show any metabolic rendering. Nevertheless, using SPM,

it was checked that each patient didn’t statistically differ from the 40 other patients and we do

not think that it shall impact greatly on the final ROI because of the voxel that may be missed

would be the ones with the smallest intensity value. Fourthly, glioblastomas (5 patients) which

are classically IDH wild-type (90% of glioblastomas) for primary subtype, are highly metabolic

tumors with a high amino acid metabolism and are associated with a poorer prognosis. Never-

theless, removing them didn’t change the significance level of our findings in an additional

analysis. Two different PET/CT scanners were used in this study. It has been verified that the

mean activity was not statistically different between both machines. After preprocessing, the

resulting voxel were downsampled to the same size. All data were normalized from mean

which shouldn’t impact the shape and tumor proportion of TAC. As no normalization was

performed on the unnormalized data to compare the mean tumor activity between IDH1

wild-type and IDH1 mutant, it has been checked (data not shown) that activity was not statisti-

cally different between both PET/CT scanners. Also, the proportion of IDH1 mutant tumors

was split equally between both PET/CT machines.

Conclusion

In conclusion, based on dynamic 18F-FET PET acquisition, we developed a full automatic clus-

tering approach of TAC which appears to be a valuable noninvasive diagnostic (for IDH1
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mutant status) and prognostic marker in patients with gliomas. Further larger prospective

studies are warranted to validate these findings.

Supporting information

S1 Appendix. Dynamic time warping (DTW). DTW aims to find a non-linear agreement

between two-time series. Let’s consider two time series Q and C with the same number of time

points n where Q = q1, q2. . ., qn and C = c1, c2 . . ., cn, it can build the M matrix of dimension

n×n matrix whose i, jth element is the Euclidean distance between qi and cj. Therefore, objec-

tive of DTW aims to find the path through M that minimizes the cumulative distance. The

optimal path is found following recursive function: γ(i,j) = d(qi,cj) + min(γ(i−1,j−1), γ(i−1,j), γ
(i,j−1)).
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18. Pöpperl G, Kreth FW, Mehrkens JH, Herms J, Seelos K, Koch W, et al. FET PET for the evaluation of

untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med

Mol Imaging. 2007; 34:1933–1942. https://doi.org/10.1007/s00259-007-0534-y PMID: 17763848

19. Suchorska B, Jansen NL, Kraus T, Giese A, Bartenstein P, Tonn J. Correlation of dynamic 18FET-PET

with IDH 1 mutation for prediction of outcome in anaplastic astrocytoma WHO˚ III independently from

tumor vascularisation. J Clin Oncol. 2015; 33:2037–2037.

20. Thon N, Kunz M, Lemke L, Jansen NL, Eigenbrod S, Kreth S, et al. Dynamic 18FET PET in suspected

WHO grade II gliomas defines distinct biological subgroups with different clinical courses: Dynamic PET

in Suspected Low-Grade Gliomas. Int J Cancer. 2015; 136:2132–2145. https://doi.org/10.1002/ijc.

29259 PMID: 25311315

21. Stockhammer F, Plotkin M, Amthauer H, van Landeghem FKH, Woiciechowsky C. Correlation of F-18-

fluoro-ethyl-tyrosin uptake with vascular and cell density in non-contrast-enhancing gliomas. J Neuroon-

col. 2008; 88:205–210. https://doi.org/10.1007/s11060-008-9551-3 PMID: 18317691

22. Kunz M, Thon N, Eigenbrod S, Hartmann C, Egensperger R, Herms J, et al. Hot spots in dynamic

18FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neuro-Oncol.

2011; 13:307–316. https://doi.org/10.1093/neuonc/noq196 PMID: 21292686

Voxel-based analysis of 18F-FET PET in gliomas

PLOS ONE | https://doi.org/10.1371/journal.pone.0199379 June 28, 2018 15 / 16

https://doi.org/10.1056/NEJMoa0808710
http://www.ncbi.nlm.nih.gov/pubmed/19228619
https://doi.org/10.1200/JCO.2009.23.6497
https://doi.org/10.1200/JCO.2009.23.6497
http://www.ncbi.nlm.nih.gov/pubmed/19901110
https://doi.org/10.1007/s00401-016-1545-1
http://www.ncbi.nlm.nih.gov/pubmed/27157931
https://doi.org/10.1016/j.nucmedbio.2006.01.002
https://doi.org/10.1016/j.nucmedbio.2006.01.002
http://www.ncbi.nlm.nih.gov/pubmed/16631076
https://doi.org/10.1093/neuonc/nov148
http://www.ncbi.nlm.nih.gov/pubmed/26243791
https://doi.org/10.1093/neuonc/nor054
https://doi.org/10.1093/neuonc/nor054
http://www.ncbi.nlm.nih.gov/pubmed/21757446
https://doi.org/10.1007/s00330-015-3691-6
https://doi.org/10.1007/s00330-015-3691-6
http://www.ncbi.nlm.nih.gov/pubmed/25813014
https://doi.org/10.1097/RLU.0000000000000897
http://www.ncbi.nlm.nih.gov/pubmed/26204212
https://doi.org/10.1093/neuonc/now058
https://doi.org/10.1093/neuonc/now058
http://www.ncbi.nlm.nih.gov/pubmed/27106405
https://doi.org/10.1371/journal.pone.0157139
https://doi.org/10.1371/journal.pone.0157139
http://www.ncbi.nlm.nih.gov/pubmed/27276226
https://doi.org/10.1007/s00259-017-3710-8
https://doi.org/10.1007/s00259-017-3710-8
http://www.ncbi.nlm.nih.gov/pubmed/28451826
https://doi.org/10.1093/neuonc/nos259
http://www.ncbi.nlm.nih.gov/pubmed/23090986
https://doi.org/10.1093/neuonc/now149
http://www.ncbi.nlm.nih.gov/pubmed/27471107
https://doi.org/10.1007/s00259-007-0534-y
http://www.ncbi.nlm.nih.gov/pubmed/17763848
https://doi.org/10.1002/ijc.29259
https://doi.org/10.1002/ijc.29259
http://www.ncbi.nlm.nih.gov/pubmed/25311315
https://doi.org/10.1007/s11060-008-9551-3
http://www.ncbi.nlm.nih.gov/pubmed/18317691
https://doi.org/10.1093/neuonc/noq196
http://www.ncbi.nlm.nih.gov/pubmed/21292686
https://doi.org/10.1371/journal.pone.0199379


23. Zhang K, Langen K-J, Neuner I, Stoffels G, Filss C, Galldiks N, et al. Relationship of regional cerebral

blood flow and kinetic behaviour of O-(2-(18)F-fluoroethyl)-L-tyrosine uptake in cerebral gliomas. Nucl

Med Commun. 2014; 35:245–251. https://doi.org/10.1097/MNM.0000000000000036 PMID: 24240195

24. Vander Borght T, Asenbaum S, Bartenstein P, Halldin C, Kapucu O, Van Laere K, et al. EANM proce-

dure guidelines for brain tumour imaging using labelled amino acid analogues. Eur J Nucl Med Mol

Imaging. 2006; 33:1374–1380. https://doi.org/10.1007/s00259-006-0206-3 PMID: 16932934

25. Rakthanmanon T, Campana B, Mueen A, Batista G, Westover B, Zhu Q, et al. Addressing Big Data

Time Series: Mining Trillions of Time Series Subsequences Under Dynamic Time Warping. ACM Trans

Knowl Discov Data. 2013; 7:10:1–10:31.

26. Keogh E, Kasetty S. On the need for time series data mining benchmarks: a survey and empirical dem-

onstration. Data Min Knowl Discov. 2003; 7:349–371.

27. Calcagni ML, Galli G, Giordano A, Taralli S, Anile C, Niesen A, et al. Dynamic O-(2- [18F]fluoroethyl)-L-

tyrosine (F-18 FET) PET for glioma grading: assessment of individual probability of malignancy. Clin

Nucl Med. 2011; 36:841–847. https://doi.org/10.1097/RLU.0b013e3182291b40 PMID: 21892031

28. Galldiks N, Stoffels G, Filss C, Rapp M, Blau T, Tscherpel C, et al. The use of dynamic O-(2-18F- fluor-

oethyl)-l-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro-Oncol.

2015; 17:1293–1300. https://doi.org/10.1093/neuonc/nov088 PMID: 26008606

29. Verger A, Stoffels G, Bauer EK, Lohmann P, Blau T, Fink GR, et al. Static and dynamic 18F-FET PET

for the characterization of gliomas defined by IDH and 1p/19q status. Eur J Nucl Med Mol Imaging.

2017. https://doi.org/10.1007/s00259-017-3846-6 PMID: 29043400

30. Herzog H, Langen K-J, Weirich C, Rota Kops E, Kaffanke J, Tellmann L, et al. High resolution BrainPET

combined with simultaneous MRI. Nukl Nucl Med. 2011; 50:74–82.

31. Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller A, Kossaifi J, et al. Machine learning for

neuroimaging with scikit-learn. Front Neuroinformatics. 2014; 8:14.

32. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO Classifica-

tion of Tumours of the Central Nervous System. Acta Neuropathol. 2007; 114:97–109. https://doi.org/

10.1007/s00401-007-0243-4 PMID: 17618441

33. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, et al. Updated

response assessment criteria for high-grade gliomas: response assessment in neuro- oncology working

group. J Clin Oncol. 2010; 28:1963–1972. https://doi.org/10.1200/JCO.2009.26.3541 PMID: 20231676

34. Camp RL, Dolled-Filhart M, Rimm DL. X-tile: a new bio-informatics tool for biomarker assessment and

outcome-based cut-point optimization. Clin Cancer Res. 2004; 10:7252–7259. https://doi.org/10.1158/

1078-0432.CCR-04-0713 PMID: 15534099

35. Ikawa M, Okazawa H, Tsujikawa T, Matsunaga A, Yamamura O, Mori T, et al. Increased oxidative

stress is related to disease severity in the ALS motor cortex: A PET study. Neurology. 2015; 84:2033–

2039. https://doi.org/10.1212/WNL.0000000000001588 PMID: 25904686

36. Xiong J, Tan W-L, Pan J-W, Wang Y, Yin B, Zhang J, et al. Detecting isocitrate dehydrogenase gene

mutations in oligodendroglial tumors using diffusion tensor imaging metrics and their correlations with

proliferation and microvascular density: DTI Metrics in the Detection of IDH Mutations. J Magn Reson

Imaging. 2016; 43:45–54. https://doi.org/10.1002/jmri.24958 PMID: 26016619

37. Metellus P, Colin C, Taieb D, Guedj E, Nanni-Metellus I, de Paula AM, et al. IDH mutation status impact

on in vivo hypoxia biomarkers expression: new insights from a clinical, nuclear imaging and immunohis-

tochemical study in 33 glioma patients. J Neurooncol. 2011; 105:591–600. https://doi.org/10.1007/

s11060-011-0625-2 PMID: 21643985

38. Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, et al. Glioma-Derived Mutations in IDH1 Dominantly

Inhibit IDH1 Catalytic Activity and Induce HIF-1. Science. 2009; 324:261–265. https://doi.org/10.1126/

science.1170944 PMID: 19359588

39. Koivunen P, Lee S, Duncan CG, Lopez G, Lu G, Ramkissoon S, et al. Transformation by the (R)-enan-

tiomer of 2-hydroxyglutarate linked to EGLN activation. Nature. 2012; 483:484–488. https://doi.org/10.

1038/nature10898 PMID: 22343896

40. Kaira K, Oriuchi N, Takahashi T, Nakagawa K, Ohde Y, Okumura T, et al. LAT1 expression is closely

associated with hypoxic markers and mTOR in resected non-small cell lung cancer. Am J Transl Res.

2011; 3:468–478. PMID: 22046488

41. Lopci E, Riva M, Olivari L, Raneri F, Soffietti R, Piccardo A, et al. Prognostic value of molecular and

imaging biomarkers in patients with supratentorial glioma. Eur J Nucl Med Mol Imaging. 2017; 44:1155–

1164. https://doi.org/10.1007/s00259-017-3618-3 PMID: 28110346

42. Verger A, Metellus P, Sala Q, Colin C, Bialecki E, Taieb D, et al. IDH mutation is paradoxically associ-

ated with higher 18F-FDOPA PET uptake in diffuse grade II and grade III gliomas. Eur J Nucl Med Mol

Imaging. 2017; 44:1306–1311. https://doi.org/10.1007/s00259-017-3668-6 PMID: 28293705

Voxel-based analysis of 18F-FET PET in gliomas

PLOS ONE | https://doi.org/10.1371/journal.pone.0199379 June 28, 2018 16 / 16

https://doi.org/10.1097/MNM.0000000000000036
http://www.ncbi.nlm.nih.gov/pubmed/24240195
https://doi.org/10.1007/s00259-006-0206-3
http://www.ncbi.nlm.nih.gov/pubmed/16932934
https://doi.org/10.1097/RLU.0b013e3182291b40
http://www.ncbi.nlm.nih.gov/pubmed/21892031
https://doi.org/10.1093/neuonc/nov088
http://www.ncbi.nlm.nih.gov/pubmed/26008606
https://doi.org/10.1007/s00259-017-3846-6
http://www.ncbi.nlm.nih.gov/pubmed/29043400
https://doi.org/10.1007/s00401-007-0243-4
https://doi.org/10.1007/s00401-007-0243-4
http://www.ncbi.nlm.nih.gov/pubmed/17618441
https://doi.org/10.1200/JCO.2009.26.3541
http://www.ncbi.nlm.nih.gov/pubmed/20231676
https://doi.org/10.1158/1078-0432.CCR-04-0713
https://doi.org/10.1158/1078-0432.CCR-04-0713
http://www.ncbi.nlm.nih.gov/pubmed/15534099
https://doi.org/10.1212/WNL.0000000000001588
http://www.ncbi.nlm.nih.gov/pubmed/25904686
https://doi.org/10.1002/jmri.24958
http://www.ncbi.nlm.nih.gov/pubmed/26016619
https://doi.org/10.1007/s11060-011-0625-2
https://doi.org/10.1007/s11060-011-0625-2
http://www.ncbi.nlm.nih.gov/pubmed/21643985
https://doi.org/10.1126/science.1170944
https://doi.org/10.1126/science.1170944
http://www.ncbi.nlm.nih.gov/pubmed/19359588
https://doi.org/10.1038/nature10898
https://doi.org/10.1038/nature10898
http://www.ncbi.nlm.nih.gov/pubmed/22343896
http://www.ncbi.nlm.nih.gov/pubmed/22046488
https://doi.org/10.1007/s00259-017-3618-3
http://www.ncbi.nlm.nih.gov/pubmed/28110346
https://doi.org/10.1007/s00259-017-3668-6
http://www.ncbi.nlm.nih.gov/pubmed/28293705
https://doi.org/10.1371/journal.pone.0199379

