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ABSTRACT  

Several waterborne polyurethane urea dispersions (WPUUs) were prepared by mixing 

different amounts of two waterborne polyurethane urea dispersions made with 

polyester (WPUU-Polyester) and polycarbonate diol (WPUU-PCD). Their crystallinity, 

thermal, rheological, viscoelastic and adhesion properties depended on the segmented 

structure and degree of phase separation which were determined by the different 

content of the parent dispersions. The PUU films made with WPUU-Polyester+WPUU-

PCD mixtures containing more than 50 wt% of WPUU-PCD showed higher hard 

segments content and lower degree of phase separation, and the addition of 25 wt% of 

WPUU-Polyester imparted crystallinity to the polyurethane urea due to the interactions 

between the carbonate groups in the soft segments. The differences in the degree of 

phase separation and crystallinity of the PUU films made with WPUU-

Polyester+WPUU-PCD mixtures were evidenced by the increase in the glass transition 

temperature associated to the alpha relaxation of the soft segments, and the higher 

modulus at the cross-over between the storage and loss moduli. Excellent adhesion 
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was obtained in plasticized PVC/WPUU/plasticized PVC joints, and a cohesive failure 

of PVC was always obtained, irrespective of the composition of WPUU-

Polyester+WPUU-PCD mixtures. Furthermore, the adhesion of surface-chlorinated 

vulcanized styrene-butadiene (SBR) rubber/WPUU+5 wt% hardener/roughened leather 

joints were high and similar in all joints and a dominant cohesive failure in the rubber 

substrate was produced. The accelerated ageing by immersion in water at 70 ºC during 

different times showed that the polyurethane urea film and the surface-chlorinated 

vulcanized SBR rubber/WPUU+5 wt% hardener/roughened leather joint made with 

WPUU-PCD dispersion were not affected, but noticeable hydrolytic degradation of the 

ester units in the soft segments was produced in PUU-Polyester and, to a less extent, 

in PUU-50Polyester/50PCD films and adhesive joints.  

 

Keywords: A. Water based; A. Polyurethane; C. Peel; D. Aging 

 

1. INTRODUCTION 

Polyurethane adhesives are prepared by step-growth polymerization between 

isocyanate, polyol and chain extender. Environmental demands push the need for 

developing adhesives with low VOCs, and waterborne polyurethane urea (WPUUs) 

adhesives are one of the most common alternatives. WPUU dispersions are commonly 

synthesized by dispersing aqueous isocyanate-terminated polyurethane prepolymer in 

water in presence of diamine chain extender [1]. The structure of WPUUs consists of 

alternating soft and hard segments in separated microphases that under appropriate 

conditions form hard and soft domains. The soft segments are commonly made of 

polyol (polyether, polyester, polycaprolactone, polycarbonate diol), and the hard 

segments are obtained by reacting diisocyanate and low molecular weight diamine or 

diol chain extender. The physicochemical and adhesion properties of WPPUs can be 

designed by changing their chemical composition, the molecular weight of the raw 

materials, and the hard to soft segments ratio (NCO/OH ratio), among other 

parameters [2-19].  

Few studies have been devoted to the use of polyol mixtures for improving the 

properties of WPUUs [20-26]. Recently, the synthesis and characterization of WPUUs 

made with mixtures of polyester polyol and polycarbonate diol (PCD) were carried out 

[27], and they showed particular features in terms of structure and degree of phase 

separation when the mixture of polyols contained more than 50 wt% of polycarbonate 
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diol (PCD). Furthermore, the increase of the PCD content in the WPUU adhesive 

improved the resistance to hydrolysis of the adhesive joints.  

An alternative approach to the synthesis of WPUUs with mixtures of polyols of different 

nature is the mixing of different WPUUs. There are few investigations, mainly patents, 

on the use of mixtures of polyurethane dispersions intended for producing coatings 

with improved properties on wood, metal, fabrics and plastics [28,29]. More recently, 

Chai et al. [30] have proposed the so-called “special physical blending” method for 

obtaining waterborne polyurethane dispersions with high solids content (up to 66 wt%) 

that involved the addition of one waterborne polyurethane dispersion over another one 

during the acetone dispersion step, both having very different particle sizes. However, 

in that study the adhesion properties of the dispersions have not been considered. To 

the best of our knowledge the use of mixtures of different WPUU dispersions as 

adhesives has not been studied yet.  

Upon water removal, a mixture of two waterborne polymer dispersions will yield a solid 

film composed of different phases of each polymer in which the structure will depend 

on their colloidal stability during the film formation process. Thus, the partial micelle 

flocculation during film formation will result in the formation of regions of one polymer 

component into the other [31]. In this study, the structure of different polyurethane urea 

(PUU) films prepared from mixtures containing different amounts of waterborne 

dispersion made with polyester polyol - WPUU-Polyester - and waterborne dispersion 

made with polycarbonate diol - WPUU-PCD – were studied. Figure 1 shows a scheme 

of the steps in the film formation process of PUU film prepared with mixtures of WPUU-

Polyester and WPUU-PCD mixtures [PUU-xxPolyester/yyPCD] as compared to the one 

of PUU film prepared from one WPUU made with mixtures of polyester polyol and 

polycarbonate diol [WPUU-(xxPolyester/yyPCD)]. When the micelles of the WPUUs 

come into contact, their surfaces deform to yield a close-packed arrangement in which 

the structure is determined by the different distribution of hard and soft segments of the 

parent WPUUs. Therefore, the structure of the PUU films will differ depending on their 

content of WPUU-Polyester and WPUU-PCD dispersions, and their adhesion and 

resistance to ageing are expected to be different.   

 

Figure 1. Scheme of the micelles aggregation during water evaporation in (a) WPUU made with 

mixture of polyester polyol and polycarbonate diol, and (b) mixtures of WPUU-Polyester and 

WPUU-PCD.  

 

2. EXPERIMENTAL  
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2.1. Materials 

Two polyols of different nature with molecular weight of 2000 g/mol, polycarbonate of 

1,6-hexanediol (PCD) supplied by UBE Corporation Europe (Castellón, Spain), and 

polyadipate of 1,4-butanediol (Polyester) supplied by Synthesia Española S.A. 

(Barcelona, Spain) were used. Before use, the residual moisture of the polyols was 

removed by heating at 80 ºC under reduced pressure (300 mbar) for 2 hours.  

The diisocyanate employed for WPUU synthesis was isophorone diisocyanate (IPDI, 

98 wt% purity). 2,2-bis(hydroxymethyl) propionic acid (DMPA, 98 wt% purity) was used 

as internal emulsifier. Triethylamine (TEA, 99 wt% purity), monohydrated hydrazine 

(HZ, 60 wt % purity) and dibutyltin dilaurate (DBTDL, 95 wt % purity) were used as 

neutralization agent, chain extender and catalyst, respectively. All these reactants were 

used without further purification and were supplied by Aldrich (Sigma Aldrich Co. LLC, 

St. Louis, MO, USA). Deionized water was used as dispersed phase, and high purity 

acetone (99.5 wt% purity) supplied by Aldrich (Sigma Aldrich Co. LLC, St. Louis, MO, 

USA) was also employed.  

 

2.2. Synthesis of polyurethane urea dispersions (WPUUs)  

Waterborne polyurethane urea (WPUU) dispersions were prepared by using the 

acetone method. Polyurethane prepolymer was synthesized in a 500 cm3 four-neck 

round-bottom glass reactor under a nitrogen atmosphere. The polyol (polyester or 

polycarbonate diol), DMPA and IPDI were added into the glass reactor heated at 80 ºC 

and stirred at 450 rpm. A NCO/OH ratio of 1.5 was used, 5 wt% DMPA was employed, 

and the targeted solids content was 40 wt%. 0.028 g of catalyst (DBTDL) was added 

30 minutes after starting the prepolymer reaction. After 3 hours, the amount of residual 

NCO content was checked by n-dibutylamine back titration. Afterwards, the 

temperature was lowered to 4045 ºC and TEA was added to neutralize the COOH 

groups in the prepolymer followed by stirring at 450 rpm for 30 minutes; then, 2.7 g 

chain extender (hydrazine, HZ) was added and stirred at 450 rpm for 30 minutes. 

Deionized water was added into the reactor under high stirring (1050 rpm) during 

1030 minutes until a homogeneous mixture was obtained. Finally, the residual 

acetone was evaporated in a rotavapor unit at 50 ºC and 300 mbar over a period of 30 

minutes. The composition of the WPUU-Polyester and WPUU-PCD dispersions are 

given in Table 1. Both WPPUs have a similar hard segment content (34.1-34.3 wt%) 

and therefore their properties will derive from the nature of the polyol mainly.  
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The mixtures of WPUU-Polyester and WPUU-PCD dispersions were prepared in a 

polypropylene container by mild manual stirring for 30 seconds (Figure 2). The 

nomenclature of the mixtures of WPUUs consists in the capital letter WPUU or PUU 

followed by “-“ and the amount of WPUU-Polyester dispersion in wt%, then “/” and the 

amount of WPUU-PCD dispersion in wt%. For example, WPUU-75Polyester/25PCD 

corresponds to the WPUU obtained by mixing 75 wt% WPUU-Polyester and 25 wt% 

WPUU-PCD, and PUU-75Polyester/25PCD corresponds to the solid polyurethane urea 

film obtained by removal of the water in WPUU-75Polyester/25PCD dispersion.  

 

Figure 2. Scheme of the mixing of WPUU-Polyester and WPUU-PCD dispersions. 

 

2.3. Characterization of the polyurethane urea dispersions and films 

Some properties of the polyurethane ureas were obtained from solid films that were 

obtained by placing 60 cm3 of WPUUs in a rectangular silicone mould of dimensions 10 

x 10 cm2. The water was removed at room temperature for 72 hours followed by 

heating at 40 ºC for 8 hours to complete water removal in the solid polyurethane film.  

Attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (ATR-IR).  

The ATR-IR spectra of PUU films before and after ageing were obtained in a Tensor 27 

FT-IR spectrometer (Bruker Optik GmbH, Ettlinger, Germany) by using a Golden Gate 

single reflection diamond ATR accessory. 64 scans were recorded with a resolution of 

4 cm1 and averaged in the wavenumber range of 4004000 cm1. The incidence angle 

of the IR beam was 45º.  

Thermal gravimetric analysis (TGA). 

The thermal stability and structure of the PUU films before and after ageing were 

studied in TGA Q500 equipment (TA Instruments, New Castle, DE, USA) under a 

nitrogen atmosphere (flow rate: 50 mL min1). 1015 mg of polyurethane urea film was 

placed in a platinum crucible and heated from 80 to 800 ºC  at a heating rate of 10 ºC 

min1.  

Differential scanning calorimetry (DSC). 

The glass transition temperature (Tg) of the PUU films was determined by differential 

scanning calorimetry in a DSC Q100 instrument (TA Instruments, New Castle, USA). 

10 mg of PUU films were placed in an aluminum pan hermetically closed and were 
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heated from 80 to 100 ºC at a heating rate of 10 ºC min1 under a nitrogen 

atmosphere (flow rate: 50 mL min1). Then, the PUU films were cooled to 80 ºC and a 

second heating run from 80 to 150 ºC at a heating rate of 10 ºC min1 under nitrogen 

atmosphere (flow rate: 50 mL min1) was carried out. The glass transition temperature 

(Tg) was obtained from the DSC thermogram of the second heating run.  

X-ray diffraction (XRD). 

The crystallinity of the polyurethane ureas was determined in a Bruker D8-Advance 

diffractometer (Bruker, Ettlingen, Germany). The wavelength of copper Kα radiation 

(1.540598 A), copper cathode, and nickel filter with Göbel mirror were used. A 

scanning of 2Ɵ angles between 5º and 90º in 0.05º steps acquired at 3 s step1 was 

carried out.  

Plate-plate rheology. 

The rheological properties of the PUU films were measured in a DHR-2 rheometer (TA 

Instruments, New Castle, DE, USA) using parallel plates (upper plate diameter = 20 

mm). One piece of PUU film was placed on the bottom plate heated at 150 ºC and, 

once melted, the upper plate was lowered onto the bottom plate with a gap of 1 mm. 

Then, the temperature was increased to 200 ºC and the excess dough was carefully 

trimmed off by using a spatula. Experiments were performed in the region of linear 

viscoelasticity by decreasing the temperature from 200 to 30 ºC in a Peltier system by 

using a cooling rate of 5 ºC min1. A frequency of 1 Hz and a strain amplitude of 0.05 % 

were used.  

Dynamic mechanical thermal analysis (DMTA). 

The viscoelastic properties of the PUU films were measured in a DMA-Q800 

equipment (TA Instruments, New Castle, DE, USA) using the single cantilever mode. 

PUU films with dimensions of 18 mm x 13 mm x 2 mm were used which were heated 

from 100 to 70 ºC under a nitrogen atmosphere (flow rate: 100 mL min1) at a heating 

rate of 5 ºC min1. All experiments were carried out at a frequency of 1 Hz, and an 

amplitude of 20 µm and strain of 0.5%.  

 

2.4. Adhesion properties of waterborne polyurethane urea dispersions 

Adhesive strengths (under peeling stresses) of the WPUUs were obtained from T-peel 

tests of solvent-wiped plasticized PVC/WPUU dispersion/solvent-wiped plasticized 

PVC joints. The plasticized PVC test samples used had dimensions of 30 mm × 150 
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mm × 5 mm. Before applying the WPUU, the PVC surface was methyl ethyl ketone 

wiped for plasticizer removal allowing the solvent to evaporate for 30 minutes under 

open air. Then, 0.90 g WPUU solution was applied by brush to each PVC strip to be 

joined. After water evaporation at 25 ºC (it took about 90 min) the adhesive film was 

heated suddenly at 80 °C for 10 seconds under infrared radiation (reactivation 

process). The PVC strips were immediately placed in contact and a pressure of 0.8 

MPa was applied for 10 seconds to achieve a suitable joint. The T-peel strength was 

measured 72 hours after joint formation in an Instron 4411 universal testing machine 

(Instron Ltd., Buckinghamshire, UK) by using a cross-head speed of 100 mm min1. 

The values obtained were the average of five replicates.  

 

2.5. Ageing by immersion in water at 70 ºC of polyurethane urea films and 

adhesive joints 

PUU films for ageing test were prepared by mixing 30 g WPUU dispersion with 

waterborne aliphatic isocyanate crosslinker (Desmodur DN - Covestro, Leverkusen, 

Germany) for increasing ageing resistance. The mixture was placed in a silicone mold 

and the water was evaporated at room temperature for 3 days, followed by drying in an 

oven at 40 °C overnight. Accelerated ageing test was carried out by immersion of 0.25 

g of PUU films in 10 mL of deionized water inside sealed laboratory bottles that were 

placed in an air convection oven at 70 ºC for 72 hours. Afterwards, the water was 

removed and the aged PUU films were dried at room temperature and under open air  

for 24 hours followed by heating in an oven at 40 ºC overnight. The structural changes 

in the aged PUU films were assessed by ATR-IR spectroscopy and TGA 

measurements, the experiments were performed under the same experimental 

conditions described above.  

The influence of ageing on the adhesion of WPUUs was determined from T-peel tests 

of chlorinated vulcanized styrene-butadiene (SBR) rubber/WPUU 

dispersion/roughened leather joints. The test samples used had dimensions of 30 mm 

× 150 mm × 5 mm. Before applying the adhesive, the vulcanized SBR rubber surface 

was methyl ethyl ketone wiped allowing the solvent to evaporate for 30 minutes under 

open air. Afterwards, the surface of the SBR rubber was chemically treated with 

solution in MEK of 3 wt% trichloroisocyanuric acid. On the other hand, the leather was 

roughened by using a scouring machine for exposing the corium to the surface. Before 

joint formation, 5 wt% of waterborne aliphatic isocyanate cross-linker (Desmodur DN - 

Covestro, Leverkusen, Germany) was added to the WPUU dispersion. Then, 0.90 g of 
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adhesive solution was applied by brush to each substrate to be joined. After water 

evaporation, the adhesive film was heated suddenly at 80 ºC for 10 seconds under 

infrared radiation (reactivation process). Immediately the rubber and leather strips were 

placed in contact and a pressure of 0.8 MPa was applied for 10 seconds to achieve a 

suitable joint. The T-peel strength was measured 72 hours after joint formation in an 

Instron 4411 universal testing machine (Instron Ltd., Buckinghamshire, UK) using a 

cross-head speed of 100 mm min1. The values obtained were the average of five 

replicates.  

The just-prepared adhesive joints were aged by immersion in deionized water at 70 ºC 

for up to 5 days. Afterwards, the aged joints were conditioned at room temperature for 

24 hours and, then, the adhesion properties were examined by means of T-peel tests 

according to ASTM D1876-01 standard. T-peel tests were carried out in Instron 4411 

universal testing machine (Instron Ltd., Buckinghamshire, UK) using a crosshead 

speed of 100 mm min-1.  

 

3. RESULTS AND DISCUSSION 

3.1. Characterization of polyurethane urea films obtained from WPUU-

Polyester+WPUU-PCD mixtures. 

Extensive characterization of WPUU-Polyester and WPUU-PCD dispersions and their 

corresponding PUU films has been published elsewhere [27]. The chemical 

characterization of PUU-Polyester, PUU-PCD and PUU films obtained from WPUU-

Polyester+WPUU-PCD mixtures have been analyzed by ATR-IR spectroscopy. Figure 

3a shows the ATR-IR spectra of the PUU films. The broad absorption band at 3374-

3342 cm-1 corresponds to N-H stretching, and the asymmetric and symmetric C-H 

stretching bands appear at 2952-2939 cm-1 and 2872-2962 cm-1 respectively. The 

stretching absorption band of C=O appears in the range of 1738-1662 cm-1, and the 

absorption band at 1537-1531 cm-1 is attributed to C-N and N-H groups. On the other 

hand, the ATR-IR spectra shows the characteristic C-O-C stretching absorption bands 

of the polyols (1240 cm-1 for polycarbonate diol and 1258, 1162 – the most intense - 

and 958 cm-1 for polyester polyol) [27]. These bands overlap with the asymmetric and 

symmetric NCO-O stretching in urethane at 1256-1242 cm-1 and 1041-1034 cm-1 

respectively. The main differences between the PUUs can be observed in the C-O-C 

and C=O bands.  
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Figure 3 a. ATR-IR spectra of PUU-Polyester, PUU-PCD and PUUs made from WPUU-

Polyester+WPUU-PCD mixtures, b. Curve fitting of the carbonyl region (1800-1600 cm
-1

) of the 

ATR-IR spectrum of PUU-75Polyester/25PCD. 

 

The formation of urea and urethane groups in PUUs is determined by the different 

reactivity of the amine and hydroxyl groups (amine has major nucleophilic character), 

and these differences affect their hydrogen bonding capacities having a notorious 

influence on the morphology and properties. Furthermore, the different polarity of the 

urethane and urea groups plays an important role in the degree of phase separation in 

the PUUs. It can be assumed that the structure of the PUUs involves two types of 

totally separated hard segments, IPDI-DMPA/TEA-IPDI and IPDI-HZ-IPDI, and two 

types of totally separated soft segments too, IPDI-Polyester-IPDI and IPDI-PDC-IPDI. 

The existence of these different structures can be assessed by curve fitting of the 

carbonyl region of the ATR-IR spectra of the PUUs. For curve fitting of the carbonyl 

region, it was assumed that the free urethane appears at 1738-1728 cm-1, the H-

bonded urethane appears at 1718-1707 cm-1, the free urea is assigned at 1701-1695 

cm-1, and the H-bonded urea appears at 1662 cm-1.  

Figure 3b shows a typical example of the curve fitting of the carbonyl region (1800-

1600 cm-1) of the ATR-IR spectrum of PUU-75Polyester/25PCD in which the 

contributions to free and H-bonded urethane and urea groups can be distinguished. 

The relative contributions of urethane and urea groups of the PUUs are given in Table 

2. PUU-Polyester has a lower free urethane content and a higher bonded urea content 

than PUU-PCD. PUU-75Polyester/25PCD and PUU-50Polyester/50PCD have higher 

free urethane contributions than PUU-Polyester and PUU-25Polyester/75PCD, 

whereas the contribution of free urea is more important in PUU-25Polyester/75PCD. 

Therefore, the structure and degree of phase separation in PUUs is different 

depending on the amounts of WPUU-Polyester and WPUU-PCD dispersions from 

which they are obtained. The degree of phase separation in the PUUs can be 

estimated from the occurrence of H-bonded groups in the hard phase. Thus, higher 

degree of phase separation corresponds to PUU-PCD, PUU-75Polyester/25PCD and 

PUU-50Polyester/50PCD because of their minor H-bonded urethane and urea 

contents. Interestingly, the H-bonded urethane content in PUU-25Polyester/75PCD is 

higher and the free urethane is lower than expected, suggesting a lower degree of 

phase separation.  
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Thermal gravimetric analysis has been employed to analyze the structure and thermal 

degradation of the PUUs. TGA thermograms of the PUU films are given in Figure 4a. In 

agreement with previous studies [27,32], PUU-Polyester is more thermally stable than 

PUU-PCD, and consequently the increase of the WPUU-PCD content in the WPUUs 

mixture produces less thermally stable PUUs with respect to PUU-Polyester, as 

evidenced by the lower temperatures corresponding to 50 wt% loss (T50%) and 

temperatures of maximum decomposition (Tmax) (Table 3a). However, the thermal 

stability of PUU-25Polyester/75PCD is higher than expected because of its higher Tmax.  

It is well documented that the mechanism of thermal decomposition of PUUs is very 

complex due to the degradation of the secondary products formed during the TGA 

experiment [32]. The thermal degradation of the PUUs are evidenced better in the 

derivative of the TGA thermograms which are shown in Figure 4b. The first thermal 

degradation at 170-180 ºC corresponds to removal of residual water retained in the 

PUU network. The thermal decomposition of the urea hard domains is observed at 

261266 ºC and decomposition of the urethane hard domains appears at 318320 ºC. 

The decomposition of the soft domains occurs at 344377 ºC and the thermal 

degradation at higher temperature corresponding to secondary by-products produced 

during the TGA experiment occurs at 483505 ºC. Table 3b shows the thermal 

decomposition temperatures and mass losses due to the hard and soft domains in the 

PUU films. DTGA thermograms of PUU-Polyester and PUU-PCD show more defined 

peaks than the PUUs made from WPUU-Polyester+WPUU-PCD mixtures indicating 

more complex structures. Similar thermal decomposition behavior is observed for PUU-

75Polyester/25PCD and PUU-50Polyester/50PCD in agreement with the ATR-IR 

spectra, and PUU-25Polyester/75PCD shows less content of hard domains and higher 

content of soft domains likely due to lower degree of phase separation. Furthermore, 

the intensities of the thermal degradation peaks depend on the chemical nature of the 

polyol in the soft segments and they are indicative of the differences in the degree of 

phase separation [23,32].  

 

Figure 4. Variation of (a) the weight and (b) the derivative of the weight as a function of the 

temperature for PUU-Polyester, PUU-PCD and PUUs made from WPUU-Polyester+WPUU-

PCD mixtures. TGA experiments. 
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DSC thermograms of the PUUs show one glass transition temperature only (figure not 

shown here) corresponding to the soft segments. The glass transition temperature (Tg) 

of PUU-Polyester appears at −51 ºC and that of PUU-PCD is located at −34 ºC (Figure 

5). The values of the Tgs of the PUUs made from WPUU-Polyester+WPUU-PCD 

mixtures are intermediate, and they increase by increasing their content in WPUU-

PCD.  

 

Figure 5. Variation of the glass transition temperatures of the PUUs as a function of their 

WPUU-PCD content. DSC experiments.  

 

 

The crystallinity of the PUU films was analyzed by X-ray diffraction and their X-ray 

diffractograms are shown in Figure 6. As reported in a previous study [27], PUU-

Polyester is partially crystalline because of the presence of two narrow diffraction 

peaks at 2 values of 21º and 22º due to the interactions between the ester groups in 

the soft segments, but PUU-PCD shows a broad diffraction peak characteristic of an 

amorphous structure. X-ray diffractograms of the PUU films made from WPUU-

Polyester+WPUU-PCD mixtures show different diffraction peaks depending on their 

WPUU-PCD content (Figure 6). The X-ray diffractogram of PUU-75Polyester/25PCD is 

very similar to that of PUU-Polyester even when 25 wt% of WPUU-PCD is added, 

although the crystallinity decreases slightly (Table 4). Interestingly, the X-ray 

diffractogram of PUU-50Polyester/50PCD (Figure 6) shows the same diffraction peaks 

as PUU-Polyester at 2 values of 21º and 22º due to the polyester soft segments but 

two additional diffraction peaks at 2 values of 20º and 23º can be distinguished; these 

additional two diffraction peaks correspond to the polycarbonate diol [27] and they are 

not present in the X-ray diffractogram of PUU-PCD. Table 4 shows that the crystallinity 

of PUU-50Polyester/50PCD is lower than for PUU-75Polyester/25PCD. On the other 

hand, the X-ray diffractogram of PUU-25Polyester/75PCD shows the two diffraction 

peaks of the polycarbonate diol at 2 values of 20º and 23º and only one of the 

polyester (Figure 6) indicating that the addition of 25 wt% PUU-Polyester favours the 

interactions between the polycarbonate diol soft segments, leading to an increase in  

crystallinity. Therefore, the use of WPUU-Polyester+WPUU-PCD mixtures imparts 

particular different structure to the PUUs leading to different degree of phase 
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separation than expected with respect to that of the PUUs made with the parent 

dispersions, this is more noticeable when more than 50 wt% PUU-PCD is added.  

 

Figure 6. X-ray diffractograms of the PUUs. 

 

The viscoelastic properties of the PUUs were evaluated by plate-plate rheology. Figure 

7a shows the variation of storage modulus (G’) as a function of temperature for the 

PUUs films. The rheological curves are almost parallel in all PUUs except in PUU-

25Polyester/75PCD, likely due to its lower degree of phase separation and the 

interactions of the polycarbonate diol soft segments. In general, an increase in WPUU-

PCD content produces an increase in the storage moduli of the PUUs.  

The variation of storage (G´) and loss (G´´) moduli as a function of temperature for 

PUU-50Polyester/50PCD is shown as a typical example in Figure 7b. There is a cross-

over between the storage and loss (G’’) moduli at 94 ºC. At temperatures below 94 ºC, 

PUU-50Polyester/50PCD is mainly elastic but at higher temperature, the viscous 

rheological regime is dominant.   

 

Figure 7 a. Variation of the storage modulus (G´) as a function of the temperature for PUUs. 

Plate-plate rheology experiments, b. Variation of the storage (G´) and loss (G´´) moduli as a 

function of the temperature for PUU-50Polyester/50PCD. Plate-plate rheology experiments. 

 

The viscous behavior of the PUUs is mainly determined by their soft segments and 

degree of phase separation, and, therefore, their structures will determine the values of 

temperature and modulus at the cross-over between the storage and loss moduli. The 

values of temperature and modulus at the cross-over of the storage and loss moduli of 

the PUUs are given in Table 5. PUU-Polyester has a lower temperature and higher 

modulus at the cross-over than PUU-PCD, likely due to the mixing of soft and hard 

phases in PUU-PCD. Furthermore, the moduli at the cross-over of the PUUs made 

from WPUU-Polyester+WPUU-PCD mixtures are higher, indicating the existence of 

stronger interactions between the hard and soft domains which lead to a lower degree 

of phase separation. On the other hand, the temperature at the cross-over of the PUUs 

made from WPUU-Polyester+WPUU-PCD mixtures are intermediate between the ones 

of PUU-Polyester and PUU-PCD, except for PUU-25Polyester/75PCD that has a much 
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higher cross-over temperature likely due to the contribution of the crystallinity of the 

polycarbonate diol soft domains, in agreement with X-ray diffraction results.  

 

Figure 8a shows the variation of storage modulus (E´) as a function of temperature for 

the PUUs. In the glassy region, below -20 ºC, the storage moduli of all PUUs does not 

vary with temperature, and the storage moduli of PUU-75Polyester/25PCD and PUU-

50Polyester/50PCD are higher than for PUU-Polyester, likely due to higher degree of 

phase separation. Whereas the glass transition region is poorly marked in PUU-

Polyester, an important decrease of the storage modulus in that region is produced in 

PUU-PCD; consequently, the rubbery plateau is more extended in PUU-Polyester. 

Once the glass transition is reached there is an important decrease in the storage 

moduli of PUU-PCD and PUU-25Polyester/75PCD, but somewhat similar values of the 

storage moduli are obtained in all PPUs made with 50 wt% or less WPUU-PCD. On the 

other hand, the melting of the PUUs starts at lower temperature when their WPUU-

PCD content increases, in agreement with TGA experiments.   

The maximum of the structural α relaxation in the tan delta curves (Figure 8b) can be 

associated with the glass transition temperature of the PUUs. The temperature of the 

maximum in the α relaxation can be associated with the glass transition temperature 

(Tg), and the value of Tg of PUU-Polyester is lower than for PUU-PCD; the Tgs of the 

PUUs made from WPUU-Polyester+WPUU-PCD mixtures are intermediate (Table 6) 

and they decrease with increasing WPUU-PCD content; however, the Tg value of PUU-

25Polyester/75PCD is similar to that of PUU-PCD but the maximum in tan delta is 

much lower, because of the stronger interactions between the polycarbonate diol soft 

segments. On the other hand, the maximum in tan delta is much higher in PUU-PCD 

than in the other PUUs indicating lower interactions between the polymeric chains due 

to the absence of crystallinity. The addition of 25 wt% WPUU-Polyester only decreases 

noticeably the maximum of tan delta because of its higher crystallinity due to the 

interactions between the carbonate groups in the soft domains. On the other hand, 

smaller differences are produced by increasing the amount of WPUU-Polyester in the 

mixtures. The trends in the values of Tg and the maximum of tan delta can be related 

to the variation of the crystallinity and the degree of phase separation in the PUUs.  

 

Figure 8. Variation of (a) the storage (E´) and (b) tan  as a function of the temperature for the 

PUUs. DMTA experiments. 
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The adhesion of the WPUUs was obtained from T-peel tests of plasticized 

PVC/WPUU/plasticized PVC joints. Figure 9 shows that all joints show similar T-peel 

strength values and the failure is produced cohesively in the PVC substrate in the joints 

made with WPUU-Polyester and WPUU-PCD; however, mixed loci of failure (cohesive 

failure of the adhesive + cohesive failure of the PVC - the main kind of failure) are 

obtained in the joints made with WPUU-Polyester+WPUU-PCD mixtures. Therefore, 

the adhesion is good in all joints and no significant differences are obtained between 

the joints made with parent and WPUUs mixtures.  

 

Figure 9. Variation of the T-peel strength of plasticized PVC/WPUU/plasticized PVC joints as a 

function of their WPUU-PCD content. Locus of failure : CA :Cohesive failure of the adhesive; CS 

: Cohesive failure of PVC. 

 

3.2. Ageing of PUU films and adhesive joints 

One of the drawbacks of the adhesive joints made with waterborne polyurethane 

adhesives is their limited ageing resistance derived from the existence of residual 

moisture in the solid polyurethane films. For improving the ageing resistance, 

isocyanate cross-linker is commonly added to the waterborne adhesive before joint 

formation. In this study, severe ageing by immersion in water at 70 ºC during several 

days was chosen for the joints made with WPUUs+5 wt% isocyanate hardener.  

The T-peel strength values of surface-chlorinated vulcanized SBR rubber/WPUU+5 

wt% hardener/roughened leather joints before and after ageing by immersion in 

deionized water at 70 ºC during different times are given in Figure 10. Before ageing, 

T-peel strength values higher than 10 kN/m are obtained, irrespective of the adhesive 

composition, and always a cohesive failure in the rubber substrate is produced. After 

one day of ageing, the T-peel strength of the joint made with WPUU-Polyester 

decreases dramatically and the failure is produced cohesively in the adhesive, whereas 

the ones made with WPUU-50Polyester/50PCD and WPUU-PCD show high adhesion 

and they fail cohesively in the rubber substrate. After 3 days of ageing, the joint made 

with WPUU-PCD maintains high adhesion and a failure in the rubber substrate is 

obtained, but the adhesion of the joints made with WPUU-Polyester and WPUU-

50Polyester/50PCD decreases noticeably and they show a cohesive failure in the 

adhesive. The loss of adhesion in the joints made with WPUU-Polyester and WPUU-

50Polyester/50PCD can be ascribed to hydrolytic degradation of the polyester soft 
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segments in the adhesive [27], and the hydrolysis process is delayed when the PUU 

contains soft segments of polycarbonate diol.  

 

Figure 10. Variation of the T-peel strength of surface-chlorinated vulcanized SBR 

rubber/WPUU+5 wt% hardener/roughened leather joints as a function of the ageing time in 

water at 70 ºC. Locus of failure : CA :Cohesive failure of the adhesive; CS : Cohesive failure of 

the PVC.  

 

For determining the causes of loss of adhesion after ageing in the joints made with 

WPUU-Polyester and WPUU-50Polyester/50PCD, PUU films obtained from WPUU+5 

wt% isocyanate hardener were immersed in deionized water at 70 ºC for 3 days. After 

3 days of ageing, the PUU-PCD film shows some swelling (Figure 11), but PUU-

Polyester and PUU-50Polyester/50PCD films are noticeably degraded, particularly 

PUU-Polyester film. Therefore, the ageing resistance of the PUUs is improved but not 

inhibited, when they contain important amounts of soft segments of polycarbonate diol.  

 

Figure 11. Photos of PUU+5 wt% hardener films after immersion in water at 70 ºC during 3 

days.  

 

The chemical and structural changes in the PUU films before and after ageing were 

assessed by ATR-IR spectroscopy. The ATR-IR spectra of PUU-Polyester+5 wt% 

hardener film before and after ageing show significant chemical changes (Figure 12a), 

and the ATR-IR spectra of PUU-50Polyester/50PCD+5 wt% hardener film too, although 

they are less marked (Figure 12b). However, the ATR-IR spectra of PUU-PCD+5 wt% 

hardener before and after ageing are similar, indicating that the ageing does not 

change its structure (Figure 12c).  After ageing a new intense band at 1686 cm-1 

appears in the ATR-IR spectrum of PUU-Polyester+5 wt% hardener film and an 

increase in the intensity of the band at 1460 cm-1 is noticed, both bands can be 

ascribed to the stretching of COO- groups from carboxylic acid that have been formed 

by hydrolysis of the ester groups in the soft segments [33]. On the other hand, after 

ageing the intensities of the bands of the amide group at 1530 and 1256 cm-1 in the 

ATR-IR spectrum of PUU-Polyester decreases (Figure 12a), indicating the partial 

disruption of the urea groups [34], and, as a consequence, the N-H stretching band of 

the hard segments is displaced to 3356 cm-1 and becomes more intense than in the 

non-aged PUU-Polyester film. Additionally, after ageing, the stretching C-H bands at 

2949-2872 cm-1 are more intense and a new band at 764 cm-1, that can be ascribed to 
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the C-O group, appears. In summary, the ageing of PUU-Polyester film causes 

hydrolytic degradation of the ester groups in the soft segments that changes its degree 

of phase separation. The effect of ageing on the structure of PUU-

50Polyester/50PCD+5 wt% hardener film is less marked (Figure 12b) than for PUU-

Polyester as there is a slight decrease of the C=O band of urethane at 1728 cm-1 and 

an important increase of the band at 1168 cm-1, indicating that the presence of soft 

segments of polycarbonate diol in PUU-50Polyester/50PCD inhibits partially its 

hydrolytic degradation.  

   

 

Figure 12 a. ATR-IR spectra of PUU-Polyester+5 wt% hardener film before and after ageing by 

immersion in water at 70 ºC during 3 days, b. ATR-IR spectra of PUU-50Polyester/50PCD 

film+5 wt% hardener before and after ageing by immersion in water at 70 ºC during 3 days, c. 

ATR-IR spectra of PUU-PCD+5 wt% hardener film before and after ageing by immersion in 

water at 70 ºC during 3 days. 

 

The structural changes of the PUU+5 wt% hardener films after ageing were also 

assessed by TGA. DTGA thermograms of the PPU+5 wt% hardener films before and 

after ageing are shown in Figure 13. Somewhat similar DTGA thermograms are 

obtained for PUU-PCD+5 wt% hardener film before and after ageing, although after 

ageing the weight losses of the thermal decompositions at 436 and 527 ºC are more 

important due to the formation of higher amounts of new structures by secondary 

reactions during the TGA experiments (Table 7). However, different DTGA 

thermograms are obtained before and after ageing in PUU-Polyester+5 wt% hardener 

and PUU-50Polyester/50PCD+5 wt% hardener films, the ageing produces more 

complex structures. Thus, after ageing the thermal decomposition at 177180 ºC 

assigned to water retained in the PUU films disappears, indicating its removal during 

ageing at 70 ºC. Furthermore, for PUU-Polyester+5 wt% hardener and PUU-

50Polyester/50PCD+5 wt% hardener films, the thermal decompositions of the urethane 

and urea hard domains at 265266 °C and the thermal decomposition of the soft 

domains at 355384 °C change noticeably after ageing: additionally, after ageing the 

thermal decomposition at 425522 °C shifts to higher temperature (436527ºC) in 

PUU-Polyester+5 wt% hardener and PUU-50Polyester/50PCD+5 wt% hardener films 

and the weight loss associated with decomposition also increases (413 wt%) (Table 

7). On the other hand, the ageing of PUU-Polyester+5 wt% hardener produces the 

splitting of the degradation peak of the soft domains at 384 ºC (70 wt% loss) into two 
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degradation peaks at 352 ºC (32 wt% loss) and 438 ºC (50 wt% loss) (Table 7), this is 

an indication of the hydrolytic degradation of urethane and urea groups, which 

hydrolyze faster than the urethane groups [35]. Similar features are observed for PUU-

50Polyester/50PCD+5 wt% hardener film in which, after ageing, the peak at 355 ºC (67 

wt% loss) splits into two main degradation peaks at 337 ºC (46 wt% loss) and 442 ºC 

(36 wt% loss) (Figure 13).  

 

Figure 13. Variation of the derivative of the weight as a function of the temperature for the 

PUU+5 wt% hardener films before and after ageing by immersion in water at 70 ºC during 3 

days. 

 

 

 

4. CONCLUSIONS 

WPUUs prepared by mixing different amounts of WPUU-Polyester and WPUU-PCD 

dispersions showed particular structures and differences in the degree of phase 

separation which affect their properties. The PUU films made with WPUU-

Polyester+WPUU-PCD mixtures containing more than 50 wt% of WPUU-PCD showed 

higher hard segment contents and lower degrees of phase separation due to the 

complex interactions between the two types of totally separated hard segments [i.e., -

(IPDI-DMPA/TEA-IPDI)- and -(IPDI-HZ-IPDI)-] and the two types of totally separated 

soft segments [i.e., -(IPDI-PCD-IPDI)- and -(IPDI-PE-IPDI)-]. Furthermore, the addition 

of 25 wt% of WPUU-Polyester imparted crystallinity to the polyurethane urea due to the 

interactions between the carbonate groups in the soft segments. The differences in the 

degree of phase separation and crystallinity of PUU films made from WPUU-

Polyester+WPUU-PCD mixtures were evidenced by the increase in the glass transition 

temperature associated with the alpha relaxation of the soft segments, and the higher 

modulus at the cross-over between the storage and loss moduli. The adhesion of 

plasticized PVC/WPUU/plasticized PVC and surface-chlorinated vulcanized SBR 

rubber/WPUU+5 wt% hardener/roughened leather joints were high and similar in all 

joints, a dominant cohesive failure in the polymeric substrate was produced. On the 

other hand, accelerated ageing by immersion in water at 70 ºC during different times 

showed that the polyurethane urea film and the joint made with WPUU-PCD were not 

affected, but noticeable hydrolytic degradation of the ester units in the soft segments  

occurred in PUU-Polyester and, to a less extent, in PUU-50Polyester/50PCD films and 

joints. The co-existence of soft segments of polycarbonate diol and polyester delayed 
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but did not inhibit the hydrolytic degradation of the ester groups in the polyurethane 

urea film.  
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TABLES 

 

 

 

 

Table 1. Nomenclature and composition of the waterborne polyurethane urea (WPUU) 

dispersions made with polyester polyol or polycarbonate diol. 

 

WPUU IPDI (g) Hydrazine (g) DMPA (g) Polyol (g) TEA HS (w%)
a
 

WPUU-Polyester 25 2.7 5 70 2.8 34.3 

WPUU-PCD 25 2.7 5 70 2.8 34.1 

a 
Hard segment content (HS) was calculated as [Mass (IPDI + DMPA+ HZ+ TEA)/Mass (Polyol 

+ DMPA+ IPDI + HZ+ TEA)] x 100. 

 

Table 2. Relative contributions of free and H-bonded urethane and urea groups in the PUU 

films. 
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Wavenumber 

(cm
-1

) 

Relative contribution of species (%) 

PUU-

Polyester 

PUU-

75Polyester/25

PCD 

PUU-

50Polyester/50

PCD 

PUU-

25Polyester/75P

CD 

PUU-

PCD 

1738-1728 

(free urethane) 
44 57 54 43 53 

1718-1707 

(H-bonded 

urethane) 

5 6 4 10 4 

1701-1695 

(free urea) 
19 13 15 17 16 

1662 

(H-bonded urea) 
32 24 27 30 27 

 

 

Table 3a. Temperatures at which 5 (T5%) and 50 wt% (T50%) are lost, and temperature of 

maximum decomposition (Tmax) of the PUU films prepared from WPUU-Polyester+WPUU-PCD 

mixtures. TGA experiments. 

PUU T5% (ºC)
 

T50% (ºC)
 

Tmax (ºC)
 

PUU-Polyester 227 352 377 

PUU-75Polyester/25PCD 216 343 380 

PUU-50Polyester/50PCD 228 337 356 

PUU-25Polyester/75PCD 230 325 372 

PUU-PCD 232 322 347 

Table 3b. Main thermal decompositions in the derivative of TGA thermograms of the PUU films. 

TGA experiments. 

PUU 
Hard domain Soft domain 

T (ºC) Weight loss (wt%) T (ºC)
 

Weight loss (wt%) 

PUU-Polyester 266, 320 33 377 51 

PUU-75Polyester/25PCD 263 11 345, 372 75 

PUU-50Polyester/50PCD 264 11 356 78 
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PUU-25Polyester/75PCD 261 9 344 81 

PUU-PCD 258, 318 48 347 45 

 

 

 

Table 4. Intensities of the diffraction peaks of the PUU films. X-ray diffraction experiments. 

2 (º) 

Intensity (a.u.) 

PUU-

Polyester 

PUU-

75Polyester/25PCD 

PUU-

50Polyester/50PCD 

PUU-

25Polyester/75PCD 

PUU-

PCD 

20 - - 1714 2241 - 

21 3826 3220 2258 1896 - 

22 3161 2828 2244 - - 

23 - - 1435 1614 - 

 

 

Table 5. Values of temperature (Tcross-over) and modulus (Gcross-over) at the cross-over of the 

storage and loss moduli of the PUUs. Plate-plate rheology experiments. 

PUU Tcross-over (ºC) Gcross-over (Pa) 

PUU-Polyester 74 1.1·10
5 

PUU-75Polyester/25PCD 83 1.5·10
5
 

PUU-50Polyester/50PCD 94 1.2·10
5
 

PUU-25Polyester/75PCD 102 1.3·10
5
 

PUU-PCD 111 9.9·10
4
 

 

 

Table 6. Values of the glass transition temperature and the maximum of tan delta of the 

structural α relaxation of the PUUs. DMTA experiments. 

PUU Tg (ºC) Maximum of tan  

PUU-Polyester -19 0.04
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PUU-75Polyester/25PCD -16 0.06 

PUU-50Polyester/50PCD -12 0.06 

PUU-25Polyester/75PCD -8 0.10 

PUU-PCD -9 0.25 

 

Table 7. Main thermal decompositions in the derivative of TGA thermograms of the PUU+5 wt% 

hardener films before and after ageing. TGA experiments. 

PUU 
T1 

(ºC) 

Weight 

loss1 

(wt%) 

T2 

(ºC)
 

Weight 

loss2 

(wt%) 

T3 

(ºC)
 

Weight 

loss3 

(wt%) 

T4 

(ºC)
 

Weight 

loss4 

(wt%) 

T5 

(ºC)
 

Weight 

loss5 

(wt%) 

PUU-Polyester 

Before ageing 

180 3 266 11 384 70 434 4 503 12 

PUU-Polyester  

After ageing 

  246 4 352 32 438 53 556 11 

PUU-

50Polyester/50PCD  

Before ageing 

177 3 265 11 355 67 440 9 522 10 

PUU-

50Polyester/50PCD   

After ageing 

  256 5 337 47 452 36 545 12 

PUU-PCD  

Before ageing 

180 3 266 10 358 76 425 6 518 5 

PUU-PCD  

After ageing 

  260 6 349 76 436 10 527 8 
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