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Abstract 

In an attempt to find the optimum number of wells for maximum conversion efficiency a 

pair of otherwise identical strain balanced samples, one containing 50 wells and the other 

65 wells have been characterised. The 65 well sample is found to possess a lower predicted 

efficiency than the 50 well sample, suggesting that the optimum well number lies between 

these values. 

Devices grown using tertiary butyl arsine (TBAs) are found to possess comparable 

conversion efficiencies to the control cells grown using arsine and slightly superior dark IV 

characteristics, indicating that TBAs may be substituted for arsine without loss of device 

efficiency. 

It is proposed that the n, =I dark current of strain-balanced multi-quantum well (SB-MQW) 

solar cells is comprised of two components, one arising from recombination in the wells in 

addition to the Ideal Shockley current. Good agreement between the output of this model 

and experimentally determined intercepts of the nj =I dark currents is observed. The 

radiative dark current arising from recombination in the wells is found become increasingly 

dominant as the wells grow deeper. 

Expressions for the strained bandgaps are derived. A value for the conduction band offset is 

determined using the difference in energy between the heavy and light hole exciton peaks 

in low temperature photocurrent scans and found to be 0.53±0.03. 

An absolute calculation for the absorption coefficient is incorporated into the quantum 

efficiency model and values for the heavy and light hole in-planes masses are obtained. The 

2 



model is found to underestimate the level of absorption in the intrinsic region by an amount 

consistent with estimates of the magnitude of the reflection from the back surface. The 

conversion efficiency of a sample predicted using a modelling program is compared to an 

independently obtained value. Good agreement is observed between the two results. 
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I The growth of the PV market 

1.1 The need for renewable energy sources 

For many years the scientific community has speculated on the effect of the large volumes 

of carbon dioxide released into the atmosphere. Although there is not yet complete 

agreement on the environmental consequences of the large increases MC02production 

seen in recent decades, evidence is mounting that the increase in global temperature caused 

by greenhouse gases is responsible for dramatic changes in weather patterns, including 

hurricanes and droughts, together with rising sea levels caused by the melting of the polar 

ice caps. 

Many widely respected international companies and government bodies are now in 

agreement with the sentiments expressed in the Third Assessment Report of the 

Intergovernmental Panel on Climate Change, that there is increasing evidence that climate 

change and human activities are inextricably linked [I]. In 2005 the United Nations 

Framework Convention on Climate Change warned that "a new kind of climate change is 

now on the way, foreshadowing drastic impacts on people, economies and ecosystems" [2]. 

Additionally, Lord Browne (the CEO of BP), admitted at the Launch of the 2006 Statistical 

Review of World Energy that "in BP we don't believe we can ignore the mounting 

evidence, the weight of scientific opinion and the risks of a fundamental change in the 

Eaith's climate" [3]. 

If this were insufficient motivation for trying to break our dependence on fossil fuels there 

is also the fact that these energy sources will eventually be exhausted. Clearly, if modem 
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rates of energy consumption are to be maintained we must seek to generate more power 

from less polluting and sustainable sources such as wind, hydroelectric and solar power. 

A possible alternative to fossil fuels is nuclear fission. This is often considered to be a more 

environmentally viable option for power generation although considerable amountsOf C02 

are released in the mining and milling of uranium ore. There are several major obstacles to 

be overcome before nuclear power can become a safe and economically viable alternative 

to fossil fuels. Firstly, there is the problem of safely disposing of nuclear waste which will 

remain hazardous for many thousands of years to come. Also, nuclear power plants may be- 

come targets for terrorist attacks. However, one of the most compelling arguments against 

the use of nuclear power is economic, with the cost of safely decommissioning nuclear 

power plants often extremely high [4]. 
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1.2 Photovoltaics 

Photovoltaics (PV), the production of electricity from solar radiation, is both non- 

polluting and sustainable. Worldwide, the PV market has expanded rapidly over recent 

years, with a cumulative installed capacity of 2.6 GW achieved by the end of 2004 [5]. 

3444 

250 

2 "0 

1 S" 

1 "0 

,z 
SO 

0 

Figure 1.1: Growth of the worldwide PV market from 1992 to 2004 [5] 

1.3 Economics of photovoltaics 

Currently, commercially available photovoltaic systems are usually based on first 

generation devices. These devices are high efficiency photovoltaic cells such as 

monocrystalline silicon cells and have correspondingly high production costs of around 

US$3/Wpeak, significantly higher than that of electricity generated using conventional non 

renewable resources (estimated at US$l/W) [6]. 
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Figure 1.2: Conversion efficiency and cost for first, second and third generation photo- 

voltaic devices [6] 

The economic viability of photovoltaics may be increased by utilizing devices comprised of 

thinner cells and less costly materials even if they have somewhat lower conversion 

efficiencies - second generation devices such as thin film cells. However, the most 

advanced photovoltaic devices attempt to retain the low cost of second generation 

technologies while dramatically improving device efficiency by utilizing more 

sophisticated cell designs including multi-junction devices, hot camer cells and 

intermediate bandgap devices. 

This thesis focuses on quantum well solar cells, one of the most promising high efficiency 

cells belonging third generation PV. Such high efficiency cells are suitable for use in 

concentrator systems, where low cost optics are used in combination with small areas of 

photovoltaic devices, leading to a lower overall cost of energy production. 
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1.4 Introduction to Photovoltaics 

1.4.1 The Solar Spectrum 

Although the precise incident solar spectrum anywhere on the Earth's surface is affected by 

local weather conditions and atmospheric pollution levels, a set of standard spectra have 

been developed (see Figure 1.4). These spectra indicate the air mass (AM) through which 

the solar radiation has passed to reach the solar cell, with air mass being given by 

AM = sec(O) 

where 0 is the solar zenith angle [7]. Air mass 1.5 is normally used as the standard 

terrestrial spectrum. 

Atmosphere 
Earth 

Figure 1.3: The solar zenith angle shown here for the AMI. 5 spectrum 

(1.2) 
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A particular spectrum may also be described as global or G, indicating a high proportion of 

diffuse radiation, or direct or D, indicating only normal incidence light is included in the 

spectrum. Direct spectra are commonly used in the modelling of concentrator systems as 

the optics in such systems are only capable of collecting a small amount of diffuse light [8]- 

The AMl. 5D and AMI. 5G spectra are usually defined such that the unconcentrated or "I 

-2 
sun" light intensities are 767 Wm 

1.8 

E 

1.6 

1.4 

c eq 
E 1.2 

0.8 

0.6 

CL 
0.4 

0.2 

-2 
and 1000 Win respectively. 

Wavelength (nm) 

Figure 1.4: AM 1.5G and AM 1.513 spectra calculated using the Simple Model for 

Atmospheric Radiative Transfer of Sunshine (SMARTS) calculated by Dr. T. Tibbits [91 
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1.5 The Physics of Solar Cells 

1.5.1 The p-n junction 

The simplest fonn of a photovoltaic device is a p-n homojunction, which consists of two 

layers of the same semiconductor that are oppositely doped. A band diagram of such a 

junction is shown in Figure 1.5. The gradient of carrier concentration causes majority 

carriers to diffuse across the junction with electrons moving from the n to the p region and 

holes from the p to the n region. This displacement of carriers leaves behind two layers of 

fixed charge due to the ionised donor and acceptor atoms around the junction. This gives 

rise to an electrostatic field, in a direction such that minority carriers drift across the 

junction in the opposite direction to the diffusion current. When the junction is at room 

temperature and no external bias is applied the drift and diffusion currents are in 

equilibrium and no net current is produced. 
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Figure 1.5: The pn junction under equilibrium. The conduction and valence bands are 

denoted by E, and E, respectively. The Fen-ni level is denoted by EFand the depletion 

region extends from )ý, to -Xp [8] 

1.5.2 Dark Current 

When the p-n junction is forward biased the electrostatic field within the junction is 

reduced, causing an increase in diffusion current such that the diffusion and dnft currents 

are no longer equal. The net current produced is termed the dark current. In an ideal cell the 

only loss mechanism is the radiative or non-radiative recombination of injected minority 

carriers with majority carriers in the p and n regions (ideal Shockley behaviour). The dark 

current is then described by the Ideal Shockley equation. 

qV 
JIdeal (V) 

= Jo, (e ", kT (1.3) 
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where Jol is the reverse saturation current density, k is Boltzmann's constant, q is the 

magnitude of the electron charge and where the ideality factor nj, is unity [10]. However, in 

real diodes, non radiative recombination also occurs in the depletion region, often through 

trap levels when it can be described by the Shockley Hall Read (SHR) model, which has an 

ideality factor n2-2. 

qV 
JSHR (V) --": J02(e n2kT (1.4) 

whereJ02is the reverse saturation current density of the Shockley Hall Read current [I I]. 

In a real solar cell the total dark current is the sum of the ideal and SHR currents 

qV qV 

(e njkT (e 
n2 U 

The dark current of a real solar cell is also affected by two kinds of parasitic resistances; 

series resistance (caused by resistance within the solar cell), and shunt resistance (caused by 

current leakage [14]). The effects of series and shunt resistance are illustrated in Figure 1.6 

with shunt resistance observed at low voltages and series resistance observed at high bias. 
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Figure 1.6: The dark IV curve for a real solar cell (red line) and an ideal device (blue line) 

1.5.3 Photocurrent 

When the junction is illuminated , incident photons with energy greater than Eg can excite 

electrons across the energy gap to the conduction band. The electrostatic field within the 

junction causes electrons to migrate. Minority carriers in p and n regions diffuse to the field 

region and these carriers produced in the depletion region drift to their respective majority 

carrier regions, thus creating a photo-generated current that acts in the opposite sense to the 

dark current. The photocurrent is dependent on the photon flux incident on the junction and 

quantum efficiency (the ratio of generated and collected electron-hole pairs to incident 

photons). The short circuit current density of the photo-generated carriers is given by 

Jsc = Iql fQE(E)b(E)dE 
Eg 

where QE(E) is the quantum efficiency and b(E) is the incident photon flux [8]. 
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The total current produced by the junction is now 

qV qF 

Jjot (V) = J,,, (e ", U_ 1) + J02(e 172kT 
sc (1.7) 

A typical light IV profile for a solar cell is shown in Figure 1.7. 
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Figure 1.7: Light IV profile for a typical solar cell. 

As indicated in Figure 1.7 the voltage at which the photocurrent is exactly cancelled by the 

dark current is termed the open circuit voltage (V,,, ) and the current density and voltage 

corresponding to the greatest power output are named the maximum power voltage and 

current density (V,, p and J,, p respectively). 

26 



1.5.4 Cell Efficiency 

The efficiency of a solar cell is simply the ratio of electrical power generated to the power 

incident on the device (Pi, ). 

vi 

77 --,: MP MP 
Pin 

The area of the maximum power rectangle that is covered by the IV profile is described by 

the fill factor (EF), which is given by 

FF -V -vj'p 
v 
oc 

isc 

and gives rise to an altemative fonn of Equation 1.8 

77 : -- 
FF'ý, Jsc 

(1.10) 
Iýn 

1.5.5 Effect of Band-gap on Cell Efficiency 

The size of the band-gap of the material used to make a solar cell has a dramatic effect on 

the short circuit current and the dark current of the device. This is because, as the cell can 

only absorb photons with energies greater or equal to the bandgap, the smaller the bandgap 

of the cell the more photons can be absorbed and the greater J,, will be. However, V, is 

also dependent on the size of the bandgap, due to the relationship between reverse 

saturation current and Eg 
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oc exp (I. 11) 

As stated in Equation I 
-10, the overall efficiency of the cell is dependent on the product of 

J, and V,,,. For this reason it is necessary to compromise between a large band-gap material 

that produces a low J, and a high V, and a small band-gap material that has a low V,,, and 

large J,,. The optimum band-gap for AM 1.5 spectra has been calculated to be 1. l8eV at 30 

suns concentration [ 121. The two material systems with band-gaps closest to this optimum 

value are InP and GaAs, which possess bandgaps of 1.34eV and 1.42eV respectively (see 

Figures (1.8 and 1.9). GaAs is generally used in solar cell fabrication in preference to InP 

because GaAs substrates are cheaper and less brittle and growth on GaAs is consistent with 

the even cheaper Ge substrates. 

28 



37 

e 

Energy (eV) 
2.8 2.0 1.6 1.2 1.0 0.8 0.7 

35 
InO 

33 

In 0.1 
J GaAs I rý- .I 

/\ 1000 suns 

31 

29 e 

23 

27 

25 

30 sun 

1800 

1600 

1400 E 

1,4 
1200 E 

lo00 

800 

600 22 

400 (n 

200 

A 
0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 

Wavelength (gm) 

Figure 1.8: Variation of cell efficiency as a function of bandgap energy and wavelength for 

the AMI. 5 spectrum at 30 and 1000 suns concentration [12] 
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Figure 1.9: Variation of cell efficiency as a function of bandgap for the AMI. 5 spectrum at 

I sun intensity [13] 
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1.5.6 Upper limits to photovoltaic energy conversion 

The maximum theoretical efficiency of a single junction solar cell at I sun concentration 

has been calculated to be 31% [14]. There are several loss mechanisms in solar cells that 

cause experimental values to be much lower than this, with the record efficiency for a 

GaAs pn junction cell currently standing at 25.2% at I sun [15]. Firstly, cell efficiency is 

reduced by series resistance (see Sec. 1.5.2). Additionally, carriers are lost through recom- 

bination. But the most significant limiting factor for cell efficiency is the fact that if 

absorbed photons have energies greater than the cell band-gap the difference in energy 

between the photon and the band-gap will rapidly be lost via thennalisation. 

1.5.7 Introduction to Multi-quantum Well Solar Cells 

MQW (multi-quantum well) cells consist of layers of lower band-gap material that are 

inserted into the i region of a pin diode [ 16]. These layers are sufficiently thin that electrons 

in the layer region are confined to discrete energy levels. The layers of wider band-gap 

material between the quantum wells are termed barriers. A band diagram of an MQW cell 

is shown in Figure 1.10. The wells extend the energy range of photons that may be 

absorbed by the cell from greater than or equal to the bulk band gap Eg to greater than or 

equal to the band-gap of the well material plus confinement energy, E, thus reducing the 

absorption threshold of the cell. 
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Figure 1.10. A single junction MQW cell [ 14]. 

As discussed in Sec. 1.5.5 GaAs cell efficiency can be increased if the absorption threshold 

can be reduced. However, there are no materials that can be grown lattice matched to GaAs 

and possess a lower band-gap (see Figure 1.11). Inclusion of strained quantum wells made 

of a material with a different lattice constant to the substrate material, such as InGaAs wells 

on a GaAs substrate, is possible and the introduction of a lower band-gap material will both 

increase the photocurrent and reduce the open circuit voltage of the cell. Provided the 

strained layer does not exceed a critical thickness, the lattice structure of the well layer will 

deform to become lattice matched with the substrate. However, if the critical thickness is 

exceeded the lattice of the strained layer will relax, introducing misfit dislocations which 

drastically reduce the open circuit voltage of the cell and hence device efficiency. It has not 

yet proved possible to include a sufficient number of wells in a strained InGaAs/GaAs 

structure to provide a large enough increase in photocurrent to compensate for the loss in 

open circuit voltage before relaxation occurs in the wells [ 17]. 
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Figure 1.11. Lattice constants and bandgaps of common Ill-V semiconductors [ 13]. 

1.5.8 Strain balanced Multi-quantum Well Solar Cells 

Strain balancing provides a method of overcoming this limit to the number of strained 

wells. The compressive strain in the InGaAs well layers is offset by the tensile strain in the 

GaAsP barrier layers, allowing the average lattice constant across the intrinsic region to 

match that of GaAs. Strain balancing has also been achieved in the InGaAs /InP material 

system [ 18]. Thus, the addition of enough quantum wells to sufficiently increase the device 

photocurrent to make the gain in J, greater the loss in V, (and hence increase overall 

device efficiency) becomes possible. The inclusion of strain balanced quantum wells has 

been demonstrated to increase device efficiency by 1.2% absolute compared to a GaAs 

control cell [19]. 

Obtaining an expression for the strain balanced condition is non-trivial. The simplest 

hypothesis suggests that strain balancing may be achieved when the thickness weighted 
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average lattice parameter of the strained layers Is equal to the lattice parameter of the 

substrate layer [20] 

ao 
a, 
tl + t2 

where ti, al and t-, and a2are the thicknesses and relaxed lattice parameters of the 

compressive and tensile strained layers respectively and ao is the lattice parameter of the 

substrate layer. 

Another calculation suggests that the strain balancing takes place when the strain of the two 

layers, weighted according to thickness and elastic constants, is matched [20]. 

ao = 
(t, A, + t2A2)al a2 

a, A, t, + a2A2t2 

where AI and A2are defined as 

2c 2 

A=c,, + C12 12 

Cil 

where c, andCl2are the elastic stiffness constants of the appropriate layer. However, the 

most rigorous approach to strain balancing arises from considering the tensile and 

compressively strain layers at their lowest energy. In this state the net stress within the 

double layer is zero. Therefore, the true strain balanced condition corresponds to zero in- 

plane stress across the strained layers. This leads to the expression given in Equation 1.15, 
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which is used to calculate the well and barrier layer widths and compositions for the strain - 
balanced samples detailed in this thesis [20]. 

ao = 
Ataa2 +A taa2 11122221 

(1.15) 

1.5.9 Real MQW Structures 

Ata2Ata2 112221 

In order to minimize the recombination of minority carriers at the cell surface a region of 

high band-gap semiconductor or window is often incorporated into the cell between the p 

region and the top surface to "reflect" minority carriers towards the depletion region. 

Window layers are usually made of AlGaAs as it is possible to grow AlGaAs lattice 

matched to GaAs (up to Al - 0.8). If this is the case then a further layer of low band-gap 

material or cap is grown over the window to prevent the AlGaAs oxidising [2 1 

It is also very important to maximize the amount of light that enters the cell. This is 

achieved by coating the cell with a layer of dielectric material that reduces the amount of 

light reflected from the surface of the cell; an antireflection coating. In addition, the cell 

requires electrical contacts so that current can be drawn from the device. The back surface 

of the cell can be completely covered in metal to minimize resistance to the extracted 

current. The front surface presents more of a problem as the contact needs to allow the 

maximum amount of light to reach the cell while keeping series resistance as low as 

possible. 
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The MQW cells described in this report are typically processed into two versions; a photo 

diode test device in which the front contact Is deposited as a ring structure with a 600ýtm 

optical window in the middle, and a fully metalised device. The fully metalised device 

allows more accurate measurement of the dark current at high bias due to its low series 

resistance while the solar cell allows assessment of the quantum efficiency and light IV 

response of the cell. Additionally, MQW cells may also be processed as concentrator 

devices, in which the front contact consists of a grid of thin metal strips which minimize the 

contact resistance and spreading resistance in the emitter while allowing the maximum 

amount of light to reach the cell. 

1.5.10 Overview of semiconductor band-structure 

A complete band-structure of GaAs calculated using the tight-binding approximation 

is shown in Figure 1.12 [22]. However, when studying the optical and electrical properties 

of semiconductors, the remote bands are usually neglected and only the lowest energy 

conduction and the three highest energy valence bands are considered, as indicated by the 

smaller rectangle in Figure 1.12. 
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Figure 1.12: Full band-structure of GaAs calculated using the tight-binding approximation 
[22] 

A simplified band-structure of a direct band-gap semiconductor, in which just the lowest 

energy conduction band and the three highest energy valence bands are considered, is 

shown in Figure 1.13. The two highest energy valence bands are identified as the heavy and 

light hole bands due to the difference in their dispersion and the corresponding difference in 

the effective masses of the carriers within these bands. In unstrained material the heavy and 

light hole bands are degenerate at the F point. 

The third valence band is known as the spin-orbit band due to its removal from the heavy 

and light hole bands caused by the spin-orbit interaction [23]. The difference in energy 

between the heavy hole and the split-off bands is termed the split-off energy or the spin 

orbit splitting 

36 

-op WAVE VEOTOR k 



DIN ECT 
C. i ̂-'. \T . 1,10 
2 X-N D 

handpp 

I-- 

--L- -- 

K214CI 
BAND 

I Heavy Hole Band 

:I Li; ht--E--leBaad 

: 1: Split-Off Band 

A= Spliz-Off EmeTgy 

Figure 1.13: Simplified bandstructure of GaAs depicting the lowest energy 

conduction band and the three highest energy valance bands [24] 

It should also be noted that semiconductor band-gaps decrease with increasing temperature 

due to the increase in atomic spacing and phonon interactions [25]. In this work the 

behaviour of the bandgap of GaAs has been modelled as 

Eg (T) = 1.5192 - 

(5.405 
x1 (1.16) 

T+204 

where T is temperature in degrees Kelvin [13]. 

1.5.11 Effects of quantum confinement 

Quantum wells are formed by enclosing a thin layer of a semiconductor between two layers 

of a larger bandgap semiconductor. Quantum well structures are divided into two types 

according to the alignment of the band-gaps (see Figure 1.14). In type I quantum wells both 
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the electron and hole wells occur in the same layer of semiconductor; in type 11 quantum 

wells the electrons and hole wells are located in different layers [26]. 
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Figure 1.14. Type I and 11 quantum well alignments 

Provided the width of the quantum well is smaller than the de Broglie wavelength of the 

electrons or holes the carriers are confined in the growth direction. However, the carriers 

are still unconfined in the x-y plane. This leads to the formation of sub-bands in the in- 

plane direction [27]. 

The energy levels in an infinite quantum well may be readily calculated using the following 

relationship. 

n2h2 ; T2 

2 2mLw 
(1.17) 

where L,, is the width of the quantum well and n the sub-band number. In an infinite well 

the wave-functions are alternating sine and cosine functions and thus for the integral of any 
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hole and electron wave-functions to be non-zero the index of the transitions (n) must be 

equal [26]. 

However the wave-functions for a finite quantum well do not have analytical solutions 

and must be solved numerically. The energy levels are given by [27] 

tan 
kL,, Ma 'Ca 

2 MbKb 

for odd states and 

(1.18) 

cot 
kL,, Ma 'Ca 

2 Mb 'Cb 

for even states where 

Ic = 

ýM 7ý 
ýn (- r-h2 

(1.20) 

and m, andMbare the band-edge effective masses in the well and barrier layers respectively 

and V is the barrier height [27]. 

In a finite quantum well for zero applied field the wave-functions have alternating parity 

and thus transitions are only allowed between levels with the same parity around the centre 

of the well. However, the application of an electric field breaks the symmetry of the wave- 

functions so that transitions between levels with opposite parities are observed. 
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One of the key effects of confinement is that the energy levels are removed from the band- 

edge. The effective band-gap of the semiconductor is therefore increased. 

Eg_qlý,., j, = Eg + E, + Ehc 

where E, and Eh, are the confined energies of the electron and hole respectively. 

(1.21) 

As can be seen from Equations 1.18 and 1.19, the confined levels are dependent on well 

width and carrier effective mass (and hence material composition). This allows the 

absorption of the quantum well to be controlled by varying these parameters. Additionally, 

the different effective masses mean that the degeneracy between the heavy and light hole 

bound states is lifted. 

1.5.12 Absorption in quantum well solar cells 
The absorption of a semiconductor depends primarily on two factors; the rate of transitions 

between the initial and final states and the reduced density of states for the participating 

bands. 

For an interband transition the reduced density of states is given by [28] 

gred(E) = 
ge(E)gh(E) 

ge (E)+ gh(E) 
(1.22) 

where g, (E) is the electron density of states and gh(E) is the hole density of states, which for 

a two dimensional system are [28] 

(E) 
Me, 11 

; 7h'Lw 
(1.23) 
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and 

gh(E) 
)7h'L 

where m* and m* are the in-plane effective masses of electrons and holes respectively. e, 11 h, 11 

The reduced density of states is thus [28] 

gred(E) 
Mred, 11 

A2 L" 

(1.24) 

(1.25) 

where m is the reduced in-plane effective mass which is given by red, 

Mred, ll - 
Me, IlMh, ll 

(1.26) 
Me, 11 

+ Mh, ll 

This gives rise to the characteristic "staircase" density of states, which, when modified to 

account for excitonic absorption, leads to the absorption spectra displayed in Figure 1.15. 
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Figure 1.15: a typical density of states (black line) and absorption spectra (blue line) for a 

quantum well device. The spikes in the density of states and the resulting peaks in the 

absorption spectra are the result of excitonic absorption. 

The rate of transitions between the initial and final states is governed by Fermi's Golden 

Rule, in which the probability of a transition between an initial state i and a final statef for 

a two dimensional system is expressed as [29] 

2n 
W, 1 h 

ý(IVi IH 
1, 

NI f 
ýl2 

6[hw - 
Ee 

- 
Eh 

-Eg (1.27) 

where Vii and Vf are the wave-functions of the initial and final states respectively, ho is the 

energy of the incident photons and E, + Eh + Eg is the effective bandgap for absorption as 

in Equation 1.2 1. The term Hi represents the perturbation in the Hamiltonian caused by the 

interaction between the electromagnetic radiation and the atoms in the semiconductor and 

has the form e-p where e is the polarisation vector of the incident light and p Is the 

momentum operator [29]. 
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Due to the periodic nature of the semiconductor crystal structure, the wave-functions of the 

carriers can be separated into Bloch functions, U(r), that represent the periodicity of the 

lattice, and slowly varying envelope functions F(r) [29]. 

V/(r) = F(r)U(r) 

Thus for an interband transition 

(1.28) 

ýy, IH, 1 y, ý= (U, 1 U, Xlý le. pl Fý ý+ (F, 1 F, XU, le. pl U, ý (1.29) 

where qf, and qj, are the wave-functions of the electrons and holes, U, and F, are the Bloch 

and envelope functions of the electrons, U, and F, are the Bloch and envelope functions of 

the holes. 

The symmetry of the Bloch functions must now be taken into consideration. In a direct 

band-gap semiconductor the conduction band has s like character and hence has even 

symmetry. The valence band has p like character and hence has odd parity. Therefore 

ýU, I Uf )=0 for interband transitions and as shown in Ref. 28 

(V/, IH, 1 Vf fý= 
ýF, 1 F, ý(U, le. pl U, ) 

The term (F, IF, ) governs which transitions are allowed and which are forbidden. In a 

finite quantum well with no field applied the envelope functions of the sub-bands have 

alternating even and odd parity, thus a transition between a hole sub-band m and an 

electron subband n is only allow if 

m- nj = even integer 
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If an electric field is applied to the wells the parity of the sub-bands is altered and forbidden 

transitions can occur. 

The term (U, je. pj U, ) accounts for the effects of polarisation of the incident light. For TE 

polarisation 

3ýUjh le. pl U, ) : ":::: ýUhh je*Pj Ue ) (1.32) 

whereU/handUhhare the Bloch functions of the light and heavy hole sub-bands 

respectively. For TM polansation 

ýUhh le*Pl Ue) --": 0 (1.33) 

Thus for TE polarisation heavy hole transitions absorb three times as strongly as transitions 

involving the light hole and in TM polarisation heavy hole transitions are not observed 

[28]. 
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2 Solar Cell Growth, Processing and Characterisation 

2.1 Solar Cell Growth 

The solar cells studied for this report have been grown by Metal-Organic Vapour Phase 

Epitaxy (MOVPE). This technique allows the production of high purity semiconductors 

and is particularly suitable for MQW device fabrication as it is possible to accurately 

control the depth and doping levels in each layer of the device. 

In the growth of a typical GaAs solar cell gaseous tri-methyl gallium, Ga(CH3)3 and 

arsine, AH3, are used as sources or precursors for Ga and As respectively. These are 

then fed into a reaction chamber containing a GaAs substrate. The chamber is heated to 

- 600'C, causing to the precursors to dissociate. The Ga and As are deposited onto the 

substrate surface, leaving methyl and hydrogen radicals in the gas phase where they 

react to form methane. This is then purged from the chamber along with any unreacted 

precursors. The main source of contamination in the resulting GaAs wafer is unreacted 

methyl radicals which further dissociate to form carbon, which can become incorporated 

into the wafer in place of an arsenic atom [I]. 
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2.2 Solar Cell processing 

Solar cell processing describes the additional steps required to convert a semiconductor 

wafer into a usable photovoltaic device. Unless otherwise stated the samples described 

in this work have been processed at the Centre for 111-V Technologies in Sheffield. The 

processing method at this facility is outlined below 

e The back contact is fori-ned by evaporating a layer of an alloy of 50% In - 50% 

Ge followed by a layer of Au onto the back of the substrate. This is then 

annealed by increasing the temperature to 420 'C. 

9 The front surface contact is created by covering the front surface with 

photoresist and using a mask to define the areas of the surface that metal will 

subsequently be evaporated onto. A layer of Ti followed by a layer of Au is 

evaporated onto the wafer. 

e The cap layer of the solar cell is removed using a 1: 19 solution of ammonia: 

peroxide. 

0A SiN3 antireflection coating is deposited onto the wafer. A typical coat has a 

layer thickness of 45nm, a refractive index of 1.97 and is optimised at 600nm. 

The area over the optical window of the photocell is covered with a layer of 

photoresist and excess antireflection coat is removed using a CHF3/02 reactive 

ion etch. 

Individual devices on the wafer are isolated so they share the same back contact 

but have separate front contacts. This is achieved using an etch of 1.1.1 solution 

(by volume) of hydrogen bromide: acetic acid: potassium dichromate. 
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9 The wafer is cleaved into sets of six photocells which are then bonded to T05 

headers. Gold wires are used to connect the front contact of each device to the 

pins of each header. 

The processing method is outlined in Figure 2.1 
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annealing of back 

contact 

I 

Front surface 
contact deposition 

Removal of cap 
layer 

Antireflection 
coating deposition 

Individual devices 
isolated 

I 

Wafer cleaved and 
boned to T05 

header 

Figure 2.1: Outline of processing method 
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2.3 Solar Cell Characterisation 

2.3.1 Dark Current Measurement 

Solar cell characterisation generally begins with an analysis of the dark currents of a 

number of devices over a range of voltages to establish both the spread In the magnitude 

of the dark current (an important indication of processing quality) and the series and 

shunt resistances of the cell. The bias of the cell is controlled using a Keithley source 

measurement unit (model 238) and the resulting dark current recorded and transferred to 

a PC using an IEEE-488 interface bus. The cell is kept at a constant temperature of 

(25±0. Iff using a Peltier plate controlled by a platinum resistance thermometer 

monitored using a Keithley 195A digital multimeter. 

It is also possible to fit the recorded dark current data to Equation 1.5, Chapter 1, using 

an iterative Newton-Raphson based program designed by Dr D. Bushnell [2]. 

2.3.2 External Quantum Efficiency Measurements. 

Devices that show appropriately low dark currents and series resistance can then be 

further examined by characterization of the external quantum efficiency (EQE). The 

equipment used in such a characterization is shown in Figure 2.2. 

51 



Achromatic 

Figure 2.2: Outline of the experimental set up for external quantum efficiency 

measurements 

Light from a tungsten filament lamp is chopped and coupled into a Bentham M300 

30cm monochromator. The light emitted from the monochromator passes through a 

2mm. pinhole and into a pair of achromatic lenses before being focused onto the optical 

window of the device under investigation. The photocurrent from the device is then fed 

through custom built electronics (designed and built by Dr D Bushnell [2]) that fixes the 

voltage across the device independent of the D. C. diode current. The photocurrent is 

then measured using a Stanford SR510 lock-in amplifier which combines the chopped 

photocurrent with the chopper signal. The use of the lock-in amplifier allows 

background light at a different frequency to the chopped output of the lamp to be 

discarded, hence increasing the signal to noise ratio. The recorded photocurrent is then 

transferred to a PC using an IEEE-488 interface bus. 
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In a typical experiment the device photocurrent is measured at zero bias, between 

wavelengths of 400nm and 1000nm with a wavelength step of 2nm at a chopper 

frequency of 315 Hz. The experiment is then repeated using a silicon photodiode of 

known EQE. The ratio of the photocurrents of the device to that of the silicon 

photodiode is then multiplied by the EQE of the silicon diode to find the external 

quantum efficiency of the device. 

2.3.3 Reflectivity Measurements. 

Although the external quantum efficiency of a solar cell is a useful characterization 

procedure it is dependent on the quality of the AR coat on the device. It is often 

desirable to remove this dependence and examine the ratio of electron-hole pairs 

collected to photons entering the solar cell, a quantity known as the internal quantum 

efficiency (IQE) as this is more directly related to the device physics. To calculate the 

IQE the amount of light reflected from the solar cell must be measured. This is done 

using a similar method to the EQE measurement; the light from a tungsten lamp is 

chopped, fed through a monochromator and focused onto the optical window of the 

sample under investigation. However, unlike the EQE measurement, the light reflected 

from the sample is then further reflected through 90' by a beam splitter and focused 

onto a silicon photodiode. The photocurrent generated by the silicon diode as a function 

of incident wavelength is then measured using a lock-in amplifier and recorded on a PC. 

The experiment is then repeated using a calibrated mirror in place of the solar cell and, 

as in the EQE experiment described above, the results of the two experiments are 

ratioed to produce the reflectivity of the solar cell. Once both the reflectivity and EQE 

of a solar cell are known the IQE of the device can be calculated using 
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IQE(A) _ 
EQE(A) 

R(A) 
100 

where Roý) is the reflectivity. 

Achromatic 
lenses 

(2.1) 

Figure 2.3: Outline of the experimental set up for reflectivity measurements 

The IQE of a device may be combined with a calculated reflectivity from an idealised 

dual layer ZnS/MgF2AR coat to obtain an ideal EQE and hence an upper limit on the 

photocurrent that can be generated by a particular device. 
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2.3.4 Monochromatic IV measurements 

The level of background doping present in the intrinsic region of a p-I-n junction has a 

direct effect on the how well the field is maintained across the intrinsic region as 

forward bias is applied to the sample, and hence on device performance. Provided the 

level of background doping remains sufficiently low (10 
14 

cm 
-3 

) the electric field will 

still extend across the intrinsic region even at high forward bias. At higher levels of 

background doping (10 
17 

CM-3) the field across the i region will fail and carrier 

collection will become impeded. 

It is possible to ascertain the level of background doping using a monochromatic IV 

scan in which the photocurrent of a solar cell is measured using a similar method to the 

one outlined in Sec. 2.3.2. In a monochromatic IV experiment the wavelength of the 

illuminating light is kept constant and the photocurrent of the device being studied is 

measured as a function of bias. A device with low background doping will produce a 

constant photocurrent in both reverse and forward bias until the dark current produced 

by the sample becomes too large for the voltage stabilising electronics to cope with. The 

photocurrent produced by a sample with high background doping will be high in reverse 

bias and drop as forward bias is applied and the field across the i region reduces and 

finally disappears as illustrated in Fig. 2.4. 
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Figure 2.4: The electric field across the intrinsic region in a sample with low 

background doping (red line) and high background doping (green line) at short-circuit 

current(upper set) and forward bias (lower set) [3]. 

2.3.5 Light IV measurements and Additivity 

Once the EQE of a device is known the short circuit current of the solar cell in a given 

spectrum and concentration may be calculated by evaluating Equation 1.6. The device is 

then illuminated using an Oriel fiber-optic illuminator and the light intensity is adjusted 

to produce the required short circuit current. The photocurrent generated by the solar 

cell is then measured as a function of bias using the method detailed in Section 2.3.1 

An important test of the quality of an MQW solar cell is a condition known as 

additivity, in which the photocurrent produced by a solar cell Is equal to the short circuit 

current minus the measured dark current i. e. additivity tests the extent to which equation 

2.2 holds in practice. 

qV qV 

(2.2) J10, (V) = J(,, (e " kT 
- 

1) + J02(e 172kT 
- 

i) 
-i sc 
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This can be tested by calculating an ideal light IV curve using the short circuit current 

and dark current of a device and then comparing it to the measured light IV curve. This 

is a particularly useful test in large i region cells because if the electric field is not 

maintained across the i region, additivity will not hold. The open circuit voltage, 

maximum power voltage and current and the fill-factor of the cell are then obtained 

from the resulting light IV curve and can be used to project the efficiency the cell would 

obtain if it were illuminated by that particular spectrum. 
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3. Device optimisation 

3.1 Large well number devices 

3.1.1. Introduction 

As described in Chapter I the enhancement in spectral response caused by the addition 

of quantum wells to the intrinsic region of a p-i-n solar cell allows quantum well solar 

cells to make better use of the incident solar radiation and thus produce higher 

photocurrents than conventional GaAs solar cells. However the inclusion of quantum 

wells also leads to an increase in dark current and a reduction in open circuit voltage, 

although it is possible to minimise this effect using strain balanced [1,2] materials. 

Previous studies [3] suggested that for devices containing up to 50 strain-balanced wells 

the cell dark current increases less strongly with increasing well number than the 

photocurrent, causing overall cell efficiency to increase with rising well number. In 

order to produce SB-QWSCs of maximum possible efficiency it is necessary to 

investigate whether these trends continue as well number Is increased beyond fifty, or if 

there is an optimum well number beyond which efficiency decreases. Also, the question 

of how many strain balanced well-barrier periods it is possible to grow in practice needs 

to be addressed. Additionally, even if the photocurrent continues to increase faster with 

well number than the dark current, efficiency may not continue to increase if there is a 

loss of field across the wells at the operating voltage as this will cause reduced carrier 

collection and therefore lower device efficiency. 
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3.1.2. Sample description 

In order to examine the effects of continued increase in well number two strain balanced 

samples, differing only in well number, were grown as outlined in Chapter 2. The 

composition of these wafers is detailed in Table 3.1.1. In particular, it is important to 

note that the first two wafers possess the same eI -hh I exciton wavelength (932 nm), 

making them directly comparable. Additionally, a second 65 well wafer with shallower 

quantum wells and an eI -hh I exciton wavelength of 924 nm was also grown (see 

section 3.1.4). 

el-hhI Well Barrier Wafer No of Well In Barrier P exciton 
Name wells width width fraction fraction wavelength (nm) (nm. ) (nm) 

QtI840 50 8.3 17.4 0.12 0.090 932 

Qtl838R 65 8.3 17.4 0.12 0.090 932 

Qtl858D 65 8.3 17.4 0.11 0.089 924 

Table 3.1.1. Composition of devices studied 

Each sample was processed as both aI mm diameter test photocell with a SiN3 anti 

reflection (AR) coating and a fully metalised device, using the method given in Chapter 

2. 
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3.1.3. Cell characterisation 

The dark currents of the fully metalised samples were measured and fitted as in 

Equation 4 1. 

-ql' -qV 
Jd 

= Jol (e njkT +j 
02(e 

n2kT (4.1) 

where Jdis the total dark current density and Jo, andJ02 the reverse saturation currents 

of the nI=I and n -, -2 current densities [4]. The mean value of JO, was calculated for 

each wafer from fits to approximately 18 fully metalised devices with n, fixed at unity 

and n -, allowed to vary as a free parameter. 

The internal quantum efficiencies of the solar cells were determined using external 

quantum efficiency and reflectivity measurements as detailed in Chapter 2. This data 

was then used to predict external quantum efficiencies for a sample with an ideal SiN3 

AR coating by combining the intemal quantum efficiencies with calculated reflectivities 

of an idealised SiN3 coat, thus removing any effect on the samples of differences in the 

anti reflection coating. The error on the quantum efficiencies and reflectivities is 

estimated to be around 5%. 

t 

The light current densities of each photocell were measured in a 3000K black body 

spectrum with the light intensity adjusted so the device short-circuit current Q, c) was 

equal to the predicted short circuit current under illumination from the AMI. 5g 

spectrum using the ideal external quantum efficiency discussed above. A front surface 

metallization Of 5% is assumed. Efficiencies and other parameters predicted in this way 

for quantum well solar cells have subsequently been shown to agree well with 

measurements obtained when the same wafer has been processed as a solar cell and 

measured in the appropriate simulator [I]. However, in this work the aims of these 
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measurements are to test if additivity holds at the relevant current level and to be able to 

make comparisons between cells measured under the same conditions. The fill factors, 

open circuit voltages and predicted AM 1 .5g cell effici I iencies obtained from these 

measurements were compared to predicted values obtained from the subtractionOf Jd 

from J,,. As discussed in Chapter 2, the comparison of the measured light IV with the 

prediction obtained from the subtraction of the measuredJdand the J,, fixed as above is 

a test of additivity. This is an important test for quantum well cells which will fail if the 

electric field is not maintained across the i-region [5]. 

3.1.4. Experimental results and discussion 

3.1.4.1 Dark currents 

Typical dark currents of Qt 183 8R and Qt 1840 are shown in Figure 3.1.1. At low bias 

the dark current of the 65 well sample is around an order of magnitude higher than that 

of the 50 well sample although at higher bias the dark currents of the two cells start to 

converge. 
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l. E+05 
l. E+04 
l. E+03 
l. E+02 
l. E+01 
l. E+00 
1. E-01 
1. E-02 

1. E-03 
1. E-04 

Voltage 

-- Qt-l 838R - Qtl_840_ 

Fig. 3.1.1. Dark current densities of Qt 183 8R and Qt 1840 
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The n=I reverse saturation current (shown in Table 3.1.2) of Qt 1840 is significantly 

lower than that of Qt 18 3 8R, demonstrating an increase in recombination with increasing 

well number. This is to be expected if recombination is dominated by radiative 

recombination in the quantum wells as discussed in Chapter 4; i. e. as absorption 

increases so will the radiative recombination [6]. 

Sample name No of wells 
Ideality n=I reverse 
saturation current (A) 

Qtl840 50 (2.8 ± 0.3) x 10-15 

[Qtl838R 65 (3.8 ± 0.2) x 10-15 

Table 3.1.2. Ideality n= I reverse saturation currents of Qt 183 8R and Qt 1840 

3.1.4.2 Photocurrents 

The predicted photocurrents of Qt 18 3 8R and Qt 1840 and the same within the limits of 

experimental error. This suggests that the increased absorption due to the larger number 

of wells in Qt 183 8R is compensated for by a slightly lower absorption in the p-region 

(see Fig. 3.1.2). 

Sample No. of Predicted AM 1.5 g photocurrent 
Name wells 

-2 (assuming 5% shading) (AM 

Qtl840 50 280±14 

_Qtl838R 
65 281±14 

Table3.1.3. Predicted photocurrents of Qtl838R and Qtl840 under illumination by the 

AMI. 5G spectrum 
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Fig. 3.1.2. Ideal extemal quantum efficiencies of Q0840 and Qtl838R 

3.1.4.3 Reduced wavelength 65 well cell 

In addition to Qt 1840 and Qt 18 38R, a second 65 well sample, Qt 18 58D, was also 

characterised. The composition of this cell is also detailed in Table 3.1.1. 
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Figure 3.1.3. Dark current densities of Qtl838R, Qtl840 and QtI858D 

The dark current density of Qt 18 5 8D is significantly lower than that of both Qt 1840 and 

Qt 183 8R, as expected for a cell of lower exciton wavelength and hence larger well 

material bandgap [5]. Although a decrease in J,, would be expected with an decrease in 

well indium content, the predicted AM 1.5G short circuit current of Qtl858D is 

(284±14) Am -2, the same as that of Qt 1840 within errors. This is attributed to the 

position of the exciton peak of the reduced wavelength sample, which corresponds to a 

region of higher intensity in the AM 1.5g spectrum (see Figure 3.1.4). The small 

HWHM of the eI -hh I exciton peaks of these samples are indicative of excellent 

matenal quality. 
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Experimental light Ws for all three samples were obtained using the method outlined in 

Section 2.3.5 and additivity is tested by comparing these measured light IVs to the short 

circuit current subtracted from the measured dark current (see Fi II ity igure 3.1.5). Additivi 

is very well maintained throughout the light IV plot of Qtl858D, although there is a 

small difference between predicted and measured maximum power point photocurrent 

for samples Qt 183 8R and Qt 1840, suggesting a slight loss of field across the i region of 

these devices (see Figure 3.1.5). Examining the mono IVs of these samples, a slight loss 

of field is again suggested in Qt 183 8R (see Figure 3.1.6). 
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Figure 3.1.4. Ideal external quantum efficiencies of Qt 1840, Qt 18 3 8R and Qt 18 5 8D 

together with the AM 1.5G spectrum [7]. 
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Figure 3.1.6. Monochromatic IVs taken at 600nm for Qt 183 8R, Qt 1840 and Qt 18 5 8D 

3.1.4.4 Projected cell efficiencies at one sun 

It is possible to use the experimental data to accurately predict the efficiency of the cells 

when illuminated by an AM 1.5g spectrum provided the quantum efficiency of the 

devices does not change significantly with bias and the dark current densities of the 

devices do not change significantly with increasing cell size [I]. These are both 

reasonable assumptions given the good agreement between predicted and measured 

light currents shown in Figure 3.1.5 and the fact that the dark current density measured 

in small devices is likely to be higher than that obtained from large area devices due to 
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edge effects. For the samples with an exciton wavelength of 932 nm (Qt 1840 and 

Qt I 838R), the projected AM 1.5g efficiency of the 65 well sample is lower than that of 

the 50 well sample (see Table 3.1.4). It would appear that the slight increase in 

photocurrent caused by the inclusion of more quantum wells does not compensate for 

the increased dark current of the 65 well sample. The projected efficiencies of the 50 

well sample and the reduced wavelength 65 well sample (Qtl858D) are equal, due to 

both the low dark current of the reduced wavelength sample, caused by the larger 

bandgap of the well material, and the maintenance of the same level of photocurrent as 

QtI 850 caused by more wells and better utilization of the solar spectrum. 

Projected 

Measured Predicted AMI. 5g il 
Sample Measured 

V (V) 
Predicted 
V (V 

Predicted 
-2) J (A Fill Factor Fill Factor (%) 

i IC IC ) M 
,c (assum ng 

5% 
shading) 

Qt I 838R (65 0 868 0 881 281±14 79.1 79.7 19.2±0.96 
wells) . . 
QtI840 (50 0 914 0 923 280±14 80.9 81.1 20.7±1.04 
wells) . . 
QtI858D 
(65 wells 0.910 0.913 284±14 79.9 80.3 20.7±1.04 
reduced 
wavelength) 

Table 3.1.4. Predicted and measured open circuit voltages and fill factors and projected 

short circuit currents and AM 1.5G efficiencies for Qtl 858D, Qtl 838R and Qtl 840. 

3.1.5. Conclusions and further work 

The photocurrent of a 65 well sample with an exciton wavelength of 932 nm is found to 

be the same as that of an otherwise identical sample containing only 50 wells, hence this 

is insufficient to compensate for the higher dark current the 65 well sample possesses. 

This leads to the 65 well sample having a lower projected AMI. 5g efficiency than the 

50 well cell. This suggests that to fabricate a SB-QWSC of maximum possible 

efficiency it may be better to utilise other methods of increasing device absorption than 
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simply increasing the number of wells. One method of achieving this could be to 

include a distributed Bragg reflector (DBR) in the on the back of the cells to reflect 

unabsorbed light and and also to recycle the photons created by radiative recombination 

[8]. 

A sample with 65 wells and a reduced exciton wavelength of 924 nm has an equal 

projected efficiency to the 50 well sample, despIte containing more wells, due to its low 

dark current and high photocurrent resulting from its shoiter exciton wavelength which 

makes better use of the AM 1.5g spectrum. Also additivity is demonstrated in the 

reduced wavelength sample, suggesting that this wafer maintains the field across the i- 

region at I -sun intensities despite having 65 wells. Moreover, the excitonic features of 

this device conclusively demonstrate that it is possible to grow 65 strain balanced well 

barrier periods using MOVPE and still maintain excellent device quality. In the future 

several series of varying well number devices are planned for a range of well indium 

contents to further investigate the optimum well number and composition for SB- 

QWSCS. 
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3.2 Cells grown using tertiary butyl arsine 

3.2.1 Introduction 

As discussed in Chapter 2 the growth of GaAs solar cells utilises arsine (AsH3) as a 

source of arsenic. However, arsine is a highly toxic material and therefore particularly 

undesirable for use in the fabrication of photovoltaic devices which are intended to help 

safeguard the environment [9]. Several other organic arsenic compounds have been 

considered as a replacement for arsine in the solar cell growth process. One such group 

of compounds are the tertiary alkyl arsines (compounds with the chemical formula 

CH3(CH2)xAsH2). The main advantage of these compounds is that they are less toxic 

than arsine and therefore easier to store and handle, in addition to having a reduced 

potential to cause environmental damage. Of the tertiary alkyl arsines, tertiary butyl 

arsine (TBAs) is believed to be the most suitable substitute for arsine, even though 

TBAs is slightly more toxic than tertiary methyl arsine and tertiary ethyl arsine, because 

the strength of the arsine - alkyl bond grows weaker as the alkyl group grows larger 

[10]. This is due to the fact that TBAs has the lowest dissociation temperature amongst 

these compounds, which is a beneficial property in semiconductor growth as a reduction 

in growth temperature minimises both dopant diffusion between different layers and the 

formation of point defects [I 1- 131. Also, because TBAs dissociates more readily than 

in the growth process. Thi arsine, a larger number of hydrogen radicals are formed i is 

lowers the level of carbon and hydrogen contamination in the resulting semiconductor 

because more of the hydrocarbon radicals fori-ned during the growth process react with 

hydrogen to form stable hydrocarbon compounds [14]. A significant amount of research 

material already exists to support the hypothesis that TBAs can be used as a substitute 
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for arsine in the fabrication of optoelectronic devices without compromising device 

quality [ 15,161 

3.2.2 Sample details 

In an attempt to assess the suitability of TBAs as a precursor material in solar cell 

fabrication two otherwise identical p-i-n solar cells where grown, one using arsine and 

the other using TBAs, and compared. The details of the composition of both samples 

are given in Appendix 1. Qt 1228 (grown using arsine) and Gacell (grown using TBAs) 

were then processed as AR coated devices using the method outlined in Chapter 2. 

3.2.3 Experimental Results 

3.2.3.1 Dark Currents 

The lowest dark current densities of Qt 1228 and Gacell are displayed in Figure 3.2.1. 
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Figure 3.2.1. Dark current densities of the best devices of Qt 1228 and Gacell. 

The dark current density of Gacell sample is significantly lower than that of Qt1228, 

suggesting lower contamination levels and hence less recombination via trap states 

occuMng within Qtl228- 
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3.2.3.2 QuantumQ 
, 
ficiencies and Reflectivities 

The intemal quantum efficiencies and reflectivities of the best devices of QH228 and 
Gacell are displayed in Figure 3.2-2. Also shown is the reflectivity of an ideal single 

layer SIN3AR coat optimized for 600nm. 
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Figure 3.2.2. Internal quantum efficiencies and reflectivities for Gacell and Qt1228 and 

the reflectivity of an ideal single layer SIN3AR coat. 

The reflectivity of Gacell reaches a minimum at around 750 nm, a significantly longer 

wavelength than in an ideal AR coat which would be optimized for 600 nm. Also, a step 
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in the reflectivity is seen at 900nm (although this is too long a wavelength to affect the 

internal quantum efficiency. ) This is believed to be caused by reflection from the back 

surface of the double-polished GaAs substrate. The reflectivity of Qtl228 is also 

unusual as it reaches a minimum at approximately 5% reflectivity and remains relatively 

unchanged between 550 nm and 750 nm (c. f. the ideal single layer AR coat which has a 

reflectivity of < 1% at 600nm). The differences between the reflectivities of these 

samples and an ideal AR coat may be caused by a change in either the layer width or the 

chemical composition of the AR coat, which would lead to the coat possessing a 

different refractive index. Despite these differences in reflectivity the IQEs of Gacell 

and Qtl228 are almost identical, verifying that they possess the same structure and 

comparable material quality. 

3.2.3.3 Light JVs, monochromatic IVs and cell efficiencies 

Ideal external quantum efficiencies for both Qt 1228 and Gacell were calculated using 

the method described in Chapter 2 and were used to calculated the AMI. 5g short-circuit 

current for each device. Again, a front surface metallization of 5% is assumed. Light IV 

curves (shown in Figure 3.2.3) were obtained for each sample and the projected fill- 

factors and efficiencies of each sample were calculated and compared. Additionally, 

monochromatic IVs of both samples were taken (see Figure 3.2-4) 
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Figure 3.2.3. Light IV curves for Gacell and Qt 1228 

Both the monochromatic IV measurements and the fact that additivity is maintained in 

both samples indicate low background doping. 
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The fill-factor and AM 1.5g projected efficiency of Gacell are the same as those of 
Qt1228 and Gacell possess a slightly higher open circuit voltage due to its lower dark 

current (see Table 3.2.1). This suggests that it is possible to substitute arsine with TBAs 

in the growth process without reducing material quality, and that the use of TBAs may 

even be preferable to that of arsine. 

Gacell Qt1228 

vMP M 0.84 0.82 

Jmp (Am -2 254±13 254±13 

Fill Factor (%) 82.5 81.7 

AMI. 5g projected efficiency (%) 21.4±1.0 20.9±1.0 

Table 3.2.1. Maximum power voltages and current densities, fill-factors and AM 1.5g 

projected efficiencies of Gacell and QU228 

3.2.4 Conclusions and Further Work 

The fill-factors and AMI. 5g projected efficiencies of Gacell (grown using TBAs) were 

found to be the same as those of Qt 1228, an otherwise identical cell grown using 

arsine. The dark current of Gacell was found to be significantly lower than that of 

QU228, suggesting better material quality, leading to a higher V,,, and maximum power 

voltage. This suggests that TBAs is an effective substitute for arsine in the growth of 

GaAs solar cells and can be used without reduction in material quality or cell efficiency 
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and may even lead to an increase in overall cell performance due to a reduction in 

background doping. The next logical step in this work would be to grow MQW cells 

using TBAs and compare them to control cells grown using arsine. The low background 

doping observed in Gacell suggest that this growth technique could also be successfully 

utilised in the fabrication of multi-quantum well cells. A strain-balanced GaInP/GaAs 

lattice matched MQW cell has been grown using TBAs but was not fully characterised 

due to problems with background doping in the device. It is hoped that a new version 

of this cell will be grown in the near future. It would also be useful to investigate cells 

grown using TBAs with differing growth temperatures in order to ascertain an optimum 

growth temperature. Additionally, it would be interesting to study the effects of 

substituting tertiary butyl phosphine for phosphine in the growth of InGaAs/GaAsP 

devices [17-19]. 
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4. Modelling the dark currents of strain-balanced multi- 
quantum well solar cells 

4.1 Introduction 

As described in Chapter 1, device efficiency and dark current characteristics are 

inextricably linked. Moreover, a detailed understanding of the radiative portion of the 

dark current is required to assess device suitability for photon recycling schemes [I]. 

Significant differences between the dark currents of strained and strain balanced devices 

are observed due to the larger concentration of defects found in strained samples. 

Similarly, the dark currents of SB MQW solar cells cannot be directly compared to 

those of homojunctions due to the differences in bandgap between these two types of 

devices [2]. 

It should be noted that the work detailed in this chapter was carried out before the 

refinements documented in Chapter 5. Hence the absorption in the i region of the cell is 

calculated by assuming a starting value of I% per level per well and then adjusting this 

value to produce a theoretical QE that fits well to the experimental results. Additionally, 

precise compositions of the samples studied in this chapter have yet to be determined 

using the improved model of the confined states in the quantum wells. 

4.2 Overview of dark current model 

The dark current of a multi-quantum well solar cell may be evaluated by separately 

considering the dark current in the depletion region and in the field free regions of the 

cell. The current onginating from the depletion region results from the recombination of 

electrons and holes in the wells and barriers. This current has both a radiative and non- 

radiative component [3]. An expression for the radiative component is derived using 
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Detailed Balanced Theory [4] which states that the absorptivity and emissivity of any 

material in quasi-then-nal equilibrium are equal. The radiative current is thus given by 

[5] 

30 

Jrad --"' ff 
a(E, t9, s)F(E, 6ýEF )do, dS. dE 

0s 
(4.1) 

where a(E, Os) is the probability that a photon of energy E will be emitted on some 

point on the surface, s, at angle 0 to normal incidence, and F(EAEF) is the spectral 

photon flux density due to spontaneous emission at s, and AEFis the quasi-Fermi level 

separation 

The flux F(E, AEF) is determined by evaluation of the generalised Planck expression for 

spontaneous emission from a non-black body 

2n 2E2 

F(E, AE r -JLI F )dE 
h 3C2 (exp[(E - AEF kT] - 1) urý (4.2) 

where F(E, AEF) is the flux emitted from the body, AEFthe quasi-Fermi level separation, 

n, the refractive index of the medium surrounding the body, h is Planck's constant, c the 

speed of light, k is Boltzmann's constant and T is absolute temperature [6]. 

Due to the circular shape of the solar cells under consideration and the fact that any 

emission from the sides of the device is believed to be negligible, the surface integral in 

Equation 4.1 may be expressed as 

01 

f a(E, 0, s)dQ. dS =f 
fa(E, 0, s) cos 0(21r sin OdO)ds = a,,,, (4.3) 

S0 

When calculating the total emissivity of the solar cell, photon emission under three 

different sets of circumstances are considered (see Figure 4.1). 
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1. Photons emitted from the front surface. Due to the semi conductor-air interface 

photons emitted at the front surface are subject to a critical angle, beyond which 

no emission at the front surface takes place. The emission from the front surface 

is thus 

a- OZ I ftont(E, 0) r(E, 0)[I - exp - for 0<0<0, (4.4) 
Cos 0 

where a is the absorbance of the sample which is obtained by fitting the 

quantum efficiency as described above. 

2. Photons emitted at the back surface. The back surface of the solar cell consists 

of the interface between the GaAs n region and substrate, which are assumed to 

have identical refractive indices. Therefore, there is no critical angle for photon 

emission at the back surface. The emission from the back surface is sub-divided 

into two sections. 

i. Photons that have impinged on the front surface with an incident angle 

greater than 0, which are all lost through the back surface apart from 

those that are reabsorbed in the cell. 

ii. Secondly, photons with an incident angle less than 0, of w ic on y 

the reflected fraction are loss at the back surface. The total emission from 

the back surface is thus 

- 2oz 
aback(E, 0) = [I - exp 

Cos 0 
for 0>Q, 

and 

aback(E, 0) = r(E, 0)[l - exp - 2az 
] 

cos 0 

r(E, 0))[I - exp - az 
Cos 0 

for 0<0, 

(4.5) 

(4.6) 

83 



z 

Su 

Figure 4.1. Schematic of the possible paths a photon emitted forward from a typical 

MQW device might take. 

Substituting Equations 4.4,4.5 and 4.6 into Equation 4.3 and changing the angular 

integration variable from 0 to cos(O) gives 

cos 0,2 

2z4b 11- exp 
cos 01 cos Od(cos 0) 

2; rAb 
fI- 

exp 
az )]. [, I+r 

(E, 0) - az )]] 
cos Od(cos 0) (4.7) 

Cos 0,1 Cos 0 Cos 0 

I 
az )l 2; TAf f. I- r(E, 0) cos Od(cos 0) 

Cos 0,1 Cos 0 

where Af and Abare the areas of the front and back surfaces respectively [5]. 
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Hence 

Jrad ": -- 
a, ot 

2n 2E2 

h'c'(exp[(E - AE FV kT] - 1) 
dEd(cos 0) (4.8) 

The non-radiative component of the dark current in the depletion region arises from the 

Shockley-Hall-Read recombination of carriers via mid-gap trap states. The current is 

given by [3] 

Wn 

JSHR= 
-q 

fU(x)dx 

-11P 

(4.9) 

where q is the magnitude of the electronic charge, Wnand wp the limits of the depletion 

region and U(x) is the Shockley-Hall-Read recombination rate which is given according 

to Reference 7 by: 

U(X) = n, p - ni 
2 

r, (p + p, ) + 'r, (n + n, ) 
(4.10) 

where n, and p are the densities of electrons and holes per unit volume, ni the intrinsic 

carrier density, -r, and rp the lifetimes of electrons and holes within the trap state, and nt 

and p, the carrier density when the carrier Fermi level is equal to the level of the 

interband trap [8]. For low indium and phosphorus fractions in our strain-balanced cells 

we find that it can be assumed -r, is equal to rp [9] 

The n=1 dark current of the minority electrons in the p region is given by 

J, 
dn 

+ qun F 
, 
(x) = qD� dx 

(4.11) 

where D, is the electron diffusion coefficient, dnldx the electron concentration gradient, 

Pn is the electron mobility and F, the electric field [8]. 
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Similarly, the dark current of the minority holes in the n region is given by 

(x) = qDp 
e- 

+ qup Fý 
dx 

where Dp is the hole diffusion coefficient, dpldx the hole concentration gradient and ýtp 

is the hole mobility. 

In the charge neutral regions of the solar cell where no electric field is present the dark 

current is purely diffusive. Equations 4.11 and 4.12 therefore become 

J� (x) = qDn 
dn 

(4.13) 
dx 

dp 

x 
Jp (x) = qDp -d (4.14) 

Solving Equations 4.13 and 4.14 with the appropriate boundary conditions leads to 

qD�n qv 
i', (x) 

- Ln ýýu (e kT 
- 

1) (4.15) 

and 

qV 
i, (x) = Lp 

(e kT 
- 

1) 

where npo and p, O are the equilibrium electron and hole densities in the p and the n 

regions respectively, ni is the intrinsic carrier density and L, and Lp are the diffusion 

lengths of electrons and holes [10] (determined from fitting the quantum efficiency of 

the sample [3]. ) 

There is also a small portion of the dark current that arises from recombination at the 

front and back surfaces of the device [3]. This is derived from the product of the excess 

minority carrier concentration in equilibrium and the surface recombination velocities. 

Thus the total ideal Shockley dark current modified to take surface recombination into 

account is then [4] 
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q -2 xp2 Xn ýn LD)ý 
Is (x) n+ 

+S 
Ne 

LN 
+ SP 

qn'n 

e 
Lp 

(4.17) NALn NDL 
p 

NA ND 

where S, %, and Sp are the surface recombination velocities at the back and front surface, 

NAand NDare the acceptor and donor concentrations, nin and nip are the intrinsic carrier 

densities in the n and the p region and x, and xp are the widths of the charge neutral n 

and p region. 

The total dark current within the solar cell is thus given by 

Jtot (X) = JIS + JSHR + Jrad 

4.3 Experimental details 

The dark currents of a number of samples were measured using the method detailed in 

Chapter 2. A series of shallow well In,, GaAs/GaAsPy (x z 0.1 and yz0.09) samples 

with well numbers between I and 50 were studied, in addition to an intermediate well 

depth sample (x z 0.13 and yz0.08) containing 50 wells. A deep well series of 20,30 

and 40 well devices (x z 0.17 and yz0.07) was also examined. 
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Measured dark currents were obtained for between 8 and 18 samples were obtained for 

each sample and were fitted using the iterative computer program described in Chapter 

2 with n, fixed at unity and n2allowed to vary . The zero bias intercept of the n, =I 

portion of the dark current was obtained and used to estimate the n, =I reverse 

saturation currents. Errors on these values were obtained by finding the highest and 

lowest intercept that corresponded to a reasonable fit to the experimental data. 

4.4 Results 

The n, =I intercepts of several samples of varying well number are plotted against the 

energy of the eI -hh I exciton in Figure 4.2. If the n, =I dark current were dominated by 

the Ideal Shockley contribution the intercepts would be directly proportional to square 

of the intrinsic carrier density and hence the exponential of the device bandgap, denoted 

by the dashed line in Figure 4.2. It is evident that the intercepts are significantly lower 

than predicted by this relationship, substantiating the hypothesis that the nj =I dark 

current cannot be fully described by the Ideal Shockley model. 
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Figure 4.2. The n, =I intercepts of several SB-MQW solar cells plotted as a function of 

eI -hh I excition energy. Also shown is the exponential of the bandgap of the well 

material (dashed line) [2]. 

A measured dark current for a 50 shallow well sample is displayed in Figure 4.3. Good 

agreement is observed between the experimental results and the output of the model. 

89 

Data trend 



NE 

NN, 

4D 
-0 
. 0-P c 
41 

10 

10 

Photocurrent at 200x concentration 

- 

CO 

, 0, x ýA, 
- x9 7 / 

0.5 0.7 0.8 0.9 1 1.1 1.2 
Applied Boas (V) 

Figure 4.3. A measured dark current (solid dots) and the output of the dark current 

model [2]. 

The sum of the reverse saturation currents of the QW radiative and Ideal Shockley 

portions of the dark current calculated using the model and the mean n, =I intercepts 

obtained from fitting measured dark currents are compared in Figure 4.4. Again, good 

agreement is observed between the measured results and the model. It is interesting to 

note that for a given well depth the intercept displays only a weak dependence on well 

number. 
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Figure 4.4. The mean n, =I intercepts obtained from fitting measured dark currents 

with Equation 1.5 compared to the sum of the QW radiative and Ideal Shockley portions 

of the dark current as a function of well number [2]. 

The ratio of the QW radiative intercept to the sum of the QW radiative intercept and the 

Ideal Shockley intercept is shown in Figure 4.5. The QW portion of the dark current is 

seen to increase with increasing well depth, becoming almost the entire contribution to 

the ni =I dark current for deep wells, suggesting that deeper well devices are more 

suited to use in photon recycling schemes. Again, for a given device bandedge the ratio 

is only weakly dependent on well number. 

91 



1 

0.9 

c 
0 
0 0.8 
M 

0.7 

0.6 

0.5 - 
1.26 

Absorption Edge (eV) 

Figure 4.5. Ratio of the QW radiative intercept to the sum of the QW radiative and Ideal 

Shockley intercepts [2]. 

4.5 Conclusions and further work 

The n, =I intercepts of a variety of SB-MQW solar cells were determined by fitting a 

double exponential to measured dark currents. The intercepts of these devices are found 

to be significantly different to those expect if the ni =I dark current were comprised 

solely of the Ideal Shockley current. We conclude that the n, =I dark currents of SB- 

MQW solar cells have two components; the Ideal Shockley dark current and a 

contribution arising from radiative recombination in the quantum wells. Good 

agreement is observed between the output of this model and measured device dark 

currents. The n, == I intercepts obtained from fitting experimental dark currents are also 

found to be in good agreement to those predicted by the model. The QW radiative 

fraction of the n, =I dark current is found to become dominant as well depth increases. 
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Clearly, the work documented in this chapter should be revised using the updated model 

for device absorption detailed in Chapter 5. It would also be useful to include the more 

accurate insight into device composition obtained using the new model for strain 

bandgaps and confined states. The comparison between the nj =I intercepts obtained 

from fitting experimental results and those predicted by the model could be extended to 

include a larger number of devices with a greater range of well numbers and depths. It 

would also be interesting to determine whether the QW radiative fraction of the n, =I 

dark current increases ftirther towards unity as well depth continues to increase. 
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5. Modelling the quantum efficiency of strain balanced multi- 
quantum well solar cells 

5.1 Overview of original model 

In order to produce photovoltaic devices of maximum possible efficiency it is essential 

to be able to model accurately the quantum efficiency (QE) of such devices in order to 

predict the photocurrent produced. Furthen-nore, as described in Chapter 4, the 

calculation of device absorption necessary for the QE model allows calculation of the 

radiative portion of the dark current [I] which forms the basis of quasi Fermi level 

studies [2]. 

To model quantum efficiency one must first calculate the photocurrent of the device. 

The photocurrent arising from the depletion region of an MQW device is proportional to 

the integral over the depleted region of the product of the absorption in the layer (a) and 

the flux at the surface of the depletion region [3] 

wn + wi + wp 

Jdr Oc f a, Fi dx 
0 

(5.1) 

where Fj is the flux at the surface of the depletion region, x denotes position within the 

depleted region and wp, wi andWnare as defined in Figure 5.1 
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Figure. 5.1. Schematic of a quantum well solar cell showing the width of the intrinsic 

and space charge regions 

The absorption coefficient of the quantum well layer is given by 

a,, (A) =I aen 
--> hhm 

(A)+ 1: aen 
-+ Ihm 

( 
/1) (5.2) 

n, m n, m 

where n and m denote the index of the electron and hole states respectively. A useful 

quantity to consider is thus the absorption per level per well, which is given by 

7qw ý- a 
en -+ jhmLw (5.3) 

where j denotes either a heavy or light hole transition [3]. 

The effects of excitonic absorption must also be included in the model. The exciton 

binding energy, Ebindq may be calculated using [3] 

R Ebind 

(n V)2 
(5.4) 

where v is a dimensionality parameter that ranges from 0 for a purely three dimensional 

system to 0.5 for a purely two dimensional system and R* is the effective Rydberg 

given by [4] 
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m*R R* 
= 

______ 

m0e 
(5.5). 

where m* is the reduced effective mass of the exciton in the confinement direction, mo 

is the free mass of the electron, c,. is the permeability of the material and R, is the 

Rydberg constant. 

Similarly, the exciton oscillator strength, r, may be parameterised as [3] 

r2 - (n-v) 
(5.6) 

To account for thermal and phonon broadening, the exciton peaks are modelled as 

Lorentzian line shapes of width F, with typical values of F being - 10 meV. 

The photocurrent created in the n and p layers, J, and Jp respectively, is then calculated 

by solving the minority carrier transport equations subject to the appropriate boundary 

conditions; namely that the excess minority carrier concentration vanishes at the edge of 

the depleted region and is defined by surface recombination at the front and back 

surfaces of the cell. The photocurrent generated in the depletion region (Jd, ) is then 

combined with the photocurrent arising from the n and p layers to give the total photo- 

current, Jpc 

ipc (k) =f [J, (k) + Jp (k) + Jdr (k)] (5.7) 

wheref is the transport parameter which is a measure of the probability of an electron or 

hole crossing the intrinsic region without recombining. At room temperaturef is 

assumed to be unity, i. e. the thermal energy of the carriers is greater than the well depth 

so that all carriers escape from the wells and contribute to the photocurrent 
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Finally, the quantum efficiency at a given wavelength is defined in tenns of the incident 

flux F(A) as 

(5.8) 
qF(k) 

The FORTRAN program SOL was originally developed by Dr. Jenny Nelson and Dr. 

Bemd Braun to model AlGaAs/GaAs structures [3] and has since been developed to 

include InGaAsP/InP [5] and InGaAs/GaAs [6] devices by Dr. James Connolly and Dr. 

Jenny Bames. Using SOL it is possible to model the quantum efficiency, dark current 

characteristics [7], electroluminescence and conversion efficiency of both multi- 

quantum well and p-i-n devices. This chapter describes refinements made by the author 

to the quantum efficiency model of the quantum well region of strain-balanced 

InGaAs/GaAsP devices since October 2003. 
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5.2 Refinements to the model 

5.2.1 Calculation of strained bandgaps 

In this section the calculation of the strained band edges is carried out within the 

framework of a multi-band k. p approach (see References 8-11 and Appendices 4 and 5). 

The application of strain alters the band-gap of the material, as shown in Figure 5.2. The 

strained conduction - heavy hole band-gap is taken from Reference 9 where it is given 

by 

Econduction-hh=E +bE"+ 
I 

8E (5.9) 9h2s 

and the strained conduction to light hole bandgap by 

6E + 6E 
Econduction-1h: -- Eg +s so + 

[36ES 2- 26E, Eso + Eso 2 ý2 
(5.10) 

22 

where Eg is the unstrained band-gap, bEg" is the hydrostatic shift of the conduction to h 

heavy hole band-gap, 6E, the shear shift of the conduction to heavy hole band-gap and 

E,, the difference in energy between the heavy hole and spin-orbit band-edges (see 

Figure 5.2). The shear component of the strain lifts the degeneracy of the heavy and 

light hole band-edges. A detailed derivation of the strained band-gaps may be found in 

Appendix 4. 
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Fig. 5.2. The effect of compressive (r) and tensile (1) strain on the conduction band (cb), 

heavy hole (hh), light hole (1h) and spin-orbit (so) band-edges. The bulk bandgap, Eg, 

the conduction to heavy hole band-gap, Ehh, and the conduction to light hole band-gap 

Elh, are also shown. The position of both valence bands are depicted relative to the 

conduction band. 
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Fig. 5.3. Band-edge profile of a typical InGaAs/GaAsP quantum well and barrier 
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For compressively strained material, the heavy hole band-edge is higher in energy than 

the light hole band-edge, with the converse applying in material under tensile strain [8]. 

A bandedge profile of a typical InGaAs/GaAsP SB-MQW is shown in Figure 5.3 



The value of the conduction to heavy hole strained band-gap of a Ino., GaAs well is 

1.319 eV, compared to a value of 1.278 eV obtained when the effects of strain are 

neglected, emphasizing the importance of proper calculation of the strained band-gaps. 

5.2.2 Determination of the conduction band offset 

5.2.2.1 Theory 

As mentioned in Chapter 1, a critical parameter in obtaining the confined energy levels 

within a finite quantum well is the well depth. However, an essential parameter in 

obtaining the well depth, the conduction band offset or Q, is not well known for the 

InGaAs/GaAsP material system. Q, is defined as the extent to which the difference in 

energy between the well and barrier material is apportioned between the conduction and 

valence bands (see Figure 5.4). Mathematically 

w 

QC _' 
'e 

Egb 
- Egw 

the band where W, is the well depth, Egb the band-gap of the barrier material and E,, 

gap of the well material 

We 

IF 

Ew 

Figure 5.4. The conduction band offset 
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One parameter that is very sensitive to the value of the valence band offset is the 

splitting between the heavy and light hole excIton peaks, which also depends on the 

indium content of the material (and hence the strain). Thus, Q, Is a nction of the light fu I 

hole - heavy hole peak splitting A(hh-1h). We note in passing that if the value of Qc 

becomes large enough the light hole will become unbound (see Figure 5.5). 

In previous work the value of Q,. has been assumed to be the same as that of bulk 

InGaAs, namely 0.67. Using this value one would expect the light hole to be unbound, 

as was observed for strained InGaAs wells in GaAs [14]. However, a light hole state is 

visible in the experimentally deten-nined quantum efficiencies of almost all 

lnGaAs/GaAsP values, suggesting that the value of Q, needs to be refined. 

E ______ ______ E 

Increasing 
................ 

...................... ..................... Elh ..................... ................ .......... .... Elh 

Ehh Ehh 

Figure 5.5. The effect of strain on the heavy and light hole band edges in a strain- 

balanced system consisting of compressively strained wells and tensile strained barriers. 

5.2.2.2 Experimental work 

The photocurrents of three SB-MQW samples were measured using a tungsten filament 

lamp coupled to a 30cm Bentham monochromator. The photocurrent was then 

determined using a lock-in amplifier and voltage stabilizing electronics as described in 

Section 2.3.2. A closed-cycle cryostat was used to maintain the sample at (10±1) K. For 

each device, spectra were recorded at a number of different voltages to allow 
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identification of forbidden transitions to aid the identification of each observed exciton 

peak. The composition of each sample is shown in Table 5.1. 

Sample Name Well width 
(nm) 

Barrier width 
(nm) 

Well indium 
fraction No. of wells 

Qtl858D 8.3 16.4 0.11 65 
Qtl838R 8.3 16.4 0.125 65 
Qtl747C 10.0 29.3 0.185 30 

Table 5.1. Compositions of samples studied. The Indium content of all samples was 
determined from fits to room temperature quantum efficiencies 

5.2.2.3 Results 

A typical photocurrent spectrum is displayed in Figure 5.6. Two exciton peaks (at 

865nm. and 835nm) arising from allowed transitions and one from a forbidden transition 

(seen at 845nm) can be observed in the spectra. The forbidden peak is absent at forward 

biases close to flat band but becomes noticeable as the field increases in reverse bias. 
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Figure 5.6. Low temperature photocurrent of Qtl858D recorded at IOK 

The photocurrent spectra of Qt 185 8D, Qt 183 8R and Qt I 747C measured at 1.1 V 

forward bias are displayed in Figure 5.7. As expected the eI -hh I exciton peak shifts to 
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longer wavelength as the indium content of the wells, and therefore strain, is increased. 
Also, the splitting between the eI -hh I peak and the eI -lh I peak increases with 

increasing indium fraction. 
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Figure 5.7: Flat band spectra of Qtl858D, Qtl838R and Qt1747C at 10 K, with the 

spectra of Qt 18 3 8R and Qt I 747C vertically and horizontally offset for clarity. The eI- 

hh I exciton peak is seen to shift to longer wavelengths and the eI -hh I to eI -lh I 

splitting is seen to increase with increasing indium in the well material. 

Measured values of A(hh-1h) observed in the three samples were obtained from the 

photocurrent scan. Theoretical values of A(hh-1h) were then calculated as a function of 

indiurn fraction for Q, - values ranging from 0.6 to 0.4, as shown In Figure 5.8. The 

measured values of A(hh-1h) are also displayed. By comparison between the calculated 

and measured values of A(hh-1h) a value of Q, = 0.53± 0.05 was obtained c. f. the 

previously assumed value of 0.67. 
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Figure 5.8: Calculated values of A(hh-1h) as a function of indium fraction for a series of 
values of Q,. The solid dots represent the experimentally deten-nined values of A(hh-1h) 

measured at 10 K. 

5.2.2.4 Consideration of errors 

In using the splitting between the exciton peaks as a measure of the difference in energy 

between the heavy and light hole confined states we have assumed that the exciton 

binding energies for the each respective transition are the same in each sample. This is 

not seen as a significant source of error due to the small magnitude of the exciton 

binding energies (- 8 meV). Additionally, there is uncertainty in the well width, as only 

the well/bamer period is directly measured using X-ray diffraction. Again this is not 

seen as a significant source of error as a 20A change in well width leads to a change of 

only 0.5meV in A(hh-1h). The Bentham monochromator used in the experimental work 

has a resolution of I nm, corresponding to an energy of -3 meV. The largest source of 

error is taken to be the uncertainty in the indium content of the sample with a 1% 
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absolute change in indium fraction producing -10% change in A(hh-1h). The overall 

error in the value of Q,. is thus taken to be 10%. 

5.2.2.5 Conclusions 

The results suggest that Q,. = 0.53± 0.05 in this material system, significantly 

different to the previously used value of 0.67. This is in broad agreement with previous 

work, which suggested the light hole becomes unbound at Q,, z:; 0.6 for InGaAs/GaAs 

[9] and that the value of Q, is between 0.57 and 0.7 for this material system [15-19] 

5.2.3 Calculation of the absorption of the quantum wells and effective mass study 

5.2.3.1 Theory 

In the original model the absorption per level per well was assumed to be the value of 

1%, which applies to AlGaAs/GaAs wells, and then adjusted as a free parameter to fit 

the experimental data. 

The expression absorption coefficient used in this work is [81 
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(5.12) 

(5.13) 

for eI -lh I transitions with normal incidence being assumed. Ep is the Kane matrix 

element which is proportional to (U, IpI U, ) (see Equation 1.3 0), Nis the number of 
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quantum wells, nr the refractive index of the well material which is approximately equal 

to ý. cr where F, is the relative pen-nittivity of the well material, Lw is the well width and 

m,, d, jj is the reduced in-plane effective mass (see Section 1.5.12) and 0 denotes the step 

function [8]. 

As can be seen from Equations 5.12 and 5.13, the reduced in-plane effective mass, Mred, // 

is a critical parameter in calculating the absorption. Existing approaches used in SOL 

considered the effective masses in the growth and in-plane directions to be equal. While 

this is a valid approximation for an unstrained system in which the E-k dispersion is 

isotropic along the confined and in-plane directions (the reader is reminded that the 

effective mass is inversely proportional to the curvature of the E-k curve), once strain is 

applied the dispersion is significantly altered. Although the conduction band remains 

relatively isotropic the heavy and light hole bands become significantly anisotropic, 

with the heavy hole band displaying light hole characteristics (i. e. a lighter mass) in the 

in-plane direction and the light hole band displaying heavy hole characteristics [20] (see 

Figure 5.9). 
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Figure 5.9: The E-k dispersion of the heavy hole and light hole bands for an unstrained 

and strained bulk systern. 
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Due to the anisotropy of the valence band the in-plane and growth direction hole masses 

can no longer be assumed to be the same. One of the key results of the work presented 

in this section is to obtain and parameterize the hole in-plane effective masses and 

incorporate them into the SOL framework. 

5.2.3.2 Overview of the k. p model 

In this work accurate values for the effective masses of the first confined heavy and 

light hole states are sought by examining the E-k dispersions generated using a 

multiband k. p model (an overview of the basic principles of k. p theory may be found in 

Appendix 5). The model includes the interaction between the heavy and light hole 

valence bands but the effect of the spin orbit band, - 300 meV away, is neglected when 

calculating the dispersion but included when calculating the confined levels. The 

interaction between the sub-band scales inversely with distance between sub-bands. 

It is interesting to compare the effective masses obtained from the calculated dispersions 

to those obtained using the expression [2 11 

4m,. m i, z j, z Mi, 11 - in + 3m: i, zi, z 

(5.14) 

j, u is the hole in-plane effective mass and m*i, z and m*j,, are the heavy and light Here m* i 

hole masses in the confinement direction which are determined using linearly 

interpolated Luttinger parameters, yj and Y2 as in Reference 22 by: 

(5.15) 
hh, z 

y, -2Y2 

and 

(5.16) 
Ih, z 

y, +272 
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We denote effective masses determined in this way as interpolated masses and will 

compare them with the values extracted by our preferred procedure in Section 5.2.3.4 

5.2.3.3 Extraction of valence band in-plane effective masses 

The E-k dispersions for each confined state of quantum well structures with a range of 

indium, contents and well widths were calculated (using a MATLAB program written by 

Dr. P. N. Stavnnou) along the <I O> and <II> directions (defined in Figure 5.10). Due to 

the symmetry of the zinc-blende crystal structure the <I O>, <0 I >, < 10 > and <01> 

directions and the <II >1 < 11 >5 <II> and <II> directions may be considered to be 

equivalent [23], as illustrated in Figure 5.11. 

II 
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Figure 5.10. Schematic of the in-plane wave-vectors 
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Figure 5.11. Schematic of the in-plane directions and the growth direction 

A value of the conduction band offset of 0.55 and a barrier composition of GaAso. 8, Po. og 

were assumed. The identification of the different confined states is non-trivial. Clearly, 

due to the fact the well material is under compressive strain, the first heavy hole sub- 

band is highest in energy. Also, the light hole sub-band must be removed from the 

heavy hole band-edge by an amount of energy greater than the splitting between the 

heavy and light hole band edges. However, obtaining the nature of the other sub-bands 

is less straightforward and therefore these states were then identified using a separate 

66 particle in a box" MATLAB program, also written by Dr P. N. Stavrinou. A number of 

calculated dispersions are shown in Figure 5.12 
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Figure 5.12. In-plane valence band dispersions calculated using a multi-band k. p 

program for an 80 A compressively strained Indium InGaAs quantum well enclosed by 

a 9% Phosphorous tensile strained GaAsPy barrier for indium fraction of 0.05,0.1,0.15 

and 0.2. Sub-bands shown are first heavy hole sub-band (dark blue), first light hole sub- 

band (red), second heavy hole sub-band (purple) and third heavy hole sub-band (light 

blue). The strained heavy hole band-edge is taken as the zero point of energy. 

III 

Ino. 05GaAs Ino. joGaAs 

408 

kj, L 



As can be seen from Figure 5.13, the curvature of the calculated dispersion, and hence 

the value of the in-plane effective mass, changes over the energy range spanned by the 

quantum well. Thus for an accurate calculation of the in-plane effective mass, the mass 

should be modelled as a function of energy. 
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Figure 5.13. E-k dispersion calculated using a multi-band k. p model for the first heavy 

hole sub-band of an 80A Ino., GaAs quantum well enclosed in a GaAsPO. 09 barrier along 

the <I O> direction and parabolic dispersions using values of 0.1,0.2 and 0.3 mo for the 

in-plane effective mass. 

Due to the fact that the in-plane effective mass is needed as an input parameter for SOL 

which is a highly complex modelling program, a single value for the in-plane effective 

mass is more conducive to computational efficiency i. e. the SOL framework. It must 

also be remembered that the quantity ultimately needed to calculate absorption is the 

density of states, which is proportional to the area enclosed by the dispersion E-k curve. 

An energy independent value of the in-plane effective mass was therefore extracted by 

calculating the area enclosed by the k. p dispersion curve, and hence the density of states 

associated with the sub-band, using the trapezium rule. A parabolic dispersion was then 
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generated and the effective mass used to generate the parabola was adjusted until the 

area under the parabolic curve equalled that enclosed by the k. p dispersion (see Figure 

5.14). Referring back to Figure 5.12, the dispersion and hence the effective mass along 

two different directions must be considered. This was achieved by extracted values for 

the in-plane effective mass along the two in-plane directions (m, 01, and m,,,, ) and then 

finding the average in-plane effective mass, m, via 

I 
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Figure 5.14 An equivalent area parabolic fit to the calculated k. p dispersion for an 

Ino. I GaAs quantum well. The constraint used for the fit is that the area enclosed by the 

two curves, and hence the density of states associated with the two dispersions, should 

be equal. 
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5.2.3.4 Results 

First heavy hole state 

The extracted in-plane effective masses obtained from a parabola of equivalent area 

being fitted to a dispersion calculated using the multiband k. p program, together with 

interpolated in-plane effective masses obtained using Equation 5.14 for the first heavy 

hole state are displayed in Figure 5.15. 
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Figure 5.15: Interpolated and extracted in-plane masses as a function of indiurn content 

for the first heavy hole sub-band for an 80A In,, GaAs quantum well enclosed by a 
GaAsPo. 09 bamer. 

As can be seen in Figure 5.15 the extracted in-plane masses obtained from fits to the 

calculated dispersions are significantly higher than the interpolated masses found using 

the method discussed in Section 5.2.3.2. The average extracted masses are up to four 

times the magnitude of the interpolated values, corresponding to around a 40% 

difference in md, 11 and hence absorption. Also, the relationship between effective mass 
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and indiurn content for the extracted masses is not the same as the linear relationship 

observed for the interpolated masses. Additionally, the extracted masses are observed to 

be significantly different along the <I O> and <II> directions, with the in-plane 

effective masses being up to 66% higher along the <I I> direction. This is to be 

expected as the in-plane wave-vector is a factor of Ný2 longer along the <1 1> direction, 

thus increasing the density of states associated with the E-k curve. The average 

extracted in-plane mass can be modelled as a polynomial function, as displayed in 

Figure 5.15. 
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Figure 5.16: Relationship between numerically extracted heavy hole mass and well 

width for the first light hole sub-band of an Ino. I GaAs quantum well enclosed by a 

GaAsPo, og bamer. 

The relationship between extracted heavy hole mass and well width is displayed in 

Figure 5.16. The extracted mass is seen to vary with well width, again displaying 

different behaviour to the interpolated effective masses which are independent of well 

width. The variation of extracted effective mass with well width is caused by the 

increase in the distance between the sub-band levels with increasing well width, which 

reduces the interaction between the sub-bands. However the change in hole effective 
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mass with well width is relatively small (-10% change over a well width range of 

30nm) and thus may be neglected to a first approximation, given that the total range of 

well widths studied is from 70 nm to 130 nm. 

First light hole state 

For certain values of well indium content (5% indium and 18% indium) the first light 

hole sub-band is brought into very close proximity to the second and third heavy hole 

sub-bands respectively (see Table 5.2). This causes the sub-band to distort, as shown in 

Figure 5.17, (c. f the dispersion obtained when the heavy and light hole sub-band are 

further apart, as shown in Figure 5.18) making it impossible to extract a meaningful 

effective mass from a parabolic fit to the calculated dispersion. 
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Figure 5.17: Calculated and parabolic dispersions for the first light hole state along the 

<I O> direction for a 80 A InO. 05GaAs quantum well enclosed by a GaAsPO. 09 barrier. 

Note that the well has become an indirect structure. The zero of energy is the strained 

heavy hole band-edge. 
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Figure 5.18: Calculated and parabolic dispersions for the first light hole state along the 

<I O> direction for a 80 A Ino. I GaAs quantum well. The zero of energy is the strained 

heavy hole bandedge. 

Indium content 

Difference in energy between 
the 

first light hole sub-band and next 
nearest neighbour (meV) 

Well behaved 
extracted 

effective mass? 

5 1.2 No 

10 18.7 Yes 

15 8.4 Yes 

18 0.8 No 

20 20.1 Yes 

22 10.7 Yes 

24 16.0 Yes 

Table 5.2: Difference in energy between the first light hole sub-band and the next 

nearest band as a function of well indium content for an 80 A InxGaAs quantum well 

enclosed by a GaAsPo. og barrier. 
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The relationship between the extracted and interpolated in-plane light hole masses and 

indium content is displayed In Figure 5.19 
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Figure 5.19: Relationship between extracted and interpolated in-plane effective masses 

as a function of indium content for the first confined light hole state for an 80 A 

, 
GaAs quantum well enclosed by a GaAsPo. og barrier. In, 

The dependence on indiurn content of the extracted in-plane mass is not monotonic, 

with the extracted mass being approximately ten times the interpolated mass for a 5% 

indium quantum well and an 18% indium quantum well (i. e. where the light hole sub- 

band displays non-parabolic behaviour) and being almost equal to the linearly 

interpolated mass for all other indiurn contents where parabolic behaviour is displayed 

by the light hole sub-band. 
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Figure 5.20: Relationship between average extracted light hole effective mass and well 

width for the first light hole states of a lno., GaAs quantum well enclosed by a GaAsPO. 09 
barrier. 

The relationship between average extracted in-plane effective mass and well width is 

displayed in Figure 5.20. Again, a non-monotonic relationship between the extracted 

mass and well width is observed, with the extract light hole mass being largest when the 

light hole sub-band is in close proximity to the third heavy hole sub-band (see Table 

5.3), although, curiously the light hole mass corresponding to the smallest inter sub- 

band distance is relatively low, perhaps due to the influence of other, more distant heavy 

hole sub-bands. 
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Difference in energy between 
the Well behaved 

Well width (A) extracted effective first light hole sub-band and next 
nearest neighbour (meV) mass9 

70 10.56 Yes 

80 18.70 Yes 

90 11.97 Yes 

100 4.01 No 

110 2.70 Yes 

120 8.26 Yes 

130 14.00 Yes 

Table 5.3: Difference in energy between the first light hole sub-band and the next 

nearest sub-band as a function of well width for a 80A Ino., GaAs quantum well 

enclosed by a GaAsPo. og barrier. 

Due to the lack of a clear relationship between the light hole extracted in-plane mass 

and either well depth or width the light hole in-plane mass is determined using the linear 

interpolation given in Equation 5.14. 

Finally, the extracted and interpolated in-plane effective masses are used to calculate the 

reduced in-plane effective mass and incorporated into the quantum efficiency 

calculation in SOL. An overview of of this calculation is given in Figure 5.21 
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Figure 5.2 1: Overview of SOL. Input parameters are shown in blue boxes and 

calculations are displayed in red boxes. The parts of the program refined during this 

work are highlighted. 
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5.3 Evaluation of the model 

5.3.1 Comparison of predicted and measured well widths 

Two samples, Qt 1840 (a 50 shallow well sample) and Qt I 897B (a 5 deep well sample), 

were analysed at Bookharn Laboratories Ltd. using TEM to permit an accurate 

measurement of the well and barrier widths. Images of the two samples are shown in 

Figures 5.22 and 5.23. For fidl compositions. , ee Appendix 1. 
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Figure 5.22 TEM and measured well and barrier widths for Qt 1840 
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Figure 5.23 TEM and measured well and barrier widths for Qt I 897B 

First estimates of the well and barrier widths were obtain from values of the well/barrier 

period obtained using XRD and the fact that the well and barrier widths must satisfy 

strain balanced condition given in Equation 1.15. These estimates are then used as input 

parameters in SOL and refined to give the best possible fit to the exciton peak positions. 

These values are compared to the well and barrier widths obtained from the TEM scans 

in Table 5.4. Good agreement is observed between the predicted and measured values, 

although some discrepancy is unsurprising as the wells and barriers are not perfectly 

square. Also, there is a slight variation in well and barrier width across both samples. 
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Well width ell widths I Barrier width 
Baffler widths 

Sample obtained 
Z 

su us measureý using obtained measured 
using Sol (A) ý, U fxý, TEM (A) using Sol (A) sing TEM U 

(A) 
QtI840 83 79.6-83 157 167 

QtI897B 100 
_ _96.1-99.4 

-296 285-295 

Table 5.4 Well and barrier widths of Qtl840 and Qtl897B obtained using SOL and 
measured using TEM. 

5.3.2 Comparison of predicted and measured exciton binding energies 

The binding energy of an exciton in a quantum well system can be measured 

experimentally as the difference in energy between the continuum edge and the centre 

of the exciton peak. An accurate value of the exciton binding energy is required to 

predict the position of the exciton peaks and hence control the device structure to make 

the most efficient use of the incident solar spectrum. As the eI -hh I exciton peak is 

always the highest absorbing excitonic feature we are particularly interested in 

obtaining an accurate value of the binding energy for this transition. The effect of the 

eI -hh I exciton peak position on device efficiency is highlighted in Chapter 3. 

In this work we have determined an experimental value of 10.0 ±1.5 meV for the 

exciton binding energy for the el-hhl exciton for samples QtI858D and Qtl838R (both 

65 shallow well samples). The fact that a value for the exciton binding energy can be 

obtained from such large well number samples is indicative of excellent material 

quality. These values were determined from low temperature photocurrent scans to 

minimize thermal broadening of the exciton peaks (see Figure 5.23). To the author's 

knowledge this is the only measured value of the exciton binding energy for this 

matenal system. 
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Figure 5.24. Photocurrent spectra of Qt 18 5 8D for a range of biases taken at I OK. The 

positions of a number of excitons are clearly visible. The small HWHM (3meV) of the 

eI -hh I exciton peak is indicative of excellent material quality. The exciton binding 

energy (Ebind)of the eI -hh I exciton is measured to be 10.0 ± 1.5meV 

The calculated and measured values of the eI -hh I exciton binding energy are displayed 

in Table 5.5. Broad agreement is observed between the predicted and measured values 

indicating that the simple, parameterised form of the exciton binding energy used in 

SOL is, for the purposes of this work, an adequate representation of the complex, many 

body nature of the exciton. The value of the exciton dimensionality is found to fall 

between that of a purely three dimensional and a purely two dimensional exciton (c. f. 

Equation 5.4) although the dimensionality of exciton becomes closer to the two 

dimensional limit as well indium content, and hence well depth and confinement, 

increase [ 12]. 
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Measured 
Well exciton Predicted exciton Dimensionality Sample indium binding binding 

v (meV) 
content energy energy (meV) 

(meV) 
Qt1858D 11 10.0±1.5 8.05 0.1 
Qt1838R 12.5 10.0±1.5 8.72 0.15 

Table 5.5: Measured and predicted exciton binding energies and exciton dimensionality 
for the el-hhI exciton of Qtl858D and Qtl838R 

126 



5.3.3 Comparison of measured and predicted quantum efficiency 

Naturally, the most rigorous test of the quantum model is to compare measured and 

predicted quantum efficiencies. However, there is one complication that makes such a 

comparison non-trivial; the fact that a fraction of the light which reaches the back 

surface of the device, which is an annealed contact formed from an alloy of In and Ge 

stuck to a gold-loaded epoxy T05 header, is reflected back into the sample (see Figure 

5.25). The nature of the back surfaces leads one to expect a significant variation of 

direct and diffuse reflectivity from sample to sample. Previous work has suggested that 

there is both a direct (normal incidence) and diffuse contribution to the back surface 

reflectivity, and estimated the direct back surface reflection at 30% and the diffuse rear 

surface reflection between 3.8% and 25%. When diffuse light is reflected at angles 

greater than the critical angle for the top surface the light makes repeated passes through 

the wells. [24]. 

Normal 
incidence 

p 

.... ... ... ................................................................. 

dire ct diffuse 

n 

reflection refle ction 

Figure 5.25: Schematic illustrating the diffuse and direct components to the back 

surface reflectivity (not to scale). 
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In order to compare SOL's prediction for the well absorption without any reflection 

from the back surface the model was compared with two strained InGaAs/GaAs 

samples, Qt957b and Qt957c (for sample details see Appendix 1), which had been 

processed with black paint on the back surface to remove as much direct and dIffuse 

scattering as possible. The compari I 'son between the predicted and measured quantum 

efficiencies is shown in Figure 5.26. 
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Figure 5.26 Predicted and measured quantum efficiencies for a) Qt957b and b) Qt957c. 

Good agreement is observed between the predicted and measured exciton peaks and 

eI -hh I continuum level. 

The model is able to accurately reproduce the eI -hh I exciton peak and the first 

continuum level for these samples. It should be noted that, in contrast to earlier versions 

of SOL where the absorption per level per well was fitted, these predictions are 

absolute. The QE level depends strongly on the effective masses giving confidence in 

the approach described in Section 5.2.3. However, the features corresponding to 

transitions higher in the well are not so well described. This is unsurprising as the band 

offset and in-plane effective masses have yet to be rigorously examined for the 
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InGaAs/GaAs material system (in particular the light hole is unbound in this system) 

[9]. 

The quantum efficiencies of a number of standard processed samples are compared to 

those predicted using SOL (see Figure 5.27). 
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Figure 5.27: Measured and predicted quantum efficiencies of a) QtI838R, b) Qtl858D, 

c) Qt I 897AD and d) Qt 19 1 OU (see Appendix I for sample compositions). In all cases 

SOL underestimates the quantum efficiency due to the contribution of the reflection 

from the back surface to the QE. 
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Very good agreement is observed between the predicted and measured position of the 

exciton peaks, although naturally the experimental QE is higher than the predicted QE 

due to the unaccounted for reflections from the back surface. The slight discrepancy 

between the eI -lh I exciton peak position predicted by SOL and the measured peak 

position in some samples is not unexpected and is likely to be due to the fact that the 

wells are non-square. The absorption at the first continuum level obtained from the SOL 

fits and the absorption determined from experimentally determined quantum efficiency 

have been compared for a number of strain-balanced samples and it has been found that 

the extent to which SOL underestimates the absorption at the first continuum level is 

between 34% and 55% for most samples, broadly consistent with the range of values 

suggested in Ref [19] of 30% for the direct back surface reflectivity and between 3.8% 

and 25% for the diffuse back surface reflectivity (see Figures 5.28 and 5.29). There is 

little variation in the ratio with either well number or Indium fraction, giving confidence 

in approach used here to deten-nine the effective masses. 
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Figure 5.28 Ratio of experimentally determined absorption coefficient (alpha) to 

absorption coefficient determined from SOL predictions of quantum efficiency as a 

function of well number for a number of strain balanced samples. The red lines denote 

the range of values the ratio occupies assuming a direct back surface reflection of 30% 

and a diffuse back surface reflection of 3.8% and a direct back surface reflection of 30% 

and a diffuse back surface reflection of 25% as suggested in Ref [19]. 

131 

30% + 25% 

10 20 30 40 50 60 70 
Well number 



2 

1.8 

1.6 

1.4 

1.2 

0.8 
CL 

0.6 

0.4 

0.2 

0 
8 10 12 14 16 18 

Well indium content (%) 

30%+25% 

30%+3.8% 

20 

Figure 5.29: Ratio of experimentally determined absorption coefficient (alpha) to 

absorption coefficient determined from SOL predictions of quantum efficiency as a 

function of well indium content for a number of strain balanced samples. Again, the red 

lines denote the range of values the ratio occupies assuming a direct back surface 

reflection of 30% and a diffuse back surface reflection of 3.8% and a direct back surface 

reflection of 30% and a diffuse back surface reflection of 25% as suggested in Ref [19]. 
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5.3.4 Structural optimisation and comparison of predicted and measured 
conversion efficiency 

SOL has been used to project the efficiencies of a range of structures with different well 

widths and depths, with a view to finding an optimum structure for a SB-MQW solar 

cell. A barrier composition of GaAsPO. 12, a barrier width of 122.9A and a band offset of 

0.55 are assumed, incident spectrum is taken to be AMI. 5D at 300 suns concentration 

(230100 WM-2 ) and the sample contains 65 wells. The predicted conversion efficiencies 

are shown in Figure 4.30 
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Figure 5.30: Conversion efficiencies predicted using SOL for a variety of well widths 

and depths. A barrier composition of GaAsPo. 12, a barrier width of 122.9A and a band 

offset of 0.55 are assumed. The incident spectrum used is AM 1.5D at 300 suns intensity 

(an incident power of 230100 WM-2 ) and the sample contains 65 wells. 
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The optimum well composition is found to be a 120A well of Ino., GaAs, which has a 

projected efficiency of 25.7% when illuminated by the AM 1.5D spectrum at 300 suns 

intensity. For comparison, a GaAs p-i-n junction which has an equal i region width has 

a projected efficiency of 13.6%. 

Additionally, the conversion efficiency for a concentrator version of sample TS98 (see 

Appendix I for full details) illuminated by the AMI. 513 spectrum at 317 suns 

concentration predicted by SOL has been compared to the value obtained using 

independent measurements at the Fraunhofer Institute in Germany. The SOL prediction 

is obtained by fitting a measured quantum efficiency and dark current to obtain 

theoretical values for J, c and V,,,. Good agreement is observed between the predicted 

and measured values, 25.3% and 25.7% respectively, giving added confidence in the 

refinements made to SOL. 
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5.4 Conclusion and further work 

Substantial refinements have been made to the model of the quantum efficiency of the 

well region of multi-quantum well solar cells. A rigorous calculation of the strain 

bandgaps has been included into the model. The conduction band offset for the 

InGaAs/GaAsP material system has been determined by examining the splitting 

between the eI -hh I and eI -lh I exciton peak and comparing it to the splitting predicted 

for a range of values of conduction band offsets, obtaining a value of Qc = 0.53± 0.05. 

The binding energy for the eI -hh I exciton has been measured for two samples with 65 

wells and found to be 10.0 ± 1.5 meV. An absolute calculation of the quantum well 

absorption coefficient has been included and an extensive study of the in-plane mass of 

both the first heavy and light hole sub-bands has been undertaken. This study has 

provided a parameterization of the relationship between heavy hole in-plane mass and 

well indiurn content, while the light hole in-plane mass displays no clear relationship 

with either well depth or width. The new model has been tested in the following 

expenmental situations: 

1) The well and barrier widths predicted by the refined model are found to be broadly 

consistent with those obtained from TEM scans from two samples. 

2) The exciton binding energy for the eI -hh I exciton calculated using a simple 

parameterization is in broad agreement with the experimentally determined value. 

3) Good agreement is seen between the absolute SOL prediction and the measured 

values of the quantum efficiencies at the eI -hh I exciton peak and the level of the first 

continuum for two samples processed with black paint on the back surface to remove 

any back-surface reflections. 

4) The predicted quantum efficiency is underestimated when compared to measured 

quantum efficiencies of samples which have undergone standard processing but the 
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level of underestimation observed for a number of strain-balanced samples is found to 

be broadly consistent with previous predictions of the magnitude of the back surface 

reflectivity. 

5) The conversion efficiency of a sample predicted using SOL is compared to the value 

independently obtained at the Fraunhofer Insti itute. Good agreement is obtained between 

the two values (25.3% and 25.7% respectively for 317 suns AM 1.5D). Additionally, a 

study of the projected conversion efficiencies for a range of quantum well structures 

containing 65 strain-balanced wells was undertaken and the optimum structure for 

illumination by the AM 1.5G spectrum was found to a 120A well of Ino., GaAs. The 

conversion efficiency of this device was predicted to be 25.7% 

This work identifies several promising avenues for further work. The effective mass 

study could be widened to include different barrier compositions and different values of 

the conduction band offset. It would also be useful to compare the measured quantum 

efficiency from strain-balanced samples processed with black paint on the back surface 

to the quantum efficiency predicted using SOL, and to the measured quantum efficiency 

of samples that have undergone standard processing to gain additional insight into the 

magnitude of the reflection from the back surface. Also, it would be appropriate to 

investigate cells grown on polished substrates (see section 3.2.3.2) as a means of 

increasing the amount of light entering the cell. Additionally, if material Of sufficient 

quality becomes available, the heavy to light hole exciton peak splitting could be 

measured for more samples with a wider range of well indium fractions to obtain a 

better estimate of Qc. 
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5. Conclusions and further work 

The inclusion of strain balanced InGaAs/GaAsP quantum wells into the Intrinsic region 

of a GaAs p-i-n junction has been demonstrated to make more efficient use of the 

incident solar spectrum and hence increase device efficiency. In this thesis a number of 

experimental and modelling studies have been undertaken to enable one to quantify the 

performance of the cell and to optimise its efficiency. 

In Chapter 3 the optimum number of wells to include in such devices was explored 

using a pair of otherwise identical strain balanced multi quantum well solar cells, one 

containing 50 wells and the other 65 wells. The 65 well sample was projected to achieve 

a lower efficiency than the 50 well sample, suggesting that the optimum well number is 

between these two values. Additionally, a second 65 well sample containing shallower 

quantum wells was also characterised and found to have an equal conversion efficiency 

to the 50 well sample. This was due to the position of the eI -hh I exciton peak of the 

sample, which corresponds to a region of higher intensity in the incident spectrum. 

Additivity (in which the light IV characteristics of the device are equal to the dark IV 

characteristics minus the short circuit current) was observed, demonstrating that it is 

possible to grow a 65 well multi-quantum well device without loss of field over the 

intrinsic region. It is planned to further investigate the optimum well number by 

growing and studying devices containing between 50 and 65 wells and to examine 

varying well number series of devices for several well and barrier compositions and 

widths. 

Additionally, devices grown using a novel growth precursor, tertiary butyl arsine 

(TBAs), in place of the conventional arsine as a source of arsenic were studied. A p-i-n 

solar cell grown using TBAs was found to display comparable projected conversion 

efficiency to a control device grown using arsine, while the dark current of the device 
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grown using TBAs was significantly lower than that of the control cell. This suggests 

that TBAs may be used as a substitute for ars'ne In the growth process without 

sacrificing device quality and may even have beneficial effects. It is planned to grow a 

number of strain balanced multi quantum well solar cells using TBAs to explore this 

hypothesis. 

A two component model of the radiative dark current of SB-MQW solar cells is 

outlined in Chapter 4, with one component ansing from radiative recombination in the 

wells and the other from the Ideal Shockley current. Good agreement was observed 

between the output of this model and experimentally determined intercepts of the n, =I 

dark current. The radiative dark current arising from recombination in the wells is found 

become increasingly dominant as the wells grow deeper. It is hoped that the work 

documented in Chapter 4 will be revised using the updated model for device absorption 

detailed in Chapter 5. It would also be useful to include the more accurate insight into 

device composition obtained using the new model for strain bandgaps and confined 

states. The comparison between the nj =I intercepts obtained from fitting experimental 

results and those predicted by the model could be included to include a larger number of 

devices with a greater range of well numbers and depths. It would also be interesting to 

determine whether the QW radiative fraction of the n, =I dark current increases further 

towards unity as well depth continues to increase. 

In order to fabricate devices of the highest possible efficiency it is essential to be able to 

model the quantum efficiency of the quantum well region of SB-MQW solar cells. 

Several fundamental refinements to the existing quantum efficiency model SOL are 

detailed in Chapter 5. Firstly, a rigorous calculation of the strained band-gaps was 

introduced. Secondly, a value for the conduction band offset for the lnGaAs/GaAsP 

material system was determined by calculating the difference in energy between the 
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heavy and light hole confined states for a number of band offsets and comparIng these 

values to the distance between the eI -hh I and eI -lh I exciton peaks recorded using low 

temperature photocurrent measurements. A value was obtained of Qc = 0.53±0.03. 

It is planned to widen this study to include a larger number of samples containing a 

wider range of indium compositions to obtain a more accurate value of Q,. 

An absolute calculation for the absorption coefficient of the quantum wells was 

incorporated into the model and a study of the valence band in-plane effective mass 

undertaken. In this work the E-k dispersions along the <I O> and <II> directions for 

quantum wells of varying widths and depths are obtained using a multiband k. p model. 

A parabola of equivalent enclosed area (and hence equivalent density of states) is then 

fitted to the calculated dispersion for the first heavy and light hole subbands and a value 

for the in-plane effective mass extracted from the fitted curve, with an average mass 

calculated from the masses obtained along the two different directions. This average 

extracted in-plane mass is then compared to the in-plane mass obtained by an 

interpolation of the confinement direction masses. 

The extracted heavy hole mass is seen to decrease with increasing well indium content 

and also displays a weak dependence on well width. The light hole extracted in-plane 

mass displays a non-monotonic relationship with well depth and well width due to its 

close proximity to other sub-bands that makes the dispersion highly non-parabolic. Both 

the heavy and light hole extracted masses are significantly different to those obtained 

using the interpolation of confinement direction masses, with the heavy hole mass being 

up to five times heavier and the light hole mass being up to ten times heavier. 

The relationship between the average in-plane effective mass and well indium content is 

modelled as a polynomial relationship. The weak dependence of heavy hole mass and 

well width is neglected to retain computational efficiency. Due to the lack of a clear 

relationship between the light hole effective mass and both well depth and width the 
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light hole in-plane mass is calculated from the interpolation of confinement direction 

masses. 

The model was tested against experimental data with the following results: 

1) The well and barrier widths obtained using SOL for two strain balanced samples 

were found to be broadly consistent with those measured using TEM. 

2) The exciton binding energy for the eI -hh I exciton calculated using a simple 

parameterization is in broad agreement with the experimentally determined value. 

3) The model was used to make absolute predictions for the quantum efficiencies of 

strained InGaAs/GaAs samples processed with black paint on the back surface to 

remove any reflection for the gold epoxy layer at the rear contact. Excellent 

agreement was observed between the predicted and measured eI -hh I peaks and 

continuum levels. 

4) The model was used to fit a large number of strain balanced samples and the 

nil absolute prediction was found to underestimate the absorption in these devices by 

between -34% and -55%, an amount consistent with previous work that suggested a 

direct back surface reflectivity of 30% and a diffuse back surface reflectivity of 

between 3.8% and 25%. No large trends in this ratio with well number or indium 

fraction were observed giving confidence in the procedure to extract the effective 

masses. 

5) The conversion efficiency of a sample predicted using SOL is compared to the 

value independently obtained at the Fraunhofer Institute. Good agreement is obtained 

between the two values (25.3% and 25.7% respectively for 317 suns AMI. 51) ). 

Additionally, a study of the projected conversion efficiencies for a range of quantum 

well structures was undertaken and the optimum structure for illumination by the 

AMI. 5D spectrum was found to be a 120A well of lno., GaAs at 300 suns 

concentration. 
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It is planned further explore the validity of the model by processing several strain- 

balanced InGaAs/GaAsP samples with black paint on the rear surface and comparing 

the measured quantum efficiencies of these samples to those predicted using the model. 

Finally, it is proposed to extend the effective mass study by examining InGaAs quantum 

wells enclosed by GaAsP barriers of differing compositions and exploring the effect of 

changes in band offset on the in-plane effective mass of the heavy and light hole sub- 

bands. 
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Appendices 

Al. Sample compositions 

Qtl747C 

Dopant and 
Layer No of repeats Width (nm) Composition Doping level 

(M-1) 

Window 1 43 AlO. 8oGaAs 
Zn Ix 10 19 

Emitter 1 500 GaAs C 8.5x 10 17 

1/2barner 30 14.7 GaAsPO. 11 

Well 30 10 Ino. 185GaAs 

1/2bamer 30 14.7 GaAsPo., 1 

Base 1 500 GaAs Si 2.4x 1017 

Qtl838R 

Layer No of repeats Width (ru-n) Composition 
Dopant and 

Doping 
3 
level 

M 

Window 1 30 Alo. 8oGaAs 
C 2x 10 19 

Emitter 1 500 GaAs C 2x 1018 

1/2barrier 65 8.7 GaAsPo., 1 

well 65 8.3 Ino. 125GaAs 

1/2barrier 65 8.7 GaAsPu i 
17 

Base 1 3000 GaAs Si 4x 10 

18 

Base 1 300 GaAs 
Si Ix 10 
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Qtl840 

Layer No of repeats Width (nm) Composition 
Dopant and 

Doping level 
(M-) 

Window 1 30 Alo. 8oGaAs C 2x 1019 

Emitter 1 500 GaAs C 2x 1018 

1/2barrier 50 7.4 GaAsPo. 11 

well 50 8.3 Ino. 1 25GaAs 

1/2barrier 50 7.4 GaAsPo. 11 

Base 1 3000 GaAs Si 4x 1017 

Base 1 300 GaAs Si 2x 1018 

QH858D 
Dopant and 

Layer No of repeats Width (nm) Composition Doping level 
(M-3) 

Window 1 43 Alo. 8oGaAs 
C2x 10 19 

Emitter 1 400 GaAs C 2x 10 18 

1/2barrier 65 7.9 GaAsPO., I 

well 65 8.8 Ino. II GaAs 

1/2barrier 65 7.9 GaAsPo. i, 

Base 1 2000 GaAs Si 4x 1017 

Base 1 300 GaAs Si ix loll 
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Qtl897BD 

Layer No of repeats Width (nm) Composition 
Dopant and 

Doping level 
(M-3 ) 

Window 

Emitter 

1 

1 

4 

500 

Alo. 8oGaAs 

GaAs 

C 2x 1019 

C 2x 1018 

1/2barrier 5 14.8 GaAsPO. 10 

well 5 10.0 Ino. I 7GaAs 

1/2barrier 5 14.8 GaAsPo. jo 

Base 1 2000 GaAs Si 4x 10 17 

Base 1 300 GaAs Si Ix 10 18 

Qtl228 and Gacell 

Dopant and Doping 
Layer Width (nm) Composition level (M-3 

Window 41 A10.58GaAs Zn Ix 10" 

Emitter 500 GaAs Zn Ix 1018 

Intrinsic 1068 GaAs Zn 2x 10 18 

Base 2000 GaAs IX 10 14 

Buffer 300 GaAs Si 1.5x 10 17 
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Qt957b and Qt957c 

Dopant and Layer No of repeats Width (nm) Composition Doping level 
(M-3) 

Window 1 43 Alo. 8oGaAs C 2x 1018 

Emitter 1 500 GaAs C 2.6x 10 18 

1/2barrier 10 23.8 GaAs 

well 10 10.0 Ino. 145GaAs 

1/2bamer 10 23.8 GaAs 

Base 1 1686 GaAs Si 1.5x 1017 

TS98 

Dopant and 
Layer No of repeats Width (nm) Composition Doping level 

(in-, ) 

Window 1 43 AlO. 8oGaAs 
C 2x 10 18 

Emitter 1 150 GaAs C 1.8x 10,8 

'/2bamer 50 8.8 GaAsPO. 09 

well 50 9.5 Ino., 15GaAs 

1/2barrier 50 8.8 GaAsPo. og 

Base 1 2000 GaAs Si 2x 10 17 

Buffer 1 100 GaAs > Si 2x 1017 
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A 2. Material Parameters 

Unless otherwise stated all parameters are taken from Reference 

Parameter 

Lattice constant ao (rim) 

In,, Gai-, As 

5.6533 + 0.40573x 

GaAs, 
-yPy 

5.6533x(I-y) + 5.4512y 

C, 1 (10 11 dyn/CM2) 11.88 -3.55x 1.188x(I -y) + 1.412y 

C12(101 
I dyn/CM2) 5.38 - 0.85x 0.538x(I-y) + 0.6253y 

agap (eV) 
-8.3768 + 1.7686x -8.3768x(I-y) -10.9y 

b (eV) -1.7 - O. lx -1.7x(I-y)-l. 5y 

A (eV) 0.341 - 0.09x + 0.14X2 0.341 x (I -y)+ 0.23y 

71 6.85x(I-x) + 19.67x 6.8 5x (I -y)+ 4.2y 

Y2 2.1 x (I -x) + 8.37x 2.1 x (I -y)+ 0-98y 

Bulk bandgap Eg (eV) 1.424 - 1.5x+ 0.4x 2 1.424x (I -y)+ 2.74y 

Kane Matrix element 
Ep (eV) [2] 28.8-6.6x n/a 

Relative permittivity F, 
[3] 

13. lx(I-x) + 15-lx 13.1 x(I -x) +II. Ix 

[1] Landolt and Boemstlen. New Series 111,17a 1982 

[2] 1. Vurgaftman et al. "Band parameters for Ill-V compound semiconductors and their 

alloys" J. App. Phys. 89 (11). 2001 

[3] F. Blatt. "Modem Physics" McGraw-Hill. 1992 
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A3. Derivation of the density of states in three and two dimensions 

The derivation of the density of states for a bulk semiconductor and a quantum well is 

reviewed in this section following the approach in Reference I and 2. 

The density of states is defined as the number of solutions to the Schrodinger equation 

per unit volume per unit energy. 

Consider an electron confined within a cube of side L. The allowed wavenumbers are 

nx; T 
;kn,,; 

T 
;kn,; 

T (A3.1) 
xL -V LzL 

The volume of a single k state is thus 

... : 
'r 

)3 
Vk (A3.2) 

L 

The volume of two spherical shells of radii k and k+dk is thus 

V, 
hell --:: 4Tck 2A (A3.3) 

The total number of states in the shell, g(k)dk is thus 

k'L'dk 
g(k)dk =2 (A3.4) 

In obtaining Equation A3.4 a factor of 2 has been included to account for the twofold 

spin degeneracy of each electron state. A factor of 1/8 is also included as only Positive 

values of k, ky and k, are considered [2]. 
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To find the total states per unit energy we use the relationship 

I 
2mE -2 

h2- (A3.5) 

Differentiating with respect to E gives 

2mE 2 Md 

h2h2E 
(A3.6) 

Dividing by L3 to obtain the number of states per unit energy per unit volume we find 

3 
I 2m* 2 

g(E)dE ---E 2dE 
2n2h2 

(A3.7) 

To derive the density of states for a two dimensional system a similar procedure is 

required, this time finding the number of solutions to the Schr6dinger equation per unit 

area per unit energy 

Consider an electron confined within a square of side L. The allowed wavenumbers are 

kx = -ýx--Ir ; ky = 
ny ir (A3.8) 

LL 

The area of a single k state is thus 

Vk (A3.9) 
L 

The area between two rings of radii k and k+dk is 
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ch-cle =2n kdk (A3.10) 

The total number of states in the ring, g(k), is thus 

g(k) = 
2mE 2 2mE -2 mL 

2 

(A3.1 1) 
h2h2 7th 

2 

As before, in obtaining Equation A3.1 Ia factor of 2 has been included to account for 

the twofold spin degeneracy of each electron state. A factor of 1/4 is also included as 

only positive values of k, and ky are considered [2]. 

Again, finding dN/dE and then dividing by L2L, (where Lw is the well width) to obtain 

the number of states per unit energy per unit volume 

dE m 
dNdV 7rh'Lw 

4 

A-ý 

3 

2.5 - 

1.5 - 

0.5 - 3D denisty of smtes 

- 2D demily of' -. ates 

(A3.12) 

0 4- 1 ---T- TI 
-) 
10 

-. 0 15 0? .6 

Eae: gy (a-m) 

Figure A. 1: The density of states for a bulk semiconductor and a quantum well system 

[3]. 
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The density of states for a quantum well structure is hence independent of energy 

(above a threshold level) whereas the density of states of a bulk semiconductor varies 

with E"2. In a two dimensional system the density of states resembles a series of steps, 

with each step corresponding to a single sub-band. 

[11 ;. ac/physics/dos/dos. htm. 2000 
[21 Donald A. Neaman. "Semiconductor physics and devices: basic 

principles. "McGraw- Hill Professional. 2003. 
[31 Dave Bushnell. "Optimisation of strain-compensated multi-quantum well 
solar cells. " PhD thesis, Imperial College London, 2003. 
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44. Derivation qf strained bandgaps 

The derivation in this section follows the method detailed in Reference 

The time-independent Schr6dinger equation has the familiar solution 

HT (r) = ET (r) (A4.1) 

where H is the Hamiltonian, W(r) the wavefunction and E the energy eigenvalue. 

Considering just the conduction, heavy hole, light hole and spin-orbit bands, the 

Hamiltonian for an unstrained semiconductor at k=O is 

cb hh Ih so 

cb Eg 0 0 0 

H,, 
nstrained 

hh 0 0 0 0 
(A4.2) 

Ih 0 0 0 0 

so Lo 0 0 - A_j 

where Eg is the unstrained bandgap and A is the spin-orbit splitting [2] (see Figure 1.13 

in Chapter I). 

To include the effects of strain a second component, Hstrainedi must be added to the 

unstrained Hamiltonian 

6E' 000 h 

0 6EV -I 6E 00 h2s 

Hstrained 
6EV +I 6Es illEs 00h2 

--E 6E v 00i, 6sh 

(A4.3) 
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The hydrostatic shifts of the conduction and valence band energies are defined as 

6E( =a h (2e,, + e, - (A4.3) 

8E 11 =a h, (2 el + e,, (A4.4) 

where a, and a, are the hydrostatic deformation potentials of the conduction and valence 

band and the in plane strain, ell, is given by 

as -a 
layer 

e00 
a 

layer 
0 

(A4.5) 

where ao and ao"""' are the lattice constants of the substrate and the strained layer 

respectively. The strain in the growth direction, e.., is given by 

2C12 

e� (A4.6) 
Cil 

whereC12and cl, are the bulk elastic coefficients of the material. 

The shear energy shift is defined as 

6Es = 2b(e,, - e,, ) (A4.7) 

where b is the shear deformation potential. 

The combined Hamiltonian of the strained semiconductor is now given by 

Hcombined - Hstrained +Hunstrained (A4.8) 
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To facilitate easier quantum well calculations a constant, H, hift, is added to Hcombined to 

give the final Hamiltonian 
, 
Iýli, such that the heavy hole bandedge is defined as the 

zero point of energy [I]. 

Hfin =Hcombined+H 
shift 

H, hift is defined as 

Hshift '- 

I 

6ES - 
6Eh' 1 

2 

where I is the identity matrix. 

Hf,, is now given by [3] 

E+ 6Eh' - 6E' +I 8E, 000 
9h2 

0000 
Hfin 

00 8Es 
I 8Es 
2 

00- ý16Es -A+I 6ES 
2 

we now define 

gap bV - 45E' hhh 

and 

=E 
gap +I 6E gs 9h2 

Additionally 

Eso = -A +I 6Es 
2 

The final Hamiltonian can thus be written as 

(A4.9) 

(A4.10) 

(A4.1 1) 

(A4.12) 

(A4.13) 

(A4.14) 
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Egs 000 

0000 

H fin 00 6Es I 
6Es (A4.15) 2 

1 00- ýWs Eso 

The strained conduction - heavy hole bandgap is thus given by 

Econduction-hh 
-, ": E+ 9E gap +I 5E 9h2s (A4.16) 

The light hole and spin-orbit tenns give rise to the equation 

(8E - E) (E - E) -I 6E' =0 (A4.17) s so 2s 

or 

E2 -E(5E +E -1 
5E2 +5E E =O (A4.18) 

s SO) 2ss so 

which can be solved using the standard solution to a quadratic equation to give 

6E + 6E I Econduction-lh-- Eg +s2 so +23 t5ES2 -2 bEs Eso + Eso 2 ý2 
(A4.19) 

and 

6E 2 6Es + so 
I [36ES2 2 Econduction-so= Eg+ 

22- 
2bEs Eso + Eso (A4.20) 

[I] P. N. Stavrinou. "'A study of InP based strained layer heterostructures. " PhD thesis, 

UCL. 1995 

[2] J. Nelson. "Low-dimensional semiconductor structures. " ed. K. Barnham and D. 

Vvedensky. Chapter 6. Cambridge University Press, 2001. 

[3] E. P. O'Reilly. "Valence band Engineering in Strained-Layer Structures. " Semicon. 

Sci. Tech. 4 pp 121-137.1989 

157 



, 45. Overview of k. p theory 

An in-depth discussion of k. p theory may be found in References 1- 4 so only a brief 

overview of the necessary background is given here. 

The work outlined in this section follows the discussion in Reference 1. 

Neglecting the effects of spin the Schr6dinger equation may be written as 

H, y(r) = Ey(r) (A5.1) 

where H,, is the unperturbed Hamiltonian which is given by 

Ho = 
v2 

+ V(r) (A5.2) 
2mo 

and F(r) is the potential of the crystal and V(r) is the carrier wavefunction, which may 

be expressed as 

y(r)=F(r)U(r) (A5.3) 

where F(r) is the envelope function and U(r) is the Bloch function that has the same 

periodicity as the crystal lattice. 

The envelope function may be expressed as a plane wave, thus 

ql(r) =e 
ikrU(r) (A5.4) 

Substituting this into Equation A5.3 yields 

v2 hh2k2 
- +V(r)+-k. p+- y(r)=Ey(r) (A5.5) 
2m., m 2mo 

or 

[H, +W]U(r)==EU(r) (A5.6) 

where 

h h2 k2 (A5.7) W= k. p+- 
m 2mo 
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The Bloch functions can now be treated as separate summations of near and far states 

UO-) = I: C,, In) +j: C, If) (A5.8) 
nf 

Equation A5.6 now becomes 

(HO + W) I CnIn) +IC, If) EI Cn In) +I Cf If) 
-d -. d (A5.9) 

nnfI 

which can be rewritten as 

JCJE 
-Eln)+Wln)]+lCf[Ef -Elf)+Wýf)]=0 (A5.10) 

f 

Multiplying Equation A5.10 by nI and integrating over the unit cell gives 

C,, [E 
- Eý ,+ 

(n'IWI n) +, I Cf ýWJWJ f0 (A5.1 1) n nn 
nf 

as (n'll f) 

Multiplying Equation A5.10 byf and integrating over the unit cell gives 

Cf [Ef 
- Eý ,+ 

(f 'IWI f) + 1] C, ýf 'IWI n) =0 (A5.12) 
ff nn 

As [Ef 
-E]>>(f'lWlf) [5b Equation A5.12 can be approximated to 

Cf 
E] 

Y, Cn ýf ' IWI n) (A5.13) 
nn 

Substituting this into Equation A5.11 gives 

ýf'jWjn)ýWjWjf) 

Cn(E 
-E)6 +ýWjWjn)+ f0 (A5.14) 

nn 
nn, E Ef 

which reduces to 

n'jWj If )(f 'IWI n) 

E)6 + (n'IWI n) +f=0 (A5.15) Cn(En 
nn' E Ef 

n 

The wavefunction can thus be expressed in terms of the near set of bands which have 

been appropriately modified to included the effects of the far set of bands. The key Point 
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to obtain from equation A5.15 is that the wavefunctlon and hence the disperslon thus 

depend on both the distance between the subbands and the interaction between them. In 

the model used to calculate the dispersions in this work the heavy and light hole bands 

are neglected, apart from the spin-orbit band, which is included in the calculation of the 

confined energy levels, as detailed in Appendix 3. 

[11G. Bastard. "Wave mechanics applied to semiconductor heterostructures. " 

Editions de Physique. 1988 

[2] M. Cardona and P. Yu. "Fundamentals of semiconductors. " Springer-Verlang. 1999 

[3] J. Davies. "Low dimensional semiconductors: an introduction. " Cambridge 

University Press. 1997 

[4] P. Harison. "Quantum Wells, Wires and Dots: Theoretical and Computational 

Physics of Semiconductor Nanostructures, 2nd Edition. " Wiley. 2005 

[51 P. N. Stavrinou, private communication. 2007 
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A6. List qfsymbols used in this thesis 

a, b deformation potentials 

ao average lattice constant 

aL2 lattice constant of layer 

ý41 front surface area 

-4b back surface area 

AM air mass 

CII, 12 elastic stiffness constants 

Dn electron diffusion length 

Dp hole diffusion length 

e polarisation vector 

Ebind exciton binding energy 

E, confined energy of an electron 

Eg unstrained bandgap 

Eg, strained bandgap 

Eh hydrostatic shift 

Ehc confined energy of an electron 

Ep Kane matrix element 

EQE external quantum efficiency 

E, shear shift 

F flux 

FF fill factor 

H the Hamiltonain operator 

IQE internal quantum efficiency 

JP C photocurrent 

isc short circuit current 
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Ln electron diffusion length 

Lp hole diffusion length 

Lit, well width 

Mz confinement direction effective carrier masses 

Mred reduced effective carrier mass 

M// inplane effective carrier mass 

MO free mass of electron 

N well number 

ne electron density 

n ideality factor 

ni intrinsic carrier density 

nnO equilbrium. electron density in p layer 

npo equilbrium hole density in p layer 

nr refractive index 

QC conduction band offset 

P hole denstiy 

P momentum operator 

R reflectivity 

R* effective Rydberg constant 

Ro Rydberg constant 

tl, 2 layer thickness 

VMP maximum power voltage 

VOC open circuit voltage 

a absoprtion 

A spin orbit splitting 
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JE/ quasi Fen-ni level separation 

exciton oscillator strength 

absorption per level per well 

device efficiency 

Tn electron lifetime 

Tp hole lifetime 

1) exciton dimensionality parameter 

: 
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