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Palavras-chave IoT, NB-IoT, LPWAN, SC-FDMA, turbo coding, equalizer, USRP, front-end

Resumo A Internet das Coisas (IoT) consiste numa rede sem fios de sensores/atu-
adores ligados entre si e que têm a capacidade de recolher dados. Devido
ao crescimento rápido do mercado IoT, as redes de longa distância e baixa
potência (LPWAN) tornaram-se populares. O NarrowBand-IoT (NB-IoT),
desenvolvido pela 3rd Generation Partnership Project (3GPP), é um desses
protocolos.

O principal objectivo desta dissertação é a implementação de uma simulação
comportamental em MATLAB do NB-IoT no uplink, que será disponibi-
lizada abertamente. Esta será focada, primariamente, na camada f́ısica e nas
suas respetivas funcionalidades, nomeadamente turbo coding, modulação
SC-FDMA, modelos de simulação de canal, desmodulação SC-FDMA, es-
timação de canal, equalizador e turbo decoding. A estimação de canal é
feita usando śımbolos piloto previamente conhecidos. Os modelos de canal
utilizados são baseados nas especificações oficiais da 3GPP.

A taxa de bits errados (BER) é calculada e usada de forma a avaliar a perfor-
mance do turbo encoder e do equalizador zero forcing (ZF). Serve também
como comparação quando a implementação usa esquemas de modulação
diferentes (Binary Phase-Shift Keying (BPSK) e Quadrature Phase-Shift
Keying (QPSK)). Além disso, os sinais gerados em MATLAB são trans-
mitidos usando como front-end de rádio-frequência (RF) uma Universal
Software Radio Peripheral (USRP). Posteriormente, são recebidos, desmod-
ulados e descodificados. Finalmente, é obtida a constelação do sinal, a BER
é calculada e os resultados são analisados.





Keywords IoT, NB-IoT, LPWAN, SC-FDMA, turbo coding, equalizer, USRP, front-end

Abstract The Internet of Things (IoT) refers to a wireless network of interconnected
sensors/actuators with data-collecting technologies. Low Power Wide Area
Networks (LPWAN) have become popular due to the rapid growth of the
IoT market. Narrowband-IoT (NB-IoT), developed by 3rd Generation Part-
nership Project (3GPP), is one of these protocols.

The main objective of this thesis is the implementation of an open-source up-
link behavioral simulator based on MATLAB. Its focus is primarily on Layer 1
(physical layer) relevant functionalities, namely turbo coding, Single-Carrier
Frequency-Division Multiple Access (SC-FDMA) modulation, channel mod-
eling, SC-FDMA demodulation, channel estimation, equalization and turbo
decoding. Channel estimation is performed using known pilot symbols. The
used channel models are based on the 3GPP official release specs.

The Bit Error Rate (BER) is calculated in order to evaluate the turbo en-
coder and the Zero Forcing (ZF) equalizer performance, and to compare
Binary Phase-Shift Keying (BPSK) and Quadrature Phase-Shift Keying
(QPSK) implementations. Furthermore, the MATLAB generated signal is
transmitted using a radio-frequency (RF) front-end consisting of an Univer-
sal Software Radio Peripheral (USRP). Afterwards, the signal is received,
demodulated and decoded. A constellation is obtained, the BER is calcu-
lated and the results are analyzed.
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Chapter 1

Introduction

1.1 Framework

Over the last years the Internet of Things (IoT) market has grown exponentially, becom-
ing one of the most active areas of technology development. It is constantly changing and
adapting, being the focus of many research and investment initiatives.

The IoT refers to a network of interconnected devices such as sensors/actuators, outfitted
with data-collecting technologies in order to communicate with one another. This should
enable seamless integration of potentially any object into the Internet, thus allowing for
new forms of interactions between human beings and devices, or directly between devices
[CVZZ16].

Figure 1.1: Projected number of IoT devices by year [SWH17].

According to Figure 1.1, by 2020, more than twenty billion devices will be connected
through wireless communications. Low Power Wide Area Networks (LPWAN) technologies
have become popular, in order to fulfill the IoT market’s rapid growth. Their shared features
are wide coverage, low bandwidth, small data sizes and long battery life. LPWAN proto-
cols are divided in two groups: the ones that use licensed spectrum and the ones that use
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unlicensed spectrum. A comparison between two of the leading technologies in each group,
3rd Generation Partnership Project (3GPP) Narrowband Internet of Things (NB-IoT) and
Semtech Long Range Radio (LoRa), is presented in Table 1.1.

Table 1.1: NB-IoT and LoRa comparison [SWH17].

LoRa NB-IoT

Quality
of

Service

LoRa uses an unlicensed spectrum
and cannot offer the same QoS

as NB-IoT.

NB-IoT uses a licensed spectrum
and its time slotted synchronous

protocol is optimal for QoS.

Cost
Spectrum cost is free. Gateways
are cheap when compared with

NB-IoT base stations.

Spectrum cost is very high. Base
stations are more expensive
than the LoRa equivalent.

Battery
life

LoRa devices can sleep for as
little or as long as the

application desires, since it
is an asynchronous protocol.

In NB-IoT, because of
infrequent but regular

synchronization, the device
consumes additional battery

energy.

Latency
LoRa has less energy demands,
which leads to a higher latency

and lower data rate.

Although the energy demands
are bigger in NB-IoT, this

leads to a lower latency
and higher data rate.

Network
coverage

LoRa can cover a whole city
using one gateway.

The deployment of NB-IoT
is limited to

4G/LTE base stations.

Range <15 km <35 km

Deployment
model

LoRa components
are production-ready now.

Requires a software upgrade
for the base stations.

Standard Closed Open

In summary, it is shown that LoRa has advantages in terms of battery lifetime and cost,
and NB-IoT has benefits regarding Quality of Service (QoS), latency and reliability.

Although both have qualities, there are two key factors worth mentioning. First, LoRa
is already fully tested and functional, with modules easily available. Meanwhile, NB-IoT is
still to be implemented, requiring a software upgrade in the network’s Evolved Node B (eN-
odeB). Thus, it requires a proof of concept before its hardware implementation, making it the
ideal choice for a behavioral model simulation. Secondly, NB-IoT is an open standard, mean-
ing there is enough information available to simulate and analyze this protocol in different
platforms. Therefore, NB-IoT will be the main focus of this master thesis.

1.1.1 NB-IoT Overview

This subsection briefly summarizes the NB-IoT uplink and downlink transmission direc-
tions, introducing concepts required to further understanding the protocol. Figure 1.2 depicts
a transmission between two User Equipments (UEs) and an eNodeB in both directions (uplink
and downlink).
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Figure 1.2: Uplink and downlink transmission.

Generally, uplink means the UE transmits a signal to the eNodeB, and downlink corre-
sponds to a transmission from the eNodeB to the UE.

Each transmission mode requires a huge amount of signal processing, being quite com-
plex. Therefore, two different dissertations were proposed, one for the uplink and one for the
downlink, with the uplink transmission being the main focus of this dissertation.

1.2 Motivation

Newly introduced systems, modulation techniques and protocols usually use behavioral
models simulated in MATrix LABoratory (MATLAB) to test their functionalities. Imple-
mentations without the concern for real time data processing, clock cycles and latency are
essential, as they provide a simplified analysis which can be used as a proof of concept. NB-
IoT is a new protocol, with several differences when compared to Long Term Evolution (LTE).
Therefore, an analysis and implementation of its data generation algorithms is necessary. The
simulation results may also be used as a reference for hardware performance tests. Further-
more, it can be integrated in the MATLAB LTE toolbox, which up to this moment doesn’t
have any NB-IoT uplink functionalities.

A big advantage of these systems is their portability. Besides tests in a simulation envi-
ronment, it is possible to analyze and verify the transmitter/receiver chain in a co-simulation
environment, with the signal being generated/captured using two Radio Frequency (RF)
front-ends. This decreases the required amount of time for the development process, reducing
the number of bugs that will be found.

1.3 Objectives

The goals of this master thesis are the following:

• Model and simulate the physical layer of a NB-IoT uplink transmitter in MATLAB.
This includes all the physical channels and signals with their respective coding and
modulation.
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• Model and simulate the physical layer of a NB-IoT uplink receiver in MATLAB. This
includes the decoding and demodulation of all uplink physical channels and signals.

• Simulate different channel models to test how the generated transmitted signal is af-
fected. Implement and validate a channel estimator and equalizer in order to mitigate
those effects.

• Choose a RF front-end compatible with MATLAB, to send and capture signals based
on a co-simulation environment. Implement functions that allow for Carrier Frequency
Offset (CFO) and Symbol Time Offset (STO) estimation and correction.

1.4 Contributions

The main contributions of this master thesis include:

• The design of a behavioral model for NB-IoT physical layer in MATLAB, including all
channels and signals.

• A performance evaluation using different channel models in a simulation environment
and two Universal Software Radio Peripherals (USRPs) as RF front-ends, for a closer
to reality environment.

1.5 Thesis Structure

This thesis is divided into 8 chapters:

• Chapter 1 - “Introduction”: contains a brief description about IoT and the overall
motivation behind the development and creation of a NB-IoT uplink transceiver. It also
briefly summarizes the main goals to be achieved with this master thesis.

• Chapter 2 - “NB-IoT General Concepts”: presents an overview on the basics of a
NB-IoT system, its deployments options, frame structure and duplex arrangements. It’s
also explained, in detail, the new time-frequency grid and a new concept not present in
LTE - Resource Units (RUs). To finish, an overview of all physical channels and signals
is done.

• Chapter 3 - “NB-IoT Uplink Transmitter”: explains the Uplink Shared Channel
(UL-SCH) coding (CRC addition, turbo coding and rate matching) and the Uplink
Control Information (UCI) channel coding. Furthermore, their modulation (scrambling,
modulation mapper and SC-FDMA modulation) is explained in detail. Afterwards, the
Random Access Channel (RACH) preamble generation is described, as is the creation
of Demodulation Reference Signal (DMRS).

• Chapter 4 - “NB-IoT Uplink Receiver”: explains the UL-SCH decoding (CRC
removal, turbo decoding and rate dematching) and the UCI channel decoding. Fur-
thermore, their demodulation (descrambling, modulation demapping and SC-FDMA
demodulation) is explained in detail. Afterwards, the RACH preamble detection is
described. Channel estimation and equalization based on the received DMRS is also
clarified.
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• Chapter 5 - “NB-IoT Physical Layer Procedures”: explains the required proce-
dures to send data in each specific channel. It is emphasized the scheduling order and
how necessary parameters are obtained, in order to generate a transport block to be
sent over any channel.

• Chapter 6 - “MATLAB Simulation and USRP Implementation”: presents
block diagrams with the MATLAB simulation and the USRP co-simulation work flow.
Its main functions are explained in detail, showing their input and output parameters,
with a explanation of their main purpose. It’s also justified the reason why MATLAB
was chosen.

• Chapter 7 - “Performance Results”: shows all the results, simulated and measured,
throughout this work. It includes constellations, eye diagrams and BER performances.
They are compared and discussed to offer a better perspective of the overall developed
work.

• Chapter 8 - “Conclusion and Future Work”: marks the end of this thesis with
a summary of the developed work and presents some propositions for possible future
works.

The following appendixes were included:

• Appendix A - “User Guide”: provides a small user guide on how to run the im-
plemented simulations. Furthermore, a step by step explanation on how to test the
co-simulation environment is provided.

• Appendix B - “Reference Sequence Test”: shows what happens when a know
sequence is imposed in the beginning of the simulation, contributing with a reference
sequence test in each main point of the transmitter and receiver chain for both NPUSCH
format 1 and 2.

5



6



Chapter 2

NB-IoT General Concepts

This chapter provides introductory concepts, necessary to understand the NB-IoT physical
layer.

2.1 Deployment Options

NB-IoT can operate in three different modes [Roh16]:

• Stand alone operation, where a possible option is the replacement of the Global System
for Mobile communications (GSM) carriers by a NB-IoT cell. Considering NB-IoT has
a bandwidth of 180kHz (discussed in section 2.3) and GSM has a bandwidth of 200 kHz,
there is a guard interval of 10 kHz on both sides of the spectrum.

• Guard band operation utilizing resource blocks within a LTE carrier’s guard-band.

• In-band operation utilizing one resource block in the LTE carrier.

These different deployment scenarios are illustrated in Figure 2.1.

Figure 2.1: Examples of NB-IoT deployments: stand-alone, LTE in-band and LTE guard-
band [YPEWR17].
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2.2 Antenna Selection

Up to this moment, NB-IoT uplink supports only one transmission mode, which consists
on a transport block transmission using a single physical antenna. A wireless communications
system in which one antenna is used at the source (transmitter) and one antenna is used at
the destination (receiver) is called Single-Input and Single-Output (SISO), being the simplest
antenna technology - Figure 2.2a.

In some environments, SISO systems are vulnerable to problems caused by multipath
effects. When the waves have obstructions in their path, they are scattered and take different
paths to reach the receiver. Each scattered signal arrives at different times, which causes
problems, such as fading. In order to minimize them, it is possible to have more than one
antenna at the receiver (eNodeB). A system in which one antenna is used at the source
(transmitter) and two antennas are used at the destination (receiver) is called Single-Input
and Multiple-Output (SIMO) - Figure 2.2b [Blo17b].

(a) Antenna configuration for SISO
systems.

(b) Antenna configuration for SIMO
systems.

Figure 2.2: Antenna configuration for SISO and SIMO systems [LGV14].

2.3 Subcarrier Spacing

In the uplink, both 3.75kHz and 15kHz subcarrier spacing (∆f) are supported. Observing
Table 2.1, it’s possible to conclude that when ∆f is equal to 15kHz the number of uplink
subcarriers (NUL

sc ) is 12 and when ∆f equals 3.75kHz the NUL
sc is 48. Thus, the bandwith for

NB-IoT is easily obtained multiplying ∆f by NUL
sc - 15kHz× 12 = 3.75kHz× 48 = 180kHz.

Table 2.1: Number of subcarriers, frame length, subframe length and slot length values
depending on ∆f .

Parameters ∆f = 15kHz ∆f = 3.75kHz

Number of subcarriers 12 48

Radio frame length 10ms 40ms

Subframe length 1ms 4ms

Slot length 0.5ms 2ms

If ∆f is equal to 15kHz, the radio frame has a length of Tf = 10ms, with subframes of
length Tsf = 1ms and slots of length Tslot = 0.5ms. The symbol time is 1/∆f ≈ 66.7µs. If
∆f has the value of 3.75kHz, the radio frame has a length of Tf = 40ms, with subframes of
length Tsf = 4ms and slots of length Tslot = 2ms. The symbol time is 1/∆f ≈ 266, 7µs.
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2.4 Frame Structure

In LTE, two types of frame structures are supported, selected according to the duplex
mode: Time Division Duplex (TDD) or Frequency Division Duplex (FDD). Since in NB-IoT,
only FDD mode is supported (discussed in section 2.5), frame structure type 1 is used.

2.4.1 Frame Structure Type 1

In the time domain, NB-IoT transmissions are organized into radio frames, each of which
is divided into ten equal subframes, as illustrated in Figure 2.3. Each subframe consists of two
equal slots, with each slot consisting of seven symbols, including cyclic prefix. Each symbol
is Single-Carrier Frequency-Division Multiple Access (SC-FDMA) modulated - discussed in
section 2.7.1.

Figure 2.3: Frame structure type 1 [GZAM10].

To provide consistent and exact timing definitions, different time intervals within the NB-
IoT specifications are defined as multiples of a basic time unit Ts = 1/(15000 × 128)s when
∆f = 15kHz or Ts = 1/(3750× 512)s when ∆f = 3.75kHz. The basic time unit Ts can thus
be seen as the sampling time of a transmitter/receiver with a Fast Fourier Transform (FFT)
size equal to 128 when ∆f = 15kHz or 512 when ∆f = 3.75kHz.

2.5 Duplex Arrangements

Although in LTE both TDD and FDD are supported (providing spectrum flexibility), in
NB-IoT only FDD half-duplex type B mode is supported.

2.5.1 Frequency-Division Duplex

In case of FDD operation, uplink and downlink use different carrier frequencies, denoted
fUL and fDL. In each frame, there are ten uplink subframes and ten downlink subframes,
and uplink and downlink can happen simultaneously. Isolation between both transmissions
is obtained using duplex filters. In certain frequency bands with a very narrow duplex gap,
it is challenging to design the duplex filters. In this case, a device only supports half-duplex
operation. Half-duplex operation requires a guard period where the device can switch between
transmission and reception.
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LTE supports two ways of providing the necessary guard period [DPS16]:

• Half-duplex type A, where guard time for the switch is handled by setting the necessary
amount of timing advance in the devices.

• Half-duplex type B, where a whole subframe is used as guard between reception and
transmission, with an oscillator that is retuned between uplink and downlink frequencies.

Thus, for NB-IoT, uplink and downlink are separated in frequency and the UE either
receives or transmits, but never does both simultaneously. In addition, between every switch
from uplink to downlink or vice-versa there is at least one guard subframe in between, allowing
the UE to switch its transmitter to receiver chain and vice-versa (Figure 2.4). This duplex
scheme requires less complex hardware, allowing a lower-cost implementation, ideal for IoT
applications.

Figure 2.4: Guard time for half-duplex FDD type B duplex scheme [DPS16].

2.6 NB-IoT Time-Frequency Grid

This section describes the basic NB-IoT time-frequency transmission grid. Contrary to
LTE where two Cyclic Prefix (CP) lengths are defined, NB-IoT only supports the normal CP
length, corresponding to seven symbols per slot. Figure 2.5 depicts the resource grid for a
single slot.

When ∆f is equal to 15kHz, the resource grid is equal to the one for LTE with normal
CP, using only one resource block. When ∆f is equal to 3.75kHz, the resource grid for a slot
has a different structure, since the NUL

sc is 48, instead of 12.
A resource element, which is the smallest physical resource in NB-IoT, is indicated in

Figure 2.5 by one square. Furthermore, resource elements are grouped into a resource block.
If ∆f = 15kHz, each resource block consists of 12 consecutive subcarriers in the frequency
domain (NUL

sc = 12) and one 0.5ms slot in the time domain. Therefore, each resource block
consists of 7 × 12 = 84 resource elements. If ∆f = 3.75kHz, each resource block consists
of 48 consecutive subcarriers in the frequency domain (NUL

sc = 48) and one 2ms slot in the
time domain. Each resource block thus consists of 7 × 48 = 336 resource elements. Each
resource element in the resource grid is defined by the index pair (k, l) in a slot, where
k = 0, ..., NUL

sc − 1 and l = 0, ..., NUL
symb − 1 are the indices in the frequency and time domain,

respectively [DPS16].
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Figure 2.5: Structure of the uplink resource grid [GZAM10].

2.7 Transmission Scheme

The NB-IoT uplink uses both multi-tone and single-tone transmissions. Multi-tone trans-
mission uses ∆f = 15kHz, equal to LTE. While only the 12-tone format is supported by
LTE UEs, 6-tone and 3-tone formats are added on NB-IoT UEs. Single-tone transmission is
introduced for NB-IoT and supports two ∆f values, 15kHz and 3.75kHz [YPEWR17]. Uplink
transmissions are based on SC-FDMA modulation.

2.7.1 SC-FDMA Overview

A graphical comparison of Orthogonal Frequency Division Multiple Access (OFDMA)
(used in downlink) and SC-FDMA is shown in Figure 2.6. Although NB-IoT signals are
allocated in 12 or 48 adjacent subcarriers (NUL

sc = 12 or 48), only four subcarriers are depicted.
Even though uplink NB-IoT accepts both Binary Phase-Shift Keying (BPSK) and Quadrature
Phase-Shift Keying (QPSK) modulation schemes, in this example, data is represented using
QPSK modulation.

In the OFDMA example of Figure 2.6, in each symbol period, four QPSK symbols are
inserted in parallel, one per subcarrier. After each symbol period, the CP is inserted and the
next four symbols are transmitted. Although the CP is shown as a gap, it is actually a copy of
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Figure 2.6: Comparison of OFDMA and SC-FDMA multiple access technologies [Not09].

the next symbol’s ending. To create the transmitted signal, an Inverse Fast Fourier Transform
(IFFT) is performed on each subcarrier. Adding together many parallel narrowband QPSK
waveforms creates an undesirably high Peak-to-Average Power Ratio (PAPR). In the uplink
this effect would be particularly damaging, since it would drain the UE battery rapidly.

In the SC-FDMA example of Figure 2.6, the four QPSK data symbols are transmitted
in series at four times the rate, with each data symbol occupying M × 15kHz bandwidth.
Therefore, the SC-FDMA signal appears to be more like a single-carrier, with each data
symbol being represented by one wide signal. SC-FDMA signal generation can be seen as a
Discrete Fourier Transform (DFT)-precoded OFDMA, which spreads the information over all
the subcarriers. After the DFT, all the other steps occur as in OFDMA.

Detailed information about QPSK and BPSK modulation can be found on sub-subsection
3.1.2.2. More about SC-FDMA signal generation is presented in sub-subsection 3.1.2.3.

2.8 Resource Units

The smallest unit to map a transport block is the RU. A RU is defined as the number of
uplink slots in each resource unit (NUL

slots) multiplied by the number of consecutive subcarriers
in a resource unit (NRU

sc ), while in the frequency domain it is simply given by the total number
of resource units (NRU ) parameter. In NB-IoT, the number of symbols in a slot (NUL

symbols) is
always 7.

The chosen RU depends on the Narrowband Physical Uplink Shared Channel (NPUSCH)
format and ∆f . For NPUSCH format 1, there are five options presented in Table 2.2.

For NPUSCH format 2, the RU is always composed of one subcarrier with a length of
four slots (Table 2.3).
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Table 2.2: RU duration for NPUSCH format 1.

∆f NRU
sc NUL

slots RU duration

3.75kHz 1 16 32ms

15kHz

1 16 8ms
3 8 4ms
6 4 2ms
12 2 1ms

Table 2.3: RU duration for NPUSCH format 2.

∆f NRU
sc NUL

slots RU duration

3.75kHz 1 4 8ms

15kHz 1 4 2ms

2.9 NB-IoT Hierarchical Channel Structure and Reference
Signals

In this section, it is described the NB-IoT hierarchical channel structure. There are three
different channel types: logical channels, transport channels, and physical channels. Logical
channels carry data and signaling messages between the Media Access Control (MAC) and
Radio Link Control (RLC) layers. Transport channels provide data characteristics between
the MAC and physical layers, such as the modulation scheme. Physical channels are the
implementation of transport channels over the radio interface, with a number of resource
elements of the time-frequency grid carrying information from higher layers. Besides phys-
ical channels, there is a signal embedded in the uplink physical layer, which does not carry
information. This signal is called DMRS.

Figures 2.7 and 2.8 specify, respectively, the mapping of the UL-SCH and the RACH to
their corresponding physical channels: NPUSCH format 1 and Narrowband Physical Random
Access Channel (NPRACH). Figure 2.9 specifies the mapping of the UCI to its corresponding
physical channel (NPUSCH format 2).

2.9.1 Uplink Physical Channels

Since this master thesis is mainly focused on the physical layer, an overview of the different
physical channels and signal is done in this subsection.

2.9.1.1 NPUSCH Format 1 with DMRS

NPUSCH format 1 carries UL-SCH data, with maximum Transport Block Size (TBS)
value of 1000 bits (much smaller than LTE). NPUSCH format 1 supports both multi-tone
and single-tone transmissions using 7 symbols per slot (NUL

symbols = 7), with the middle symbol
being used to allocate the DMRS [Roh16,YPEWR17]. Further details regarding coding and
modulation are discussed in section 3.1. The DMRS generation is detailed in section 3.3.
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Figure 2.7: Uplink shared channel mapping [GZAM10].

Figure 2.8: Random access channel mapping [GZAM10].

2.9.1.2 NPUSCH Format 2 with DMRS

NPUSCH format 2 carries UCI, which is restricted to an acknowledgment of a downlink
transmission. Even though in a downlink transmission it is configurable whether a transmis-
sion shall be acknowledged, on uplink there is always an acknowledgment when a downlink
transmission in received. NPUSCH format 2 also has 7 symbols per slot (NUL

symbols = 7), but
uses the middle three symbols to allocate the DMRS [Roh16,YPEWR17]. Further details re-
garding coding and modulation are discussed in section 3.2. The DMRS generation is detailed
in section 3.3.

2.9.1.3 NPRACH

NPRACH carries the random access preamble, whose signal generation is explained in
section 3.4. It is used to iniciate the Random Access Response (RAR) procedure, when sent
by the UE.

In summary, all data is sent over the NPUSCH, except for RACH transmission. This
includes also the UCI, which is transmitted using a different format. Consequently, there
is no equivalent to the Physical Uplink Control Channel (PUCCH) in LTE [Roh16,GZAM10].
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Figure 2.9: Uplink control information mapping [GZAM10].

In this chapter, NB-IoT introductory concepts were explained. Deployment options, frame
structure and duplex arrangements were summarized. The used time-frequency grid was
depicted, and a new concept not used in LTE was introduced - RUs. A brief introduction
to the available channels and signals was made. In the next chapter, the uplink transmitter
architecture for all available physical channels will be explained in detail. Furthermore, the
DMRS generation will be described.

15



16



Chapter 3

NB-IoT Uplink Transmitter

This chapter provides detailed information about the NB-IoT uplink physical layer trans-
mitter. Section 3.1 describes the physical layer processing applied to the UL-SCH, section 3.2
explains the physical layer processing applied to the UCI, section 3.3 provides information
about the DMRS and section 3.4 gives detailed information about the Physical Random Ac-
cess Channel (PRACH) preamble generation. Knowledge about the transmitter processing
chain helps to fully understand the overall system operation implemented on MATLAB.

3.1 Uplink Shared Channel

This section describes the physical-layer processing applied to the UL-SCH and the sub-
sequent mapping to the uplink physical resource in the form of the basic time-frequency grid.
Figure 3.1 outlines the different steps of the UL-SCH physical layer processing.

Figure 3.1: Block diagram of the NB-IoT UL-SCH transmitter [GZAM10].

It is divided in coding and modulation procedures. The process called coding assists on
the recovery of the transport block at the receiver side. Cyclic Redundancy Check (CRC)
addition helps with error-detection, turbo coding adds redundancy to the data by adding
two new data streams, which will be affected differently in case of a burst error. Finally,
rate matching spreads out the occurrence of errors and punctures bits to fit the payload size.
The process called modulation performs bit scrambling using a Gold sequence, modulates the
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bits according to a specific modulation scheme and generates a baseband signal, where each
symbol is based on SC-FDMA. Subsections 3.1.1 and 3.1.2 describe channel coding procedures
and modulation procedures, respectively.

3.1.1 Channel Coding Processing

This subsection describes channel coding procedures. The process called channel coding
transforms into codewords user data coming from transport blocks. This procedure, helps to
correct/detect errors caused by distortion during transmission. The several coding procedures
and their necessary steps are going to be explained in detail.

3.1.1.1 CRC Addition

CRC codes are an error-detection technique and the first step performed during the coding
process. First, the transport block is divided by a generator polynomial. According to section
5.2.2.1 of [3GP17a], the 24A generator type is the baseline for the UL-SCH (Table 3.1).

Table 3.1: Polynomial used on CRC addition in NB-IoT.

Type Generator polynomial

24A D24 +D23 +D18 +D17 +D14 +D11 +D10 +D7 +D6 +D5 +D4 +D3 +D + 1

Then, the previous division remainder is appended to the transport block. An example
can be seen in Figure 3.2.

Figure 3.2: CRC addition example [Blo17a].

Let’s denote the polynomial generator by G and the transport block by D. In the example,
G = 10011 and D = 1010101010. Since G is 5 bits long, then the remainder’s length (denoted
by r) is G − 1 = 4, r = 4. D is shifted left by r bits and zeros will be inserted into those
places. The new pattern will be denoted by D′ = 10101010100000. Now D′ is divided by G,
using an “exclusive OR” operation. The remainder from the division, R, will be concatenated
with the transport block D [Blo17a].
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Considering the generator polynomial length is 25, the remainder added to the transport
block will always have length equal to 24. Therefore, the output length (denoted by K) after
the CRC addition will be K = TBS + 24.

3.1.1.2 Turbo Coding

This sub-subsection describes the turbo encoder and its components in detail. The turbo
encoder is built using two identical Recursive Systematic Convolutional (RSC) encoders in
parallel. The two RSC are separated by an interleaver, with its output being a permuted
version of the input data. The purpose of the interleaver is to provide some degree of de-
correlation among the inputs of each encoder. Therefore, in the event of a burst error, the
two code streams are affected differently, allowing data to still be recovered. The structure
of the turbo encoder is illustrated in Figure 3.3.

Figure 3.3: Turbo encoder block diagram (dotted lines apply for trellis termination only)
[3GP17a].

At the beginning of encoding a message block, the RSC encoders are in a defined state of
all-zeros. Three bit-streams are produced, the systematic signal (a), and one output of each
encoder (parity signals c and d). The interleaved payload signal (b) is not transmitted, except
during the trellis termination phase, as it can be easily reconstructed at the receiver side
from a. After all the data bits have been encoded, trellis termination is performed bringing
the encoders to an all-zeros state once again. To achieve this, the switches in Figure 3.3
are moved in the down position. The input, in this case, is shown by dashed lines. It takes
three bits to force the final state back to all-zero state for each encoder. The output bit
stream includes not only the tail bits corresponding to the upper encoder (e), but also the
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tail bits corresponding to the lower encoder (f). In addition to these six termination bits,
six corresponding parity bits for the upper and lower encoder are also transmitted. Finally,
all the bits are multiplexed into three data streams (d0, d1 and d2), that correspond to the
input of the next step (rate-matching). Considering K the input length, the total length of
the encoded bit sequence becomes 3K+12, where each stream has outsize = K+4 bits. The
encoder code rate is calculated in equation 3.1.

r =
K

3K + 12
(3.1)

However, for a large size of K, the loss in code rate due to tail bits is negligible and thus,
with the code rate being approximately 1/3 [Imr13,Joo10].

RSC encoder: Each RSC encoder, has three memory bits forming an 8-state Finite State
Machine (FSM). To understand the operation of the FSM, the state transition can be shown
as a trellis diagram in Figure 3.4. Variable a is the input sequence and c is the output
sequence. S1, S2 and S3 are the current state of the three memory bits in the encoder. S+

1 ,
S+

2 and S+
3 are the next state of the three memory bits. State1 to State8 correspond to the

eight possible states. Figure 3.4 shows all the possible transitions for the encoding bits in a
sequence. The first state in a transition is always the all-zeros one, corresponding to State1.

Figure 3.4: Scheme of the convolutional encoder and corresponding trellis diagram for the
encoding bits [Li09].

The transition of the states and the decoding results can be expressed as the following
equations:
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S+
1 = ak ⊕ S2 ⊕ S3 (3.2)

S+
2 = S1 (3.3)

S+
3 = S2 (3.4)

ck = S+
1 ⊕ S1 ⊕ S3 (3.5)

Trellis termination: As mentioned above, this method involves three extra bits at the end
of each sequence to force the encoder return to the all-zeros state. These extra bits are also
sent to the decoder. In Figure 3.5, the state transition can be shown as a trellis diagram for
the termination bits. Variable e is the input sequence and c is the output sequence. S1, S2

and S3 are the current state of the three memory bits in the encoder. S+
1 , S+

2 and S+
3 are the

next state of the three memory bits. With this type of termination technique, the last state
in the sequence is forced back to State1. This causes a number of limited transitions.

Figure 3.5: Scheme of the convolutional encoder and corresponding trellis diagram for the
termination bits [Li09].

The transition of the states and the decoding results can be expressed as the following
equations:

S+
1 = 0 (3.6)

S+
2 = S1 (3.7)

S+
3 = S2 (3.8)

ek = S2 ⊕ S3 (3.9)

ck = 0⊕ s1 ⊕ S3 (3.10)
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3.1.1.3 Rate Matching

The rate matching step forms a transport block that fits the payload size, calculated using
the modulation order (Qm) and the total number of resource units (NRU ). There are three
steps that compose the rate matching process. Namely, sub-block interleaver, bit collection
and bit selection (puncturing) (Figure 3.6).

Figure 3.6: Rate matching block diagram [3GP17a].

Interleaving is performed in order to spread out the occurrence of burst errors, which
improves the overall performance of the decoder on the receiver side. Since the interleaving is
performed separately for the systematic and parity bits obtained at the output of the turbo
encoder, a bit collection stage is required to place the three bit streams in a specific order.
Finally, the bit selection (puncturing) stage is needed in order to puncture some of the bits
to create the required payload [Mat17c,GZAM10].

Sub-block interleaving: The inputs to the three sub-block interleavers correspond to each
output stream from the turbo coding step. The interleaving is performed independently for
each bit stream, using inter-column permutations.

Each input stream (with length D), is arranged into a matrix having C columns, C = 32.
The number of rows, R, is determined in such a way that C ×R >= D.

If D is not divisible by 32, it is necessary to add bits of nulls at the beginning of the
matrix so it is completely full. The number of nulls, N , is N = C ×R−D. The matrix size
is K = N +D;

After, the matrix is rearranged using the inter-column permutation specified in Table 3.2.

Table 3.2: Inter-column permutation pattern for sub-block interleaver.

Number of columns (C) Inter-column permutation pattern

32
<0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10, 26, 6, 22, 14, 30,
1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31>

Bit collection: The bits collected from the interleaved streams are rearranged, forming
a virtual circular buffer. The systematic bits are placed at the beginning, followed by the
two interleaved parity streams, which are bit-by-bit interlaced, as shown in Figure 3.7. This
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assures that an equal number of both versions of parity bits are transmitted. A virtual circular
buffer is then formed and denoted by Wk, of size 3K bits [GZAM10].

Puncturer: The bit selection extracts consecutive bits from the circular buffer so that it
fits into its assigned physical resource unit. To select the output bit sequence, its length
should first be determined. Using the length value, denoted by E, bits are read from the
virtual circular buffer. The starting point, denoted by k0 of the bit selection depends on the
transmission redundancy version (rvidx).

The calculation of the total number of bits available for the transmission of one transport
block (E ) and the starting point (k0) values goes as follows:

1) Calculate Nc, which denotes the soft buffer size for the current transport block: Nc =
Kw = 3×K (only for NB-IoT uplink).

2) Obtain G value, which is a parameter given by superior layers of the network and
depends on the modulation order (Qm) and the total number of resource units (NRU ).

3) For NB-IoT uplink, E = G.
4) Calculate k0, which is k0 = R × ((2 × dNc/(8 × R)e × rvidx) + 2), where rvidx is the

redundancy version given to the UE by the eNodeB - subsection 5.1. For NB-IoT uplink,
rvidx can have the value zero or two.

5) While bypassing the null bits added in the sub-block interleaver step, and using the
output sequence length (E) and the starting point for the bit collection (k0), a codeword is
obtained (Figure 3.7).

Figure 3.7: Virtual circular buffer with the three interleaved encoded bit streams. The arrows
represent the starting point for the bit selection depending on the rvidx value [SP16].

After the rate matching process, a codeword is obtained. The coding procedure is finished.

3.1.2 Modulation Processing

This subsection describes the generic modulation procedures. In NB-IoT, modulation
takes one codeword and converts it to a complex-valued baseband signal. As shown in Figure
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3.1, the modulation processing consists of scrambling, modulation mapping and SC-FDMA
modulation.

3.1.2.1 Scrambling

The first step on the modulation processing chain is the scrambling of coded data, which
randomizes interference and avoids long sequences of equal bits.

The codeword obtained after the coding process (section 3.1.1) is scrambled according to
equation 3.11:

b̃(i) = (b(i) + c(i)) mod 2, i = 0, 1, ... , Mb (3.11)

where b(i) denotes the codeword of length Mb to be scrambled and c(i) denotes the pseudo-
random Gold sequence described below.

Gold sequence: The Gold sequence is a result of modulo-2 binary addition of two sequences
given by equations 3.12, 3.13 and 3.14:

x1(n+ 31) = (x1(n+ 3) + x1(n)) mod 2 (3.12)

x2(n+ 31) = (x2(n+ 3) + x2(n+ 2) + x2(n+ 1) + x2(n)) mod 2 (3.13)

c(n) = (x1(n+Nc) + x2(n+Nc)) mod 2 (3.14)

The value of Nc is equal to 1600 and the length n is chosen as needed. Instead of the
sequences being randomly generated, they are selected, making them only pseudo-random.

As can be seen in equations 3.12 and 3.13, there are 30 undefined values. The first
sequence (x1) is always initialized with x1(0) = 1, x1(n) = 0, n = 1, 2, 3, ... , 30. The second
sequence (x2) initialization is uniquely assigned depending on the Gold sequence application.

For this specific application, x2 is initialized with cinit (equation 3.15) after its conversion
to binary.

cinit = RNTI + nf mod 2.213 + bns/2c.29 +NNcell
ID (3.15)

where RNTI is the radio network temporary identifier and NNcell
ID the narrowband physi-

cal layer cell identifier. The frame number (nf ) and the slot number (ns) vary with each
transmission.

3.1.2.2 Modulation Mapper

The second step on the modulation processing chain consists on modulation mapping. For
uplink, the supported data modulation schemes in NB-IoT include QPSK and BPSK, whose
choice depends on the selected number of number of consecutive subcarriers in a resource
unit (NRU

sc ):

• For RUs with one subcarrier, BPSK and QPSK may be used.

• For all other RUs, QPSK is applied.
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The block of scrambled bits with length Mb is modulated into a block of complex-valued
symbols, where Ms is the total number of modulated symbols. The relation between Ms and
Mb is defined in equation 3.16.

Ms =
Mb

Qm
(3.16)

The modulation order (Qm) represents the number of bits in the modulation scheme
constellation. The relationship between the modulation scheme used and Qm is represented
on Table 3.3 [GZAM10].

Table 3.3: Relationship between the modulation scheme and Qm.

Qm Modulation scheme

1 BPSK

2 QPSK

QPSK: It is a modulation technique that uses 2 bits per symbol. The modulation mapping
is done according to Figure 3.8. There are four states (four possible combinations using two
bits, 22 = 4). The theoretical bandwidth efficiency is two bits/second/Hz.

Figure 3.8: QPSK modulation mapping.

This modulation mapping uses Gray coding, which means that constellation points that
are closer to each other differ in as few bits as possible. Therefore, fewer bits will be wrong,
if the decoding is done incorrectly.

BPSK: It is a modulation technique that uses 1 bit per symbol. The modulation mapping
is done according to Figure 3.9. There are two states (two possible combinations using
one bit, 21 = 2). The theoretical bandwidth efficiency is one bit/second/Hz. BPSK is
regarded as the most robust digital modulation technique and is used for long distance wireless
communication.

Qm is selected based on the measured Signal-to-Interference-plus-Noise Ratio (SINR).
Each modulation scheme has a threshold SINR. UEs closer to the eNodeB (with higher SINR
values) use less robust modulation schemes. Meanwhile, UEs located further from the eNodeB
(with lower SINR values) use a more robust modulation scheme. The eNodeB always selects
the modulation order (Qm) to be used in uplink transmissions [Tel15].
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Figure 3.9: BPSK modulation mapping.

3.1.2.3 SC-FDMA Modulation

Although NB-IoT uses OFDMA in the downlink, the uplink utilizes SC-FDMA. This is
due to the fact that the overall value of PAPR is smaller then in OFDMA, for all modula-
tion schemes. Therefore, it will consume considerably less energy, which is a fundamental
characteristic for the UE operation.

SC-FDMA is divided in several steps, namely DFT precoding, resource mapping, padding
addition, IFFT, resampling and CP addition. The schematic of the SC-FDMA modulation
is represented in Figure 3.10.

Figure 3.10: SC-FDMA modulation schematic [DT17].

DFT precoding: SC-FDMA is a DFT coded OFDMA, which means that before go-
ing through the standard OFDMA modulation, time domain data symbols are converted to
frequency domain using a DFT [RBB17].

Resource Mapping: The resource mapping of each complex-valued symbol onto its
corresponding resource element is done in increasing order, beginning with subcarriers and
then SC-FDMA symbols, while bypassing DMRS. In Figure 3.11, the available resource unit
has 6 subcarriers, therefore the resource mapping would go through 3 more slots - Table
2.2. Each slot is then repeated a certain number of times according to the parameter NRep -
section 5.4.
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Figure 3.11: Resource mapping using a resource unit with six available subcarriers.

Padding addition: A symbol consists of 12 or 48 resource elements, depending on ∆f .
Each symbol is padded with additional zeros at each end, so it increases its size to the next
power of two. This step has two goals. First, by being a power of two, the next step is
simplified - IFFT. Secondly, if the DFT and IFFT had equal size, one would annul the other’s
effect.

IFFT: The baseband signal is obtained using an IFFT operation. An IFFT transforms
complex frequency domain symbols into a time domain signal.

Resample: Considering Fs = 1
Ts
⇔ Fs = 1.92MHz, the time domain signal needs to be

resampled, so a higher sampling rate of 1.92MHz is obtained. This is done, using interpolation,
by a factor of eight.

CP addition: The term CP refers to the prefixing of each SC-FDMA symbol with a
repetition of its end (Figure 3.12). The prefixing size varies with two factors: if it is the first
symbol in the slot or not and according to the ∆f used.

The main objective of the CP addition is to be used as a guard interval, which eliminates
the Inter Symbol Interference (ISI) [GZAM10,Roh16,DT17].

Figure 3.12: Cyclic prefix addition [DT17].

When the SC-FDMA modulation is terminated,the physical layer processing applied to
the UL-SCH on the transmitter side is finished. The signal is in the baseband format.
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3.2 Uplink Control Information

This section describes the physical-layer processing applied to the UCI and its mapping
in the time-frequency grid. Figure 3.13 outlines the different steps of the UCI physical layer
processing. It is divided in coding and modulation procedures, with subsections 3.2.1 and
3.2.2 describing channel coding procedures and modulation procedures, respectively.

Figure 3.13: Block diagram of the NB-IoT UCI transmitter [GZAM10].

3.2.1 Channel Coding Processing

This subsection describes the only channel coding step that transforms control information
data into a codeword.

Control data is only sent on the NPUSCH format 2 when there is no UL-SCH data. The
control data arrives to the channel coding unit in the form of an HARQ Acknowledgement
(HARQ-ACK) indicator. The one bit information of HARQ-ACK is coded according to Table
3.4.

Table 3.4: HARQ-ACK codewords.

HARQ-ACK HARQ-ACK codeword

0 <0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>

1 <1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>

After this coding process, a codeword is obtained.

3.2.2 Modulation Processing

Modulation Processing steps are performed in exactly the same way as for the UL-SCH.
Scrambling is done according to sub-subsection 3.1.2.1. Modulation mapping is done ac-
cording to sub-subsection 3.1.2.2, always using BPSK as a modulation scheme. SC-FDMA
modulation is done according to sub-subsection 3.1.2.3 always using a single subcarrier and,
therefore, a single-tone transmission. When this is terminated, the physical layer processing
applied to the UCI on the transmitter side is finished. The signal is in baseband format.
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3.3 Demodulation Reference Signals

The value of the demodulation reference signals (ru) is transmitted on uplink resource
units assigned to the UE and used for coherent demodulation/detection of data and control
information at the eNodeB.

If the number of consecutive subcarriers in a resource unit (NRU
sc ) is bigger than one,

DMRS symbols are constructed from a base sequence multiplied by a phase factor defined in
equation 3.17.

ru(n) = ej(ϕ(n)π/4+αn) (3.17)

where the value of ϕ(n) depends on the number of uplink subcarriers (NUL
sc ) and the parameter

u. If group hopping is not enabled, u is given by a higher layer parameter. If this parameter
is undefined, then it is equal to a fixed value depending on NNcell

ID and the NRU
sc .

If the NRU
sc equals one, DMRS symbols are constructed based on equations 3.18, 3.19 and

3.20.

r̄u(n) =
1√
2

(1 + j)(1− 2c(n))w(n mod 16) (3.18)

ru(n) = r̄u(n), if NPUSCH format 1 (3.19)

ru(3n+m) = w̄(m)r̄u(n), if NPUSCH format 2 (3.20)

where c(n) is a Gold sequence initialized with cinit = 35 (paragraph 3.1.2.1) and w(n) depends
on the variable u.

For NPUSCH format 2, w̄(m) is a spreading orthogonal sequence.

3.3.1 Group Hopping Enabled

It is important to note that group hopping can only be enabled for NPUSCH format 1.
If group hopping is enabled, u is defined by a group hopping pattern (fgh) and a sequence-
shift pattern (fss). fgh is based on a Gold sequence (paragraph 3.1.2.1) initialized with

cinit = bN
Ncell
ID

NRU
seq
c. fss depends on the NNcell

ID , NRU
seq and a higher-layer parameter called ∆ss.

NRU
seq is a parameter that is based on the NRU

sc . If ∆ss is not defined, it assumes the value
zero [3GP16,Roh16].

3.3.2 Resource Mapping of Demodulation Reference Signals

The DMRSs are transmitted in either one or three SC-FDMA symbols per slot, depending
on the selected NPUSCH format.

For NPUSCH format 1 and ∆f = 3.75kHz, DMRS are transmitted in column number
four (l = 4). For ∆f = 15kHz, they are transmitted in column number three (l = 3). These
are the symbols indicated in red in Figure 3.14.

For NPUSCH format 2 and ∆f = 3.75kHz, DMRS are transmitted in columns number
zero, one and two (l = 0, 1, 2). For ∆f = 15kHz, they are transmitted in columns number
two, three and four (l = 2, 3, 4). These are the symbols indicated in red in Figure 3.15.

29



Figure 3.14: Resource elements used for DMRS in NPUSCH format 1. On the left, is an
example when ∆f is 3.75kHz. On the right, is an example with 6 subcarriers and ∆f =
15kHz [Roh16].

Figure 3.15: Resource elements used for demodulation reference signals in NPUSCH format
2. In this format, the RU only occupies one subcarrier [Roh16].

3.4 Random Access Channel

Transmitting a random access preamble is the first step of the RAR procedure (discussed
in section 5.3) and allows the UE to establish a connection with the network. This procedure
begins when the UE transmits a random access preamble on the NPRACH. The transmitted
preamble is based on symbol groups using only one subcarrier. Each symbol group has a CP
followed by five symbols. Figure 3.16 shows this sequence.

Figure 3.16: Preamble symbol group [Roh16].

Two preamble formats are defined and differ in their CP length. The five symbols have a
duration of TSEQ = 1.333ms, appended with a CP of TCP = 67µs for format 0 and 267µs for
format 1, giving a total length of 1.4ms and 1.6ms, respectively. In frequency, ∆f of 3.75kHz
is applied.

The preamble is composed of four symbol groups transmitted continuously. Frequency
hopping is applied, with each symbol group being transmitted on a different subcarrier. By
construction, hopping is restricted to a set of 12 subcarriers, selected inside the total number
of 48. The preamble can be repeated 1, 2, 4, 8, 16, 32, 64, or 128 times by the UE, as
indicated by the eNodeB. Figure 3.17 shows an example of a preamble repeated at least four
times, where each blue rectangle describes one preamble symbol group.
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Figure 3.17: NB-IoT PRACH design [LAW16].

3.4.1 Hopping pattern

The hopping design, observed in Figure 3.17, “consists of both inner layer fixed size
hopping and outer layer pseudo random hopping. Outer layer pseudo random hopping is
applied between four symbol groups. Inner layer fixed size hopping is applied between each
symbol group” [LAW16].

The eNodeB selects the subcarrier to be used on the first symbol group transmission.
The next three symbol groups are determined by an algorithm which depends only on the
location of the first one. For the subcarrier selection of the first symbol group for the next
repetition, a pseudo-random hopping is applied, where NNcell

ID and the number of NPRACH
repetitions per attempt (NNPRACH

rep ) are used as input. Again, only this result will influence
the subcarrier selection of the following symbol groups [Roh16].

3.4.2 Preamble Generation - Baseband Signal

The preamble symbol group sequence is based on a Zadoff-Chu (ZC) sequence, which
depends on the subcarrier location. ZC sequences are a type of Constant Amplitude, Zero
AutoCorrelation (CAZAC) sequences. They possess an useful property: their autocorrelation
is approximately zero, helping with their posterior detection in the eNodeB.

In this chapter the NB-IoT transmitter chain was presented. The physical layer processing
applied to the transport channels (UL-SCH, UCI and RACH), which leads to the generation
of a baseband signal, was explained in detail. In the next chapter, the receiver chain will be
described. When contraposing both chains, one annuls the others’ effect, which allows the
transmitted data to be recovered.
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Chapter 4

NB-IoT Uplink Receiver

This chapter provides detailed information about the NB-IoT uplink receiver, particularly
the physical layer. Section 4.1 describes the reception and subsequent decoding of an UL-
SCH transport block, section 4.2 describes the reception and subsequent decoding of an UCI
transport block, section 4.3 provides information about the DMRS utility in the receiver side
and section 4.4 provides information about the detection of a PRACH preamble coming from
the UE.

4.1 UL-SCH Recovery

This section describes the baseband signal demodulation into several codewords and sub-
sequent decoding in order to obtain a recovered transport block in the receiver. On the
transmitter, in the SC-FDMA modulation step, each slot is repeated a certain number of
times. Therefore, one codeword is obtained for each repetition. Afterwards, the several
codewords are decoded and the results are combined, with that combination value being the
recovered transport block. Figure 4.1 outlines the different steps to recover a transport block
in case of reception on a single antenna. Subsections 4.1.1 and 4.1.2 describe demodulation
and decoding procedures, respectively.

Figure 4.1: Block diagram of the NB-IoT UL-SCH receiver [GZAM10].
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4.1.1 Demodulation Processing

This subsection describes the generic demodulation procedures. In NB-IoT, demodulation
converts the baseband signal into a certain number of codewords. As shown in Figure 4.1, the
demodulation processing consists of SC-FDMA demodulation, modulation demapping and
descrambling.

4.1.1.1 SC-FDMA Demodulation

SC-FDMA is divided in several steps, namely, CP removal, resampling, FFT, padding
removal, resource demapping and DFT deprecoding. The SC-FDMA demodulation schematic
is represented in Figure 4.2.

Figure 4.2: SC-FDMA demodulation schematic [DT17].

Cyclic prefix removal: CP removal is done by eliminating the previously added prefix,
in the beginning of each symbol.

Resample: The signal is resampled using decimation, by a factor of eight. This way, the
original sampling rate is obtained.

FFT: An FFT is performed, so the time domain signal is transformed into the frequency
domain.

Padding removal: The elements positioned on the extremities of each symbol are re-
moved, and the data from the middle of the vector is extracted.

Resource Demapping: The symbol value in each resource element is collected, begin-
ning with each subcarrier and then onto SC-FDMA symbols. Since each slot is repeated a
certain number of times (discussed in section 5.4), each repetition is demapped and goes on
to the next step.

DFT deprecoding: After going through the standard OFDMA demodulation, an Inverse
Discrete Fourier Transform (IDFT) is performed, so the frequency domain data symbols are
transformed into the time domain [DT17].

4.1.1.2 Modulation Demapper

Each block of complex modulated symbols is demodulated into a block of scrambled
bits. Considering Ms the total number of modulated symbols and Mb the total number
of demodulated bits, the relationship between them is represented in equation 3.16. The
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modulation scheme considered depends on Qm and their relationship is represented in Table
3.3.

Demodulation mapping can only be done in the soft form, since the bits need to be in
that format when they enter the turbo decoder.

QPSK: Modulation demapping for QPSK is done according to Table 4.1. These values
don’t take into account any type of signal degradation (AWGN, channel fading). Although
the demodulation is made in soft decision format, the correspondent value for hard decision
is also shown.

Table 4.1: QPSK modulation demapping.

Symbol
Soft decision Hard decision
b(i) b(i+1) b(i) b(i+1)

1/
√

2 + (1/
√

2)i 1/
√

2 1/
√

2 0 0

1/
√

2− (1/
√

2)i 1/
√

2 −1/
√

2 0 1

−1/
√

2 + (1/
√

2)i −1/
√

2 1/
√

2 1 0

−1/
√

2− (1/
√

2)i −1/
√

2 −1/
√

2 1 1

BPSK: Modulation demapping for BPSK is done according to Table 4.2. The represented
values don’t take into account any type of signal degradation (AWGN, channel fading). Both
soft and hard decision formats are shown.

Table 4.2: BPSK modulation demapping.

Symbol Soft decision Hard decision

1/
√

2 + (1/
√

2)i 1/
√

2 0

−1/
√

2− (1/
√

2)i −1/
√

2 1

4.1.1.3 Descrambling

Let’s consider b̃(n), the bit sequence to be descrambled, is received in the soft decision
format. First, a Gold sequence denoted by c(n) is generated using the same initialization
values as in the transmitter (sub-subsection 3.1.2.1). The first sequence (x1) is initialized
with x1(0) = 1, x1(n) = 0, n = 1, 2, 3, ... , 30 and the second sequence (x2) is initialized with
cinit after its value is converted to binary (equation 3.15).

Table 4.3: Descrambling operation between the Gold sequence c(n) and the received bits b̃(n).

c(n) b̃(n) b(n)

0 soft(0) soft(0)

0 soft(1) soft(1)

1 soft(0) soft(1)

1 soft(1) soft(0)
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It is important to note the operation made to obtain b̃(n) in sub-subsection 3.1.2.1 was
a “modulo-2” between the bits to be scrambled b(n) and the Gold sequence c(n). Thus, it’s
easy to reverse the operation. Observing Table 4.3, it is possible to conclude that when c(n)
equals one, the descrambled bit will be the opposite of b̃(n). When c(n) equals zero, the
descrambled bit is equal to b̃(n).

After all the bits in the vector b̃(n) are descrambled, a codeword is obtained. The demod-
ulation process is finished.

4.1.2 Channel Decoding Processing

This subsection describes generic channel decoding procedures. The process called decod-
ing transforms a codeword into a transport block. The several decoding procedures and their
necessary steps are going to be explained in detail.

4.1.2.1 Rate Dematching

The rate dematching in NB-IoT performs depuncturing and deinterleaving, in order to
recover the original output of the turbo encoder. Depicted in Figure 4.3 are several basic
steps composing a rate-dematching.

Null positioning: The Transport Block Size (TBS) is known a priori by the eNodeB-
section 5.4. Thus, it is possible to calculate the expected output length of the turbo encoder.
Taking into account the added CRC will have 24 bits (3.1.1.1), K = TBS + 24. Therefore,
the output of each stream of the turbo encoder should be outsize = K + 4, due to the trellis
termination stage.

Reading sub-subsection 3.1.1.3, it is possible to understand that after the nulls are added
in the beginning of each matrix (sub-block interleaver stage), they are interleaved according
to a specific pattern. The first step would be to position those nulls in their correct place.

To do that, three vectors of zeros (z
(0)
k , z

(1)
k and z

(2)
k ) with length outsize are created. Then,

they are sub-block interleaved (nulls are added in this stage) - n
(0)
k , n

(1)
k and n

(2)
k . Afterwards,

they are reordered, forming a circular buffer exactly as it was done in the transmitter stage -
wtemp. The location of the nulls is needed for the depuncturing process.

Depuncturer: The second step would be to depuncter the transport block. In the previous
step, it was obtained a circular buffer filled with zeros and nulls positioned in the correct place.
In this stage, while bypassing the nulls, known bits are put in their correct position and the
unknown bits continue with value zero.

To put bits in their original position, it is necessary to know at what point they started
being collected in the original vector. The starting point of the bit selection (k0) depends on
the rvidx of the current transmission. The calculation is done as in sub-subsection 3.1.1.3. At
this point, a virtual circular buffer (wk) is recovered.

Bit separation: A circular buffer is formed by collecting systematic bits at the beginning,
followed by bit-by-bit interlacing of the two interleaved parity streams. Knowing this, it is
easy to separate the three bit streams (systematic and parity streams) in their original order.

36



Figure 4.3: Rate dematching block diagram.

Sub-block deinterleaving: The deinterleaving is performed independently for each bit
stream, using the same inter-column permutation as the transmitter (Table 3.2).

Each input stream (with length D), is arranged into a matrix having C columns, C = 32.
The number of rows, R, is determined in such a manner that C ×R = D.

After, the matrix is rearranged using the inter-column permutation in order to recover
the original column order. Finally, the nulls are removed and the matrix is reshaped into a
vector. The three outputs of the turbo encoder/inputs of the rate matching are recovered.

4.1.2.2 Turbo Decoder

The architecture of the turbo decoder is as shown in Figure 4.4. Between the decoder 1 and
2 is formed a loop that performs the iterative decoding process. Since the input of one decoder
includes the output of the other decoder, they have to operate alternately. The demultiplexer
inputs are in the soft decision format. The five inputs ãc, ẽc, c̃c, f̃ c and d̃c correspond to the
soft format version of the turbo encoder outputs a, e, c, f and d - sub-subsection 3.1.1.2.
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Figure 4.4: Scheme of the NB-IoT turbo decoder [Li09].

Each decoder has as input two sequences. The first is c̃c for decoder 1 and d̃c for decoder
2, corresponding to the soft decisions of the turbo encoded sequence parity bits. The other
one is formed by adding b̃a/ãa to the received systematic information. b̃a/ãa are generated
by the decoders after rearranging their order by the proper interleaver (π) or deinterleaver
(π−1). For decoder 1, the input ỹa is the sum of ãa and ãc concatenated with ẽc. For decoder
2, the input z̃a is the sum of b̃a and interleaved systematic information b̃c concatenated with
f̃ c.

In the first iteration, b̃e is initialized with a sequence of zeros, since its value is completely
unknown. Several iterations are performed. According to [Mau10], with its increase, there is
an improvement in performance results. After the forth iteration, the increase is rather small,
and therefore, does not compensate the required computational resources. Thus, this turbo
decoder was implemented using, always, four iterations. Furthermore, with each iteration a
CRC check is performed in order to evaluate if there is errors in the transport block. If not,
the loop ends and less iterations are required.

Log-MAP algorithm - decoder: There are several algorithms that can be used to imple-
ment the turbo decoding decoders. Log-Maximum A Posteriori (MAP) algorithm was chosen.
The algorithm offers a trade-off between complexity and error correction performance when
compared to Soft Output Viterbi Algorithm (SOVA) (low complexity and error correction
performance) and MAP (high complexity and error correction performance) [Li09].
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The algorithm is used to generate the decoders’ outputs (ỹe and z̃e) and is divided in five
parts:

1. For a transition T, γ calculation is done according to equations 4.1 and 4.2:

γy(T ) = (1− y(T ))ỹan(T ) (4.1)

γc(T ) = (1− c(T ))c̃cn(T ) (4.2)

2. For a state S, α is calculated according to equation 4.3:

α(S) = max(γy(T ) + γc(T ) + α(fr(T ))) (4.3)

where α(S1) = 0 and fr represents a forward recursion.

3. For a state S, β is calculated according to equation 4.4:

β(S) = max(γy(T ) + γc(T ) + β(to(T ))) (4.4)

where β(Send) = 0 and to represents a backward recursion.

4. The values of δ can be calculated according to equation 4.5:

δy(T ) = γc(T ) + α(fr(T )) + β(to(T )) (4.5)

5. The uncoded bits ỹe/z̃e are obtained in equation 4.6:

ỹe/z̃e = max
T |y(T )=0

(δy(T ))− max
T |y(T )=1

(δy(T )) (4.6)

This fifth step concludes the algorithm.

4.1.2.3 CRC Check/Removal

CRC check: The goal of a CRC is to detect if an error has occurred during the decoding
process. A CRC error check function uses the same polynomial (Table 3.1) as during the
encoding phase and does the same operation as in the encoder. The received transport
block includes a concatenated remainder calculated in sub-subsection 3.1.1.1. Therefore, the
division should yield a remainder of zero, marking that no errors could be detected, with
other values meaning changes occurred in data, during transmission. Figure 4.5 exemplifies
a CRC check example.

Let’s denote the polynomial generator by G and the received bit pattern by D’ (the re-
mainder R calculated in sub-subsection 3.1.1.1 is concatenated with data D). In this example,
G = 10011 and D′ = 10101010100100. When performing an “exclusive OR” operation be-
tween D’ and G, it is possible to conclude the resulting remainder will be 0. Therefore, no
errors occurred during the data transmission [Blo17a].

CRC removal: The generator polynomial length for NB-IoT is 25. Therefore, if no errors
are detected, the last 24 bits (remainder length previously attached to the original bits) of
the transport block are removed. The transmitted data is received and the decoding process
is finished.
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Figure 4.5: CRC check example [Blo17a].

4.2 Uplink Control Information Recovery

This section describes the baseband signal demodulation into several codewords and sub-
sequent decoding in order to obtain a HARQ-ACK indicator on the receiver side. On the
transmitter, in the SC-FDMA modulation step, all slots are repeated a certain number of
times. Therefore, one codeword is obtained for each repetition. Afterwards, the several code-
words are decoded and the results are combined, with the combination value being the final
HARQ-ACK indicator. Figure 4.6 outlines the required steps to recover an UCI transport
block. Subsections 4.2.1 and 4.2.2 describe demodulation and decoding procedures, respec-
tively.

Figure 4.6: Block diagram of the NB-IoT UCI receiver [GZAM10].

4.2.1 Demodulation Processing

Demodulation processing steps are performed in exactly the same way as for the UL-SCH.
Descrambling is done according to sub-subsection 4.1.1.3. Demodulation is done according
to sub-subsection 4.1.1.2, always using BPSK as a demodulation scheme. SC-FDMA de-
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modulation is done according to sub-subsection 4.1.1.1, always using a single subcarrier and,
therefore, a single-tone transmission.

When the demodulation process is terminated, the baseband format signal is converted
into several codewords.

4.2.2 Channel Decoding Processing

This subsection describes the only channel decoding step that transforms a codeword into
a UCI transport block.

The control data arrives to the channel decoding unit in the form of several codewords.
They are combined so the most probable bit sequence is decoded. Then, this sequence is
decoded in the form of an HARQ-ACK indicator, according to Table 4.4. If HARQ-ACK
equals one, the UE successfully received the data sent by the eNodeB. Otherwise, the UE
failed to received the eNodeB downlink transmission.

Table 4.4: HARQ-ACK decoding.

HARQ-ACK codeword HARQ-ACK

<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0> 0

<1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1> 1

4.3 Demodulation Reference Signals - Receiver

When received, the transmitted resource elements have been affected by AWGN and
channel fading. Using a channel estimation, it is possible to equalize the channel effects on
the received resource grid.

To facilitate the channel estimation, NB-IoT uses reference signals (pilot symbols) inserted
in both time and frequency. These signals are assigned different positions within a subframe,
depending on the NPUSCH format used and the selected ∆f , as shown in Figures 3.14 and
3.15. The pilots provide a good estimate of the complex gains, imposed by the propagation
channel, onto each grid resource element.

4.3.1 Channel Estimation

The first step in the channel estimation is to collect all the pilot symbols from their known
locations within each slot. Because the value of these pilot symbols is known, a channel
response estimation at these locations can be determined according to equation 4.7.

Y = H ×X +N ⇔ H =
Y

X
−N, (4.7)

where Y is the received pilot symbols, X is the known/transmitted pilot symbols, H is the
complex channel gain and N corresponds to AWGN noise.

After channel estimation, equalization is performed. The selected equalizer was the Zero
Forcing (ZF) equalizer, due to its simplicity. When using this method, channel estimation is

41



calculated assuming no AWGN is present in the system. Therefore, instead of using the exact
model from equation 4.7, equation 4.8 is used.

Y = ĤZF ×X ⇔ ĤZF =
Y

X
, (4.8)

where ĤZF is the ZF channel estimate. Since the received pilot symbols Y , and the trans-
mitted pilot symbols X are known, the channel can easily be estimated at each pilot posi-
tion [Mat].

4.3.2 Zero Forcing Equalizer

When using the ZF equalization algorithm, the received sequence is multiplied by the
multiplicative inverse of the channel frequency response.

Using equation 4.9 and the channel estimation value obtained in subsection 4.3.1, it is
possible to mitigate the channel effects on the received sequence.

X̂ =
Y

ĤZF

, (4.9)

where X̂ is the estimated transmitted signal, Y is the received signal and ĤZF is the channel
estimate corresponding to the equalizer used.

The zero-forcing equalizer removes all ISI, and is ideal when the channel has no AWGN.
However, if the channel has noise, the equalizer will amplify it.

After the equalization, the received sequence is ready to be demodulated and decoded.

4.4 Physical Random Access Channel

Using the same method as in LTE, it is possible to detect the NPRACH preamble
on the receiver side. On the eNodeB, the cross-correlation between the received signal
and the expected ZC sequence is calculated. If the cross-correlation value exceeds some
predetermined threshold, the preamble is detected. Otherwise, the preamble is not present.
There is a trade-off between preamble misdetections and false alarms. Therefore, the
threshold should be set carefully [LAW16].

In this chapter, the NB-IoT receiver chain was outlined. The physical layer processing
applied to the baseband signal, which leads to the transport block recovery, was described in
detail. In the next chapter, an overview of the NB-IoT physical layer procedures will be pre-
sented. Required parameters, necessary for the baseband signal construction and respective
detection, will be explained.
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Chapter 5

NB-IoT Physical Layer Procedures

The main goal of this chapter is to explain in what circumstance the different physical
channels (NPRACH, NPUSCH format 1 and 2) are used. Each one of them requires specific
parameters to construct the baseband signal. Those are listed, including a description of their
purpose. It’s also made a brief introduction to provide some context.

5.1 Introduction

This introduction provides an overview of all the physical layer procedures mentioned in
this chapter. Each one of them has a specific goal, which is summarized. The procedures are:

• Cell search (section 5.2) - It’s the first contact between an eNodeB and a UE. Its main
goal is to assign the narrowband physical layer cell identity (NNcell

ID ) value to the UE.
Since this procedure occurs on a downlink transmission, it is only briefly explained.

• RAR procedure (section 5.3) - It is an initialization procedure that connects the UE
to the eNodeB. It happens after the cell search and is the only situation where the
NPRACH is used. The subcarrier spacing (∆f) is assigned to the UE on Msg2.

• NPUSCH format 1 UE procedure (section 5.4) - This procedure explains in what
circumstance the UE transmits data on the NPUSCH format 1. Generally, when re-
ceiving a Narrowband Physical Downlink Control Channel (NPDCCH) format N0 from
the eNodeB, the UE receives necessary parameters for the construction of the baseband
signal.

• NPUSCH format 2 UE procedure (section 5.5) - Before a Narrowband Physical
Downlink Shared Channel (NPDSCH) transmission, the eNodeB supplies the UE with
parameters required for the decoding/demodulation of that transmission on the NPD-
CCH format N1. Afterwards, the UE sends a positive or negative acknowledgment using
the NPUSCH format 2.

5.2 Cell Search

This section briefly describes the cell search procedure’s goal. Its main objective is the
NNcell
ID detection by the UE. NNcell

ID has 504 possible values, ranging from 0 to 503.
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In NB-IoT, the Narrowband Primary Synchronization Signal (NPSS) and Narrowband
Secondary Synchronization Signal (NSSS) are transmitted in the downlink to facilitate the
cell search. Since the NNcell

ID detection occurs on a downlink transmission, it is only provided
a brief description of this procedure.

5.3 RAR Procedure

This section describes the steps required to perform the RAR procedure (Figure 5.1).

Figure 5.1: Overall RAR procedure. SIB2 transmission is required before the RAR procedure
itself.

Prior to initiation of the RAR procedure, the UE should receive a System Information
Block (SIB)2 (purple arrow in Figure 5.1), sent with the necessary values to create a NPRACH
preamble. The following information is necessary [3GP16]:

• The frequency location of the first subcarrier allocated to NPRACH (NNPRACH
scoffset ).

• The number of subcarriers allocated to NPRACH (NNPRACH
sc ).

• The number of NPRACH repetitions per attempt (NNPRACH
rep ).

It is of extreme importance to receive this information block, since this message sets
several constants used by the UE on the RAR procedure. Each step of the actual procedure
is enumerated in Figure 5.1 inside a circle.

1. The first step consists in establishing communication between the UE and the eNodeB.
To do this, a preamble, generated as described in section 3.4, is sent on the NPRACH
physical channel. The preamble is repeated NNPRACH

rep times as indicated in SIB2.
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2. The second step consists on the detection of a NPDCCH, where posterior demodula-
tion/decoding leads to the Downlink Control Information (DCI) format 1 values.

A format N1 message is composed of 23 bits (Figure 5.2). Starting with the Most
Significant bit (MSb), the following information is received [3GP17a]:

• 1 bit corresponding to the DCI format flag:

– ’0’ for format N0 (section 5.4).

– ’1’ for format N1.

• 1 bit corresponding to the NPDCCH order indicator.

– ’1’ means that this information is used for NPRACH scheduling.

– ’0’ denotes the information is used for NPDSCH scheduling (section 5.5).

• 2 bits corresponding to the number of repetitions.

• 6 bits corresponding to the subcarrier indication.

• 13 remaining bits that are set to ’1’.

Figure 5.2: Contents of DCI format N1 when is used for scheduling NPRACH [DT17].

3. The third step is the decoding/demodulation of Msg2 (downlink transmission), using
the information received on step 2. The baseband signal is parsed, indicating the Nr-bit
uplink grant to the physical layer, which contains 15 bits.

Its content, starting with the MSb is as follows [3GP17b]:

• 1 bit corresponding to the uplink subcarrier spacing (∆f):

– ’0’ for 3.75 kHz.

– ’1’ for 15 kHz.

The ∆f value is only indicated in Msg2 (RACH Response). In all other transmis-
sions, this is the value to be used.

• 6 bits corresponding to the subcarrier indication field (Isc).

• 2 bits corresponding to the scheduling delay indication field (IDelay).

• 3 bits corresponding to the repetition number indication field (IRep).

• 3 bits corresponding to the modulation and coding scheme indication field (IMCS),
which indicates the TBS, the modulation scheme, and the total number of RUs for
Msg3.
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4. In the last step, if a NPDCCH was detected and its corresponding transport block
consists on a response to the transmitted preamble sequence, the UE transmits an UL-
SCH transport block according to section 3.1, where the required parameters are given
on Msg2. It’s important to note the redundancy version indication field (rvdci) for the
transmission of a Msg3 is 0.

If the corresponding Downlink Shared Channel (DL-SCH) transport block does not
contain a response to the transmitted preamble sequence, the UE transmits the preamble
sequence again, going back to the first step.

5.4 NPUSCH Format 1 UE procedure

This section describes the steps required to perform the NPUSCH format 1 UE procedure.
In Figure 5.3, each step is enumerated inside a circle.

Figure 5.3: Overall NPUSCH format 1 UE procedure.

1. The first step consists on the detection of a NPDCCH by the UE, which after parsing
supplies the DCI format N0, that includes relevant parameters to send a transport block
on the NPUSCH. Besides the DCI format N0 values, this transmisison gives the UE the
Radio Network Temporary Identifier (RNTI). When the NPDCCH is codified, in the
CRC addition step, the RNTI parameter is used to scramble the obtained CRC bits.

DCI format N0 is composed of 23 bits ordered according to Figure 5.4. Starting with
the MSb, the following information is received [3GP17a]:

• 1 bit corresponding to the DCI format flag:

– ’0’ for format N0.

– ’1’ for format N1 (section 5.5).

• 6 bits corresponding to the subcarrier indication field (Isc).

• 3 bits corresponding to the resource assignment indication field (IRU ).

• 2 bits corresponding to the scheduling delay indication field (IDelay).

• 4 bits corresponding to the modulation and coding scheme indication field (IMCS).
This value, combined with IRU allows the TBS calculation.

• 1 bit corresponding to the redundancy version indication field (rvdci).
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• 3 bits corresponding to the repetition number indication field (IRep).

• 1 bit corresponding to the new data flag.

• 2 bits corresponding to the DCI subframe repetition number.

Figure 5.4: Contents of DCI format N0 [DT17].

2. The second step consists in sending the corresponding NPUSCH format 1 in NRep ×
NRU × NUL

slots consecutive slots. The value of NUL
slots is the number of slots in the selected

resource unit given in Table 2.2. The NRU is determined by the resource assignment
field in the corresponding DCI, according to Table 5.1.

The number of subcarriers allocated to NPUSCH (nsc) is given by the Isc present in
the DCI format N0, determined according to Table 5.2.

Table 5.1: NRU

obtained accord-
ing to IRU value.

IRU NRU

0 1

1 2

2 3

3 4

4 5

5 6

6 8

7 10

Table 5.2: Values of allocated subcarriers nsc depending on the sub-
carrier indicator Isc.

Subcarrier spacing (∆f) Isc nsc

3.75kHz
0-47 Isc
48-63 Reserved

15kHz

0-11 Isc
12-15 3(Isc − 12) + 0, 1, 2
16-17 6(Isc − 16) + 0, 1, 2, 3, 4, 5

18 {0,1,2,3,4,5,6,7,8,9,10,11}
19-63 Reserved

When ∆f is 3.75kHz, a range of values from 0-47 assigns the subcarrier to be used. An
example is shown on Figure 5.5a. If ∆f is 15kHz, a range of values from 0-18 assigns the
subcarriers to be used. If Isc is bigger then 11, several subcarriers are utilized. 12, 13, 14
and 15 indicates three subcarriers are used, corresponding to one of four quarters of the
resource block. 16 and 17 indicate either the top or bottom half of the resource block
is selected. 18 indicates all the subcarriers are chosen. This arrangement is depicted in
Figure 5.5b.

The modulation order (Qm) and the transport block size indication field (ITBS) is
determined using the the IMCS , according to Table 5.3.

The total number of repetitions (NRep) is determined by the IRep present in the DCI
format N0, according to Table 5.4. One transport block can be repeated several times.
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(a) Allocated
subcarriers
as indicated
by nsc when
∆f = 3.75kHz.

(b) Allocated subcarriers as indicated by nsc when ∆f = 15kHz.

Figure 5.5: Allocated subcarriers as indicated by nsc [DT17].

Table 5.3: Qm and ITBS obtained according to the IMCS

value.

Number of subcarrier (NRU
sc ) IMCS Qm ITBS

3/6/12 subcarriers 0-12 2 IMCS

1 subcarrier

0 1 0
1 1 2
2 2 1
3 2 3
4 2 4
5 2 5
6 2 6
7 2 7
8 2 8
9 2 9
10 2 10

Table 5.4: NRep ob-
tained according to the
IRep value.

IRep NRep

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

48



The arrangement of the repetitions depends on number of consecutive subcarriers in a
resource unit (NRU

sc ), the subcarrier spacing (∆f) and the total number of repetitions
(NRep). This is exemplified in Figure 5.6.

The description of Figure 5.6 goes as follows:

(a) Let’s consider ∆f is 15kHz and a transport block is transmitted on two RUs,
named T and W .

(b) Each RU has eight slots and, consequently, three subcarriers - Table 2.2. T1 corre-
sponds to the first slot of the first RU and W1 corresponds to the first slot of the
second RU, and so forth.

(c) Let’s assume a total number of eight repetitions is applied (NRep = 8) First, slots
T1 and T2 are transmitted. This pair is repeated three more times. Therefore, four
transmissions of these slots occur. This procedure is continued until the slots W7

and W8 are pairwise transmitted four times. Finally, the transmission sequence is
repeated once again, reaching the eight repetitions.

When ∆f is 15kHz, the first repetition of two slots is always done - number of grouped
slots (Nslots) = 2. When ∆f is 3.75kHz, it is done for every slot separately - number
of grouped slots (Nslots) = 1. If the RU has more than one subcarrier (NRU

sc > 1), the
number of repetitions of grouped slots (MNPUSCH

identical ) is half the number of NRep, with
an upper limit of four. Otherwise, if the RU has only one subcarrier, this value is one.

For instance, in Figure 5.6, if there would be 64 repetitions, the MNPUSCH
identical number

would be the same. However, the total sequence would be repeated 15 additional times -
scheduled number of repetitions of a NPUSCH transmission (MNPUSCH

Rep ) = 16 [Roh16].

Figure 5.6: Example of an arrangement for NPUSCH transmission with 8 repetitions. For
the case of no repetitions, the slot sequence shown in (b) would be transmitted [Roh16].
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The ITBS , used in combination with the IRU , determines the TBS according to Table
5.5 [3GP17b].

Table 5.5: TBS obtained according to ITBS and IRU values.

ITBS
IRU

0 1 2 3 4 5 6 7

0 16 32 56 88 120 152 208 256

1 24 56 88 144 176 208 256 344

2 32 72 144 176 208 256 328 424

3 40 104 176 208 256 328 440 568

4 56 120 208 256 328 408 552 680

5 72 144 224 328 424 504 680 872

6 88 176 256 392 504 600 808 1000

7 104 224 328 472 584 712 1000 -

8 120 256 392 536 680 808 - -

9 136 296 456 616 776 936 - -

10 144 328 504 680 872 1000 - -

11 176 376 584 776 1000 - - -

12 208 440 680 1000 - - - -

rvidx is determined by the resource assignment field in the corresponding DCI according
to equation 5.1.

rvidx = 2× mod(rvdci, 2) (5.1)

Coding and modulation of the NPUSCH format 1 physical channel is done according
to section 3.1.

5.5 NPUSCH Format 2 UE procedure

This section describes the steps required to perform the NPUSCH format 2 UE procedure.
In Figure 5.7, each step is enumerated inside a circle.

1. The first step consists on the detection, by the UE, of a NPDCCH with a DCI format
N1 that includes all relevant parameters to receive, demodulate and decode a NPDSCH
transport block. Besides the DCI format N0 values, this transmission gives the UE the
RNTI. When the NPDCCH is codified, in the CRC addition step, the RNTI parameter
is used to scramble the obtained CRC bits.
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Figure 5.7: Overall NPUSCH format 2 UE procedure.

DCI format N1 is composed of 23 bits, represented in Figure 5.8. Starting with the
MSb, the following information is received [3GP17a]:

• 1 bit DCI format flag:

– ’0’ for format N0 (section 5.4).

– ’1’ for format N1.

• 1 bit NPDCCH order indicator:

– ’1’ means that this information is used for NPRACH scheduling (section 5.3).

– ’0’ denotes the information is used for NPDSCH scheduling.

• 3 bits corresponding to the scheduling delay indication field (IDelay).

• 3 bits corresponding to the resource assignment indicator (ISF ), with the value of
scheduled downlink frames.

• 4 bits corresponding to the modulation and coding scheme indication field (IMCS).

• 4 bits corresponding to the repetition number indication field (IRep).

• 1 bit corresponding to the new data indicator flag.

• 4 bits corresponding to the Acknowledgement/Negative-Acknowledgement (ACK-
/NACK) resource field.

• 2 bits corresponding to the Downlink Control Information (DCI) subframe repeti-
tion number.

All values are used on the reception and subsequent decoding of the NPDSCH, except
for the ACK/NACK resource field. Instead, it’s a parameter necessary to send a positive
or negative acknowledgment on NPUSCH format 2.

2. Detection of a NPDSCH transmission and parsing of the received signal, using the
information provided on the DCI format N1.
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Figure 5.8: Contents of DCI format N1 when used for scheduling NPDSCH [DT17].

3. Upon detection of a NPDSCH transmission by the UE, an acknowledgment should be
provided using NPUSCH format 2 in NAN

Rep × NUL
slots consecutive slots, with ACK/NACK

number of repetitions (NAN
Rep) being a higher layer parameter. The NUL

slots is always four

and the number of consecutive subcarriers in a resource unit (NRU
sc ) is always one -

Table 2.3. The total number of resource units (NRU ) is, also, always one.

The allocated subcarrier is determined by the ACK/NACK resource field according to
Table 5.6, when ∆f is 3.75kHz, and Table 5.7, when ∆f is 15kHz [3GP17b].

Table 5.6: NPUSCH format 2 allocated subcarrier when ∆f = 3.75kHz.

ACK/NACK resource field ACK/NACK subcarrier

0 38

1 39

2 40

3 41

4 42

5 43

6 44

7 45

8 38

9 39

10 40

11 41

12 42

13 43

14 44

15 45
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Table 5.7: NPUSCH format 2 allocated subcarrier when ∆f = 15kHz.

ACK/NACK resource field ACK/NACK subcarrier

0 0

1 1

2 2

3 3

4 0

5 1

6 2

7 3

8 0

9 1

10 2

11 3

12 0

13 1

14 2

15 3

Coding and modulation of the NPUSCH format 2 physical channel is done according
to section 3.2.

Throughout the first five chapters, the NB-IoT physical layer was described. First, general
concepts were introduced. Then, the transmitter and receiver chains for all physical channels
were explained. To connect the introduced concepts, this fifth chapter was written, which
explains in what circumstances a physical channel is used and the required parameters to
generate its corresponding baseband channel.

On the next chapter, it is introduced how the MATLAB simulation of these theoretical
concepts was implemented. Furthermore, it is detailed how a co-simulation using USRPs as
RF front-ends was developed, explaining its utility.
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Chapter 6

NB-IoT MATLAB Modeling and
USRP Co-Simulation

The main goal of this dissertation consisted on the implementation of a behavioral model-
ing of the NB-IoT uplink physical layer. This chapter starts by giving a brief overview of what
was implemented, explaining why MATLAB was chosen as a simulation environment. After-
wards, it describes, with the aid of a block diagram, the main functions used to convert data
into a baseband signal, simulate the channel and recover the original data. Finally, it clarifies
how two USRPs, used as RF front-ends in a co-simulation environment, can transmit/receive
said baseband signal.

6.1 Introduction

This section briefly describes what was implemented during this dissertation’s practical
work. There are two main parts. First, a MATLAB model of the NB-IoT uplink physical
layer was designed. Both transmitter and receiver chains, including all coding/decoding and
modulation/demodulation steps were implemented.

Secondly, a software/hardware co-simulation using two USRPs as RF front-ends, was
tested. One USRP is utilized to transmit the baseband signal generated in the MATLAB sim-
ulation. The other captures the transmitted signal to be posteriorly decoded/demodulated,
using the MATLAB implementation. This process happens in real-time, which provides a
degree of comparison between the simulation environment, where no time constraints need to
be met.

NB-IoT can have SISO or SIMO antenna mapping on the uplink. Although that is taken
into consideration throughout the simulation and co-simulation implementations, up to this
point, only the SISO functionalities are completely functional.

As previously mentioned, the simulator is developed using MATLAB. This choice was
influenced by three key factors. First, mathematical operations in other languages require
function calls, instead of natural operators. Therefore, it takes longer to write C/C++ code
equivalent to the MATLAB one. Secondly, MATLAB can be good for modeling due to its
visualization capabilities. This will accelerate a posterior phase, where the NB-IoT protocol
is implemented in hardware. Lastly, MATLAB CoderTM generates readable and portable
C/C++ code from MATLAB, which makes a posterior C/C++ implementation much sim-
pler. Toolboxes are not used on the simulation, since it helps with the porting to another
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programming language.

More information about the MATLAB implementation is provided on section 6.2. Details
regarding the hardware co-simulation can be found on section 6.3.

6.2 MATLAB Implementation

This section provides a description of the MATLAB simulation. Three different simula-
tions were implemented, one for each existent NB-IoT physical channel. Each channel has
a different purpose, so each simulation uses distinct functions. Therefore, their respective
block diagram also varies. Figure 6.1a represents the NPUSCH format 1 and 2 simulation
block diagram. The difference between formats is in the function name that ends in F1 and
F2, accordingly, and in the input and output parameters. The format selection is a user
input variable and, then, the functions represented on the block diagram are called in order,
accordingly to the previously selected format. The gray dotted squares of Figure 6.1a are
only used on the co-simulation implementation, explained on section 6.3. Both simulations
are described in further detail in subsections 6.2.2 and 6.2.3.

Figure 6.1b represents the block diagram of the NPRACH implementation. This is an
entirely different simulation and is not integrated with the main one. This will be explained
in further detail in subsection 6.2.4.

6.2.1 Notation

On the MATLAB implementation, parameters are represented according to their name in
the official release specs. If the parameter has a superscript, it is represented in upper-case
letters. If it has a subscript, it is written in lower-case letters. The order is always superscript
and then subscript, if the variable has both. For example, NUL

symbols would be NULsymbols,
nsc would be Nsc, and NRU would be Nru. Generally, upper-case ‘N’ represents number,
‘UL’ stands for uplink and ‘RU’ means resource unit. Parameters that are not mentioned in
the release and are only part of the MATLAB simulation always have an underscore. Those
followed by a ‘tx’, always have their equivalent on the receiver chain, being followed by ‘rx’.
For example, the baseband signal signal tx has an equivalent called signal rx.

6.2.2 NPUSCH Format 1 simulation

This subsection describes the NPUSCH format 1 simulation, being divided in transmitter,
channel and receiver. Each one of them is explained in depth on sub-subsections 6.2.2.1,
6.2.2.2 and 6.2.2.3.

6.2.2.1 Transmitter Implementation

The transmitter is represented in Figure 6.1a by the blue dotted lines. All the coding and
modulation procedures described in section 3.1 were implemented. DCI format N0 parameters
are generated as user input. The used subcarrier spacing (deltaf) is also decided by the
user. If the user leaves them empty or chooses an impossible combination of values, they
are automatically assigned, when needed. Using the DCI values, it is possible to calculate a
set of required parameters to obtain the baseband signal, according to section 5.4. This is
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(a) Block diagram of the NPUSCH format 1 and 2 physical
channel MATLAB simulation.

(b) Block diagram of the NPRACH
physical channel MATLAB simulation.

Figure 6.1: Block diagrams of the MATLAB implemented simulations.
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done using the function GetParametersF1(). Input and output parameters are represented
in Table 6.1.

Table 6.1: Function GetParametersF1() description.

Function GetParametersF1()

Input deltaf, Irep, Imcs, Iru, Isc, RVdci, RNTI

Output
data tx, Qm, RVidx, Nsc, MNPUSCHrep, MNPUSCHidentical,

Nru, Nslots, NRUsc, NULsc, TBS, RNTI,

NULslots, NULsymbols, E, Ns, Nsf, Nf, NNCELLid

Outputs Qm, RVidx, Nsc, MNPUSCHrep, MNPUSCHidentical, Nru, Nslots, NRUsc, RNTI and
TBS are calculated using the user input values, according to section 5.4. NULsc is dependent
on the deltaf value, chosen by the user. NULslots is determined based on Table 2.2 and
NULsymbols is always 7. data tx with length TBS is the randomly generated information
to be sent. Ns, Nsf and Nf counters, corresponding to the number of slots, subframes and
frames, respectively, are initialized with value zero. NNCELLid has a range of values between 0
and 503. Since its calculation is a downlink procedure, and for code simplification, this value
is always 1 (can easily be changed by the user).

Considering the modulation order (Qm), the number of resource units available (Nru) and
how many subcarriers are used in each (NRUsc), the maximum number of bits that is possible
to send in the available space is calculated. Sometimes, the puncturing of several bits is
required to fit in that space. Variable E is the maximum number of bits possible to send if
the turbo encoder output exceeds that size. If enough space is available and no puncturing
is necessary, E corresponds to the turbo encoder output length.

Function CodingProcessF1() performs the steps described in subsection 3.1.1 - CRC
addition, turbo encoding and rate matching, with Table 6.2 showing its inputs and outputs.
In this function, the transport block data tx is coded into the codeword codeword tx. Rate
matching requires E and RVidx parameters.

Table 6.2: Function CodingProcessF1() description.

Function CodingProcessF1()

Input data tx, RVidx, E

Output codeword tx

Function GenerateDMRSF1() generates the DMRS in order to facilitate the transport block
recovery on the receiver side. More information about the generation of DMRS can be found
on section 3.3.

Table 6.3: Function Generate DMRSF1() description.

Function Generate DMRSF1()

Input Nru, NRUsc, NULslots, NNCELLid, group hopping

Output ru

According to Table 6.3, the function receives as input NRUsc, NNCELLid, Nru and
NULslots, since the formulas used to calculate this signals depend on the mentioned variables.
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group hopping is a user defined parameter which activates or deactivates the group hopping
on the DMRS generation.

Function ModulationProcess() performs modulation, scrambling and SC-FDMA signal
generation (including resource mapping) according to section 3.1.2. Furthermore, it repeats
each slot according to MNPUSCHrep and MNPUSCHidentical values and subsection 5.4.

Table 6.4: Function ModulationProcess() description.

Function ModulationProcess()

Input
codeword tx, ru, Qm, Nsc, MNPUSCHrep, MNPUSCHidentical, RNTI

Nslots, Nru, NRUsc, NULsc, NULslots, NULsymbols, Ns, Nf, NNCELLid

Output signal tx

Table 6.4 shows the input and output parameters of the function. RNTI, NNCELLid, Nf
and Ns are used on the scrambling initialization formula. Qm is necessary to decide which
modulation scheme to use. Nsc, Nru, NRUsc, NULsc, NULslots and NULsymbols are utilized on
the resource mapping of the data and the pilot symbols (ru). MNPUSCHrep, MNPUSCHidentical
and Nslots are used on the repetitions of each slot, as described in section 5.4. In the end,
the codeword, codeword rx, is modulated into the generated signal, signal tx.

6.2.2.2 Channel Implementation

In this sub-subsection, it’s introduced some necessary knowledge about the used channel
models. A suitable model should be chosen, so the simulation is as close to reality as possible.

AWGN channel model: The first channel model is used when no fading or multipath
propagation is present, only adding AWGN to the signal. The received signal is represented as
y = x+n, where n represents the noise contributed by AWGN, which is Gaussian distributed
with zero mean.

The MATLAB function ‘randn’ generates normally distributed random numbers with a
mean of 0 and a variance of 1. The output is scaled so the result has the desired variance
(which depends on Eb/N0).

Fading channel model: In a wireless communications system, the transmitted signal al-
ways suffers from multipath fading. To represent the multipath component, three different
delay profiles are suggested by 3GPP. These are Extended Pedestrian A (EPA), Extended
Vehicular A (EVA) and Extended Typical Urban (ETU), with each tap delay and respective
power represented on Tables 6.5, 6.6 and 6.7. Furthermore, a maximum Doppler frequency is
specified for each one of them, corresponding to 5Hz, 70Hz and 300Hz, respectively. It can be
noticed that the EPA model has 7 multipath components, while the EVA and ETU models
have 9 multipath components each. MATLAB’s built-in function ‘rayleighchan’ is used to
implement the three channel models. Therefore, the received signal is represented as y = Hx,
where H is the channel response.

Fading channel with AWGN model: In this model, AWGN is also added to the three
fading channel possibilities. Therefore, the received signal is represented as y = Hx + n,
where H is the channel response and n is the AWGN.
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Table 6.5: EPA Delay Profile.

Excess tap delay
[ns]

Relative Power
[dB]

0 0.0

30 -1.0

70 -2.0

90 -3.0

110 -8.0

190 -17.2

410 -20.8

Table 6.6: EVA Delay Profile

Excess tap delay
[ns]

Relative Power
[dB]

0 0.0

30 -1.5

150 -1.4

310 -3.6

370 -0.6

710 -9.1

1090 -7.0

1730 -12.0

2510 -16.9

Table 6.7: ETU Delay Profile.

Excess tap delay
[ns]

Relative Power
[dB]

0 -1.0

50 -1.0

120 -1.0

200 0.0

230 0.0

500 0.0

1600 -3.0

2300 -5.0

5000 -7.0

The Channel is represented in Figure 6.1a, between the transmitter and the receiver
sections. The input and output of the function is represented in Table 6.8. The channel
model to use is decided based on mode value. If it has the value 1, only AWGN is added.
If it has the values 2, 3 or 4, the EPA, EVA and ETU fading models are used, respectively.
If the values are 5, 6 or 7, EPA, EVA and ETU fading models are used, but AWGN is also
added. Finally, there is an extra mode, where no interference whatsoever is added and the
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transmitted and received signals are the same (mode= 8).

Additionally as user input is the EbN0, used to calculate the variance, when necessary.
Table 6.8 represents the ChannelSim() function inputs and output.

Table 6.8: Function ChannelSim() description.

Function ChannelSim()

Input signal tx, EbN0, mode

Output signal rx

6.2.2.3 Receiver Implementation

The Receiver is represented in Figure 6.1a by the green dotted lines. The functions
inside the gray dotted squares are bypassed, since they are only necessary for the USRP
co-simulation testing - section 6.3.

The first steps on the receiver implementation are the general parameters and the DMRS
(pilot symbols) generation. These functions are equal on both the transmitter and the receiver
sides.

GetParametersF1() corresponds to the first function (Table 6.1) and the reason why it
is called on both sides is so the simulation works when two different computers are used.
Obviously, the input values have to be the same on the transmitter and the receiver. This
implementation is accurate, since the eNodeB always informs the UE on what values to use
(discussed in section 5.4). When calling this function on the receiver side, the output data tx

is empty.

The second function is called GenerateDMRSF1() and its inputs and output are represented
on Table 6.3. Afterwards, it is possible to estimate the channel based on the received pilot
symbols that are compared with the calculated ones. To do this, function ChannelEstF1()

is called and its inputs and outputs are represented in Table 6.9.

Table 6.9: Function ChannelEstF1() description.

Function ChannelEstF1()

Input
data rx, ru, NULsc, Nsc, NRUsc, NULsymbols,

NULslots, Nslots, MNPUSCHidetical, MNPUSCHrep

Output H zf

First, a reference grid is generated using the know pilot values (ru - output of
GenerateDMRSF1()), with the unknown values being zero. To generate the grid, NULsc, Nsc,
NRUsc, NULsymbols, NULslots, Nslots, MNPUSCHidentical and MNPUSCHrep are necessary.
Then, data rx is also rearranged in grid format. Finally, by comparing both grids, H zf is
calculated, according to subsection 4.3.1.

Function DemodulationProcessF1() performs SC-FDMA signal recovery (including re-
source de-mapping), demodulation and descrambling according to section 4.1.1. Furthermore,
it takes into account the total number of repetitions (Nrep). This means it separates the signal
in its several repetitions, with each one being separately demodulated. Thus, one codeword
per repetition is obtained.
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Table 6.10: Function DemodulationProcessF1() description.

Function DemodulationProcessF1()

Input
signal rx, NULslots, NULsymbols, Nslots, NULsc, NRUsc,

NNCELLid, MNPUSCHidentical, MNPUSCHrep, Nsc,

Nru, Qm, RNTI, H zf, E, Ns, Nsf, Nf

Output codeword rx, Ns, Nsf, Nf

Table 6.10 shows the input and output parameters of the function. RNTI, NNCELLid, Nf
and Ns are used to perform descrambling. Qm is necessary to decide which demodulation
scheme to use. MNPUSCHidentical, MNPUSCHRep and Nslots are used to know the location
of each repeated stream and separate them. Nsc, Nru, NULsymbols, NULslots, NULsc, NRUsc
and E are important for the resource demapping. H zf is utilized in the equalization step.
In the end, each recovered codeword is stored in the matrix, codeword rx. Ns, Nsf and Nf

values are updated.

Function DecodingProcessF1() performs the steps described in section 4.1.2 - CRC re-
moval, turbo decoding and rate dematching, with Table 6.11 showing its inputs and outputs.
Rate dematching requires TBS and RVidx parameters. In this function, each codeword on
matrix codeword rx is decoded, becoming a transport block. Matrix data err represents
all the recovered transport blocks, even if the CRC check part showed errors were present.
Matrix data noerr shows only the transport blocks where no errors were detected by the
CRC check step. iteration index displays how many iterations were necessary to decode
each repetition on the turbo decoder step. errors signals which bit streams didn’t pass the
CRC check step. All inputs and outputs of the function are displayed on Table 6.11.

Table 6.11: Function DecodingProcessF1() description.

Function DecodingProcessF1()

Input codeword rx, RVidx, TBS

Output data rx, data noerr, data err, iteration index, errors

The recovered transport block data rx (mathematical mode of the several repetitions on
matrix data noerr), matrices data noerr and data err with the corresponding iteration
indexes (iteration index) and which decoded transport blocks were wrong (errors) are
displayed when calling the function DataDispF1(). The number of slots (Ns), subframes
(Nsf) and frames (Nf) utilized is also shown. Inputs of the function are shown on Table 6.12.

Table 6.12: Function DataDispF1() description.

Function DataDispF1()

Input
data rx, data noerr, data err, iteration index

errors, Ns, Nsf, Nf

Output -

62



6.2.3 NPUSCH Format 2 Simulation

The simulation is divided in transmitter, channel and receiver. Each one of them is
explained in depth on sub-subsections 6.2.3.1, 6.2.3.2 and 6.2.3.3.

6.2.3.1 Transmitter Implementation

The transmitter is represented in Figure 6.1a by the blue dotted lines. Required pa-
rameters are generated as user input. If the user leaves them empty or chooses an impossible
combination of values, they are automatically assigned, when needed. After, it’s possible to
obtain a set of required parameters to design the transport block. This is done using the
function GetParametersF2(). Input and output parameters are represented in Table 6.13.

Table 6.13: Function GetParametersF2() description.

Function GetParametersF2()

Input deltaf, ACKNACK, RNTI, NANRep

Output
Qm, Nsc, NULslots, NULsymbols, NRUsc, Nru, NULsc

NNCELLid, HARQACK, NANrep, RNTI, Ns, Nsf, Nf

Outputs RNTI and Nsc are calculated using the user input DCI values according to section
5.5. NULsymbols is always 7 and NULslots is determined based on Table 2.3. NULsc is
dependent on the deltaf value, which is chosen by the user. Ns, Nsf and Nf counters,
corresponding to the number of slots, subframes and frames, respectively, are initialized with
value 0. Both Nru and NRUsc are always 1. HARQACK is an indicator and has the value 1 if
the downlink transport block sent is received with success, or 0, otherwise. This parameter
is randomly selected. NANrep is a higher layer parameter between 0 and 7, chosen as a user
input. NNCELLid has a range of values between 0 and 503. Since its calculation is a downlink
procedure and for simplification, this value is always 1 (can easily be changed by the user).

Function CodingProceduresF2() performs the coding step described in subsection 3.2.1,
with the HARQACK indicator being coded into codeword, codeword rx. Table 6.14 shows the
function input and output.

Table 6.14: Function CodingProceduresF2() description.

Function CodingProceduresF2()

Input HARQACK

Output codeword rx

Function GenerateDMRSF2() generates the DMRS in order to facilitate the transport block
recovery on the receiver side. More information about the generation of DMRS can be found
on section 3.3.

Table 6.15: Function Generate DMRSF2() description.

Function Generate DMRSF2()

Input NRUsc, NNCELLid, Nru, NULslots, group hopping

Output ru
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According to Table 6.15, the function receives as inputs NRUsc, NNCELLid, Nru and
NULslots, since the formulas used to calculate these signals depend on the mentioned vari-
ables. group hopping is always empty, since for NPUSCH format 2 group hopping is always
deactivated.

Function ModulationProcessF2() performs modulation, scrambling and SC-FDMA sig-
nal generation (including resource mapping) according to section 3.2.2. Furthermore, it re-
peats the only resource unit available NANrep times.

Table 6.16: Function ModulationProcessF2() description.

Function ModulationProcessF2()

Input
codeword tx, Nsc, NANrep, NULslots, NULsymbols, Nru

NULsc, NRUsc, Ns, Nsf, Nf, ru, Qm, RNTI, NNCELLid

Output signal tx

Table 6.16 shows the input and output parameters of the function. RNTI, NNCELLid, Nf
and Ns are used on the scrambling initialization formula. Qm shows the modulation scheme
to use. Nsc, Nru, NRUsc, NULsc, NULslots and NULsymbols are utilized on the resource
mapping of the data and the pilot symbols (ru). NANrep represents the number of times the
only resource unit available should be repeated. In the end, the codeword, codeword tx, is
transformed in the signal to be sent, signal tx.

6.2.3.2 Channel Implementation

The Channel is represented in Figure 6.1a between the transmitter and receiver parts,
where the possible channel models used for testing are equal for NPUSCH formats 1 and 2.
Therefore, subsection 6.2.2.2 should be consulted for more information.

6.2.3.3 Receiver Implementation

The Receiver is represented in Figure 6.1a by the green dotted lines. The functions
inside the gray dotted squares are bypassed, since they are only necessary for the USRP
co-simulation testing - section 6.3.

The first steps on the receiver implementation are the general parameters and the DMRS
(pilot symbols) generation. These functions are equal on both the transmitter and the receiver
sides.

GetParametersF2() corresponds to the first function (Table 6.13) and the reason why
it is called on both sides is so the simulation works when two different computers are used.
Obviously, the input values have to be the same on the transmitter and the receiver. This
implementation is accurate, since the eNodeB always informs the UE on what values to use
(discussed in section 5.5). When calling this function on the receiver side, the output HARQACK
is empty.

The second function is called GenerateDMRSF2() and its inputs and output are represented
on Table 6.15. Afterwards, it is possible to estimate the channel based on the received pilot
symbols that are compared with the calculated ones. To do this, function ChannelEstF2()

is called with its inputs and outputs being represented in Table 6.17.
First, a reference grid is generated using the know pilots (ru), with the unknown values

being zero. To generate the grid, NULsc, Nsc, NULslots, NULsymbols and NARrep are neces-
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Table 6.17: Function ChannelEstF2() description.

Function ChannelEstF2()

Input signal rx, ru, NULsc, Nsc, NULslots, NULsymbols, NANrep

Output H zf

sary. Then, signal rx is also rearranged in grid format. Finally, by comparing both grids
H zf is calculated, according to subsection 4.3.1.

Function DemodulationProcessF2() performs SC-FDMA signal recovery (including re-
source demapping), demodulation and descrambling according to subsection 4.2.1. Further-
more, it separates the signal in its several repetitions. Each one is demodulated into a matrix
with several codewords, one for each repetition.

Table 6.18: Function DemodulationProcessF2() description.

Function DemodulationProcessF2()

Input
signal rx, H zf, NULslots, NULsymbols, NANrep, Nru

NULsc, NRUsc, Nsc, H zf, Qm, RNTI, NNCELLid, Ns, Nsf, Nf

Output codeword rx, Ns, Nsf, Nf

Table 6.18 shows the input and output parameters of the function. RNTI, NNCELLid,
Nf and Ns are used to perform descrambling. Qm is necessary to decide which demodulation
scheme to use. NANrep is used to know the total number of repetitions. Nsc, Nru, NULsymbols,
NULslots, NULsc and NRUsc are important for the resource demapping. H zf is utilized in the
equalization step. In the end, each recovered codeword is stored in the matrix, codeword rx.
Ns, Nsf and Nf values are updated.

Function DecodingProcessF2() performs the decoding step described in subsection 4.2.2,
with each codeword in matrix codeword rx being decoded into an HARQACK indicator. The
values are combined so the most probable indicator is selected. If all of them have errors,
the decoding was unsuccessful. All inputs and outputs of the function are displayed on Table
6.19.

Table 6.19: Function DecodingProcessF2() description.

Function DecodingProcessF2()

Input codeword rx

Output HARQACK

The recovered codewords, codeword rx, are displayed when calling the function
DataDispF2(). The number of slots (Ns), subframes (Nsf) and frames (Nf) utilized is also
shown. Inputs of the function are shown on Table 6.20.

6.2.4 NPRACH Simulation

The simulation depicted in Figure 6.1b is divided in transmitter, channel and receiver.
Each one of them is explained in depth on sub-subsections 6.2.4.1, 6.2.4.2 and 6.2.4.3.
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Table 6.20: Function DataDispF2() description.

Function DataDispF2()

Input codeword rx, ns, nsf, nf

Output -

6.2.4.1 Transmitter Implementation

The transmitter is represented in Figure 6.1b by the blue dotted lines. SIB2 necessary
parameters are generated as user input. If the user leaves them blank or chooses an impossible
combination of values, they are automatically assigned, when needed.

Table 6.21: Function NprachGen() description.

Function NprachGen()

Input NNPRACHsc, NNPRACHscoffset, NNPRACHrep, NPRACHFormat, NNCELLid

Output signal tx

NNPRACHsc represents the total number of subcarriers allocated to NPRACH,
NNPRACHscoffset corresponds to the frequency location of the first allocated subcarrier and
NNPRACHrep is the number of times the generated preamble is repeated. NPRACHFormat is an
user input that defines the CP size - section 3.4. NNCELLid has a range of values between
0 and 503. Since its calculation is a downlink procedure and for simplification, this value is
always 1 (can easily be changed by the user). The preamble is generated according to section
3.4.

6.2.4.2 Channel Implementation

The Channel is represented in Figure 6.1b between the transmitter and receiver im-
plementations, where the possible channel models to be tested are equal to the ones used
on NPUSCH formats 1 and 2. Therefore, subsection 6.2.2.2 should be consulted for more
information.

6.2.4.3 Receiver Implementation

The Receiver is represented in Figure 6.1b by the green dotted lines.

Table 6.22: Function NprachDetect() description.

Function NprachDetect()

Input
signal rx, NNPRACHsc, NNPRACHscoffset,

NNPRACHrep, NPRACHFormat, NNCELLid,

Output -

In the receiver side a preamble like the one expected (sent in the transmitter) is generated.
Afterwards, a cross-correlation between the received and expected signals is done. If it exceeds
a determined threshold, obtained by trial and error, the sequence is detected. It is displayed
in the MATLAB editor if it was, in fact, a PRACH sequence or not.
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6.3 USRP Co-simulation

This section describes the implementation of a RF front-end (USRP) that transmits the
baseband signal, previously generated on MATLAB. Furthermore, another USRP captures
the transmitted signal to be decoded on MATLAB. This co-simulation environment allows
the generation/capture of signals in real-time with actual hardware, by reusing the MATLAB
behavioral model. This has two advantages. First, a closer to reality implementation allows
to further test the protocol and to correct possible bugs, which helps when an implementation
of the protocol is made in actual hardware. Secondly, it gives a degree of comparison between
the simulation-only environment, where no time constrains need to be met.

The chosen platform was an USRP B200 (only one input/output) for the transmitter and a
B210 (two inputs/two outputs) for the receiver. A USRP is a Software Defined Radio (SDR)
system, which consists on a radio transceiver, where components usually implemented in
hardware are instead implemented by means of software. This reduces development costs
drastically. This is the first reason why the USRP was chosen. Two more reasons were
considered. First, the USRP package available on MATLAB greatly simplifies the interfacing
between the laptop and the RF front-end. Secondly, contrary to some SDR devices, the
connection to the laptop is made using Universal Serial Bus (USB) 3.0, which increases the
reliability and the speed of the connection. The choice between B200 and B210 is due to the
number of inputs/outputs, since NB-IoT is SISO or SIMO on uplink.

Observing Figure 6.1a, it’s possible to conclude two new blocks need to be added on the
receiver side of the simulation. Their main goal is to synchronize the received and transmitted
signals. This synchronization consists of two major parts: Carrier Frequency Offset (CFO)
and Symbol Time Offset (STO). This synchronization at the receiver must be performed.

More details about the USRP implementation can be found on subsection 6.3.1. More
information about CFO and STO synchronization functions is described in subsections 6.3.2
and 6.3.3, respectively.

6.3.1 USRP Implementation

The USRP transmission/reception requires several steps, depicted in Figure 6.2.

The blue and greed dotted lines represent the transmitter and receiver simulated/im-
plemented in MATLAB, shown in Figure 6.1a. The output of the MATLAB transmitter
(signal tx) is in baseband format. The USRP receives this waveform from the laptop, via a
USB 3.0 connection, with 16 bits of resolution.

On the actual USRP, there is a Field-Programmable Gate Array (FPGA) that performs
the Digital Signal Processing (DSP) operations. That part is represented in Figure 6.2 in
orange. The other operations are done in the USRP RF daughter-board, the gray part of
Figure 6.2.

Both I/Q components of the complex baseband signal are up-converted on the USRP’s
FPGA. Then, they are converted to analog format, go through a filter and are amplified.
This is done in the USRP RF daughter-board. Afterwards, the signal is transmitted using a
Delock’s omni-directional SubMiniature version A (SMA) antenna (-3.5dBi at 900MHz).

On the receiver side, the chain is inverted. The signal goes from the RF format into
baseband. First, it is amplified and divided in I/Q components. Those components are
filtered and go through an Analog-to-Digital Converter (ADC). At this point, the signal is
in digital format and ready to enter the USRP’s FPGA to be down-converted. The I/Q
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Figure 6.2: Simplified model of the USRP modulation/demodulation process [oE17].

components are sent to the laptop using 16 bit resolution. The baseband signal (signal rx)
enters the MATLAB receiver and goes through the simulation chain, represented in Figure
6.1a. In this simulation, the functions inside the gray dotted squares have to be included,
since they are necessary to perform CFO and STO compensations.

To configure the USRP components it was used the MATLAB USRP Support Package.
It includes the Universal Hardware Driver (UHD) driver and provides a design and modeling
environment. The first step is to define properties of a transmitter and receiver object.

When calling the ‘transmitter object = comm.SDRuTransmitter’ MATLAB func-
tion, available on the USRP package, a transmitter object is created. The following
transmitter object properties should be defined:

1. “CenterFrequency” - the center frequency used is 900MHz (for stand-alone mode only).

2. “Gain” - RF front-end gain used is 25dB.

3. “MasterClockRate” - The D/A clock rate is (1.92 × 4MHz). Valid ranges are between
56 and 566 for B200 and B210 USRPs.

4. “InterpolationFactor” - Interpolation value is 4, which corresponds to a sampling rate
of MasterClockRate/4, or approximately, 1.92MHz (value stated in the protocol specs).

5. “TransportDataType” - Transport data type used is ‘int16’.

Afterwards, the object can accept an input signal from MATLAB, transmitting it to
the board using the UHD - function ‘step(transmitter object, input signal)’ is used.
In this case, input signal is a vector of double precision [Mat17b].

When calling the ‘receiver object = comm.SDRuReceiver’ MATLAB built-in func-
tion, a receiver object is created. The following receiver object properties should be de-
fined:
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1. “CenterFrequency” - the center frequency used is 900MHz (for stand-alone mode only).

2. “Gain” - RF front-end gain used is 30dB.

3. “MasterClockRate” - The A/D clock rate is (1.92 × 4MHz). Valid ranges are between
56 and 566 for B200 and B210 USRPs.

4. “DecimationFactor” - Decimation value is 4, which corresponds to a sample rate of
MasterClockRate/4, or approximately, 1.92MHz (value stated in the protocol specs).

5. “TransportDataType” - Transport data type used is ‘int16’.

6. “FrameLength” - Length of each frame to be received.

7. “NumFramesInBurst” - Number of frames received in a row, or in other words, the
expected signal length.

Function ‘[output signal, LEN] = step(receiver object)’ receives signals from the
USRP board using UHD packets. output signal is a vector of complex double precision.
LEN is the actual data length [Mat17a].

6.3.2 Carrier Frequency Offset

Function frequencyoffset() addresses the problem of the frequency mismatch between
the transmitter and the receiver. The algorithm is based on the added CP that precedes each
SC-FDMA symbol.

According to [JKD16], the estimated CFO can be calculated from the ‘argument’ of the
multiplication of the SC-FDMA symbol conjugate by its CP according to equation 6.1:

ξ =
1

2pi
arg(

NCP∑
n=1

r∗(n−NCP +NIFFT )C(n)) (6.1)

where r(n) is the received symbol without CP, with NIFFT being its length. NCP is the CP
length with its actual values being C(n).

This is done for each received symbol. Then, the several estimated values are averaged
into a final CFO value.

Table 6.23 shows the inputs and outputs of the previously explained function. NULsc is
necessary because symbol length (NIFFT ) varies with it. data rxt is the CFO compensated
version of data rxft.

Table 6.23: Function FrequencyOffset() description.

Function FrequencyOffset()

Input data rxft, NULsc

Output data rxt

Since the allowed range of values for the function ‘argument’ is [−π, π], the estimated
normalized CFO range is [−0.5, 0.5] ⇒ [−∆f

2 ,
∆f
2 ]. Considering CFO can be larger, this

technique can lead to errors in the final estimated value.
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6.3.3 Symbol Time Offset

Function TimeOffset() addresses the problem of the unknown SC-FDMA symbol arrival
time. As previously stated (in section3.3), the pilot symbols (DMRS) are known at the receiver
and so is their position on the resource grid. Depending on the Format, ru is calculated with
the help of NNCELLid, Nru, NULslots and NRUsc. Then, these symbols are put in a grid format
(the unknown values are zero) and go through the SC-FDMA modulation chain, including
repetitions. All the remaining parameters are necessary to perform this step. Depending on
Format value, the set of variables required to use vary. The ones not used are empty matrices.
This way, it is obtained a signal that can be compared with the received one. By using the
built-in MATLAB function ‘xcorr’, it’s obtained the cross-correlation sequence between the
known values signal with the received one. The maximum correlation index value corresponds
to the symbol time offset.

Table 6.24: Function TimeOffset() description.

Function TimeOffset()

Input
data rxt, Format, NRUsc NNCELLid, Nru, NULslots, NULsc,

deltaf, Nsc, NULsymbols, Qm, MNPUSCHrep,

MNPUSCHidentical, NANRep, Nslots

Output data rx

The number of available DMRS may not be enough to give an accurate time offset.
Therefore, fine synchronization might be necessary in order to obtain an exact STO value.

This chapter explained the implemented practical work. It is divided in two main parts.
The first one is the MATLAB simulation, where transmitter/receiver chains were coded.
After, a co-simulation using two USRPs was described. On the next chapter, both implemen-
tations are evaluated. Constellations, eye diagrams, Bit Error Ratio (BER) performances,
PAPR analysis and magnitude spectrums are obtained and analyzed. A comparison between
both parts of the practical work is provided.
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Chapter 7

Results

This chapter is focused on the overall performance results. Both MATLAB simulation
environment and USRP co-simulation are subjected to testing and analysis. Section 7.1 is
focused on the MATLAB simulation and section 7.2 on the USRP co-simulation results.

7.1 Simulation Results

Simulation results for NPUSCH format 1, NPUSCH format 2 and NPRACH are displayed
in this section. Magnitude spectrums, constellations, eye diagrams and BER performances are
measured using different channel models (AWGN and fading channel). Performance with and
without ZF equalizer/turbo coding is compared. Furthermore, different modulation schemes’
(BPSK and QPSK) performance is also analyzed. Finally, NPRACH preamble is studied,
since by being a ZC sequence its CAZAC properties should be verified.

Appendix A is a small user guide, that exemplifies how to run all the possible simulations.
Section A.1 explains how the run NPUSCH format 1 and 2 simulations, section A.2 shows
how to run the BER measure simulation and section A.3 describes how to run the NPRACH
simulation.

7.1.1 NPUSCH Format 1 Simulation Results

This subsection displays the results regarding NPUSCH format 1. Figure 7.1 presents
a schematic of the implemented chain. It is divided in coding/decoding procedures, which
is in blue color, and modulation/demodulation procedures, in green color. Points where
constellations and eye diagrams were obtained are represented by the letter a) and b). The
first corresponds to the results on the transmitter side and the second on the receiver side.
Several switches are represented throughout the figure, using points 1), 2) and 3). 1) and
2) are used to measure BER results. Essentially, those parts were bypassed on the code, so
the BER gain could be measured with and without that specific step. This way, the gain
difference could be obtained and, as a consequence, their importance in the general chain
could be assessed. Point 1) corresponds to the turbo coder/decoder bypass and 2) means
no equalizer is used. Point 3) is in Figure 7.1 to represent the several channels that can be
tested. Each mode corresponds to a different channel model. More information about each
mode can be found on sub-subsection 6.2.2.2. Finally, in the blue circles are the transmitted
and received transport blocks. When compared, the BER can be calculated. In appendix
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B.1, a known sequence was imposed on the beginning of the chain so a reference sequence
test is available in each main point of the implemented simulation.

Figure 7.1: MATLAB implemented chain schematic for NPUSCH format 1. Measures of
constellations and eye diagrams happen on points a) and b).

Several measures are taken and analyzed throughout this subsection. A small overview of
them is made below:

1. On sub-section 7.1.1.1, it is displayed the transmitted constellation and eye diagram,
for both BPSK and QPSK. These results were obtained on point a) of Figure 7.1.

2. On sub-section 7.1.1.2, it is shown the received constellations and eye diagrams, when
using an AWGN channel - on point 3) of Figure 7.1, mode = 1. Two different Eb/N0

values were tested - 0dB and 8dB. Only QPSK modulation scheme was analyzed. These
results were obtained on point b) of Figure 7.1.

3. On sub-section 7.1.1.3, it is depicted the received constellations and eye diagram, when
using 3GPP specified fading channel models. Three fading models were tested (EPA,
EVA, ETU) - on point 3) of Figure 7.1, mode = 2,3,4. Only the QPSK modulation
scheme was analyzed. These results were obtained on point b) of Figure 7.1.

4. On sub-section 7.1.1.4, it is presented the received constellations and eye diagrams, when
using 3GPP specified fading channel models with added AWGN. Only the EVA model
was tested - on point 3) of Figure 7.1, mode = 6. Both QPSK and BPSK modulation
schemes were evaluated. Two different Eb/N0 values were analyzed - 0dB and 8dB.
These results were obtained on point b) of Figure 7.1.

5. On sub-section 7.1.1.5, it is analyzed the BER performance, when using the AWGN
channel mode - on point 3) of Figure 7.1, mode = 1. Tests with and without turbo
coding/equalizer for both QPSK and BPSK were analyzed - switches 1) and 2) of
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Figure 7.1. Afterwards, BER performances for the three channel fading models with
AWGN were tested (on point 3) of Figure 7.1, mode = 5,6,7), with both switches closed.
Then, an analysis when using the EPA channel model with AWGN (on point 3 of Figure
7.1, mode = 6) with and without turbo coding/equalizer for both QPSK and BPSK was
made - switches 1) and 2) of Figure 7.1. Finally, the influence of NRep on the BER
value was tested.

6. On sub-section 7.1.1.6, it is displayed the magnitude spectrum of the transmitted and
received signals .

7. On sub-section 7.1.1.7, it is calculated the PAPR value of the SC-FDMA transmission.

Values used when coding and modulating the transport block are: ∆f = 15kHz, RNTI
= 1, Isc = 5, IMCS = 2, IRU = 2, IRep = 3, rvdci = 0 for QPSK and ∆f = 15kHz, RNTI
= 1, Isc = 5, IMCS = 0, IRU = 2, IRep = 3 and rvdci = 0 for BPSK. The only value that
changes is the one that selects the modulation to be used, so an accurate comparison between
BPSK and QPSK can be made. These values are constant throughout this subsection, unless
otherwise mentioned.

7.1.1.1 Transmitter - Constellations and Eye Diagram

Figure 7.2 shows the transmitted constellation. It is obtained using the available MATLAB
function ‘scatterplot’, after the modulation mapping step is performed - point a) of Figure
7.24. Results are displayed both for QPSK (Figure 7.2a) and BPSK (Figure 7.2b) modulation
schemes.

(a) QPSK transmitter constellation. (b) BPSK transmitter constellation.

Figure 7.2: Transmitter constellations.

Figure 7.3 shows the transmitted eye diagram. It is obtained using the built-in MATLAB
function ‘eyediagram’ on point a) of Figure 7.24.
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Figure 7.3: Transmitter eye diagram - BPSK/QPSK have equal eye diagrams.

When comparing the MATLAB constellations with the expected ones, depicted on Figures
3.8 and 3.9, it is easy to conclude results are according to expected.

7.1.1.2 AWGN Channel Model - Constellations and Eye Diagrams

This sub-subsection results were obtained considering the channel is only composed of
AWGN - according to sub-subsection 6.2.2.2, this means that on point 3) of Figure 7.24, mode
= 1. Two values of Eb/N0 were tested. Only QPSK results are considered at this stage to
avoid repetition.

First, results for Eb/N0 equal to 8dB are depicted. Figure 7.4 shows the constellation
with and without equalizer and Figure 7.5 shows the eye diagram with and without equalizer.
Secondly, results for Eb/N0 equal to 0dB are depicted. Figure 7.6 shows the constellation
with and without equalizer and Figure 7.7 shows the eye diagram with and without equalizer.

It is possible to conclude, the results with equalizer are considerably worst. This is due to
the fact that ZF equalizers do not compensate additive noise. As a consequence, any added
noise gets boosted by a large factor which destroys the actual signal. Furthermore, when
Eb/N0 = 0dB, the signal can only be recuperated if no equalizer is utilized.
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(a) QPSK constellation for AWGN channel
with no equalizer present.

(b) QPSK constellation for AWGN channel
when using ZF equalizer.

Figure 7.4: QPSK constellation for AWGN channel when Eb/N0 is 8dB.

(a) QPSK eye diagram for AWGN channel
with no equalizer present.

(b) QPSK eye diagram for AWGN channel
when using ZF equalizer.

Figure 7.5: QPSK eye diagram for AWGN channel when Eb/N0 is 8dB.
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(a) QPSK constellation for AWGN channel
with no equalizer present.

(b) QPSK constellation for AWGN channel
when using ZF equalizer.

Figure 7.6: QPSK constellation for AWGN channel when Eb/N0 is 0dB.

(a) QPSK eye diagram for AWGN channel
with no equalizer present.

(b) QPSK eye diagram for AWGN channel
when using ZF equalizer.

Figure 7.7: QPSK eye diagram for AWGN channel when Eb/N0 is 0dB.
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7.1.1.3 Fading Channel Models - Constellations and Eye Diagrams

This subsection considers only the fading channel models that do not include AWGN -
on point 3) of Figure 7.24, mode = 2/3/4. Only QPSK results are considered at this stage to
avoid repetition.

First, results for EPA channel model (Table 6.5) are depicted. Figure 7.8 shows the
constellation with and without equalizer and Figure 7.9 represents the eye diagram with and
without equalizer. After, results for EVA channel model (Table 6.6) are depicted. Figure
7.10 shows the constellation with and without equalizer, and Figure 7.11 represents the eye
diagram with and without equalizer. Finally, results for ETU channel model (Table 6.7) are
depicted. Figure 7.12 shows the constellation with and without equalizer, and Figure 7.13
represents the eye diagram with and without equalizer.

(a) QPSK constellation for EPA channel
model with no equalizer present.

(b) QPSK constellation for EPA channel
model when using ZF equalizer.

Figure 7.8: QPSK constellation for EPA channel model.
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(a) QPSK eye diagram for EPA channel model
with no equalizer present.

(b) QPSK eye diagram for EPA channel model
when using ZF equalizer.

Figure 7.9: QPSK eye diagram for EPA channel model.

(a) QPSK constellation for EVA channel
model with no equalizer present.

(b) QPSK constellation for EVA channel
model when using ZF equalizer.

Figure 7.10: QPSK constellation for EVA channel model.
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(a) QPSK eye diagram for EVA channel model
with no equalizer present.

(b) QPSK eye diagram for EVA channel model
when using ZF equalizer.

Figure 7.11: QPSK eye diagram for EVA channel model.

(a) QPSK constellation for ETU channel
model with no equalizer present.

(b) QPSK constellation for ETU channel
model when using ZF equalizer.

Figure 7.12: QPSK constellation for ETU channel model.
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(a) QPSK eye diagram for ETU channel model
with no equalizer present.

(b) QPSK eye diagram for ETU channel
model when using ZF equalizer.

Figure 7.13: QPSK eye diagram for ETU channel model.

It is possible to conclude, the results with equalizer are considerably better, which is
expected. Therefore, in the three channel models the signal is always recovered, as long as
ZF equalizer is used.
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7.1.1.4 Fading Channel with AWGN - Constellations and Eye Diagrams

This sub-subsection considers the channel is composed by a fading channel model (EVA)
with AWGN - in point 3) of Figure 7.24, this means mode = 6. Both QPSK and BPSK results
are considered at this stage to provide some degree of comparison. Only EPA channel model
is considered to avoid repetition. Eb/N0 is equal to 8dB.

QPSK: First, QPSK is considered. Results are depicted in Figure 7.14, which shows the
constellation with and without equalizer, and Figure 7.15, which shows the eye diagram with
and without equalizer.

(a) QPSK constellation for ETU channel
model with no equalizer present.

(b) QPSK constellation for ETU channel
model when using ZF equalizer.

Figure 7.14: QPSK constellation for EVA channel model with AWGN (Eb/N0 is 8dB).

BPSK: After, BPSK is considered. Figure 7.16 shows the constellation with and without
equalizer, and Figure 7.17 shows the eye diagram with and without equalizer.
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(a) QPSK eye diagram for ETU channel model
with no equalizer present.

(b) QPSK eye diagram for ETU channel
model when using ZF equalizer.

Figure 7.15: QPSK eyediagram for EVA channel model with AWGN (Eb/N0 is 8dB).

(a) BPSK constellation for ETU channel
model with no equalizer present.

(b) BPSK constellation for ETU channel
model when using ZF equalizer.

Figure 7.16: BPSK constellation for EVA channel model with AWGN (Eb/N0 is 8dB) - no
equalizer is implemented on the left figure and ZF equalizer is used on the right figure.
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(a) BPSK eye diagram for ETU channel model
with no equalizer present.

(b) BPSK eye diagram for ETU channel model
when using ZF equalizer.

Figure 7.17: BPSK eye diagram for EVA channel model with AWGN (Eb/N0 is 8dB) - no
equalizer is implemented on the left figure and ZF equalizer is used on the right figure.

It is possible to conclude, the results with equalizer are considerably better, which is
expected. Both signals with Eb/N0 equal to 8dB, are possible to recuperate. For lower values
of Eb/N0, where more AWGN is present, the signal won’t be possible to decode. This means
a equalizer with better performance (which takes AWGN into consideration), should be used
if the situation requires it.

To conclude, the signal is always recovered, as long as ZF equalizer is used and Eb/N0 isn’t
lower then 8dB. This value is obviously variable, depending on the NRep value and the number
of turbo decoding iterations as explained in subsections 7.1.1.5 and 4.1.2.2, respectively.

When comparing with the results of sub-subsection 7.1.1.2, this are slightly worst for the
same Eb/N0. Therefore, even though the equalizer compensates the fading component, its
effects are still noticeable.

When comparing both modulation schemes, even though QPSK has double bit rate for
the same bandwidth, both performances are quite similar in the tested conditions.

7.1.1.5 BER

The BER corresponds to the ratio between the number of wrong bits in the received data
with the total number of bits.

Performing a BER simulation is a lengthy process. It’s necessary to run individual sim-
ulations at each Eb/N0 of interest. The results also have to be statistically significant. For
example, a BER of 10−5 means one bit in 100 000 bits will have an error. If the measured
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data only contains 100 bits, the error probably won’t be seen.

Once enough simulations are performed for each Eb/N0 value of interest, it’s possible to
plot the results. The Y-axis should be plotted on a logarithmic scale, whereas the X-axis
should be plotted on a linear scale [Gil03]. This requires the MATLAB function ‘semilogy’

instead of the more common ‘plot’.

In all simulations, BER tests were run 1000 times for each Eb/N0. Performance was
evaluated for an AWGN channel, between the three fading channel models under test (EPA,
EVA and ETU) and for one of the fading channel models with added AWGN.

BER - AWGN channel model: In this subsection, the BER is calculated considering an
AWGN channel. Performances with and without turbo encoder/equalizer are considered -
switches 1) and 2) of Figure 7.1. QPSK and BPSK implementations are compared.

Figure 7.18a shows the BER for both QPSK and BPSK implementations with and without
equalizer. Figure 7.18b depicts the BER performances for both QPSK and BPSK modulation
schemes with and without turbo encoding.

(a) BER performance results for an AWGN
channel with and without equalizer for both
QPSK and BPSK.

(b) BER performance results for an AWGN
channel with and without turbo encoding for
both QPSK and BPSK.

Figure 7.18: BER performance results for an AWGN channel.

Observing Figure 7.18, one might conclude that there is no advantage to BPSK, since in
both examples it performs identically to QPSK, but has half the bit rate.

Even though BPSK and QPSK have the same BER performance, the Signal-to-Noise
Ratio (SNR) will differ by 3dB for the same BER. This is why BPSK is still useful. Equation
7.1 represents the general SNR formula and 7.2 shows the relation between QPSK and BPSK
bit rates.

SNR =
Rb × Eb
B ×N0

(7.1)

Rb(QPSK) = 2×Rb(BPSK) (7.2)
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Considering Eb/N0 and the available bandwidth (named B) is equal for both modulations,
the only variable that changes is the bit rate (Rb). Therefore, equation 7.3 calculates the SNR
gain in dB.

SNR(BPSK)

SNR(QPSK)
=

10log(Rb(BPSK)
B )

10log(2×Rb(BPSK)
B )

= 10log(2× Rb
Rb

) = 10log(2) = 3dB (7.3)

It’s also noteworthy the negative effects of the ZF equalizer on an AWGN channel, jeop-
ardizing it by 4dB approximately, whether BPSK or QPSK are used.

Furthermore, there is an improvement of approximately 2dB if turbo encoder is used.
This statement is truth for both for BPSK and QPSK. This gain is obtained when the turbo
decoder uses four iterations - sub-subsection 4.1.2.2. The gain value can increase or decrease
with the number of iterations used.

BER - fading channel models: In this subsection, the BER is calculated for the three fad-
ing channel models provided by 3GPP, with added AWGN. Only QPSK modulation scheme
is tested.

Figure 7.19: BER performance results for EPA, EVA and ETU channel fading models with
added AWGN. Equalizer and turbo coding are used.

Observing Figure 7.19, it’s possible to conclude the one causing more damage to the signal
is the EPA channel model. The other two (EVA and ETU) show a similar BER and, therefore,
disturb similarly the signal.

BER - fading channel with AWGN model: In this subsection, the BER is calculated
considering the channel is composed by a channel fading component and AWGN. Perfor-
mances with and without equalizer/turbo encoding are considered. QPSK and BPSK imple-
mentations are compared.

Figure 7.20a shows the BER for both QPSK and BPSK implementations with and without
equalizer. Figure 7.20b displays the BER for both QPSK and BPSK implementations with
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and without turbo encoder. Switches 1) and 2) of Figure 7.1 are used to connect/disconnect
the turbo encoding and equalizer, respectively.

(a) BER performance results for an EVA chan-
nel model with AWGN, with and without
equalizer for both QPSK and BPSK.

(b) BER performance results for an EVA
channel model with AWGN, with and with-
out turbo coding for both QPSK and BPSK.

Figure 7.20: BER performance results for a EVA channel model with AWGN.

Although BPSK and QPSK have the same BER performance, the SNR will differ by 3dB
for the same BER. The reason behind this is demonstrated in equations 7.1, 7.2 and 7.3.

It’s also noteworthy, the positive effects of the ZF equalizer on a fading channel. If the
equalizer is not present, it is impossible to receive the signal accurately, independently of the
Eb/N0 value. This happens, whether BPSK or QPSK are used. Furthermore, there is an
improvement of approximately 2dB if turbo encoder is used. This statement is true for both
BPSK and QPSK.

Comparing QPSK and BPSK bandwidth efficiency, the higher order modulation (QPSK)
accommodates more data within a given bandwidth and is more efficient when compared to
lower order modulations.

Comparing this performance with the one where only AWGN is taken into account (Figure
7.18), they differ in about 2dB. This means that the EVA fading channel model, when ZF
equalizer is used, jeopardizes the BER performance in about 2dB.

To conclude, BER is a key parameter for indicating the system performance.

Number of repetitions: In this subsection, it is tested whether the number of repetitions
influences the BER. To avoid repeated results, only QPSK is considered at this stage. Values
used for the signal generation are: ∆f = 15kHz, RNTI = 1, Isc = 18, IMCS = 2, IRU = 2
and rvdci = 0. Isc value is changed to provide some degree of comparison if, whether or not,
the number of used subcarriers influence BER results. IRep parameter is variable between 0
and 7, and, therefore, NRep will vary from 1 to 128 - Table 5.4.

It’s clear, observing Figure 7.21, the number of repetitions used influence BER results.
When more repetitions are used, it’s possible to obtain the same BER with a smaller Eb/N0

present. With each NRep increase, a gain of approximately 2dB is observed. This is most
noticeable when the first increases happen and less visible between higher numbers of NRep.
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Figure 7.21: BER performance results for each NRep value.

Finally, when comparing with Figure 7.20, both have similar curves when IRep =3/NRep

= 8, even though the Isc value is different. Thus, the number of subcarriers is not related to
the BER results.

7.1.1.6 Magnitude Spectrum

A spectrum analyzer measures the magnitude of an input signal in dBm versus frequency.
Using the built-inMATLAB function ‘spectrumAnalyzer’, it is possible to obtain the trans-
mitted and received (after channel effects) spectrums. Values used for the signal generation
are: ∆f = 15kHz, RNTI = 1, Isc = 18, IRep = 3, IMCS = 2, IRU = 2 and rvdci = 0.

(a) Transmitted magnitude spectrum. (b) Received magnitude spectrum.

Figure 7.22: Transmitted and received magnitude spectrums.

On Figure 7.22, it is clear the channel effects that alter the transmitted spectrum (Figure
7.22a) into the received one (Figure 7.22b). Results are according to expected, since the
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bandwidth is of approximately 180kHz - section 2.3. The signal magnitude is around 0dBm.

7.1.1.7 PAPR

Power saving in transmission is an important issue in IoT applications. Therefore, PAPR
is an important factor to be considered.

PAPR is calculated by representing a Complementary Cumulative Distribution Func-
tion (CCDF). The CCDF is the probability of the PAPR being higher than a specific value
(PAPR0). It is calculated using the MATLAB built-in functions ‘hist’ and ‘cumsum’.

QPSK and BPSK results are similar and, therefore, only the QPSK ones are displayed.

Figure 7.23: SC-FDMA PAPR.

PAPR has a reasonably low value, which is according to expected. If compared with
OFDMA values presented on [SMM13], it has a lower value, which is ideal for power saving
on uplink transmissions.

7.1.2 NPUSCH Format 2 Simulation Results

This subsection displays the results regarding the NPUSCH format 2. Figure 7.24 presents
a schematic of the MATLAB implemented chain. It is divided in coding/decoding procedures,
which is in blue color and modulation/demodulation procedures which is in green color. Points
where constellations and eye diagrams were obtained are represented by the letter a) and b).
The first corresponds to the results on the transmitter side and the second on the receiver
side. Several switches are represented throughout the figure, using points 1) and 2). 1) is
used to measure BER results. Essentially, that part was bypassed on the code, so BER gains
could be measured with and without that specific step. This way the gain difference could
be obtained and, as a consequence, their importance in the general chain could be assessed.
Point 1) corresponds to the equalizer bypass. Point 2) is in Figure 7.24 to represent the
several channels that can be tested. Each mode corresponds to a different channel model.
More information about each mode can be found on sub-subsection 6.2.2.2. Finally, in the
blue circles are the transmitted and received transport blocks. When compared, the BER
performance can be calculated. In appendix B.1, a known sequence was imposed on the
beginning of the chain so a reference sequence test is available in each main point of the
implemented simulation.
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Figure 7.24: MATLAB implemented chain schematic for NPUSCH format 2. Measures of
constellations and eye diagrams happen on points a) and b).

Several measures are taken and analyzed throughout this subsection. A small overview of
them is made below:

1. On sub-section 7.1.2.1, it is shown the transmitted constellation for BPSK - only mod-
ulation scheme used on NPUSCH format 2. These results are obtained on point a) of
Figure 7.24.

2. On sub-section 7.1.2.2, it is presented the received constellations, when using 3GPP
specified fading channel models with added AWGN. Only the EVA model was tested -
on point 2) of Figure 7.24, mode = 6. Only the BPSK modulation scheme was available
to be evaluated. Two different Eb/N0 values were analyzed - 8dB and 12dB. These
results are obtained on point b) of Figure 7.24.

3. On sub-section 7.1.2.3, it is analyzed the BER performances, when using the EVA
channel model with AWGN - on point 2) of Figure 7.24, mode = 6. Tests with and
without equalizer (switch represented by point 1) were made.

4. On sub-section 7.1.2.4, it is provided a small explanation why no other results were
measured.

Values used when coding and modulating the transport block are: ∆f = 15kHz, NAN
Rep =

4, ACK/NACK resource field = 5 and RNTI = 1. These values are constant throughout this
subsection, unless otherwise mentioned.
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7.1.2.1 Constellation - Transmitter

The transmitted constellation is equal to the ones displayed on subsection 7.1.1.1, for
BPSK (only modulation scheme available on NPUSCH format 2).

7.1.2.2 Fading Channel with AWGN - Constellations

This sub-subsection considers the channel is composed by a fading channel model (EVA)
with AWGN - on point 2) of Figure 7.24, mode = 6. Two values of Eb/N0 were tested.

First, the constellation for Eb/N0 equal to 8dB is depicted in Figure 7.25. Figure 7.25a
shows the constellation without equalizer and Figure 7.25b depicts the constellation with
equalizer. Secondly, results for Eb/N0 equal to 12dB are also depicted. Figure 7.26a shows
the constellation without equalizer and Figure 7.26b presents the constellation with equalizer.
No eye diagram results are shown.

(a) BPSK constellation for EVA channel
model with AWGN, when no equalizer is used.

(b) BPSK constellation for EVA channel
model with AWGN, when ZF equalizer is used.

Figure 7.25: BPSK constellation for EVA channel model with AWGN (Eb/N0 is 8dB).

It’s possible to conclude the results with equalizer are considerably better, which is ex-
pected. Both signals are possible to recuperate. For lower values of Eb/N0 where more
AWGN is present the signal won’t be possible to decode. This means an equalizer with better
performance (which takes AWGN into consideration), should be utilized in such situations.

To conclude, the signal is always recovered, as long as ZF equalizer is used and Eb/N0

isn’t lower then 8dB. This value is obviously variable, depending on the number of repetitions
used as explained in subsection 7.1.1.5.

7.1.2.3 BER

In all simulations, BER tests were run 1000 times for each Eb/N0. Performance was
evaluated considering the channel is composed by a channel fading component (EVA model)
and AWGN. Performances with and without equalizer are considered - point 1) on Figure
7.24. Figure 7.27 shows the BER with and without equalizer.
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(a) BPSK constellation for EVA channel
model with AWGN, when no equalizer is used.

(b) BPSK constellation for EVA channel
model with AWGN, when ZF equalizer is used.

Figure 7.26: BPSK constellation for EVA channel model with AWGN (Eb/N0 is 12dB).

Figure 7.27: BER performance results for a EVA channel model with AWGN, with and
without equalizer.

It is noteworthy the positive effects of the ZF equalizer on the fading channels. If the
equalizer is not present, it is impossible to accurately receive the signal, independently of the
Eb/N0 value.

When comparing with NPUSCH format 1’s performance, format 2 is considerably worst.
This is due to the fact that no turbo coding is used in format 2. Furthermore, the number of
repetitions used corresponds to half the ones used on the format 1 testing. Therefore, results
are according to expected.

7.1.2.4 Repetitions Test, PAPR and Magnitude Spectrum

Since the results are similar to the ones for NPUSCH format 1, these performance tests
won’t be displayed.
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7.1.3 NPRACH Simulation Results

This subsection displays the results regarding the NPRACH. Figure 7.28 presents a
schematic of the implemented chain. It is divided in transmitter and receiver parts. Points
where constellations and eye diagrams were obtained are represented by the letter a) and b).
The first corresponds to the results on the transmitter side and the second on the receiver
side. Point 1) is in Figure 7.28 to represent the several channels that can be tested. Each
mode corresponds to a different channel model. More information about each mode can be
found on sub-subsection 6.2.2.2.

Figure 7.28: MATLAB implemented chain schematic for NPRACH. Measures of constellations
and cross-correlations happen on points a) and b).

Several measures are taken and analyzed throughout this subsection. A small overview of
them is made below:

1. On sub-section 7.1.3.1, it is displayed the transmitted and received constellations. These
results are obtained on point a) and b) of Figure 7.24, respectively.

2. On sub-section 7.1.3.2, it is presented the transmitted preamble auto-correlation, mea-
sured on point a) of Figure 7.24. The cross-correlation between the expected preamble
and the received one, measured on point b) of Figure 7.24, is also displayed.

7.1.3.1 Constellation

Figure 7.29 displays the NPRACH transmitted and received constellations. An AWGN
channel model was used (on Figure 7.28, on point 1), mode = 1), with Eb/N0 equal to 4dB.
To run this simulation the values used were: NNPRACH

scoffset = 0, NNPRACH
sc = 12, NNPRACH

rep =
1 and NPRACHFormat = 1.
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(a) NPRACH transmitted constellations. (b) NPRACH received constellations.

Figure 7.29: NPRACH transmitted and received constellations.

On Figure 7.29a is noticeable the preamble is a ZC sequence due to its unique circular
constant amplitude constellation. On Figure 7.29b, the typical circular format is slightly
altered due to the added AWGN.

7.1.3.2 Correlation

Two identical ZC sequences have the property of their cross-correlation being very high
when the lag between both is zero. When there is any time discrepancy, the correlation is a
low value near zero. Figure 7.30a shows the auto-correlation of the transmitted signal and
Figure 7.30b displays the cross-correlation between the expected and the received preamble.

(a) Auto-correlation of the transmitted
preamble.

(b) Cross-correlation between the expected
and received preamble.

Figure 7.30: Auto-correlation of the transmitted preamble and cross-correlation between the
expected and received preamble.
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Figure 7.30a clearly illustrates the ZC sequence auto-correlation property. Although
AWGN is added on Figure 7.30b, it is still clear the ZC cross-correlation properties.

7.2 USRP Co-simulation Results

Implementation results for NPUSCH format 1 and NPUSCH format 2 co-simulation are
displayed in this section. Magnitude spectrums, constellations, eye diagrams and BER per-
formances are measured. Appendix A is a small user guide that exemplifies how to run all the
possible simulations and co-simulation. Section A.4 describes how to run the co-simulation
using two computers and two USRPs.

Figure 7.31 presents a schematic of the co-simulation implemented chain. It is divided
in coding/decoding procedures, which is in blue color, modulation/demodulation procedures
which is in green color and the RF front-end part which is in pink color. Points where
constellations and eye diagrams were obtained are represented by the letter a) and b). The
first corresponds to the results on the transmitter side and the second on the receiver side.
Furthermore, in the blue circles are the transmitted and received transport blocks. When
both are compared, the BER performance can be measured.

Figure 7.31: Implemented chain schematic for a co-simulation environment. Measures of
constellations and eye diagrams happen on points a) and b).

Several measures are taken and analyzed throughout this section. A small overview of
them is made below:

1. On subsection 7.2.1, NPUSCH format 1 is analyzed. This section is divided in 4 sub-
subsections. Those are:

• On sub-subsection 7.2.1.1, it is displayed the transmitted constellation and eye di-
agram, for both BPSK and QPSK modulation schemes. These results are obtained
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on point a) of Figure 7.31.

• On sub-subsection 7.2.1.2, it is depicted the received constellation and eye diagram,
for both BPSK and QPSK modulation schemes. Thse results are obtained on point
b) of Figure 7.31.

• On sub-subsection 7.2.1.3, it is analyzed the BER performances, obtained using a
known transmitted sequence. Performance is evaluated on how BER varies with
the distance between USRPs, and how BER varies with NRep.

• On sub-subsection 7.2.1.4, it is presented transmitted and received magnitude spec-
trums.

2. On subsection 7.2.2, NPUSCH format 2 is analyzed. This subsection has only one sub-
subsection, to avoid showing similar results. On sub-subsection 7.2.2.1, it is shown the
receiver constellation for BPSK - only modulation scheme available on NPUSCH format
2. These results are obtained on point b) of Figure 7.31.

Values used when coding and modulating the transport block are: ∆f = 15kHz, RNTI =
1, Isc = 18, IMCS = 2, IRU = 2, IRep = 3 and rvdci = 0 for QPSK and ∆f = 15kHz, RNTI =
1, Isc = 5, IMCS = 0, IRU = 2, IRep = 3 and rvdci = 0 for BPSK. These values are constant
throughout this subsection, unless otherwise mentioned.

7.2.1 NPUSCH Format 1

This subsection displays results regarding the NPUSCH format 1 co-simulation.

7.2.1.1 Constellation and Eye Diagram - Transmitter

Constellation and eye diagram are equal to the ones displayed on subsection 7.1.1.1, for
both BPSK and QPSK.

7.2.1.2 Constellation and Eye Diagram - Receiver

Figure 7.32 shows the received constellations. Results are displayed for QPSK on Figure
7.32a and for BPSK on Figure 7.32b. Figure 7.33 shows the transmitted eye diagram. Results
are displayed for QPSK on Figure 7.33a and BPSK on Figure 7.33b.

When comparing the transmitted and received constellations, even though channel effects
are clear in the received ones, both are similar. Thus, the typical two/four points focuses
are visible, for BPSK and QPSK, respectively. Regarding the eye diagram, the middle eye is
visible and wide open, which is ideal.

7.2.1.3 BER

In all simulations, BER tests were run 1000 times, with each result being averaged after-
wards. The performance could be evaluated, since all the transmitted transport blocks were
known at the receiver, so the number of bit errors could be accounted for.

Table 7.1 shows the calculated BERs, depending on the distance between both USRPs.
Table 7.2 presents the obtained BERs, depending on NRep.
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(a) QPSK received constellation. (b) BPSK received constellation.

Figure 7.32: QPSK and BPSK received constellations for NPUSCH format 1.

(a) QPSK received eye diagram. (b) BPSK received eye diagram.

Figure 7.33: QPSK and BPSK received eye diagrams for NPUSCH format 1.
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Table 7.1: Variation of the co-simulation BER with the distance between USRPs.

Distance(cm) 1 10 100 200

BER 0.0475 0.0557 0.0644 0.0689

Table 7.2: Variation of the co-simulation BER with IRep.

NRep 1 2 4 8 16 32 64 128

BER 0.1043 0.0840 0.0670 0.0541 0.0475 0.0451 0.0420 0.0390

It is clear that the BER increases with distance, which is expected. Also, it’s possible to
conclude the BER decreases with IRep, which is, again, predictable.

Taking into account how close to each other the USRPs are, BER values are quite high,
specially when comparing with simulation results. Since CFO and STO synchronization func-
tions were not tested in the simulation environment and clearly have room for improvement,
they should be responsible for these values. Upgrading their algorithms can improve the
obtained results.

It still makes sense that the BER decreases with repetitions, since more DMRS are avail-
able when performing correlation in the STO step and more SC-FDMA symbols are obtained,
which helps with the CFO synchronization.

7.2.1.4 Magnitude Spectrum

Using the built-in MATLAB function ‘spectrumAnalyzer’, it is possible to obtain the
magnitude spectrum of the transmitted and received baseband signals. On Figure 7.34, it is
clear the channel effects that alter the transmitted spectrum (Figure 7.34a) into the received
one (Figure 7.34b). Results are according to expected, since the bandwidth is of approximately
180kHz - section 2.3. The signal magnitude is around 0dBm.

(a) Magnitude spectrum of the transmitted
signal.

(b) Magnitude spectrum of the received signal.

Figure 7.34: Magnitude spectrum of the transmitted and received signals.
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7.2.2 NPUSCH Format 2

This subsection displays the results regarding NPUSCH format 2. Eye diagrams and
BERs are not displayed, since the results are similar to the ones for NPUSCH format 1.

7.2.2.1 Constellation - Receiver

Figure 7.35 shows the received constellation. Only BPSK modulation scheme is used on
NPUSCH format 2.

Figure 7.35: BPSK received constellation for NPUSCH format 2.

The constellation is according to expected, with two focus of points clearly representing
a BPSK signal.

Throughout chapter 6, both the MATLAB simulation and the USRP co-simulation were
described with the aid of block diagrams. In this chapter, results for both implementa-
tions were displayed, including eye diagrams, constellations, BERs, magnitude spectrums and
PAPR values. With the end of the practical work description, a conclusion of what was devel-
oped will be provided on the next chapter. Besides providing a summary of the implemented
work, it will present details that could be improved, regarding the final implementation.
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Chapter 8

Conclusions and Future Work

This chapter is divided in two subsections: conclusions and future work. On the first
one, a summary of the developed work is done. On the last one, some aspects that could
be improved are presented, regarding both the MATLAB implementation and the USRP
co-simulation.

8.1 Conclusions

Throughout this master thesis, an open-source uplink behavioral simulator based on MAT-
LAB, mainly focused on the physical layer relevant functionalities, was implemented. Further-
more, a co-simulation environment was tested, where the MATLAB signal was transmitted
and received using RF front-ends, consisting of two USRPs.

This document began by explaining some essential concepts to contextualize the final
work. Transmitter and receiver architectures were described in detail and so were all the
used channels and signals. Next, the necessary procedures to send/receive transport blocks
in all channels were clarified, including all the parameters required to simulate each transmis-
sion/reception and their respective function.

Afterwards, the MATLAB simulation block diagram and its respective functions and work
flow was illustrated. Furthermore, the USRP co-simulation addition was explained in detail.

Finally, all the results are depicted with their respective conclusions, including constella-
tions, BERs, eye diagrams, PAPR analysis and magnitude spectrums.

8.2 Future Work

Even though the implementation gives a good starting point for the test and analysis of
the uplink NB-IoT physical layer, there are some improvements that could be made.

A noteworthy improvement could be the introduction of a Minimum Mean-Squared Error
(MMSE) equalizer, as it includes an AWGN estimation term, which would minimize the
additive noise effects. The channel is currently estimated using a ZF equalizer only.

Further work could also be done to create a full virtual network, where this disserta-
tion’s implementation would be combined with the correspondent downlink implementation.
Furthermore, implementations of upper layers could be added, both in the transmitter and
receiver sides.
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Finally, the CFO and STO estimation could be upgraded, using more sophisticated al-
gorithms in their calculations. This would improve the BER performance, when using an
over-the-air implementation.
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Appendix A

User Guide

This annex provides one guide on how to run the NPUSCH format 1/2 simulation (section
A.1), one on how to run the NPRACH simulation (section A.2) and one on how to calculate
the BER (section A.3). Furthermore, an explanation on how to perform co-simulation using
two USRPs is also available (section A.4).

A.1 NPUSCH Format 1/2 Simulation

This section presents a small user guide, explaining how to run the NPUSCH format 1
and 2 simulation. The several steps are explained below:

• First, open RunDataSim() MATLAB program. On top of the program, there is a
selection of parameters that can be changed by the user. If no value is added, when the
parameter is needed for calculations, one of the possible values is automatically assigned.
The list of parameters that can be changed by the user, is presented on Figure A.1.

Figure A.1: User input parameters list for NPUSCH format 1 and 2 simulation.
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• Then, run the RunDataSim() program. This will run the transmitter, channel and
receiver explained on section 6.2. When running this simulation, transmitted and re-
ceived constellations/eye diagrams are shown. If NPUSCH format 1 is selected, the text
presented in Figure A.2 appears on the command window.

Figure A.2: Command window output for NPUSCH format 1.

First, the transmitted transport block is displayed. On the receiver side, it is shown
all the recovered transport blocks (one for each repetition), even if the CRC check part
showed errors were present. For each repeated data stream, it is displayed how many
iterations were used in the turbo decoder phase and if errors were detected in the CRC
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check step. After, it’s presented only the transport blocks where no errors were detected.
Finally, the recovered transport block is depicted, after all repetitions are combined. To
conclude, the transmitted data stream is equal to the received one. The number of slots,
subframes and frames utilized is also shown.

If NPUSCH format 2 is chosen, the text depicted in Figure A.3 is displayed on the
command window. First, the transmitted codeword is shown. On the receiver side, it
is printed all the recovered codewords (one for each repetition). Finally, the recovered
codeword is depicted, after all repetitions are combined. To conclude, the transmitted
data stream is equal to the received one. The number of slots, subframes and frames
utilized is also shown.

Figure A.3: Command window output for NPUSCH format 2.

A.2 NPRACH Simulation

This section presents a small user guide, explaining how to run the NPRACH simulation.
The several steps are explained below:

• First, open RunNprachSim() MATLAB program. On top of the program, there is a
selection of parameters that can be changed by the user. If no value is added, when the
parameter is needed for calculations, one of the possible values is automatically assigned.
The list of parameters that can be changed by the user, is presented on Figure A.4.

• Then, run the RunNprachSim() program. This will run the transmitter, channel and
receiver explained on section 6.2. When running this simulation, transmitted and re-
ceived constellations are shown. Also, plots with auto-correlation and cross-correlation
values appear automatically. On the command window, it is written if the NPRACH
preamble is detected or not.
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Figure A.4: User input parameters list for NPRACH simulation.

A.3 BER Performance Simulation

This section presents a small user guide, explaining how to calculate the NPUSCH format
1 and 2 BERs. The several steps are explained below:

• First, open RunBerSim() MATLAB program. On top of the program, there is a selection
of parameters that can be changed by the user. That list is presented on Figure A.1.

Figure A.5: User input parameters list for BER simulation.

• Then run the RunBerSim() function. This will run the transmitter, channel and receiver
explained on section 6.2 N times (N is defined by the user). The range of EbN0 values to
be tested should also be selected. After the simulation chain is ran N times, the BER is
calculated and depicted in the graph format.
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A.4 USRP Co-simulation

This section presents a small user guide, explaining how to run the USRP co-simulation.
The setup required is presented in Figure A.6. Two USRPs and two computers are necessary.

Figure A.6: Co-simulation laboratorial setup.

The several steps necessary to run the co-simulation are explained below:

• First, connect the USRP B200 on the computer chosen to transmit. Then, open the
MATLAB program sdruTx(). On the top of the program, there is a list of parameters
whose value can be changed. The parameters are the same as in Figure A.1. Finally,
run the sdruTx() program. This program is always the first to be run.

• Then, on the receiver side, connect the USRP B210 on the computer chosen to receive.
Then, open the MATLAB program sdruRx(). On top of the program, there is a list of
parameters, whose values can be changed. The parameters are the same as in Figure
A.1. Chosen parameters need to be equal on the transmitter and receiver sides, so the
transport block can be decoded properly. Finally, run the sdruRx() program. This
program is always the second one to be run.

• Finally, outputs similar to the ones from Figures A.2 and A.3 appear on each com-
puter, for NPUSCH format 1 and 2, respectively. On the command window of the
computer used to transmit, appears the transmitted data. On the command window of
the computer chosen to receive, appears the remaining information. When running this
co-simulation, transmitted and received constellations/eye diagrams are shown, each
one in its respective computer.
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Appendix B

Reference Sequence Test

This appendix shows what happens to a known sequence in each coding and modulation
step. It can be used as a reference for future testing. First, a sequence for NPUSCH format 1
is tested on section B.1. Then, a sequence for NPUSCH format 2 is evaluated on section B.2.

B.1 NPUSCH Format 1

The parameters used to run this simulation were: deltaf = 15000, Isc = 18, Irep = 0,
Iru = 0, Imcs = 0, RVdci = 0, RNTI = 1, group hopping = 1, mode =1 and EbN0 = 8;

Bits to be send are usually randomly selected. Here, a know sequence was imposed so it
is possible to verify each step response. The selected sequence is represented below:

data_tx = [1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 1];

Afterwards, the CRC is calculated and appended (CRC addition step):

datacrc_tx = [1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1

0 1 0 1 0];

Then, the sequence is turbo coded. The three outputs (systematic and parity bits) are:

d0_tx = [1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1

0 1 0 0 0 1 0];

d1_tx = [1 1 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0 0 1 1

1 1 0 0 0 0 1];

d2_tx = [1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 1 0

1 0 1 0 0 1 1];

The next step is rate matching. The values obtained on the output of this step are depicted
below:

codeword_tx = [1 0 1 0 1 1 0 1 0 1 0 0 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0

0 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 1

0 1 1 0 0 1 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 0 1 0

1 0 1 0 0 0];
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Afterwards, the modulation processing starts. The first step consists in scrambling, with
the result presented below:

btilde_tx = [1 0 0 0 1 1 0 1 1 1 0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 0 1 0 0 1 1 0 1 1 0

1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1

0 1 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0

1 1 0 1 0];

Next, the bits are QPSK modulated as it’s possible to verify:

symbol_tx =

[-0.7071 + 0.7071i 0.7071 + 0.7071i -0.7071 - 0.7071i 0.7071 - 0.7071i

-0.7071 - 0.7071i 0.7071 - 0.7071i -0.7071 + 0.7071i 0.7071 - 0.7071i

-0.7071 + 0.7071i -0.7071 + 0.7071i -0.7071 - 0.7071i -0.7071 - 0.7071i

0.7071 + 0.7071i -0.7071 + 0.7071i 0.7071 - 0.7071i -0.7071 + 0.7071i

-0.7071 - 0.7071i 0.7071 - 0.7071i -0.7071 + 0.7071i -0.7071 + 0.7071i

-0.7071 - 0.7071i -0.7071 + 0.7071i 0.7071 - 0.7071i 0.7071 + 0.7071i

0.7071 - 0.7071i -0.7071 + 0.7071i 0.7071 + 0.7071i -0.7071 - 0.7071i

0.7071 + 0.7071i -0.7071 + 0.7071i 0.7071 - 0.7071i -0.7071 + 0.7071i

0.7071 + 0.7071i -0.7071 - 0.7071i 0.7071 - 0.7071i 0.7071 - 0.7071i

-0.7071 + 0.7071i -0.7071 + 0.7071i -0.7071 + 0.7071i 0.7071 - 0.7071i

0.7071 - 0.7071i 0.7071 - 0.7071i 0.7071 - 0.7071i -0.7071 - 0.7071i

-0.7071 - 0.7071i 0.7071 + 0.7071i 0.7071 - 0.7071i 0.7071 + 0.7071i

0.7071 - 0.7071i -0.7071 - 0.7071i 0.7071 + 0.7071i 0.7071 - 0.7071i

-0.7071 + 0.7071i 0.7071 + 0.7071i -0.7071 - 0.7071i 0.7071 + 0.7071i

-0.7071 - 0.7071i 0.7071 - 0.7071i -0.7071 + 0.7071i -0.7071 + 0.7071i];

The last step consists on the SC-FDMA modulation. As the result is very long (length =
1920), only the first and last 16 samples are shown:

signal_tx =

[-0.1793 - 0.1441i -0.1769 - 0.1530i -0.1673 - 0.1531i -0.1516 - 0.1452i

-0.1312 - 0.1304i -0.1077 - 0.1103i -0.0829 - 0.0870i -0.0584 - 0.0624i

-0.0356 - 0.0387i -0.0159 - 0.0175i -0.1532 + 0.1532i -0.0990 + 0.1683i

-0.0329 + 0.1766i 0.0383 + 0.1762i 0.1065 + 0.1661i 0.1643 + 0.1455i ...

0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i];

The transmitter chain is now complete.
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Then, the signal goes through the simulated AWGN channel:

signal_rx =

[-0.1580 - 0.1404i -0.1264 - 0.0570i -0.1799 - 0.1210i -0.1239 - 0.1266i

-0.0933 - 0.1376i -0.1011 - 0.0980i -0.0965 + 0.0075i -0.0855 - 0.0855i

-0.0938 - 0.0498i -0.0296 - 0.0402i -0.1452 + 0.1326i -0.1084 + 0.1597i

-0.0220 + 0.2075i 0.0406 + 0.1806i 0.1400 + 0.1280i 0.1327 + 0.2281i ...

-0.1110 + 0.0524i -0.0959 - 0.0013i -0.0534 + 0.0951i 0.0040 - 0.0060i

0.0101 - 0.0005i -0.0366 - 0.0112i 0.0656 + 0.0642i 0.0567 + 0.0527i

-0.0089 + 0.0093i 0.1663 - 0.0250i -0.0183 - 0.0188i 0.0492 - 0.0182i

-0.0032 + 0.0341i -0.0862 + 0.0507i 0.0940 + 0.0823i -0.0532 + 0.0519i];

Now, the receiver chain starts. The signal is SC-FDMA demodulated:

symbol_rx =

[0.0659 + 0.4481i 0.1678 + 0.8830i -0.2799 - 0.8085i 0.1903 - 0.7476i

-0.2531 - 0.7922i 0.0476 - 0.9272i -0.1832 + 0.7531i 0.3644 - 0.5849i

-0.2274 + 0.5229i -1.0858 + 0.9753i -0.2888 - 1.0861i -0.8509 - 0.5613i

0.2875 + 0.6990i -0.6419 + 0.5106i 0.5744 - 0.4670i -0.7311 + 0.2196i

-0.8179 - 0.1479i 0.9289 - 1.3753i -0.8218 + 1.4590i -0.6888 + 0.3791i

-0.8577 - 0.4904i -0.6301 + 0.4254i 0.6509 - 0.5591i 0.7783 + 0.3342i

-0.2517 - 0.4262i -0.1865 + 0.6083i 0.1841 + 0.8750i -0.0710 - 0.7323i

0.1526 + 0.5764i 0.0327 + 0.8499i 0.1633 - 0.9297i -0.1403 + 0.9191i

0.1192 + 0.7870i -0.3150 - 0.7883i 0.1634 - 0.6940i 1.2110 - 0.6684i

-0.2078 + 0.5837i -0.9622 + 0.6124i -0.5604 + 0.8811i 0.5798 - 0.7977i

1.0281 - 0.5984i 0.5312 - 0.7976i 0.7328 - 0.5147i -0.9000 - 0.8078i

-0.9002 - 0.5555i 0.8186 + 0.5800i 0.8860 - 0.5309i 0.9111 + 0.4759i

0.9561 - 0.8479i -1.1150 - 0.6987i 1.1357 + 0.7949i 0.4892 - 1.0180i

-0.6472 + 0.9019i 0.6985 + 0.6420i -0.7645 - 0.7243i 0.6498 + 0.6620i

-0.4935 - 0.7417i 0.5082 - 0.6323i -0.3292 + 0.6109i -1.3733 + 1.0386i];

Afterwards, it is QPSK demodulated using soft decision:

btilde_rx =

[0.0659 0.4481 0.1678 0.8830 -0.2799 -0.8085 0.1903 -0.7476

-0.2531 -0.7922 0.0476 -0.9272 -0.1832 0.7531 0.3644 -0.5849

-0.2274 0.5229 -1.0858 0.9753 -0.2888 -1.0861 -0.8509 -0.5613

0.2875 0.6990 -0.6419 0.5106 0.5744 -0.4670 -0.7311 0.2196

-0.8179 -0.1479 0.9289 -1.3753 -0.8218 1.4590 -0.6888 0.3791

-0.8577 -0.4904 -0.6301 0.4254 0.6509 -0.5591 0.7783 0.3342

-0.2517 -0.4262 -0.1865 0.6083 0.1841 0.8750 -0.0710 -0.7323

0.1526 0.5764 0.0327 0.8499 0.1633 -0.9297 -0.1403 0.9191

0.1192 0.7870 -0.3150 -0.7883 0.1634 -0.6940 1.2110 -0.6684

-0.2078 0.5837 -0.9622 0.6124 -0.5604 0.8811 0.5798 -0.7977

1.0281 -0.5984 0.5312 -0.7976 0.7328 -0.5147 -0.9000 -0.8078

-0.9002 -0.5555 0.8186 0.5800 0.8860 -0.5309 0.9111 0.4759

0.9561 -0.8479 -1.1150 -0.6987 1.1357 0.7949 0.4892 -1.0180

-0.6472 0.9019 0.6985 0.6420 -0.7645 -0.7243 0.6498 0.6620

-0.4935 -0.7417 0.5082 -0.6323 -0.3292 0.6109 -1.3733 1.0386];
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Then, it is descrambled:

codeword_rx =

[0.0659 0.4481 0.1678 0.8830 -0.2799 -0.8085 0.1903 -0.7476

-0.2531 -0.7922 0.0476 -0.9272 -0.1832 0.7531 0.3644 -0.5849

0.2274 0.5229 -1.0858 0.9753 -0.2888 -1.0861 -0.8509 -0.5613

0.2875 0.6990 -0.6419 0.5106 0.5744 -0.4670 -0.7311 0.2196

-0.8179 -0.1479 0.9289 -1.3753 -0.8218 1.4590 -0.6888 0.3791

-0.8577 -0.4904 -0.6301 0.4254 0.6509 -0.5591 0.7783 0.3342

-0.2517 -0.4262 -0.1865 0.6083 0.1841 0.8750 -0.0710 -0.7323

0.1526 0.5764 0.0327 0.8499 0.1633 -0.9297 -0.1403 0.9191

-0.1192 0.7870 -0.3150 -0.7883 0.1634 -0.6940 1.2110 -0.6684

-0.2078 0.5837 -0.9622 0.6124 -0.5604 0.8811 0.5798 -0.7977

1.0281 -0.5984 0.5312 -0.7976 0.7328 -0.5147 -0.9000 -0.8078

0.9002 -0.5555 0.8186 0.5800 0.8860 -0.5309 0.9111 0.4759

-0.9561 -0.8479 -1.1150 -0.6987 1.1357 0.7949 0.4892 -1.0180

0.6472 0.9019 0.6985 0.6420 -0.7645 -0.7243 0.6498 0.6620

0.4935 -0.7417 0.5082 -0.6323 -0.3292 0.6109 -1.3733 1.0386};

The next step consists on rate dematching:

d0_rx = [-0.2799 0.6419 0.5849 -1.4590 0.4481 0.5613 0.1832 0.9289 -0.7476 -0.4670

-1.0858 0.8577 0 0.2888 -0.7922 -0.2196 0.8830 -0.6990 -0.3644 -0.8218 0.0659

0.8509 0.9272 0.1479 0.1903 -0.5744 0.5229 0.3791 0 1.0861 0.0476 0.8179

-0.8085 0.5106 -0.2274 0.6888 -0.1678 0.2875 -0.7531 1.3753 0.2531 0.7311

-0.9753 0.4904];

d1_rx = [-0.0710 -1.1150 -0.5604 0 0.2517 -0.8860 1.2110 0.6323 0.1633 0.6472

0.5312 0 0.6301 0.9000 -0.1192 -0.7645 0.1841 0.9561 0.9622 1.0386 -0.7783

0.8186 0.1634 0.7417 -0.0327 -0.4892 -1.0281 0 0.6509 -0.9002 -0.3150 0.6620

-0.1526 1.1357 0.5798 0 -0.1865 -0.9111 -0.2078 0.6109 0.1403 0.6985 0.7328 0];

d2_rx = [-0.6498 -0.7323 -0.6987 0.8811 0 -0.4262 -0.5309 -0.6684 -0.3292

-0.9297 0.9019 -0.7976 0 -0.4254 0.8078 0.7870 0.7243 -0.8750 0.8479 -0.6124

0 -0.3342 -0.5800 0.6940 -0.5082 0.8499 1.0180 -0.5984 0 -0.5591 -0.5555

0.7883 -0.4935 0.5764 -0.7949 -0.7977 0 -0.6083 0.4759 -0.5837 1.3733 0.9191

-0.6420 -0.5147];

Next, turbo decoding is performed:

datacrc_rx = [1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 0 0 0 0 1

0 0 1 0 0 0 1 0 1 0 1 0 1 0];
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Finally, it is CRC checked and since no errors were detected, the appended bits were removed and
data was recovered:

errors = 0;

data_rx = [1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 1];

To conclude, the transmitted and received data is the same. The receiver chain is complete.

B.2 NPUSCH Format 2

The parameters used to run this simulation were: deltaf = 15000, NARrep = 0, ACKNACK = 5 and
RNTI = 1.

The HARQ-ACK value is usually randomly selected. In this example, it was imposed a positive
HARQ-ACK, so it is possible to verify each step response. The selected HARQ-ACK is represented
below:

HARQ-ACK = 1;

After, the channel is coded into a codeword:

codeword_tx = [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1];

Afterwards, the modulation processing starts. The first step consists in scrambling, with the result
presented below:

btilde_tx = [1 1 0 1 1 1 1 1 0 1 1 0 0 0 0 0];

Next, the bits are BPSK modulated as it’s possible to verify:

symbol_tx =

[-0.7071 - 0.7071i -0.7071 - 0.7071i 0.7071 + 0.7071i -0.7071 - 0.7071i

-0.7071 - 0.7071i -0.7071 - 0.7071i -0.7071 - 0.7071i -0.7071 - 0.7071i

0.7071 + 0.7071i -0.7071 - 0.7071i -0.7071 - 0.7071i 0.7071 + 0.7071i

0.7071 + 0.7071i 0.7071 + 0.7071i 0.7071 + 0.7071i 0.7071 + 0.7071i];

The last step consists on the SC-FDMA modulation. As the result is very long (length = 1920),
only the first and last 16 samples are shown:

signal_tx[

-0.1261 - 0.0646i -0.1216 - 0.0596i -0.1156 - 0.0479i -0.1083 - 0.0297i

-0.1001 - 0.0061i -0.0915 + 0.0216i -0.0831 + 0.0515i -0.0756 + 0.0816i

-0.0696 + 0.1099i -0.0655 + 0.1345i -0.0884 - 0.0884i -0.0920 - 0.0971i

-0.0924 - 0.1040i -0.0896 - 0.1091i -0.0841 - 0.1125i -0.0765 - 0.1144i ...

0.0638 - 0.1539i 0.0768 - 0.1539i 0.0898 - 0.1536i 0.1019 - 0.1524i

0.1121 - 0.1498i 0.1194 - 0.1453i 0.1230 - 0.1385i 0.1226 - 0.1294i

0.1178 - 0.1178i 0.1088 - 0.1041i 0.0962 - 0.0886i 0.0807 - 0.0720i

0.0634 - 0.0551i 0.0455 - 0.0387i 0.0283 - 0.0236i 0.0128 - 0.0105i];
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The transmitter chain is complete. The signal goes through the simulated AWGN channel:

signal_rx

[-0.0907 - 0.0958i -0.0782 - 0.0578i -0.1334 - 0.1003i -0.0557 - 0.0429i

-0.1086 + 0.0188i -0.0849 - 0.0268i -0.1444 + 0.0027i -0.0065 - 0.0241i

-0.0273 + 0.1026i -0.1182 + 0.1953i -0.1542 - 0.1746i -0.0253 - 0.0570i

-0.0861 - 0.0597i -0.1535 - 0.1102i -0.0306 - 0.1179i -0.0694 - 0.1083i...

0.0352 - 0.1790i 0.0408 - 0.1258i 0.0597 - 0.1446i 0.0783 - 0.1456i

0.1125 - 0.2210i 0.1001 - 0.1410i 0.2579 - 0.1314i 0.0849 - 0.1462i

0.1353 - 0.0609i 0.1467 - 0.2066i 0.0407 - 0.1138i 0.0105 - 0.0371i

-0.0758 + 0.0216i 0.0239 - 0.0283i 0.0541 + 0.0127i 0.0912 + 0.0006i];

Now, the receiver chain starts. The signal is SC-FDMA demodulated:

symbol_rx =

[-0.7098 - 0.7115i -0.7067 - 0.7075i 0.7071 + 0.7054i -0.7064 - 0.7064i

-0.7095 - 0.7098i -0.7059 - 0.7044i -0.7083 - 0.7074i -0.7046 - 0.7047i

0.7054 + 0.7049i -0.7046 - 0.7053i -0.7077 - 0.7085i 0.7078 + 0.7084i

0.7042 + 0.7057i 0.7087 + 0.7096i 0.7063 + 0.7070i 0.7095 + 0.7099i];

Afterwards, it is QPSK demodulated using soft decision:

btilde_rx =[-0.7992 -0.7957 0.7962 -0.7954 -0.7989 -0.7948 -0.7976 -0.7934

0.7943 -0.7934 -0.7969 0.7970 0.7929 0.7980 0.7953 0.7989];

Then, it is descrambled in hard decision format:

codeword_rx = [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1];

Finally, an HARQ-ACK is recovered:

HARQ-ACK = 1;

To conclude, the transmitted and received HARQ-ACK value is the same. The receiver chain is
complete.
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