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Abstract

Since Garrod’s first description of alkaptonuria in 1902, and newborn screening for phenylketonuria introduced in the 1960s, P4
medicine (preventive, predictive, personalized, and participatory) has been a reality for the clinician serving patients with
inherited metabolic diseases. The era of high-throughput technologies promises to accelerate its scale dramatically. Genomics,
transcriptomics, epigenomics, proteomics, glycomics, metabolomics, and lipidomics offer an amazing opportunity for holistic
investigation and contextual pathophysiologic understanding of inherited metabolic diseases for precise diagnosis and tailored
treatment. While each of the -omics technologies is important to systems biology, some are more mature than others. Exome
sequencing is emerging as a reimbursed test in clinics around the world, and untargeted metabolomics has the potential to serve as
a single biochemical testing platform. The challenge lies in the integration and cautious interpretation of these big data, with
translation into clinically meaningful information and/or action for our patients. A daunting but exciting task for the clinician; we
provide clinical cases to illustrate the importance of his/her role as the connector between physicians, laboratory experts and
researchers in the basic, computer, and clinical sciences. Open collaborations, data sharing, functional assays, and model
organisms play a key role in the validation of -omics discoveries. Having all the right expertise at the table when discussing
the diagnostic approach and individualized management plan according to the information yielded by -omics investigations (e.g.,
actionable mutations, novel therapeutic interventions), is the stepping stone of P4 medicine. Patient participation and the
adjustment of the medical team’s plan to his/her and the family’s wishes most certainly is the capstone. Are you ready?
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Introduction

For the clinician in the multi-omics era, the responsibilities
defined by Hippocrates remain the same—that is to character-
ize, diagnose, manage and, where possible, treat his or her
patients to the best of his/her capabilities and that of available
modern technology (Karagiannis 2014). Revolutionary ad-
vances in the latter, catalyzed by the Human Genome
Project in the beginning of the twenty-first century and fueled
since by academia and biotechnology companies, now enable
a holistic characterization of our patients using multi-omic
approaches (Goodwin et al 2016). Inherited metabolic dis-
eases (IMDs)—characterized by defects in a metabolic path-
way or process resulting in a deficiency of energy and build-
ing blocks and often an accumulation of (toxic) metabolites—
is an exciting field within the -omics era. It also represents a
promising model for precision medicine, given the amenabil-
ity of the underlying enzymatic defects to functional charac-
terization and therapeutic interventions. In fact, Sir Archibald
Garrod, with his first description of Alkaptonuria 115 years
ago, demonstrated well before the advent of whole exome
sequencing (WES) that biochemical profiling in body fluids
along with detailed clinical phenotyping enables the discovery
of IMDs (Garrod 1902; Perlman and Govindaraju 2016). In
turn, increased knowledge of metabolic pathways enables in-
dividualized treatment and prevention. Exemplary is phenyl-
ketonuria, described by Følling in 1934 after the meticulous
characterization of two intellectually disabled children with a
particular urinary odor, which turned out to be caused by
excessive amounts of phenylpyruvic acid resulting from phe-
nylalanine hydroxylase deficiency (Følling 1934; Centerwall
and Centerwall 2000). Based on this pathophysiological in-
sight, it was Bickel who in 1954 first treated PKU with a diet
low in the accumulating phenylalanine, and Guthrie who in
1962 introduced newborn screening (NBS) to prevent the un-
treated sequelae of this devastating neurodegenerative disease
(Mitchell et al 2011). Thus, for IMDs, BP4 medicine^—pre-
ventive, predictive, personalized, and participatory—was al-
ready practiced in the pre-omics era (Fig. 1) (Hood et al 2012).

Over the past century more than 700 other such conditions
have been identified (Illsinger and Das 2010). Although each
disorder on its own is rare, as a group, IMDs are relatively
common, with a prevalence of one in 784–2555 (Sanderson
et al 2006; Applegarth et al 2000; Dionisi-Vici et al 2002).
These numbers obviously depend on the definition of an
IMD, and in the -omics era, this is changing quickly. In 2015,
Morava et al published Quo Vadis, stating that the
Bclassification of a disorder as an IMD requires only that im-
pairment of specific enzymes or biochemical pathways is in-
trinsic to the pathomechanism. If these cellular and biological

processes are blocked or insufficient, they are suspected to un-
derlie the disease phenotype^ (Morava et al 2015). Thus, a
genetic condition can be termed an IMD even in the absence
of a biochemical phenotype or identification by metabolic lab
based test. Exemplary is polyglucosan body myopathy
(RBCK1), which is an ubiquitination defect without detectable
biomarkers in blood or urine (Nilsson et al 2013). Also, some
but not all congenital disorders of glycosylation are detectable
by metabolic tests. These vary in number depending on the
definition usedmaximum if the QuoVadis definition is applied.
Furthermore, IMDs are not organelle bound as illustrated by
intracellular trafficking defects, such as those disrupting copper
metabolism or endocytosis (Martinelli et al 2013; Stockler et al
2014), which have been shown to affect biochemical processes
and intermediary metabolism. Therefore, the number of IMDs
is likely significantly higher than is currently documented.

Increasingly, in selected groups of patients with symptoms
such as intellectual disability, IMDs are recognized as an
important etiological group. For example, in a study by van
Karnebeek et al, IMDs were identified through a systematic
screening algorithm using targeted mass-spectrometry as a
1st tier screening test in up to 8% of 518 patients or approx-
imately 1/12 (Van Karnebeek et al 2014a). Importantly, the
majority of these IMDs were amenable to therapy, making
their identification essential and emphasizing the importance

Fig. 1 The clinician as connector in the omics-era: making true the 4Ps of
precision medicine
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of early diagnosis in the prevention of irreversible damage to
the central nervous (CNS) and other organ systems. Even in
the absence of treatment, a diagnosis is important for the
patient and family, as it provides closure, information and
prognostication, enables more accurate genetic counseling,
identification of other family members at risk, and access to
community services. Still, many IMDs may go unrecognized,
either because targeted laboratory diagnostics fail to identify
these rare conditions, or because the genetic basis and/or
phenotypic spectrum have yet to be discovered.

The era of big data promises to accelerate the diagnostic
process dramatically. Given the molecular diversity of bio-
markers available, the high-throughput -omics technologies
(e.g., genomics, transcriptomics, epigenomics, proteomics,
glycomics, metabolomics, lipidomics), offer an amazing op-
portunity for holistic investigation, (Benson 2016) and con-
textual pathophysiologic understanding of the disease for bet-
ter diagnosis and treatment (Fig. 2) (Alyas et al. 2015; Ahn
et al. 2006; Tebani et al. 2016). While each of the -omics
technologies is important to systems medicine, some are clear-
ly more mature than others. WES is slowly emerging as a
reimbursed test in clinics around theworld, while epigenomics
and Bexposomics^ (the environmental effects ranging from
exposures to toxic substances or drugs to diet) are applied
mainly in research settings. Of the MS-based technologies,
metabolomics is much closer to being introduced into clinical
practice than proteomics, because targeted metabolite analyses

using MS have already been adopted in clinical chemistry
laboratories. Whether in the research or clinical setting, all
these multi-omics datasets can be generated relatively easily
at low costs; the challenge, however, lies in the integration and
interpretation of these systems biology data and translation of
the results into something clinically meaningful for our
patients. A daunting task, and this challenge can only be
overcome through partnership with the patients and families
and close collaboration between clinicians and researchers in
the basic, computer, and clinical sciences (Julkowska et al
2017). Here we provide examples of the successful application
and interpretation of high-throughput technologies, so called
‘smart-omics’, as well as the opportunities and challenges that
lie ahead for precision medicine in the field of IMDs.

Multi-omics in the clinical care for IMDs

App-omics The discovery of the genetic basis of IMDs and
other rare diseases has accelerated with the introduction of
WES; although exciting, this rapid discovery rate translates
into an ever expanding group of IMDs and rare diseases the
clinician must consider when evaluating a patient with
symptoms of undefined etiology. Easy access to an up-to-
date knowledgebase, which can be easily navigated and
searched based on signs and symptoms, is essential for
the clinician in the -omics era. For example, to aid in the

Fig. 2 Systems biology approach
to personalized medicine: Using -
omics technologies to delineate
the relationship between the dis-
tinct components of the clinical
phenome, the exposome, and the
molecular phenome, ultimately to
improve pathophysiologic under-
standing and enhance accurate
diagnostics and tailored care
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process of comprehensive differential diagnostics and sys-
tematic screening for IMDs, metabolic protocols with
tiered biochemical testing in blood, urine, and CSF have
been developed (van Karnebeek et al. 2014b) as well as
digitals tools to deal with the vast amount of information
on IMDs such as the applications IEMbase (www.iembase.
org) and Treatable ID (www.treatable-id.org) (Lee et al.
2017, 2018; van Karnebeek et al. 2012). Furthermore, the
Online Mendelian Inheritance in Man (www.omim.org) is
a valuable resource for all rare diseases.

Genomics & metabolomics, targeted vs untargeted The diag-
nostic yield of WES, for rare disease phenotypes is reported
to be 25-30% in several large studies comprising almost 5000
rare diseases patients (Lee et al. 2014; Yang et al. 2014;
Retterer et al. 2016; Wortmann et al. 2015a, b). (Taylor
et al. 2015; Wenger et al. 2017) For patients with a suspected
IMD based on well-characterized clinical and/or biochemical
phenotypes, the WES diagnostic rate has generally been
higher, ranging from 50-90% (Timal et al. 2012; Tarailo-
Graovac et al. 2016; Yubero et al. 2016; Taylor et al. 2015;
Evers et al. 2017; Reuter et al. 2017). With WES emerging as
a highly effective front-line test for rare diseases, does meta-
bolic testing still have a place in the diagnostic evaluation of
patients with suspected IMDs, presenting with either more
common symptoms such as hypotonia or epilepsy, or rare
symptoms such as cerebral palsy or liver failure (De Koning
et al 2015; Yohe et al 2015; Leach et al 2014)? In 2017,
targeted metabolic testing still has advantages including a
shorter turn-around time, which is especially important for
treatable IMDs where diagnostic delay can have detrimental
effects. This is best exemplified in the NBS programs, where
targeted metabolic screening provides a rapid diagnosis with-
in 3-7 days after birth allowing prevention and intervention
before onset of disease (Wortmann et al 2017a, b). Second,
the results overall are more straightforward to interpret than
WES given the targeted nature of the tests and the availability
of reference ranges. Third, metabolic testing is cheaper than
WES, although if investigations are done sequentially, clearly
the costs add up as does the burden for the patient and family
(Genereaux et al 2015). However, methods for generating a
holistic metabolic profile using one instead of multiple tests,
are emerging. For example, in this issue Coene et al success-
fully identified 41 of 45 IMDs in their proof-of-principle
study using a diagnostic platform based on high-resolution
liquid-chromatography time-of-flight (LC-QTOF) (Coene
et al. 2017). This type of broad -omics approach could po-
tentially replace more targeted sequential metabolic testing,
enhancing time- and cost-effective use of laboratory re-
sources and providing additional data for the interpretation
of the numerous variants generated by genome-wide se-
quencing approaches. This is especially true in the identifica-
tion of a variant of unknown significance (VUS) in an

actionable gene by genome-wide sequencing approach, where
the diagnosis offers opportunities for treatment and mandates
further investigation to confirm causality in an efficient
fashion. This is where targeted and untargeted metabolic
approaches can be complimentary with examples listed below.

Phenomics still paramount Since -omic approaches yield
incidental findings as well as true diagnostic clues, careful
characterization of patients along with formulation of a
differential diagnosis by a clinician with broad experience
in rare diseases, is more important than ever. An illustrative
case vignette is a 2-year old boy who presented with pro-
gressive ataxia, neuropathy, spasticity, nystagmus, and
hypomyelination. Perlizaeus-Merzbacher disease was
suspected but PLP1 molecular analysis in a CLIA certified
lab was negative. The patient was enrolled in the TIDEX
neurometabolic gene discovery study (University of
British Columbia IRB #H12-00067). Careful inspection
of this region in the trio WES data revealed a 13 bp dele-
tion within PLP1. The lab improved their methods, went
back to all their PLP1 negative patients and found more
patients with cryptic alterations in this region. Further,
careful review of the neuro-imaging of this patient contrib-
uted to the discovery of a novel PLP1 related phenotype
termed hypomyelination of early myelinating structures
(HEMS) caused by abnormal PLP1/DM20 alternative
splicing due to exon 3 and intron 3 mutations (Kevelam
et al 2015), further clarifying the precise relationship be-
tween gene mutation and phenotype and contributing to
disease stratification. In vivo technologies such as nuclear
magnetic resonance spectroscopy, radiolabeled isotype
analysis to measure metabolic flux, and continuous glu-
cose monitoring offer unique opportunities for deep
phenotyping.

Meticulous characterization of patients with the same ge-
netic defect, can improve disease understanding and identify
diagnostic biomarkers (Ackerman et al 2016). Another ex-
ample is RMND1 deficiency—a severe mitochondrial dis-
ease with neurologic, renal, and audiologic involvement
(Janer et al 2015)—for which an in-depth neuroimaging anal-
ysis of a series of patients taught us that this disease mimics
congenital CMV leuko-encephalopathy with multifocal white
matter changes and temporal cysts (Ulrick et al 2017).
Availability of such an imaging biomarker will facilitate di-
agnosis, be it with WES or more targeted testing. Another
example is the Bputaminal eye^ seen in SERAC1 deficient
patients (Wortmann et al 2015a, b).

The functional genomics laboratory & model organisms Even
for well-known IMD, demonstrating that a novel sequence
variant is pathogenic can be a challenge and ‘undoing a di-
agnosis’may be even more difficult. For example in X-linked
adrenoleukodystrophy, a peroxisomal IMD (ABCD1), leading
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to the accumulation of very long chain fatty acids (VLCFA),
affected women suffer myeloneuropathy, while their bio-
chemical readout VLCFA can be in the normal range.
Schackmann et al reported two such women with a clinical
presentation compatible with ALD, but normal VLCFA, in
whom an ABCD1 VUS was identified. Subsequent biochem-
ical studies using clonal cell lines that express either the wild
type allele or the allele carrying the VUS, showed that the
two sequence variants were not pathogenic. This excluded the
diagnosis of ALD in these women, who ultimately were di-
agnosed with multiple sclerosis, obviously with a different
prognosis and treatment modalities (Schackmann et al
2016). This example illustrates the important role of the
crosstalk between clinicians and laboratory specialists in
coming to a diagnosis. Additional functional work is often
required setting the stage for a functional genomics laboratory
(Rodenburg et al 2017 (under review, this JIMD omics is-
sue)). Model organisms including flies, yeast, worms,
zebrafish, rodents, and other mammals are indispensable for
the functional investigation of novel genes, variants as well as
for delineation of pathophysiology and treatment strategies
(Wrangler et al 2017). To accelerate rare disease discovery,
the Rare Disease Model Organisms and Mechanisms was
established in 2013 and demonstrates success in the connec-
tion between clinicians and model organism researchers for a
large number of diseases including IMDs (Wangler et al.
2017) (Foley 2015).

Clinical caution in the -omics era Ultimately, the optimal ap-
proach to an undiagnosed patient with a suspected IMD re-
mains embedded in clinical expertise and the laboratory tests
available in a given jurisdiction, however, we expect these
broad assessment technologies will merge in the future as a
single test for a patient with a suspected IMD. At the same
time, proper interpretation of these big data will require func-
tional assays, and the clinician must be cautious in assigning
etiologic diagnoses based on -omics findings alone.
Mitochondrial diseases deserve special mention. Although
genome-wide sequencing has greatly advanced the diagnosis
of this heterogeneous group of conditions, pitfalls remain,
including the need to sequence both nuclear and mitochondri-
al DNA (the latter extracted from affected tissue for highest
levels of heteroplasmy), as well as mitochondrial
‘phenocopies’ and secondary mitochondrial dysfunction.
One example is the identification of mt-ATP6 mutations as
the cause of classic clinical and biochemical multiple carbox-
ylase deficiency phenotypes, including characteristic C3 and
C5OH elevations on NBS, some of whom respond to biotin
(Balasubramaniam et al. 2016; Larson et al. 2018). Vice versa,
examples of conditions with secondary OXPHOS dysfunction
include recessive SCN3A mutations presenting with congeni-
tal hypotonia and respiratory complex defects (Koch et al
2017), epileptic encephalopathy, elevated alkaline

phosphatase, respiratory complex deficiency in PIGA defi-
ciency (Tarailo-Graovac et al 2015), and intellectual disability
with hypotonia in TBCK deficiency (Bhoj et al 2016).

-Omics in concert for IMD discovery

The discovery of the genetic basis of IMD and other rare
diseases has accelerated over the past decade with the advent
of WES. Between 2012 and 2015, international databases
such as OMIM (Amberger et al 2015) and Orphanet (Rath
et al. 2017) documented an average of 160 new disease-gene
discoveries and 120 disease-gene relations per year (Boycott
et al. 2017). It is here that the research application of genome-
wide sequencing approaches and targeted and untargeted met-
abolic approaches are providing insight into new IMDs. For
example, in a family with unexplained hyperammonemia,
hyperlactatemia and hypoglycemia, a defect in intermediary
metabolism close to the urea cycle was suspected but all di-
agnostic tests were negative.WhenWES data were generated,
an obvious candidate gene emerged as a good fit from among
the long lists of genetic variants, with the following hypothe-
sis: it was the novel gene CA5A encoding carbonic anhydrase
VA that had been well characterized in mice as an important
enzyme involved in the production and donation of bicarbon-
ate to four mitochondrial enzymes (carboxylases), three of
which are biotin-responsive (van Karnebeek et al. 2014b).
Looking back, there was also evidence of this enzymatic de-
ficiency in the patients’ amino acids and organic acids profiles
showing a multiple carboxylase deficiency phenotype, albeit
subtle. The mutant enzyme was thermolabile with decreased
activity at body temperature. Furthermore, the acute presenta-
tion of this IMD is amenable to carglumic acid, a synthetic N-
acetyl glutamate analogue, and thus CA-VA deficiency ex-
panded the d i f f e r en t i a l d i agnos i s o f t r e a t ab l e
hyperammonemia in the neonate and young child (Diez-
Fernandez et al 2016). In this case, elaborate pre-WES meta-
bolic testing provided clues regarding the underlying etiology,
facilitating a hypothesis driven prioritization of long variant
lists generated byWES and subsequently validated by a func-
tional analysis of the CA-VA enzyme. Another such example
is the discovery of mitochondrial NADP(H) deficiency (reces-
sive NADK2 mutations) presenting as a fatty acid oxidation
defect with hyperlysinemia and mitochondrial dysfunction
due to dienoyl-CoA reductase deficiency (Houten et al 2014).

A second elegant example of this approach is the discovery
of NANS deficiency in patients with intellectual disability,
dysmorphisms, and skeletal dysplasia (van Karnebeek et al.
2016). WES in one of the patients, a 3-year-old boy, yielded
variants in 19 different genes, whereas untargeted metabolo-
mics performed at the same time led to the discovery of ele-
vated levels of the metabolite N-acetylmannosamine, which
could only be caused by two enzymatic deficiencies in the de
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novo sialic acid synthesis pathway. Putting the data sets to-
gether facilitated the disease gene (NANS) identification, val-
idation of the deleterious impact of the recessive variants
through accumulation of the substrate of the enzyme (N-
acetylmannosamine), which also serves as a new biomarker
with which multiple patients around the world have been sub-
sequently diagnosed. Importantly, knockdown zebrafish reca-
pitulated the human phenotype which was rescued with early
sialic acid supplementation, opening up avenues for treat-
ments similar to what is in trial for GNE myopathy, a rare
muscle disease resulting from the upstream enzymatic defect
(Arghov et al 2016).

Further acceleration of IMD discovery

Despite the successes using WES approaches and functional
assays to discover IMDs, at least half of patient cases remain
unsolved even after detailed analysis. Reasons are myriad and
likely include technical limitations (e.g., missed coding vari-
ation in WES, structural rearrangements, regulatory muta-
tions), more complex genetic mechanisms (e.g., tissue-
specific somatic mosaicism requiring biopsy of the affected
organ system; two or more monogenic disorders reported in 4-
9% of patients), and insufficient evidence for or against the
causality of a certain candidate variant (n-of-1 challenge)
(Gajecka 2016; Posey et al 2017). Next, we provide a brief
overview of the possible approaches to solve the unsolved,
with a focus on IMD phenotypes.

Harnessing emerging technologies

Whole genome sequencing WGS has higher sensitivity than
WES for certain coding variants, indels, CNV, chromosomal
rearrangements, or causative variants in regulatory regions; it
is therefore postulated as an effective tool to consider in iden-
tifying unsolved IMD (Gilissen et al. 2014; Belkadi et al.
2015; Stavropoulos et al. 2016). For example, when compared
to WES, WGS identifies diagnostic variants in an additional
14% of patients (deep intronic SNV, small CNV, noncoding
RNA SNV) (Lionel et al 2017). Other complex rearrange-
ments that may be detectable by WGS include inversions
and transposons. The latter was reported as a cause of Salla
disease in a 11-year old boy with developmental delay, thin
corpus callosum, delayed myelination, and mild sialic
aciduria; homozygosity for a long interspersed element-1
retrotransposon was identified in SLC17A5 causing two new
splice sites with a premature stopcodon 4 bp into intron 9
(Tarailo-Graovac et al 2017a).

Transcriptome sequencing The value of transcriptome data in
evaluating the functional significance of noncoding/
regulatory variants in known genes was recently highlighted

by several groups primarily as an adjunct diagnostic tool for
the identification of mutations in known disease genes that
were not identified or could not be interpreted by WES or
WGS alone. Utilization of fibroblast-derived RNA identified
splice mutations in known disease genes in 10% of a cohort of
48 patients with mitochondrial disease (Kremer et al 2017).
Another study using RNA derived from muscle identified
splice mutations in 35% of the 50 patients with undiagnosed
rare muscle disorders (Cummings et al 2017). Transcriptome
sequencing will also aid in identifying cases of differential
allele expression resulting in (near) homologous expression
of a pathogenic allele, when in an autosomal recessive disor-
der only one heterozygous pathogenic allele was identified by
WES or WGS.

Epigenomics Genome-wide methylation analysis can also
identify biological signals that support disease-gene causality.
For example, the methylation profiles of several rare diseases
associated with genes suspected to have an impact on meth-
ylation status identified diagnostic signatures for Floating
Harbor syndrome (Hood et al 2016), ATRX syndrome
(Schenkel et al 2017), DNMT1-associated autosomal domi-
nant cerebellar ataxia and deafness (Kernohan et al 2016),
Sotos syndrome (Choufani et al 2015), and CHARGE and
Kabuki syndromes (Butcher et al 2017).

Metabolomics Although enabling ultra-sensitive, untargeted
analysis ofmanymetabolic pathways and processes all at once
(amino acids and peptides, carbohydrates, cofactors and vita-
mins, purines and pyrimidines, fatty acids and ketones, sterols,
porphyrin and heme, lysosomal, peroxisomal, lipoprotein,
neurotransmission, trace elements and metals), this high mass
accuracy tandemMS method is not without challenges, and it
is not yet possible to analyze the complete metabolome. To
start with, essential information on the effect of clinically rel-
evant metabolite/feature information on IEM disease patho-
genesis is lacking, especially as not all 10,000 features detect-
ed by the semi-automated data-processing pipelines (signals
with a specific mass to charge ratio, intensity, and retention
time) can be correctly annotated and reference ranges have yet
to be established (Ramos et al 2017; De Sain-van der Velden
et al 2017). This method, therefore, requires control samples,
which are often hard to come by in pediatric populations.
Further, while identification of accumulating or elevated me-
tabolites is rather straightforward, confirming those that are
decreased or ‘too low’ is complex. For metabolites that are
not available as reference standard, evidence for identification
is gathered from biological reference samples (patients with
similar diagnosis), isotope ratios, specific in source fragmen-
tation patterns, and available databases (such as the Human
Metabolome Database (Wishart et al 2013); novel features can
be further characterized using NMR-spectroscopy, infrared
spectroscopy, multistage fragmentation mass spectrometry
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and/or targeted metabolomic analyses (Wevers et al. 1994;
Martens et al. 2017; Václavík et al. 2017). As Graham et al
report in a pilot study in this issue, untargeted metabolomics
analyses in 15 neurometabolic patients facilitated a more ho-
listic characterization of their phenotype, with the identifica-
tion of a metabolic footprint of genetic variants with biological
relevance to his/her presenting features (Graham et al. 2017).
This finding is in line with the much larger study applying
combined WGS and metabolomics in 1200 healthy individ-
uals (Long et al 2017).

Lipidomics In 2015, more than 100 IMDs resulting from
primary or secondary defects of complex lipids synthesis
and remodeling were known (Lamari et al 2015); this group
of disorders, which involve many different molecules and
several cellular compartments and thus not organelle-specif-
ic, is growing steadily (Saudubray et al 2015). Further ex-
pansion in this area has resulted in the ability to detect 1200
discrete and known species and >5000 (untargeted) yet non-
classified lipid species/metabolites encompassing phospho-
lipids, neutral lipids, gangliosides, sulfatides, sphingolipids,
ceramides (Vaz et al. 2015, 2017).

Glycomics Another quickly expanding IMD category is the
field of CDGs. Early and accurate diagnosis is important
since opportunities for treatment are emerging such as oral
D-galactose supplementation for PGM1-CDG (Wong et al
2017). Transferrin isoelectric focusing can only identify a
subset of CDGs. Therefore, glycomic platforms are in de-
velopment that can profile O-glycans as well as N-glycans;
thus, enabling the characterization of hundreds of glyco-
proteins and glycolipids (Van Scherpenzeel et al 2016). A
further upcoming and promising technique will be the large
scale analysis of glycopeptides. This will allow us to
screen for the vast array of disease processes linked to
the endoplasmic reticulum and Golgi organelles, many of
which are yet to be characterized.

Identification of complex genetic mechanisms

When a possible genetic diagnosis is identified by genome-
wide sequencing approaches, the clinician must critically as-
sess whether the patient’s phenotype fits previous patient de-
scriptions. In the case of atypical symptoms and signs, the data
should be re-interrogated for the presence of other variants
causing other unrelated condition(s). Such blended pheno-
types have been reported in 5-9% of rare disease cohorts in-
vestigated by exomes, including those with neurometabolic
phenotypes (Reid et al 2016; Tarailo-Graovac et al 2016;
Posey et al 2017). In addition, somatic mosaicism can cause
an atypical presentation of a disease; deep sequencing is nec-
essary for detection, ideally using DNA extracted from the
affected tissue.

Approaches to the n-of-1 challenge

The establishment of a novel gene as disease-causing requires
identification of multiple unrelated patients with the same
phenotype and mutations in the same gene. Multiple projects
have addressed this need by developing platforms that use
genotype and phenotype matching algorithms to identify
cases with overlapping phenotypes and candidate genes
(reviewed in Philippakis et al 2015), but were initially isolated
from each other. In 2015, the international Matchmaker
Exchange (MME; www.matchmakerexchange.org) was
founded: a federated platform that facilitates the identification
of cases with similar phenotypic and genotypic profiles (called
matchmaking) through a standardized application program-
ming interface (API) (Buske et al 2015). Seven matchmakers
are currently linked via the MME connecting data from
~10,000 patients with unsolved RD. Discoveries will only
grow as we connect more datasets to obtain the 50,000-
250,000 unsolved cases necessary to identify the remaining
RD genes as modeled using the ‘birthday paradox’ (Krawitz
et al 2015). Critical to the success of such efforts are
computer-readable patient descriptions; the Human
Phenotype Ontology (HPO; www.human-phenotype-
ontology.org) project has been developed to meet this need.
Its main components are phenotype vocabulary, disease-
phenotype annotations and the algorithms that operate on
these. For IMDs, HPO remains underdeveloped; in this same
-Omics issue Lee et al. (2018) demonstrate that a computa-
tional vocabulary comparison between IEMbase (a digital
knowledge base for inherited metabolic diseases, www.
iembase.org, Lee et al. 2017) and HPO revealed that only
25% of the biochemical terms in IEMbase could be mapped
to HPO. The authors emphasize that contributions by the IEM
clinical and research community to the curation of
biochemical data are urgently needed to fully enable the
application of text-based phenomics, in order to facilitate
data-sharing for IMD patients.

Personalized treatments for IMD

Precision medicine also holds the promise of individualized
treatment, and challenges clinician to translate diagnosis into
better management. With IMDs, ample opportunities exist for
intervention once the metabolic pathways are known (Tarailo-
Graovac et al 2016, Tarailo-Graovac et al 2017b). One exam-
ple is pyridoxine-dependent epilepsy, which in 2005 was
unraveled as a neurometabolic disease due to a lysine catabo-
lism defect (ALDH7A1 deficiency) with accumulation of po-
tentially toxic metabolites (e.g., α-aminoadipic semialdehyde,
α-AASA) (Mills et al 2006). Given that more than 75% of
patients suffer ID despite adequate seizure control on pyridox-
ine (Bok et al 2012), better treatment was needed and the
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obvious strategy is analogous to glutaric aciduria type I, i.e.,
dietary lysine restriction to reduce α-AASA production and
arginine supplementation to inhibit lysine transport over the
blood-brain-barrier. Observational studies in small patient
numbers show developmental and behavioral improvement
in PDE patients on this triple therapy, especially if started early
(Coughlin et al 2015). However, the evidence level to support
effect of the adjunct therapy remains limited (IV), and trials
are difficult to perform for reasons inherent to rare diseases
such as PDE, including small patient numbers, genetic and
phenotypic heterogeneity, and long-term outcomes, which
are difficult to measure, and the need for standardized long
term follow up to document outcome (van Karnebeek and
Stockler 2012). This is a challenge for clinicians, as it requires
the establishment of international collaborations and develop-
ment and execution of clinical trials, often with limited time
and resources available. However, it is typically the clinician
who must overcome these challenges, and—especially in the
absence of big pharma—drive the efforts to increase evidence
and ensure optimal practice parameters and health outcomes.

Natural history studies are central to gathering evidence,
while digital technologies enable us to establish patient
registries that can be globally populated. With the high rate
of gene discovery and treatment development in the -omics
era, it is not easy for the clinician to keep track of all
developments. OrphaNet sends around regular e-newsletters
summarizing novel disease genes and phenotypes. In the
near future the electronic patient record should theoretically
enable the clinician to easily identify patients with specific
unexplained symptoms seen in his/her center, so that once a
disease gene is reported with a specific phenotype, individ-
uals fitting that description can be recalled and the gene
tested or the exome (re-)analyzed in a targeted fashion,
which has been shown to establish diagnoses in an
additional 36% of patients (Eldomery et al 2017): This
endeavour is specifically relevant for and those symptoms
and conditions that can be treated and symptoms, as in the
two examples given here. Recessive mutations in DNAJC12

were reported recently as a novel treatable cause of
hyperphenylalaninemia, with ID and dystonia (Anikster
et al 2017). Such hyperphenylalaninemia cases must have
been picked up on NBS, but had remained unexplained as
negative for PKU and known congenital neurotransmitter
deficiencies. Given the amenability to treatment with BH4
and/or neurotransmitter precursors, these missed patients
should be retro-actively identified using metabolic and
genetic (re)-testing. The same holds for a recently described
de novo pyrimidine synthesis disorder caused by CAD

mutations with global developmental delay, anemia, and
epileptic encephalopathy responsive to uridine supplemen-
tation (Koch et al 2017).

Secondary treatment targets can be identified by deep phe-
notyping combined with exome sequencing, as illustrated in

an 18-year old man in whom a maternally inherited PAK3

mutation was identified as the cause of his severe, debilitating
automutilation with epilepsy, intellectual disability, and neu-
rologic impairment. CSF neurotransmitter analysis revealed
low homovanillic acid and although the pathogenesis of the
dopamine deficiency was not completely understood, the
mother agreed to a test of targeted intervention with Levo-
Carbidopamine supplementation. Unexpectedly, the effect
was sizeable; she tells the story of their diagnostic odyssey
and experience with the treatment in a peer reviewed medical
journal, an excerpt of which reads: BThere is no cure for PAK3
mutation or for brain damage, and Jake will continue to be at
risk of a shortened life span. However, his quality of life did
improve significantly once he began the medication. He is
happier, less irritable. His rates of self-injury dropped dramat-
ically. He still hits his head several times each day, but the
numbers decreased quickly by 80%—from the 100 or so daily
occurrences of that time. His rates have remained stable since
he began the medication in August, 2015^ (Bartel 2017).

Jake’s story motivates us to measure neurotransmitter me-
tabolites in other neuropsychiatric presentations, e.g., in other
epileptic patients (SCN2A and SCN8A mutations), deficien-
cies in CSF, and treatment with neurotransmitter precursors
with clinical and biochemical improvement (Horvath et al
2016). As clinicians working closely with families, we need
creativity and shared courage to tailor treatment options in the
hope of alleviating symptoms. A cure it is not, but by utilizing
well-designed n-of-1 trials with clearly defined outcome mea-
sures, we can certainly perform targeted interventions tailored
to the individual in a safe and responsible way. Further, such
cases inform us about biology and requirements for normal
brain function, knowledge that might applicable not only to
rare but also more common disease states.

The future is now, actualizing the 4Ps
of precision medicine for IMD

Unlike no other rare disease, IMDs are poised to actualize the
4Ps of precision medicine on a broad scale, as has been done
on a smaller scale over the past century. The three major chal-
lenges we face for preventive, predictive, personalized, and
participatory care for patients with IMDs are big data interpre-
tation, translation of knowledge into clinical care, and educa-
tion for application and understanding in the wider communi-
ty. Inherent to big data, and its associated repositories, are the
ethical and legal frameworks to utilize these datasets for dis-
coveries that will impact patient care. The rapid advancements
in data networks, storage, computation at a lower cost, and
clear-cut advantages of data sharing for accurate interpretation
and understanding make this seem like the critical path for-
ward (Salerno et al 2017). However, it is challenged by data
integrity, informed consent, protection of individual privacy,
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confidentiality, harm, data re-identification, the prevention of
reporting faulty inferences and the financial investment re-
quired to maintain such infrastructure. For the busy clinician,
these challenges can be overwhelming, resulting in lost oppor-
tunities: we must keep the patient at the center when it comes
to data-sharing being optimally placed within day-to-day clin-
ical workflows.

The new -omics technologies described here will all prog-
ress and at some stage be ready for clinical translation. The
application of genomics in NBS programs is an active area of
discussion. Theoretically, the majority of monogenic diseases,
including IMDwithout reliable metabolic biomarker, could be
identified early in life. Aside from the technical and financial
challenges requiring solutions, the ethical, legal, and social
implications are immense (Friedman et al 2017). Similarly,
the identification of a particular genetic diagnosis may not
always be predictive regarding severity of disease. Much re-
mains to be understood regarding modifiers of disease presen-
tation, exemplified by X-linked adrenoleukodystrophy where
boyswithin the same family—evenmonozygotic twins—may
develop the fatal cerebral childhood form or be largely asymp-
tomatic. Recently included in NBS panels, this lack of geno-
phenotype correlation for the 700+ reported ABCD1 muta-
tions poses an impediment to standardized follow-up and ac-
curate timing of hematopoietic stem cell transplantation
(Kemp et al 2016). Great care should be taken not to burden
individuals that will remain asymptomatic most or all or their
lives, with lifelong unnecessary medical investigations. Multi-
omics should be harnessed to identify environmental and/or
epi−/genomic modifiers to help prognosticate. Those acceler-
ating or attenuating the phenotype might serve as useful treat-
ment targets. All in all, the design of a genomic NBS roadmap
weighing the interests of the different stakeholders is required.

How can we make smart -omics accessible to clinicians?
Education and dissemination of knowledge on the real-life
deliverables and challenges of -omics technologies for health
professionals are essential to solving the current inequity.
Training the next generation of clinicians to take on the role
as connectors in multi-disciplinary teams is a sine qua non
essential, and the latter could be structured analogous to mo-
lecular tumor boards shown effective for cancer patients. We
encourage traditional metabolic laboratories to gradually shift
gears, moving toward a functional genomics laboratory and
begin implementing the more holistic techniques like
untargeted metabolomics, lipidomics and glycomics, with
the bio-informatician central to the translation of big data into
personalized patient care. Open collaborations and data shar-
ing will prevent reinvention of the wheel. Having all the right
expertise at the table when discussing the diagnostic approach
and individualized management plan according to the infor-
mation yielded by -omics investigations (e.g., actionable mu-
tations, novel therapeutic interventions), is the stepping stone
of P4 medicine. Patient participation and the adjustment of the

medical team’s plan to his/her and the family’s wishes most
certainly is the capstone.

In conclusion, there is never a dull moment for the clinician
in the -omics era. P4 medicine for IMDs can be achieved if we
choose wisely, continuously adjust as we learn by doing, and
consider the patient and family as partners central to the suc-
cess of our endeavors.
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