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O grafeno é constituído por uma monocamada de átomos de carbono 
dispostos numa espécie de rede hexagonal perfeita. Devido às suas 
propriedades extraordinárias, este nanomaterial tem suscitado um grande 
interesse tanto no setor científico como no industrial. A este respeito, a 
investigação em torno do grafeno mostrou um aumento exponencial em áreas 
tão diferentes como a energia, biomedicina, eletrónica, entre outras. 
O óxido de grafeno (GO), um dos derivados de grafeno, foi considerado como 
um substrato interessante para o desenvolvimento de nanocompositos. Isto 
deve-se fundamentalmente à presença de grupos funcionais de oxigénio na 
superfície do grafeno, os quais proporcionam locais reativos para a nucleação 
e o crescimento de outras estruturas. 
O níquel (Ni) é um metal de transição muito abundante na terra, possui uma 
superfície brilhante comum à maioria dos metais e é dúctil e maleável 
possuindo propriedades magnéticas e catalíticas superiores, condutividade 
térmica e elétrica razoáveis sendo muito utilizado em diferentes aplicações. As 
nanopartículas (NPs) de Ni são utilizadas como catalisadores heterogéneos e 
receberam atenção notável devido ao seu baixo custo, reduzida toxicidade, 
baixa corrosão, entre outras características. Desta forma, a funcionalização do 
GO com NPs de Ni pode constituir uma nova família de nanocompósitos com 
propriedades sinérgicas. 
Esta tese está focada no controlo da síntese de nanocompósitos Ni/GO, uma 
vez que o tamanho, a morfologia e a dispersão de NPs de Ni no grafeno 
afetam as suas funcionalidades e estão em dependência direta com as 
metodologias de síntese. 
Em primeiro lugar, foi usado um método hidrotérmico de fácil implementação e 
execução num passo único. Foram estudados vários parâmetros de síntese, 
incluindo temperatura, tempo de reação e agente redutor. O controlo destes 
parâmetros influenciou efetivamente o tamanho das NPs de Ni, variando estas 
de 150 a 900 nm, a morfologia variou de forma esférica a formato em espiga e 
de partículas finas bem distribuídas para agregados.  
Em seguida, o controlo do tamanho das NPs de Ni para valores inferiores a 10 
nm e com distribuição de tamanho reduzido no substrato foi conseguido 
através de um procedimento de síntese em dois passos com base num 
método solvotérmico seguido por tratamento térmico sob atmosfera redutora 
de H2. O tempo de reação mostrou ser um fator chave para controlar a 
distribuição e o tamanho das NPs de Ni simultaneamente com a redução do 
GO (rGO). O aquecimento em atmosfera de H2 foi crucial para formar as NPs 
de Ni metálicas cristalinas. 
A influência de um tratamento térmico adicional em atmosferas redutora e 
inerte sobre a estrutura do nanocompósito Ni/rGO foi também investigada. 
Diferentes nanocompósitos apresentaram boa estabilidade térmica sob H2 até 
à temperatura de 450 °C durante 2 horas. O tratamento a 900 °C sob o fluxo 
de árgon alterou a estrutura do Ni/rGO por formação de “sulcos” através da 
rede de carbono e coalescência das NPs de Ni com formação de partículas 
maiores. O estudo das propriedades eletrofisicas dos nanocompositos Ni/rGO 
mostrou que estas são dependentes do tamanho e estrutura das NPs de Ni 
nas folhas de rGO. Esta é uma potencial vantagem do método de síntese 
desenvolvido para o design de diferentes nanocompositos de Ni/rGO que 
poderão ser materiais favoráveis para aplicação em dispositivos eletrónicos 
integrados. 
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Graphene, the world thinnest material made of carbon atoms in a dense 
honeycomb network has captured a great interest in both scientific and industry 
sectors due to its remarkable properties. In this regard, the graphene research 
is facing an incredible rise in different areas such as energy, biomedical, 
sensor and electronic applications, between others. 
Graphene oxide (GO), one of the graphene derivatives, has been considered 
as an interesting substrate to build nanocomposites. This is due to the 
presence of oxygen functionalities at the graphene surface which provides 
reactive sites for the nucleation and growth of other structures.  
Nickel (Ni) is a transition metal very abundant on earth, it has a shiny surface 
common to most metals and is both ductile and malleable possessing different 
properties such as superior magnetic and catalysis properties, a fairly good 
heat and electrical conductivity and is widely used in different areas of 
application. Ni nanoparticles (NPs) find use as heterogeneous catalyst and 
received noteworthy attention because of its inexpensive, non-toxic, low 
corrosion, waste minimization, between other characteristics. In this way, the 
functionalization of GO with Ni NPs can establish a new family of 
nanocomposites with synergic properties. 
This thesis is focused on the control of the synthesis of Ni/GO nanocomposites, 
since the size, morphology and dispersion of Ni NPs on graphene affect their 
functionalities and are in direct dependence with the synthesis methodologies.  
First, a facile one pot hydrothermal method was introduced and various 
synthesis parameters including temperature, reaction time and reducing agent 
were investigated. The control of these parameters effectively influenced the Ni 
size, ranging from 150 to 900 nm, the morphology from spherical to spiky 
shape and from well distributed fine particles to the big aggregation. 
Then, the control of the Ni NPs size to values of less than 10 nm with narrow 
size distribution on the substrate was achieved via a two-step synthesis 
procedure based on a solvothermal method followed by a heat treatment under 
H2 reducing atmosphere. The reaction time was shown to be a key factor to 
control the size and size distribution of Ni NPs simultaneously through the 
reduction of GO (rGO). Heating treatment under H2 was crucial to form the 
crystalized metallic Ni NPs. 
The influence of further thermal treatment under reducing and inert 
atmospheres on the structure of Ni/rGO nanocomposite was also investigated. 
Different nanocomposites showed a good thermal stability under H2 up to 
450°C during 2 hours’ treatment. Higher temperature (900°C) under Argon flow 
changed the structure of Ni/rGO by formation of trenches through the carbon 
etching and coalescence of Ni NPs to form bigger particles. The study of the 
electrophysical properties of Ni/rGO showed that these properties are 
dependent on the size and structure of Ni NPs on rGO nanosheets. This is the 
potential advantage of the synthesis method developed for designing different 
matrix of Ni/rGO nanocomposites which could be a favorable material for 
integrated electronic devices application.  
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List of Abbreviation and Acronyms 

 

AC-TEM aberration corrected transmission electron microscopy  

AFM atomic force microscopy 

at. % atomic percentage 

BET Brunauer–Emmett–Teller (surface area analysis) 

CVD chemical vapor deposition 

DFT density functional theory 

DMF dimethylformamide 

EDS energy dispersive X-ray spectroscopy  

EM electromagnetic 

FLG Few layer graphene 

FTIR Fourier transform infrared spectroscopy 

GIC graphite intercalation compound 

GO graphene oxide 

HAADF-STEM high angle annular dark-field scanning transmission electron microscopy 

HH hydrazine hydrate 

HOG graphene oxide prepared by Hummers’ method 

HOG
+
 graphene oxide prepared by modified Hummers’ method 

HOPG highly oriented pyrolytic graphite 

HRG highly reduced graphene oxide  

HRTEM high resolution transmission electron microscopy 

HSC hydrogen storage capacity 

ICP-OES inductively coupled plasma optical emission spectroscopy 

IGO graphene oxide prepared by improved Hummers’ method 

KPFM kelvin probe force microscopy 

MWCNT Multiwall carbon nanotube 

NMR nuclear magnetic resonance 

NPs nanoparticles 

PFM piezo response force microscopy 

PGO pristine graphite oxide 

rGO reduced graphene oxide 



 

 

X 

SAED selected area electron diffraction  

SEI solid electrolyte interface 

SEM scanning electron microscopy 

SGH self-assembled graphene hydrogel 

SPM scanning probe microscopy 

SR spreading resistance 

STEM scanning/transmission electron microscopy 

TEGO thermally exfoliated graphite oxide  

TEM transmission electron microscopy 

WF work function 

wt.% weight percentage 

XPS X-ray photoelectron spectroscopy 

XRD X-ray diffraction  
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1. Introduction 

 

1.1 Carbon  

Carbon is known as one of the most versatile elements, for all known terrestrial life on the 

earth. It is capable to form many allotropes such as diamond, graphite, lonsdaleite, fullerene 

and carbon nanotubes, Figure 1.1 [1].  

 

Figure 1.1 carbon allotropes structure A) diamond B) graphite C) lonsdaleite, D-F) fullerene (C60, C540, C70) G) carbon 

nanotube, adapted from ref [1]. 

 

Despite that all carbon allotropes are made entirely out of pure carbon they confer different 

properties depending on their structure. For example, diamond is a giant tetrahedron structure 

of carbon atoms. The hardest known material with high transparency which is desirable for 

both jewelry and use for cutting, grinding or drilling apparatus [2]. Graphite is another 

allotrope with carbon layered-planar structures. It is greyish- black and opaque, soft and 

slippery which is used for pencil leads. High electrical conductivity made it a good candidate 

for electrode materials application. The different fundamental physical properties of different 

carbon allotropes are the consequence of different molecular configuration. 

Carbon atoms have 6 electrons with the configuration of 1s
2
 2s

2
 2p

2
. The core electrons 

with the energy of around -285 eV are strongly bound to the nucleus and don’t participate in 



Introduction 

 

 

4 

atomic bonding. It has only small influence on the physical properties of carbon-based 

material as a source of dielectric screening for outer shell electrons. The rest 4 electrons in the 

second shell of orbitals (2s and 2p) have different energy of about 4 eV which is favorable for 

configuration of 2 electrons in 2s orbital, one electron in 2px and one in 2py state.  

Carbon can form covalent bonds with other carbon atoms or other elements like hydrogen 

or oxygen with superposition of quantum states form sp
n
 (n = 1,2,3) hybridized orbitals which 

influences molecular geometry and bonding properties.  

The sp
2
 hybridization forms 3 covalent bonds in-plane with the characteristic angle of 120 

degrees known as  bonds. The additional pz orbital is perpendicular to these sp
2
 hybrid 

orbitals and stablish  bonds.  

 

Figure 1.2 The crystal structure of graphite, adapted from reference [3]. 

 

Graphite is a typical example of sp
2
 hybridized crystal structure. It consists of parallel 

planes of carbons sheets, which are called graphene, arranged in an ABAB bernal stacking 

sequence.  The carbon atoms are strongly bonded within the graphene layer by  bonds, the 

adjacent graphene sheets are weakly bonded by van der Waals interaction caused by  bonds 

creating the interlayer distance of 0.335 nm between two graphene layers (Figure 1.2) [3]. The 

C-C  bonds are the strongest bonds being responsible for the strength of an in plane of 

graphene and  bonds provide the delocalized electron network which makes the graphene an 

incredible high electrical conducting material. The π bonds are responsible for the weak bonds 

between the carbon layers in graphite [4]. 
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1.2 Graphene 

Two dimensional materials have been a target for theoretical studies over the 70 years [5], 

[6]. According to Landau and Peierls, two dimensional materials could not exist due to the 

thermodynamic instability at room temperature [7],[8]. Several observations in experimental 

work have been supported this theory. According to this theory the melting temperature of a 

thin film is thickness dependent. In other words, decreasing the thickness of the thin film leads 

to decompose or islands segregation when the range of the thickness is about dozens of atomic 

layers. In this regards the only way to form 2D structure was epitaxial growing it on a 3D 

monocrystalline lattice structure [9]. Nevertheless, the existence of two dimensional atomic 

crystals was discovered by easy isolation of exfoliation of graphite under ambition conditions 

in 2004 by Andre Geim and Constantin Novoselov from Manchester University. These 

scientists successfully detached a graphene layer from highly oriented pyrolytic graphite 

(HOPG) using scotch tape. For this discovery, they won the joint Nobel Prize of Physics in 

2010 [10]. 

As referred previously, graphene is a single layer of carbon atoms in a dense honeycomb 

structure and after its discovery it has been considered as a wonder material. Actually, 

graphene sheets are considered the building blocks for other carbon materials from different 

dimensionalities, (Figure 1.3)[9]. 

 

Figure 1.3 Graphene as a building material for other carbon materials [9]. 
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The incredible properties attributed to graphene, such as, high surface area 2630 m
2
/g, light 

weight, high carrier mobility (10000 cm
2
 V

-1 
s

-1
), high thermal conductivity (5300 

W⋅m
−1⋅K

−1
) both at room temperature, high stiffness (1 TPa), high transparency and high 

mechanical flexibility, opened up a high expectation for different applications in the fields of 

electronic, energy storage, biomedical, aerospace industry, sensors, between others. These 

facts about graphene, generated a remarkable research dramatically increasing year by year ( 

Figure 1.4). 

 

Figure 1.4 Evolution number of publication about graphene during 2004-2016. Obtained by searching key word 

“Graphene” data source: Web of Science, Date:07/14/2017. 
 

1.3 Graphene fabrication  
 

There are two main routes for graphene fabrication, top-down and bottom-up synthesis 

(Figure 1.5) [11].  

Top down approaches consist on the decoupling of the stacked graphene layers from graphite 

source including exfoliation of HOPG or natural graphite by mechanical cleavage with scotch 

tape [10], chemical exfoliation in organic medium [12] and chemical exfoliation involving 

strong oxidation agents. In the latter case a highly-oxidized form of graphene is obtained 

called graphene oxide (GO), and due to that a further reduction process needs to be applied by 

chemical or/and thermal process [13-15].  
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Bottom up approach is a molecular growth on a substrate from molecular carbon sources 

including chemical vapor deposition (CVD) [16-18] and epitaxial growth [19-22]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 5 Schematic of top down and bottom up approach for graphene fabrication7 

 

 

 

 

 

Figure 1.5 Schematic of top down and bottom up approaches for graphene fabrication [11]. 

 

1.3.1 Top down approach 

 

Micromechanical cleavage of HOPG is the best-known method for mechanical fabrication 

of high quality graphene [10]. In this method, a single or few layers graphene can be obtained 

by peeling off the graphene layers from HOPG on SiO2 substrate, Figure 1.6 (a) [23]. The 

obtaining graphene by this method is defect free and has high quality which is competent for 

electronic characterization; however, this method is not suitable for massive production of 

graphene.  
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Liquid based direct exfoliation which contain ultrasonic, electrochemical and shear 

exfoliation is another method that recently got attention for fabrication of two-dimensional 

nanomaterials including graphene Figure 1.6 (b) [24]. In this method, a bulk material is 

exfoliated to a few layers in liquid media either with or without intervention of a chemical 

reaction. The minimum chemical reaction is looked-for in order to preserve the high 

crystallinity of the final 2D nanomaterial. One of the important disadvantages of this method 

is the difficulty of complete removing of dispersants such as the solvent. This method is cheap 

and scalable and an appropriate way for production of few layered nanomaterials without 

defects in large volume but not able to form highly uniform single layered structure for 

electronic application. 

 

 

Figure 1.6 Micromechanical exfoliation of graphene (a) [23] and liquid based direct exfoliation (b) [24]. 

 

Graphene can be obtained via oxidation of graphite to GO followed by reduction to produce 

reduced GO (rGO) [25]. In this method, oxygen functional groups like epoxy, hydroxyl, 

carbonyl and carboxyl groups are introduced in to the layers of graphite by strong acids and 

oxidants agents. Graphite oxide can be further exfoliated to the individual or few layers GO. 

The properties of the obtained GO depend on the several factors like the quality of graphite 

source and the synthetic methods. The obtained rGO by this method is composed of restored 

pristine graphene areas, together with the defects on the carbon structure like holes and partial 

content of oxygen functional groups, see Figure 1.7 [26]. 

a b 
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Figure 1.7 Schematic representation of a) pure graphene, individual GO layer with different functional groups and single layer 

of rGO; b) preparation of rGO via chemical exfoliation of graphite [26]. 

 

1.3.2 Bottom-up approach  

 

Chemical vapor deposition (CVD) is the most popular technique for the production of 

large-area graphene. In CVD method, firstly a thin layer of transition metal like nickel (Ni) or 

copper (Cu) is deposited on the substrate. Ni has a close lattice match with graphene so it has 

been suggested as a good candidate for graphene growth on it. This structure is exposed to the 

carbonaceous environment H2/CH4 at high temperature (900-1000 ºC). During the heating 

process carbon radicals are diffused in to the Ni and precipitate out of it while cooling down 

forming graphene. After, by chemical etching of Ni, this graphene membrane is detached from 

the substrate (Figure 1.8) [27]. The graphene grown on Ni contains multilayers regions besides 

monolayer region which is a drawback of using this substrate. To increase the monolayer 

graphene region, annealing the Ni substrate in hydrogen atmosphere has been suggested. This 

treatment reduces the grain boundaries and defects which are responsible for multilayers-

graphene growth [28,29]. 

 



Introduction 

 

 

10 

 

 

 

 

 

 

 

Figure 1.8 Schematic illustration of graphene fabrication via CVD method, orange color resembling high temperature and a 

gas phase while the blue color related to the cold and etchant [27]. 

 

Copper is another interesting element for graphene fabrication in CVD method that was 

firstly suggested by Ruoff group [30]. The mechanism of graphene formation on Cu is 

different from Ni in which the former one is based on the carbon segregation or precipitation 

while the later one is based on the surface adsorption process [31]. Due to the low solubility of 

carbon in Cu the growth of graphene is limited to the Cu surface even at high temperature 

leading to the production of predominantly single layer graphene [32]. Different metal 

substrates have been studied for graphene formation such as Cobalt (Co), Ruthenium (Ru) and 

Iridium (Ir). The mechanism of growing of graphene on these transition metals is the same as 

the one was discussed for Ni substrate [33].  

Besides the type and crystallinity of metal substrate, the quality of graphene obtained relies 

also on other factors including growth time, hydrocarbon concentration and the cooling rate. 

For example, different concentration of hydrocarbon and growth time change the thickness of 

obtained graphene due to the different amount of carbon radicals diffusing in to the Ni 

substrate [28]. 

For the majority of the applications, graphene requires to be on a dielectric substrate 

removing the catalytic metal and transferring the graphene to a proper substrate, while 

maintaining the graphene quality. This is another challenge that should be taken in to account 

for optimization of CVD processes. Reaching the high quality and large scale production of 
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graphene, CVD technique still requires several studies and investigations to meet the criteria 

for electronic and optoelectronic application [34]. 

Epitaxial growth is another bottom up methods for the fabrication of graphene which is 

based on the decomposition of carbon-containing substrate. Usually single crystal silicon 

carbide (SiC) is used as a substrate. At ultra-high vacuum and high temperature around 1300 

ºC, silicon atoms are sublimated and leave the carbon atoms behind. Rearrangement and 

graphitization of these carbon atoms produce graphene sheets. The annealing temperature and 

the time are effective to control the thickness of graphene layers [35]. Epitaxial graphene films 

can be patterned using nanolithography techniques making it compatible with current 

semiconductor technology which is in high demand for electronic devices application [36]. 

However, the epitaxial graphene layers are not uniform on thickness, due to the different polar 

faces of SiC. 

Controlled preparation of monolayered epitaxial graphene can be achieved on silicon 

terminated surface of SiC substrate by tuning the experimental condition. Nevertheless, the 

epitaxial graphene obtained on the carbon terminated surface is mostly containing multilayers 

and is more challenging to be controlled by tuning the experimental conditions [37]. Figure1.9 

[38] shows the growth of the epitaxial graphene on SiC substrate and Figure1.10 [38] 

resembles the differences of epitaxial graphene growth on different surfaces of SiC. 

  

Figure 1.9 The growth of epitaxial bilayer graphene on Si surface of SiC substrate and its structural models. Blue color shows 

the carbon atom while red is silicon [38]. 
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Figure 1.10 Crystal structure of 6H-SiC and corresponding few layers graphene (FLG) on silicon terminated surface and 

multilayers graphene (MLG) on carbon terminated surface, blue and red shows carbon and silicon atoms respectively [38]. 

 

1.4 Graphene Oxide (GO) 

 

1.4.1 History and fabrication methods (Brodie, Staudenmaier and Hummer’s method)  

 

The well-known example of oxidizing graphite is the work of the British chemist, B.C. 

Brodie published in 1859. The oxidation method was based on adding potassium chlorate 

(KClO3) to graphite in fuming nitric acid (HNO3). It was reported an increasing of the weight 

of the final product as a result of the addition of hydrogen and oxygen groups to the carbon 

structure of the graphite [39]. 

After 40 years another scientist (L.Staudenmaier, 1898) [40] optimized this preparation 

method by adding of chlorate to the mixture during the reaction process and also using the 

concentrated sulfuric acid (H2SO4) to the mixture to increase the acidity. The advantage of this 

method was obtaining highly-oxidized graphite like as Brodie’s reported but only in one pot 

reaction preparation [41]. After 60 years two chemists (W.Hummers and R.Offeman, 1958) 

[42] used a simple and fast procedure for oxidizing graphite. They prepared a mixture of 

graphite with concentrated H2SO4, potassium permanganate (KMnO4) and sodium nitrate 

(NaNO3) maintained for few hours to obtain graphitic oxide. In their method, KClO3 was 

replaced by potassium permanganate (KMnO4) in order to avoid spontaneous explosion during 
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oxidation process and fuming HNO3 was replaced by sodium nitrate (NaNO3) to avoid fog 

acid production [43]. The graphite oxide obtained by Hummers’ method always contain 

nonoxidized graphite, in order to overcome this inequality, modified Hummer’s method was 

proposed for the first time by N.I.Kovtyukhova and her group in 1998 [44]. In this method, a 

pre-oxidation step was used prior to the Hummers’ method. Briefly, the graphite powder was 

mixed with concentrated H2SO4, potassium persulfate (K2S2O8) and phosphorus pentoxide 

(P2O5). The mixture was thermally isolated and cooled down to the room temperature over 6 

hours. After dilution with distilled water it was washed and filtered and dried in the air. 

Modified Hummers’ method, like the others methods, has the disadvantage of producing toxic 

gases like NO2 and N2O4. Improved Hummers’ method was another process reported by the 

group of professor M. Tour (by D.C. Marcano, 2010) [45]. In this procedure, instead of 

NaNO3 that was responsible for toxic gas production they used phosphoric acid (H3PO4) and 

also using higher amount of KMnO4 compared to Hummers’ method. In their study, three 

samples HGO, HGO
+
 and IGO were prepared respectively by Hummers method, modified 

Hummers’ method and improved Hummers’ method. It was shown that the oxidation degree 

of the samples is different in the following order, IGO > HGO
+ 

> HGO. Nevertheless, after 

reduction of IGO and HGO by hydrazine hydrate both samples showed the same electrical 

conductivity properties. Figure 1.11 shows the experimental conditions for preparation of GO 

from graphite flakes in Hummers, modified Hummers and improved Hummers method used 

by Tour group.  

 

 

 

 

 

 

Figure 1.11 Representation of three different methods for oxidizing of graphite flakes (GF). Three bottles showing the 

hydrophobic carbon materials after purification of HGO, IGO and HGO +. The IGO has a lower under-oxidized material 

which proves the efficiency of improved Hummers’ method [45]. 
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Currently the modified Hummers’ method is the most widely used procedure for GO 

fabrication. Recently A.M. Dimiev [46] proposed a three steps mechanism to explain the 

formation of GO by modified Hummers’ method (Figure 1.12). 

 

 

Figure 1.12 Representation of the three steps mechanism of GO formation from graphite flakes with the respective optical 

images. The black line, blue line, purple line and black dotted line, represents respectively graphene layers, H2SO4/HSO4
- 

intercalant, a mixture of H2SO4/HSO4
- with reduced oxidizing agent and a GO monolayer [46]. 

 

The first step is described as a formation of H2SO4– graphite intercalation compound 

(GIC) and has the characteristic of deep blue color. This product is obtaining during the first 

3-5 min of reaction process. The second step which takes quite longer, like several hours or 

even days, is the formation of pristine graphite oxide (PGO) from GIC. In this step, the 

progress of oxidation was studied by gradually adding of 1, 2, 3 and 4 wt% KMnO4 to the 

mixture and studies the sample after each part. Obtained optical images of this step showed the 

chemical reaction is progressed from edge to the center of the flakes as the blue color was 

disappearing while appearing the yellow color. It was shown that the percentage of the blue 
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region which related to the unoxidized area is bigger in big flakes than the smaller ones. This 

suggests that the oxidizing progress is different for different flake sizes. Small flakes get 

oxidized faster than the big ones due to the rapid diffusion of oxidizing agent in to the 

intercalant molecules packed between graphene layers in GIC in small area. The edge to 

center oxidation process was also confirmed by Raman investigation of different regions of 

graphite flake. 

The last step includes the reaction of PGO with water and conversion into GO. In this step, 

the water hydrolyses the covalent sulfate which act as protective groups and further oxidation 

modification leads to the formation of the final GO. 

 

1.4.2 Chemical structure  

 

A simple definition to describe a GO sheet is a graphene layer with both sides bonded to 

oxygen groups like carboxyl, hydroxyl and epoxy groups [47]. The GO can be synthesized by 

oxidation of graphite to graphite oxide and then by exfoliation to GO. The interlayer distance 

between carbon layers in graphite is 0.335 nm which increases to around 0.7 nm after 

oxidation. The graphite oxide can be easily exfoliated to GO by stirring or mild sonication. 

Since the graphite oxide is composed of an accumulation of GO sheets, both material exhibit 

similar structure. Graphene, or more exactly rGO can be obtained by the further reduction of 

GO by elimination of the oxygen groups. Despite the old history of GO fabrication, this 

material got heightened interest as a source of graphene production only after the discovery of 

graphene in 2004 [48]. Unfortunately, due to the nonstoichiometric atomic composition of GO 

and the lack of characterization techniques until today, the structure of GO is not fully understood 

and still is on debate. Some of the early proposed schematic structural models for GO are 

summarized in Figure 1.13. These models are based on those information obtained by exchange 

reactions, X-ray diffraction (XRD), electron diffraction and infrared spectroscopy [49]. 

Hofmann and Holst [50] suggested a model in which carbon plane contains epoxy groups on both 

sides with the C2O ideal formula. Later on, Ruess [51] proposed another model which contain both 

epoxy and hydroxyl groups on graphene basal plane [41]. The structure suggested by Scholz and 



Introduction 

 

 

16 

Boehm [52] considered a flat carbon layer containing regularly C=C bonds and the carbonyl and 

hydroxyl groups are as the only oxygen functional groups. Nakajima and co-workers used Fourier 

transform infrared spectroscopy (FTIR) and carbon-13 nuclear magnetic resonance (
13

C NMR) 

characterization to study the structure of GO. They also indicated that after fluorination of GO the 

resultant showed the same C2F structure by XRD analysis. In this case, they suggested each two 

carbon layers are linked together by carbon – carbon sp
3
 bonds. According to their model the 

existence of the hydroxyl and carbonyl groups are depends on hydration [53]. Lerf and Klinowski 

proposed their model in 1998 based on their 
13

C NMR and 
1
H NMR studies [54]. 

 

 
Figure 1.13 Different earliest models for GO structure (Images are adapted from references [50, 51, 52, 53 and 54]). 

 

This model is the most accepted structure for GO. In this model, the oxidized and 

unoxidized aromatic rings are spread randomly and oxygen functional groups are on the both 

sides of GO sheets with the GO layers terminated with C-OH and –COOH groups. Those 

carbon atoms that attach to OH group have slightly disordered arrangement that cause some 

wrinkles on the GO. It was also suggested the existence of epoxide (1,2-ether) instead of 1,3- 

ether which was proposed earlier by Mermoux [49]. It was also explained that the negatively 

configuration of oxygen groups covering both sides of GO is responsible for preventing the 

carbon from nucleophilic attack. Depending on the oxidation level, GO has different 

stoichiometry of its elements. Nonetheless the same set of oxygen functional groups are 

reported for synthesized GO from different methods [55].  
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Besides of the reported analysis methods that were used for understanding the structure of 

GO, aberration corrected transmission electron microscopy (AC-TEM) is one powerful 

technique to study the graphene structure, however in the case of GO it is a challenging 

technique due to the presence of defects and contaminants that mask the GO surfaces. Another 

difficulty is the reaction of these contaminants with high energy electron beam resulting 

changes of GO structure. Kris Erickson [56] studied the local structure of GO using AC-TEM 

technique. To prepare the proper sample for the macroscopic observation, the GO deposited 

on a grid was reduced with hydrazine and heated at 550°C in N2 atmosphere to clean the 

contaminants. It was shown that the GO consist of three different regions including holes, 

graphitic regions and disordered areas, see Figure 1.14. The graphitic domains are incomplete 

oxidation of graphite and disordered areas are continuous containing high contrast resemble 

the GO region. 

 

Figure 1.14 Aberration corrected TEM image of a single layer of GO. The blue, yellow and red color indicating the holes, 

graphitic domain and disordered regions with oxygen groups respectively, scale bar denoting 2 nm, adapted from ref [56]. 

 

One of the most recent study of GO with AC-TEM was reported by S. H. Dave in 2016 using 

in situ heating of sample holder up to 700 ºC [57]. It was mentioned that above 500 ºC the 

contaminants detached and the crystalline and polycrystalline areas were appeared. The 

existence of long range sp
2
 lattice structure and isolated defects areas in GO was reported. 
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Figure 1.15 shows closed edges and open edges revealing the disorders in GO which separate 

the crystalline areas.  

 

 
 

Figure 1.15 a) Atomic structure of GO obtained by (AC-TEM) during the heating process at 700 ºC, b) The structure of only 

one area in (a) that is shown in white the resolved structure [57]. 

 

1.4.3 Preparation of rGO  

 

Different processes are used for elimination of the oxygen functional groups from GO 

structure and restoration of sp
2
 hybridized domain. However, the fully recovering of graphitic 

domain from GO is not possible due to the formation of stable carbonyl and ether groups, 

Stone-Wales defects including heptagons and pentagons pairs and the holes that are by-

products of carbon releasing from the structure in the form of CO and CO2 [26]. As a 

consequence, rGO shows different properties depending on the oxygen reduction level and 

structural defects. Determination of C/O ratio in rGO is an important factor that can clarify the 

level of the reduction. X-ray photoelectron spectroscopy (XPS) is the best-known technique 

for this purpose. The C/O atomic ratio of fully oxidized GO is reported to be about 2:1 , 

heating it more than 80 °C changes the composition and increases the C/O ratio [58].  

On the other hand, the existence of these minor functional groups can be tuned in order to 

functionalize the GO providing GO with an extraordinary capability for different applications 

[59-61]. Regardless of the type of methods used for the reduction of GO to rGO, this material 

goes under several changes. The most visible one is the change of the color from brownish to 

black in bulk quantity. The hydrophilic characteristic of GO changing to the hydrophobic 

property. Moreover rGO become more conductive than GO [26]. The efficiency of GO 
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reduction can be examined by different techniques such as XRD, thermogravimetry and 

Raman spectroscopy [62]. 

 

1.4.3.1 Thermal annealing reduction 

 

Rapid thermal annealing is one strategy to produce bulk quantity of thermally reduced 

graphene oxide (TRG) from thermal expansion of graphite oxide. Rapid heating (>2000 

°C/min) up to 1050 ºC [63] leading to the decomposition of oxygen functional groups in the 

form of CO and CO2 yielding high pressure between the stacked layers of the graphite oxide. 

For exfoliation of graphite oxide, the van der Waals force that keeps the GO layers stacked 

together should be overcome by this pressure. In other words, the temperature required for this 

process must exceeds over 550 ºC in order to exfoliation occurrence [64]. The decomposition 

of oxygen groups produces defects by removing the carbon atoms from basal plane. About 

30% weight loss occurring during the thermal annealing of graphite oxide by decomposing of 

oxygen groups and water evaporation. The need of high temperatures in this method 

demanding high energy consumption and expensive facilities turns this method not truly 

practicable. In addition, this procedure is not suitable for some applications, like the 

preparation of rGO on glass substrate for electronic devices.  

Several thermal reduction methods of GO at low temperature has been reported recently. 

Bin Shen [65] prepared a few layered graphene sheets using HCl at low temperature (130 ºC) 

and under ambient atmosphere. Obtained graphene sheets were defective with some residual 

functional sites showing the bulk conductivity of 1200 S m
-1

 for 0.3 g cm
-3

 and the BET 

surface area of about 500 m
2
g

-1,
 which is lower than pristine graphene sheet. A. Kaniyoor [66] 

synthesized graphene sheets by reduction-exfoliation method at 200 ºC under hydrogen 

atmosphere. The BET surface area of obtained graphene reported to be 442.9 m
2
g

1
. 

Xianjue Chen [67] reported the possibility of GO thin films reduction in the air by rapid 

thermal annealing. It was suggested that by increasing the environmental pressure through 

sandwiching the GO film between two quartz slides, it is possible to decompose the oxygen 
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groups at temperatures ranging from 100 ºC to 400 ºC in the air while preserving structural 

integrity.  

 

1.4.3.2 Chemical reduction 

 

 rGO can be chemically produced using reducing agents [68] such as hydrazine 

monohydrate [69,70], sodium borohydride [71,72] and hydroquinone [73]. The basal plane of 

GO contains different oxygen groups that make it hydrophilic so it can be exfoliated easily in 

aqueous solution. One effective method for exfoliation and reduction of graphite oxide is to 

place it in pure hydrazine solution. Although, the complete elimination of oxygen groups is 

not possible through this method and besides the number of defects created, a significant 

restoration of sp
2
 sites can be achieved [74]. 

 The effect of hydrazine hydrate dosage and reaction time on the reduction of oxygen 

functional groups were studied by P. Zh [75] using FTIR. Graphite oxide was prepared by 

Hummer’s method and was exfoliated using ultra-sonication. Furtherly, the single layers of 

GO were isolated by centrifugation. Different doses of hydrazine hydrate 1, 5, 7 and 10 mg 

were tested for the reduction of GO. It was shown that efficient reduction was achieved for the 

higher dosage of hydrazine hydrate. These authors also studied the influence of time on the 

reduction of oxygen groups. FTIR spectra of samples were collected and investigated after 

five different reaction times (20, 40, 60, 80 and 100 min). After 20min the peaks of oxygen 

groups were mostly decreased and it was mentioned that the effective complete reduction was 

achieved after 80min reaction time. It was shown that the reduction degree increases slowly 

with the time evolution. 

 The reduction of GO by hydrazine hydrate under different conditions such as different 

temperatures and reaction time was investigated by P. Gang Ren [76]. The GO was prepared 

from modified Hummers’ method suspended in distilled water and mix with hydrazine hydrate 

with the weight ratio of (HH/GO=1). The reaction was carried out varying temperature (15, 

60, 80, 95 ºC) and time (100h, 24h, 3h). The resultant materials were investigated by different 
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characterization techniques. It was concluded that the temperature had a higher impact on the 

reducing process than the reaction time, see Table 1.1. 

Table 1.1 The C/O ratio of rGO obtained under different reduction condition, adapted from reference [76]. 

 

 

On the other hand, a possible reaction mechanism for the reduction of oxygen groups with 

hydrazine hydrate was suggested by P. Ren [76], see Figure 1.16. 

 

 

Figure 1.16 Schematic illustration of GO preparation and its reduction with hydrazine hydrate [76]. 

 

The majority of oxygen groups are eliminated after chemical reaction but the sp
2
 graphene 

domain is not fully recovered. Some parts of rGO still contain functional groups like C-OH 

and C-H. Also, the existence of C=N bond with N origin from hydrazine was proved by FTIR 

and XPS data.  

The hydrazine reduction of both graphite oxide and exfoliated GO was reported by the 

group of R. Ruoff [77]. The graphite oxide was synthesized by modified Hummers’ method. 

For the preparation of the first sample, the graphite oxide was suspended in pure water under 

ultrasound bath for fully exfoliation of GO. The other sample was graphite oxide that was not 

further exfoliated like the previous sample. Hydrazine hydrate was added to both suspensions 

C/O 
GO 15 ℃/100h 60 ℃/100h 80 ℃/24h 95 ℃/3h 

3.0 6.4 10.9 13.1 15.1 
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and the products were characterized. It was shown that the degree of reduction for exfoliated 

GO (C/O=10.2) was higher than for non-exfoliated graphite oxide (C/O=5). The schematic 

representation of reduction degrees is shown in Figure 1.17.  

 

Figure 1.17 The effect of exfoliation of GO on the reduction degrees [77]. 

 

1.4.3.3 Hydrothermal and solvothermal reduction  

 

Hydrothermal/solvothermal process is a powerful, facile and environmental friendly 

method to synthesize nanomaterials. It is a single pot process that is carried out in a closed 

system at a temperature close to the boiling point or above it in order to provide high pressure 

for production crystalline nanostructures. These methods are also applied for the reduction of 

GO. In hydrothermal method, water is used as a solvent and acts as a source of H
+
 for 

protonation of hydroxyl groups [78]. The pH of solution is very important for this method.      

Highly reduced GO (HRG) is stable in basic solution while in acidic medium the HRG turned 

to be aggregated. 
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E.C. Vermisoglou [79] studied the effect of reaction time and alkaline media on the 

electrochemical properties of rGO obtained from hydrothermal reaction. Modified 

Staudenmaier's method was used for graphite oxide preparation. Hydrothermal synthesis was 

performed at 180 ºC for different reaction times of 4, 19, 22 and 24 hours, for pH adjustment 

K2CO3 was used. The higher degree of GO reduction was achieved through the higher reaction 

times. Moreover, the sample produced under alkaline media showed less defects and higher 

BET surface area. Highest capacitance performance was obtained for the sample produced 

under alkaline media for 19 h heating treatment. It was concluded that by manipulation of 

different factors in hydrothermal synthesis it is possible to tune the electrochemical 

performance of rGO.  

Only water is used in hydrothermal while in solvothermal method different solvents can be 

used. So the later one is more favorable for the production of nonoxidized products, 

nonetheless both methods have shown to be successful in nanomaterials production [80]. 

Reduction of GO through solvothermal route was studied by H. Wang [81]. Graphite oxide 

was prepared by modified Hummer’s method. N,N-dimethylformamide (DMF) was used as a 

solvent (~0.1mg/mL) and hydrazine monohydrate as a reducing agent and the suspension 

heated at 180 ºC. The effective reduction achieved by this method is the result of more 

removal of oxygen groups by hydrazine hydrate at high temperature however, the conductivity 

was poor due to the presence of structural defects. 

 

1.5 Graphene based nanocomposites 

 

The combination of graphene or graphene related materials with appropriate materials like 

polymers [82-84], organic molecules [85-87] or NPs [88] can give origin to new materials 

(nanocomposites) which exhibit different properties that arises from each individual 

components. For example, it was reported that addition of rGO in a Cu matrix improved the 

strength and enhanced the mechanical performance[89]. Also, the chemical doping of 

graphene films by AuCl3 can improve the conductivity of graphene films [90]. Because of this, 

particular emphasis has been placed on strategies for the optimization of graphene based 
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nanocomposite properties. The advantages of graphene-based nanocomposites in several 

applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices and 

photocatalysis are of the huge importance and some examples will be discussed in the 

following sections. 

 

1.5.1 Graphene nanoparticles nanocomposites  

 

Due to the oxygen functional groups, GO and rGO are good substrates for nucleation and 

growth of various metals such as Ag [91], Au [92], Pt [93], Pd [94], Ni [95] or metal oxides 

such as Fe3O4 [96] or NiO [97] on their surfaces.  

Based on the NPs structural morphology the graphene/NPs nanocomposites can be widely 

classified in two categories. First, graphene NPs nanocomposites in which NPs are grown on 

GO or rGO sheet with the size of few nm to hundred nm. The second is graphene-

encapsulated NPs in which the big NPs are wrapped by graphene or rGO sheet [98]. There are 

two different routes for loading or binding metal or metal oxide NPs on GO or rGO known as 

ex situ hybridization and in situ growth, see Figure 1.18 [78]. In ex situ method, graphene or 

rGO nanosheets or/and NPs are functionalized and synthesized separately. The 

functionalization can be non-covalent stacking or can be the covalent C-C coupling reaction. 

This method is suffering from the low density of NPs and nonhomogeneous distribution of 

NPs [78]. In situ growth, that is most widely used, is based on using the salts containing metal 

ions as a source of metal NPs and GO as a substrate for their growth. The advantages of this 

method are the possibility of preparation the high-density NPs nanocomposite on which NPs 

are homogenously distributed in the composite matrix. There are different methods for in situ 

fabrication of rGO/NPs such as reduction procedure, hydrothermal or solvothermal methods 

[98].  
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Figure 1.18 Schematic representation of different preparation of graphene/NPs composites [78]. 

 

Reduction procedure is a well-known method for the preparation of graphene/noble metal 

NPs nanocomposites. Noble NPs such as Ag and Au have unique properties such as 

biocompatibility and optical properties [99]. These NPs are widely used in the field of 

nanomedicine [100] , imaging [101] and diagnostic [102] ,[98]. Graphene has a high potential 

to be used as a support for noble metal NPs [103]. The high interaction between functionalized 

graphene with noble metals leads to high dispersion of catalysts and enhance the catalytic 

performance [104]. Noble metal NPs also act as a nano spacer and conductor preventing the 

agglomeration of graphene sheets, making the two sides of the sheets accessible and 

improving the conductivity [105]. Combining noble metals with graphene also improve the 

compatibility. For example GO-Ag composites have lower cytotoxicity and better blood 

compatibility than Ag NPs alone [106].  
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During the reduction method, the metallic ions present in the salts such as AgNO3 or 

K2PtCl4 are reduced by chemical agents like ethylene glycol, sodium citrate or sodium 

borohydride. The decoration of rGO taking place in 3 steps: reduction, nucleation and crystal 

growth. First, the positive charged metal ions are electrostatically attracted by the negatively 

charged GO, and then by adding the reducing agent it simultaneously reduces the metallic ions 

and eliminates the oxygen groups. This reduction helps to preserve the 2D structure of rGO. 

Unlike the easiness and efficiency of the reduction route, this procedure is not promising to 

control the size and the morphology of NPs which normally present a wide size distribution. 

To synthesize inorganic NPs with high crystallinity and narrow size distribution 

hydrothermal/solvothermal methods are more effective routes. These methodologies are 

mostly used for synthesizing metal oxide NPs/rGO composites such as Fe3O4 [107] ,TiO2 

[108], ZnO [109] , NiO [110]. The high pressure and temperature used in these methods are 

responsible for the growth of nanocrystals simultaneously with the reduction of GO. The 

combination of metal oxide with rGO also prevent the restacking of the graphene layers 

suppressing the agglomeration of particles that enhance the properties of both materials [98]. 

For example, Fe3O4/rGO nanocomposite prepared by the hydrothermal method showed the 

higher electrochemical performance when compared to bare Fe3O4, which could be applicable 

in lithium batteries [111].The high conductivity of rGO, nano sized and well distributed Fe3O4 

are the main reasons for these properties enhancement. 

S. Bai [112] reported the preparation of rGO supported ferrite (MFe2O4, M=Mn, Zn, Co 

and Ni) hybrids by one pot solvothermal synthesis route and tested their ability for the 

removal of organic dyes. It was indicated that when the high adsorption property of rGO is 

combined with the magnetic and photocatalytic properties of magnetic NPs, it brings the 

aforementioned criteria for environmental application. The size and size-distribution of NPs 

were adjusted by tuning the metal ion concentration. The high adsorption performance was 

achieved due to the high rGO surface area and high electrostatic interaction between dyes 

pollutants and rGO sheets. Considerable saturation magnetization also made possible that the 

hybrids could be harvested by a magnet after using. 
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The structure of the NPs obtained by hydrothermal/solvothermal method depends on 

different reaction parameters such as temperature, reaction time, solvent and reductant effect 

[113].  

For example, the preparation of three different TiO2/graphene nanosheets structures was 

reported by Z. He [114]. 12 nm spherical TiO2 graphene sheets (STG), ultra-small 2 nm TiO2 

graphene nanosheets (USTG), and TiO2 nanorod–graphene nanosheets (NRTG) were simply 

synthesized by adjusting the experimental conditions in one pot solvothermal method, see figure 

1.19. This example shows the potential of the solvothermal method to control the NPs size by 

adjusting the reaction parameters. 

 
 

Figure 1.19 Different experimental conditions to synthesize different TiO2/graphene nanosheets structure [114]. 

 

1.5.2 Graphene based nickel compound (nickel hydroxide, nickel oxide, nickel) 

nanocomposite  

 

Nickel compounds have gained interest due to its multifunctional properties and can be 

used in different areas such as batteries [115], catalysts [116] and capacitors [117]. 

 

1.5.2.1 Reduced graphene oxide/ nickel hydroxide nanocomposite  

 

Ni(OH)2 is a promising anode material for supercapacitors due to its layered structure with 

large interlayer spacing and well defined electrochemical redox activity. It showed higher 

specific capacitance than traditional electrode material like RuO2 related to pseudocapacitive 

javascript:popupOBO('CHEBI:52531','C1NR11300C','http://www.ebi.ac.uk/chebi/searchId.do?chebiId=52531')
javascript:popupOBO('CHEBI:50805','C1NR11300C','http://www.ebi.ac.uk/chebi/searchId.do?chebiId=50805')
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reaction during the charge and discharge process. The aggregation and restacking of this 

material during the process diminish the electrochemical performance. It is reported that using 

graphene not only prevents the aggregation but also enhances the conductivity which is in 

need for the electrode materials [118]. 

The properties of Ni(OH)2 are size and morphology dependent. N.A Hoque [119] studied 

dielectric properties of spherical and nanoplate Ni(OH)2 NPs prepared using hydrothermal 

process at 150°C for different reaction times. LiOH was used for pH adjustment. It was shown 

that for higher pH, it is possible to tune the NPs morphology from spherical to nanoplate by 

changing the reaction time. Also, increasing the reaction time increased the size of nanoplates. 

Well defined Ni(OH)2 nanoplates sample was obtained under the higher pH and showed a low 

band gap of around 5.463 eV and a high dielectric constant about 3.12×10
5
.  

The electrochemical performances of Ni(OH)2/rGO with different size and morphology 

have been investigated [120,121]. For example, W. Liu [122] reported the preparation of 

Ni(OH)2 nanowires on rGO synthesized by one step reactable ionic liquid 1-hexadecyl-3-

methylimidazolium trifluoroacetate as template assisted hydrothermal method. This 

nanocomposite showed specific capacitance of ∼1875 F g
−1

 at 1 A g
−1

 in 6 M KOH aqueous 

solution. It was mentioned that the nanowire structure of Ni(OH)2 provide short path length 

diffusion of electrolyte that enhances the electrochemical performance. 

Synthesis of ultra-thin porous Ni(OH)2 nanosheets/rGO was reported by X. Zang [123]. 

This nanocomposite was prepared through solvothermal method and showed high specific 

capacitance 1886 F g
-1

 at 5 A g
-1

 and 1362 F g
-1

 at 30 A g
-1

. The porous structure of Ni(OH)2 

nanosheets increases the active sites by increasing the transport and diffusion of electrolyte 

ions during charge and discharge reaction. 

 

1.5.2.2 Reduced graphene oxide/ nickel oxide nanocomposite  

 

Another nickel compound, NiO, is one of the most important among the transition metal 

oxides due to its various properties such as low cost, magnetic properties, high theoretical 



Introduction 

 

 

29 

capacity (2573 F g
−1

) and high electrochemical performance. Different NiO nanostructures 

such as NPs [124], nanowires [125], nanoflowers [126], have been mostly studied as electrode 

materials for supercapacitors. Unfortunately, NiO suffers from low conductivity and easy 

agglomeration, which inhibit its functionalities. The incorporation of NiO into a flexible, high 

surface, conductive matrix like graphene could highly increase its capability for extreme 

performance [127-130].  

For example 2D graphene/ 2D NiO structure has been prepared and suggested for gas 

sensing application[131]. Porous structure of 2D NiO on rGO was prepared using spray 

coating of GO and Ni-seed solution on a sensing electrode combined with an annealing 

treatment. This 2D hybrid material showed higher sensitivity toward NO2, H2, NH3 and H2S 

when compared to bare NiO nanosheets due to the charge transfer between NiO and rGO. The 

NiO grown on rGO showed high crystallinity with a specific orientation that might be 

responsible for NiO hierarchical structure that increases the responsivity towards NO2. Porous 

flower like NiO/graphene composite using a combined hydrothermal-annealing methodology 

was reported by L. Wang [132]. This nanocomposite showed strong microwave absorption 

properties due to the special structure that provides high surface area for trapping the 

electromagnetic radiation. A light weight and long-range bandwidth absorption are important 

criteria for an ideal microwave absorption material. 

Tuning the synthesis conditions can result for better performance of rGO/NiO 

nanocomposites. For instance, the effect of calcination temperature (250 ºC, 300 ºC, 400 ºC, 

500 ºC) on the electrochemical performance of NiO/rGO nanocomposite was studied by G. 

Chen [133]. It was indicated that the nanocomposite calcined at lower temperature has more 

defects on the surface which improves the surface electrochemical activity. Moreover, smaller 

NiO NPs obtained at lower temperature boosted the electrochemical performance due to the 

charge transfer improvement.  
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1.5.2.3 Reduced graphene oxide/ nickel nanocomposite  

 

Nickel is a ductile and inexpensive metal. It has tremendous potential in different 

application due to the high catalytic [134] and magnetic properties [135]. Usually it is used as 

a cathode material for fuel cells and capacitors. Its ferromagnetic property make it recoverable 

from catalytic processes[136].  

The innate properties of Ni can be tuned by manipulation of its size and the structure 

[137]. For example, nano Ni exhibits high catalytic activity in hydrogenation. This catalytic 

activity increase with decreasing the size of the NPs [138,139]. Generally, when the NPs size 

decreases to the less than 10 nm it drastically changes the physical properties, these changes 

are more pronounced when the size become less than 3nm [137]. 

Ni can be considered as a promising electromagnetic (EM) absorption materials. Various 

studies reported on EM absorption potential of different structure of metallic Ni such as 

ultrafine fiber [140], hierarchical branch like and flower like [141], nanowires [142] and 

urchin like Ni [143]. Ni NPs are magnetic loss absorbents, if they are integrated with an 

effective dielectric EM absorber like graphene making better impedance matching between 

them will enhances the EM absorption properties[144]. Recent urchin like Ni/rGO composite 

and Ni microspheres/rGO prepared by one pot solvothermal method showed extra ordinary 

EM absorption properties due to its multiple absorption mechanism [145,146]. 

Bare Ni NPs are unstable and prone to get oxidized in air; however, in rGO matrix they are 

more stabilized. This stabilization is due to the existence of free electrons on the surface of 

rGO that helps metallic Ni remains in its zero-valent state and doesn’t get oxidized to high 

oxidation state showing a better performance for catalytic applications. rGO/Ni 

nanocomposite has been reported as a potential catalyst for the reduction of highly toxic 

aqueous Cr(VI) at room temperature [147].  

A facile synthesis of rGO decorated with hexagonal Ni NPs was reported by Zhenyuan 

[148]. This nanocomposite showed an excellent catalytic property comparing to noble metal 

catalysts to reduce the p-nitrophenol, a common organic pollutant in agriculture, in the 
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presence of NaBH4. It also showed the high electrocatalytic activity towards the oxidation of 

glucose which can be used in biosensing application. 

Improvement of hydrogen sorption properties of MgH2 was investigated in the presence of 

Ni@rGO nanocomposite. A porous Ni@rGO was synthesized by polyol method and mixed 

with MgH2 powder. It was found that the presence of Ni@rGO had a good catalytic effect on 

de/hydrogenation of MgH2. It was mentioned the Ni NPs were responsible for the faster 

sorption kinetic of MgH2 and rGO was useful preventing the hydride sintering and 

agglomeration that caused the cyclic stability [149].  

Y.J. Mai reported the synthesis of graphene anchored with Ni NPs with the size of 10 nm 

as a high performance anode material for lithium ion battery [150]. The reversible capacity 

obtained was 675 mAh g
-1

, which is a larger reversible capacity when compared to the bare 

graphene electrode. It was explained that this improvement was achieved due to the thickness 

optimization of solid electrolyte interface (SEI). Through the synthesis of graphene/Ni hybrid 

the Ni NPs cover some parts of the active sites of graphene surface which are favorable sites 

to form SEI. SEI is a layer of mosaic structure which is forming on the surface of negative 

electrode due to the different electrolyte degradation and lithium salt hydrolysis containing 

lithium fluoride, lithium oxide and/or lithium carbonate. SEI is one of the important factors for 

the battery performance which has been a subject for several studies of rechargeable batteries 

[151,152]. Conductive networks of graphene/Ni NPs is another advantage of this 

nanocomposite which makes the anode more bearable and tolerant during the high current 

flow. 

Recently Ni NPs decorated rGO sheets has been studied as a solid-state material for 

hydrogen storage. A. sigal [153] used density functional theory (DFT) for studying the 

hydrogen storage on graphene/Ni system. It was shown that decoration of graphene with Ni 

NPs enhances the hydrogen uptake when compared to the bare graphene sheet. 

Enhancement of hydrogen adsorption on graphene decorated Ni experimentally was also 

confirmed by M. Gaboardi [154]. In this study, thermally exfoliated graphite oxide was 

synthesized and further was chemically functionalized with Ni NPs under oxygen free 
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condition. The maximum amount of hydrogen uptake by this system was 1.15 mass% at 77K 

and was reported lesser at elevated temperature. In addition, it was proved that the hydrogen 

adsorption was fully reversible after several sorption and desorption cycles. 

The hydrogen storage capacity (HSC) on rGO doped Ni NPs were also reported by N. 

Ismail [155]. In this study, the authors compared the HSC and the kinetics of hydrogen up take 

of the graphene doped with Ni and Pd NPs (5 and 10 wt% Pd or Ni) showing that under the 

reported experimental conditions, Pd presented a catalytic effect on hydrogen uptake at 80 K 

and 300 K, while doping with Ni enhanced the HSC only at 80 K but it showed a negative 

influence on hydrogen adsorption at 300 K. According to the authors, this ambiguous behavior 

might be because the Ni NPs were in the form of oxide and hydroxide that could hinder the 

hydrogen uptake at 300 K. 
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1.6 Thesis outline 

 

This thesis is organized in 5 chapters.  

Chapter 1 is this present introduction that contains a literature review and fundamental 

concepts of graphene, graphene derivatives, graphene based nanocomposites, synthesis and 

applications.  

Chapter 2 is based on a published paper in a peer reviewed journal with addition of some 

extra supporting data. This chapter refers to the synthesis and characterization of Ni NPs/rGO 

by hydrothermal method and discuss about the roles of different synthesis parameters on the 

structure of final products. The role of the reducing agent on the size and morphology of the 

obtained Ni NPs is discussed in details. Moreover, the electrical properties of nanocomposite 

with spiky Ni morphology are characterized and its potential application in nanoelectronic 

area is discussed.  

Chapter 3 is under review for submission to a peer reviewed journal. This chapter contains 

materials describing a solvothermal method for preparation of nanosized Ni decorated rGO. 

The effect of synthesis parameters on controlling the size of Ni NPs and the structure of rGO 

is discussed. The effect of the size and structure of Ni NPs on electrophysical properties of 

Ni/rGO nanocomposite is explored and discussed in details. 

Chapter 4 refers to the study of the effect of heating treatment on the structure of Ni NPs and 

rGO in Ni/rGO nanocomposites obtained through the solvothermal method. The migration of 

Ni NPs on the rGO surface under intense heating treatment is characterized and discussed. 

Chapter 5 is the final chapter that presents the main conclusions of the work of this present 

thesis and possible outline directions for the future research.  
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Chapter 2 

Synthesis and characterization of reduced graphene oxide/spiky nickel 

nanocomposite for nanoelectronic applications  
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2.1 Scope 
 

The surface modification of graphene oxide (GO) sheets with nickel (Ni) nanoparticles 

(NPs) has been a subject of intense research in order to develop new preeminent materials 

with increased performance for different application areas. In this work, we develop a new 

hydrothermal one-step method for the simple and controllable synthesis of reduced GO/nickel 

(GO/Ni) nanocomposites. Different reaction parameters have been investigated in order to 

control the synthetic process: reaction temperature, concentration of Ni precursor and reducing 

agent. It was observed that the critical parameter for the effective control of Ni particle size, 

morphology, crystalline structure and distribution at GO surface during the reaction process 

was the concentration of hydrazine hydrate (N2H4.H2O). The results obtained showed that the 

control of N2H4.H2O concentration allows obtaining crystalline metallic Ni NPs, from 

spherical to spiky morphologies. For nanocomposites with Ni spiky NPs it was observed that 

the reaction time allows controlling the growth of the nanothorns. The electrical properties of 

the reduced graphene Ni nanocomposites containing spikey Ni particles showed a large 

resistive switching, which is essentially due to the switchable diode effect that can be used as 

built-in part of graphene-based embedded electronics.  

 

2.2 Introduction 
 

Graphene, a two-dimensional carbon material with the honeycomb structure has received a 

lot of attention due to its remarkable properties since its discovery in 2004 [1]. The unique 

structure allows achieving extraordinary properties such as high thermal and electrical 

conductivity. These properties have been further explored to overcome the forthcoming 
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thermal problem in electronic circuits and low specific power density in lithium-ion batteries 

[2-4]. As has been reported, graphene is the strongest material that has been ever examined 

[5]. Besides these extraordinary properties that arise from the nature of the graphene, new 

synergetic properties can be achieved by manipulating or decorating its surface with different 

kinds of biological molecules and materials, macromolecules or NPs. The incorporation of 

NPs has been one interesting approach to increase the application range of the graphene-based 

materials.  

Graphene nanocomposites can be obtained by methodologies that consists on the direct 

growth of the NPs on graphene surface or thought processes that allows the self-assembly of 

NPs at graphene surface [6]. It was observed that the degree of oxidation of graphene [7] and 

heteroatoms doping of graphene [8] have a strong structural influence on the final 

nanocomposites. Functionalization of graphene with metal and metal oxide NPs allows the 

development of new nanocomposite materials for diverse applications such as catalysis, 

electronics, biological, magnetic and optoelectronics. 

In order to develop new graphene nanocomposites with magnetic properties, the most used 

strategy involves the assembly of magnetic NPs, among which the NPs based on iron [9], 

nickel [10] and cobalt [11] are the most relevant. Different synthetic routes have been 

developed in order to create graphene/Ni hybrids in a reproducible and controlled manner. 

Chen et al. reported preparation of Ni-graphene hybrids using NaHB4 as a reductant and 

NaOH as an alkaline medium under microwave irradiation for catalytic applications [12]. Choi 

et al. prepared nanostructured Ni/graphene hybrid using GO in ethylene glycol and Ni(II) 

nitrate hexahydrate (Ni(NO3)2•6H2O) as a precursor while reducing reassembled hybrid under 
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mixed gas of H2/N2 (5:95) as an electrochemical hydrogen storage material [13]. Gotoh et al. 

produced the graphene sheets decorated with metal or metal oxide NPs including Ni NPs using 

GO, NH3 solution and [Ni(NH3)6] Cl2 precursor followed by calcination of the Ni complex, at 

a heating range from room temperature to 673 °K [14]. Koushik et al showed a new multistep 

method for the synthesis of reduced GO/Ni nanocomposites based on the previous synthesis of 

Ni(OH)2/GO nanocomposites, followed by the thermal treatment under air at 380 ºC to 

promote the conversion of NPs into NiO and under H2 for the final conversion to metallic Ni 

[15]. Recent studies showed the use of alkali hydroxides for previous pH-adjusted reaction 

medium with chemicals such as NaOH or KOH for the synthesis of Ni NPs [16-18]. It was 

also observed that the previous complexation of Ni with urea followed by reduction with 

N2H4.H2O allows the achievement of reduced GO/Ni nanocomposites [19]. However, one of 

the most commonly used reducing agents for the synthesis of Ni NPs on the surface of GO 

nanosheets is N2H4.H2O. Wang et al. reported a simple microwave-assisted method for the 

synthesis of Ni nanospheres in ethylene glycol solution for the development of glucose sensors 

[20]. Graphene/Ni nanocomposites were also prepared via hydrothermal process through 

N2H4.H2O reduction of Ni precursors on the surface of GO nanosheets [21,22]. Ji et al. 

observed that the concentration of Ni ions has an important influence on the morphology of 

the nanocomposites [21]. 

In this work, we developed a new approach for the synthesis of GO/Ni nanocomposites by 

one-step facile, cheap and environmentally friendly hydrothermal route. We investigated the 

influence of several experimental parameters such as time, temperature and reducing agent 

concentration of N2H4.H2O on the Ni NPs morphology, crystalline phase and distribution on 
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the GO surface. The results revealed that the Ni particles size, shape and distribution on GO 

surface can be simply tailored by adjusting the N2H4.H2O concentration in the reaction 

medium. For nanocomposites with spiky NPs it was observed that the reaction time can 

control the growth of the nanothorns. It was observed that N2H4.H2O also promotes the 

reduction of GO during the synthesis process of the nanocomposites. The electronic 

characterization showed that spiky Ni particles implanted in rGO matrix enhance conductivity, 

with the nonlinearity observed in current-voltage dependence if the output electrodes are 

attached. Via the equilibrium energy band diagrams, we confirmed that all the experimental 

structure components (Ni particles, rGO, NiO and Pt-tip) are exactly in place, so the NiO plays 

a role of the gate insulator. In general, this structure works like graphene based transistor 

switch or a switchable diode embedded in graphene-based matrix, both of these could be very 

useful for graphene-based embedded nanoelectronics applications. 

 

2.3 Experimental section 
 

2.3.1 Synthesis of graphene oxide 

 

GO was prepared by the chemical exfoliation of graphite (graphite powder, <45 μm, 

≥99.99%, Sigma-Aldrich) following a modified Hummers method [16]. Basically, it consists 

of the cleavage of the interactions of carbon planes in graphite into individual nanosheets 

under strong acidic (H2SO4) and oxidant (KMnO4) conditions. The resultant suspension was 

extensively washed with distilled water by filtration and the resulting GO was freeze dried in 

order to avoid agglomeration of the particles. 
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2.3.2 Synthesis of reduced graphene oxide/nickel nanocomposites 

 

Graphene oxide (10 mg) was dispersed in 10 mL deionized water using ultrasonic bath 

during 3 hours. A solution of Ni(NO3)2 (0.07 mol/L) was prepared by dissolving 27 mg into 2 

mL of deionized water. The two solutions were mixed together and stirred for two hours, and 

further sonicated during one hour. After sonication, the desired quantity of N2H4.H2O was 

added to the solution and stirred for one hour. Then the solution was transferred to 25 mL 

Teflon autoclave and kept in furnace during different periods of time at 100 ºC. The final 

nanocomposites were washed out with deionized water and freeze-dried. The N2H4.H2O 

concentration and reaction time used in this work are summarized in Table 2.1. 

 

Table 2.1  rGO/Ni nanocomposites prepared at different experimental conditions.  

 

 

 

2.3.3 Characterization  

 

Powder X-ray diffraction data were collected using a Siemens D500 diffractometer with 

secondary monochromator CuKα radiation in the 5°-85° range with steps of 0.05°, the time for 

collecting x-rays being 50 s for each measuring point at 30 mA and 40 kV. Morphological 
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studies were performed using an ultra-high resolution analytical Scanning Electron 

Microscope HR-FESEM Hitachi SU-70 and a Quanta 650 FEG ESEM (FEI). Transmission 

Electron Microscopy (TEM), High Resolution Transmission Electron Microscopy (HRTEM), 

Selected Area Electron Diffraction (SAED) and Scanning/Transmission Electron Microscopy 

(STEM) analysis, were performed using a Titan ChemiSTEM 80-200 kV probe Cs corrected 

microscope. Energy dispersive X-ray analysis (EDS) spectra and elemental maps were 

acquired on a Super-X EDS system. X-ray Photoemission Spectroscopy (XPS) analysis was 

carried out on an ESCALAB 250 Xi (Thermo Scientific) system equipped with a 

monochromatic Al Kα X-ray source and sample-charge neutralization system. Fourier 

transform infrared (FTIR) spectroscopy was carried out using a FTIR spectrometer with the 

ATR accessory using a Perkin-Elmer Spectrum BX at room temperature. Samples were mixed 

with KBr then were prepared in the shape of plates for Scanning Probe Microscopy (SPM) 

measurements. A commercial SPM (Ntegra Aura, NT-MDT, Russia) was used in Atomic 

Force Microscopy (AFM) mode, Conductive AFM (C-AFM) also known as Spreading 

Resistance (SR) mode, Kelvin Probe (KPFM) mode and piezoresponse Force Microscopy 

(PFM) mode in order to perform morphological, conductivity and supposititious piezoeffect 

analyses of the sample. A conductive Si cantilever coated with Pt (CSG30/Pt, NT-MDT, 

Russia) with a spring constant of 0.6 N m
-1

 and a resonance frequency of ~48 kHz was used 

for topography and spreading resistance investigation. 
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2.4 Results and discussion 
 

2.4.1 Influence of reaction parameters on the G/Ni nanocomposite structure 

 

The synthesis of G/Ni nanocomposites was performed by the chemical interaction of the 

Ni ions and the GO surface. In the past, it has been reported that the metallic ions can be 

reduced by the oxygen functional groups at GO surface that can act as nucleation sites for the 

nucleation and growth of metallic NPs [16]. Besides, our experimental results showed that Ni 

NPs growth and crystalline phase can be controlled at the GO surface by changing the 

concentration of N2H4.H2O in the reaction medium, see table 2.2. 

Table 2. 2 A description of the crystalline structure, particle size and shape of Ni NPs achieved depending of the 

experimental conditions. 

 

 

 

X-ray diffraction (XRD) patterns of G/Ni nanocomposites are shown in Figure 2.1. The 

corresponding peak of GO at 10.50° was shifted to 23.4° and broadened according to the 

effective reduction to rGO [13] during the reaction synthesis of G/Ni nanocomposites. The 

diffraction profile of the G/Ni1 nanocomposite prepared with the lower concentration of 

N2H4.H2O (0.08 mol/L) showed the preferential formation of Ni(OH)2, with the presence of 
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the peaks at 19.38°, 33.32°, 38.78°, 52.13°, 59.38°, 62.98°, 70.23° and 73.07° which are 

attributed to (001), (100), (101), (102), (110), (111), (200), (103) and (201) planes, 

respectively [23]. The G/Ni2 nanocomposite prepared with a high concentration of N2H4.H2O 

(0.17 mol/L) in its reaction medium showed the presence of diffraction peaks corresponding to 

the metallic Ni phase at 44.7°, 52.0° and 76.5°, which can be attributed to (111), (200) and 

(220) of Ni planes in a face-centered cubic structure [24]. We also observed the presence of 

minor peaks that can be attributed to a secondary phase of residual Ni(OH)2. The increase 

concentration of N2H4.H2O to 0.83 and 4.1 mol/L for samples G/Ni5 and G/Ni6, respectively, 

showed only the presence of diffraction peaks of metallic Ni without any evidences of 

Ni(OH)2 phase or other impurities. These results clearly demonstrated that the crystalline 

phase obtained in Ni graphene nanocomposites through the hydrothermal reaction of Ni(NO3)2 

is dependent on N2H4.H2O concentration. However, it was also observed that the reaction time 

does not have preponderant effect on the crystalline structure of Ni particles. The XRD 

showed that for different reaction times from 5 to 11 and to 22 h (samples G/Ni3, G/Ni4 and 

G/Ni5, respectively,) the crystalline phase obtained in nanocomposite materials is pure 

metallic Ni. 
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Figure 2.1 XRD profile of G/Ni nanocomposites for different N2H4.H2O concentration (G/Ni1, G/Ni2, G/Ni5, G/Ni6) 

and different reaction time (G/Ni3, G/Ni4, G/Ni5). 

 

In fact, it was observed that the concentration of N2H4.H2O and reaction time are important 

experimental parameters for controlling the size and shape of Ni NPs in the studied G/Ni 

nanocomposites. SEM images of G/Ni nanocomposites (Figure 2.2 and Figure 2.3) showed 

that the Ni NPs have different particle morphologies and they are really integrated and well 

dispersed on the surface of GO sheets.  

Figure 2.2 showed that the nanocomposites prepared with a lower concentration of 

N2H4.H2O do not promote the formation of Ni NPs at GO surface (G/Ni1). The increased 

concentration of N2H4.H2O (G/Ni2) allows the formation of spherical Ni particles with the 

average size of 145 nm and are distributed homogeneously on the surface of rGO. A further 
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increase of the N2H4.H2O concentration induced drastic changes to the morphology and the 

size of Ni NPs. At this stage, spiky Ni particles with the average size of 300 nm (G/Ni5) were 

obtained homogenously at the rGO surface. For the nanocomposites prepared with the highest 

concentration of N2H4.H2O (G/Ni6) we observed the presence of agglomerated Ni particles on 

the surface of rGO with an average size of 900 nm. These results indicated the crucial role of 

N2H4.H2O concentration in controlling the size, morphology and distribution of Ni particles in 

G/Ni nanocomposites. 

 
Figure 2.2 SEM images of G/Ni nanocomposites synthesized with different N2H4.H2O concentrations. 

 

Previous studies showed the effect of reaction medium pH on the formation of Ni particles 

as well [25]. NaOH has been typically used as a basic precursor for controlling the reaction 
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medium pH during the synthesis of Ni particles [21]. It is well known that the basic medium 

adjusted by NaOH can change the reaction effects of N2H4.H2O. Ni et al. showed that Ni 

particles morphology can be adjusted under a certain range of base concentration for 

N2H4.H2O reduction reactions [26]. In fact, it was already observed that other reaction 

parameters, such as temperature and magnetic field, also play an important role in controlling 

the morphology of Ni NPs during their reduction by N2H4.H2O [17]. 

According to our FTIR study of nanocomposites (see Figure A.1.1 in supplementary 

material section) N2H4.H2O does not only affect the particles morphology but also induces the 

reduction of GO by elimination of oxygen functional groups during the hydrothermal process. 

FTIR spectra of G/Ni nanocomposites showed a clear reduction of the bands corresponding to 

the oxygen functional groups, revealing only the presence of few residual bands of oxygen 

functional groups [27]. As mentioned above, oxygen functional groups at the GO surface can 

act as electrophilic agents for the nucleation of Ni ions and the growth of NPs. However, it 

was observed that the increase of the N2H4.H2O concentration in solution contributes to the 

particle shape formation by the possible coordination of Ni ions through nitrogen donor 

groups of N2H4.H2O, which acts as a strong reducing agent to form Ni particles. The 

nanocomposites exhibited different particles morphologies depending on the N2H4.H2O 

concentration: spherical, spiky and big agglomerates (Figure 2.2). 

The growth mechanism of spiky Ni particles can be explained according to Mathew et al 

[28] There are two main steps in the formation of flower-like structures: first, formation of a 

core, then, as the reduction reaction continues, the newly formed particles can be adsorbed on 

the surface of existing particles acting as seeds to form nanothorns on the surface of Ni core. It 
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was observed that at higher temperature the speed of crystal growth is decreased due to a 

pronounced movement of Ni ions in solution. Therefore, a longer reaction time is needed to 

form the flower-like morphology [29]. 

Although we found that the reaction time does not affect the crystallinity of the Ni 

particles, it has an important effect on the structure of spiky Ni NPs in G/Ni nanocomposites. 

SEM images of samples G/Ni3, G/Ni4 and G/Ni5 showed the growth of anisotropic Ni 

particles on the surface of rGO sheets (Figure 2.3). 

 

 

Figure 2.3 SEM images of G/Ni3, G/Ni4 and G/Ni 5 nanocomposites at three different reaction times 5, 11 

and 22 hours respectively showing the increase in the growth of spiky Ni NPs and a schematic representation of 

Ni NPs morphology changes with reaction time. 

 

These images present the dependency of nanothorn size on the reaction time. After 5 hours 

of hydrothermal treatment, Ni particles showed some anisotropic deformation on their surface 

Reaction time 

G/Ni3 G/Ni4 G/Ni5 

1 µ m 1 µ m 1 µ m 
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indicating the beginning of the formation of the nanothorns. As the reaction time increased to 

11 and 22 hours, the size of the nanothorns also increased. 

2.4.2 rGO nanocomposites with spiky nickel nanoparticles  

 

GO sheets homogenously modified with spiky Ni NPs were further explored in this work due 

to their peculiar structure that can confer novel interesting properties to the composite 

materials. TEM analysis of individual spiky Ni particle at the surface of the rGO sheet (Figure 

2.4) showed that its peculiar structure is composed of two different regions, a core (1) 

surrounded by nanothorn (2). Statistical analysis of Ni NPs showed that the size of nanothorns 

varies from 40 nanometers to 100 nanometers and the core is about 200 nm. The selected area 

diffraction pattern (SAED) of the regions (1 and 2 in Figure 2.4) proved the presence of a thin 

layer of Ni oxide. 

  

Figure 2.4 TEM image of one single spiky Ni particle at the surface of rGO sheet. Diffraction pattern (SAED) on the 

core (1) and on a single nonothorn (2) with the respective crystalline planes of NiO. 
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HRTEM images of a single nanothorn, including a magnified close-up of a selected area, 

are shown in Figure 2.5. The lattice planes with the spacing of 2.089 Å which correspond to 

(200) lattice planes (NiO SG: Fm3m Cubic 00-047-1049ICDD Database) confirmed the 

presence of NiO layer structure on the nanothorn. The surface oxidation of Ni NPs was not 

detected by XRD measurement, which indicates they are very small fraction compared with 

the metallic phase.  

 

Figure 2.5 HRTEM images of single nanothorn (on the left) and its selected area with high resolution (on the right) 

showing the lattice structure of NiO. 

 

The presence of an oxidized surface has been further confirmed by X-ray Photoelectron 

Spectroscopy (XPS) measurements carried out for samples G/Ni3, G/Ni4 and G/Ni5 (Figure 

2.6) [30].  
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Figure 2. 6 Ni 2p XPS spectra of G/Ni3, G/Ni4, G/Ni5 samples. 

 

 

For all three samples, the C 1s spectra (data are not shown) have the asymmetric lineshape 

characteristic of graphitic materials, as would be expected for rGO with N2H4.H2O [30]. The 

Ni 2p spectra for these materials are qualitatively similar to those previously reported for NiO 

on rGO [31]. The binding energy (BE) of the strongest Ni 2p3/2 component is above 855 eV 

for all the samples in Figure 2.6 While BE>855 eV is occasionally reported for NiO samples, 

in the NIST XPS Database [32], the majority of BE values are below 855 eV for NiO, so 

based on the BE values it is more likely to assign the material in the oxidized surface layer of 

these samples as Ni(OH)2. The small shoulders observed at BE of ca. 853 eV indicate the 

presence of metallic Ni within the sampling depth of XPS (which is ca. 5 nm at this BE).  
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For materials with complex nanostructured morphology, an unambiguous interpretation of 

surface layer composition is difficult, however, the data in Figure 2.6 are consistent with a thin 

(<5 nm at least in some areas) oxidized surface layer covering a metallic Ni particle. Given the 

nanoscale size and spikey morphology of the nanothorns, the XPS data indicate that 

nanothorns are not primarily composed of metallic Ni, as they would represent a large fraction 

of the overall NPs volume sampled by XPS. Finally, compared to G/Ni3 and G/Ni4 samples, 

only a minimal amount of metallic Ni is detected in G/Ni5 sample, suggesting that longer 

reaction times not only increase the nanothorn size but also the degree of the surface 

oxidation. 

Figure 2.7 shows the high-angle annular dark-field scanning transmission electron 

microscopy (HAADF-STEM) image of G/Ni5 nanocomposite and the corresponding 

elemental mapping of Ni (green) and oxygen (red). These data further proved the oxidation of 

Ni particles surface, which is in agreement with the SAED and TEM data. Accordingly, a 

local EDS spectra of a single Ni particle confirmed the presence of a very thin oxidation layer 

covering the core and the nanothorns (see Figure A.1.2 and A.1.3 in supplementary material 

section and discussion therein). 

 

 

 

 

 

 



Synthesis and characterization of reduced graphene oxide/spiky nickel nanocomposite for nanoelectronic applications 

 

 

 

67 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image of G/Ni5 

nanocomposite and the corresponding elemental mapping of nickel (Ni) and oxygen (O). 

 



Synthesis and characterization of reduced graphene oxide/spiky nickel nanocomposite for nanoelectronic applications 

 

 

 

68 

2.4.3 SPM measurements of Ni/GO nanocomposites 

 

SPM measurements performed to acquire simultaneously topography and spreading 

resistance images showed a clear manifestation of the presence of Ni particles in rGO matrix 

(Figure 2.8). 

 

Figure 2.8 Images of the rGO matrix with Ni particles in a) SPM microscopy mode b) spreading resistance SPM mode, 

c) SEM mode and d) a single spiky Ni particle. 

 

(a) (b) 

(c) (d) 
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The topography analysis confirmed that the sample surface is sufficiently smooth with the 

RMS roughness less than 1nm (Figure 2.8 (a)) and did not influence the measured current 

distribution.SR images represent a real mapping of the sample conductivity (Figure 2.8 (b)). 

Moreover, this distribution demonstrated a good correlation with SEM images (Figure 2.8 (c)) 

with the Ni particles dispersed in the rGO matrix within the equal apportionment statistics. By 

means of comparison of both SPM and SEM methods we could mark the Ni shell (Figure 2.8 

(d)) and its response on SR and on SEM scans, respectively.  

Kelvin Probe Force Microscopy (KPFM) mode showed a distribution of electric potential 

on the samples surface (Figure 2.9 (a)), where the Ni particles exhibit higher potential as 

compared to the rGO matrix, and Ni particle cores and spiky shells could be distinguished, as 

they have maximum potential due to electric field concentrated on the point of shells (insert to 

Figure 2.9 (a)).  

This resulted in white dots with a maximum KPFM signal around the Ni particles. The 

contact SR mode reveals the conductive regions that are related to the Ni particle core and 

shell conglomerates as confirmed by KPFM results (Figure 2.9 (b)). The current voltage 

dependence has been then studied in two steps based on the most conductive (green circle) and 

least conductive (yellow circle) points, which are related to Ni particles and rGO, respectively. 

The I-V behavior, showed a nonlinear and highly reproducible current hysteresis behavior, 

indicating a large resistive switching, which can be described as the switchable diode effect 

(Figure 2.9 (c)) [33]. The measurements were performed with 20 cycles by sweeping the bias 

voltage of the cantilever tip from -5 to 5 V and back to -5 V, repeatedly. Moreover, the 

forward and backward curves showed an obvious diode-like rectifying I-V characteristic, 

indicating a forward pass for backward pass diode behavior and a reverse diode behavior for a 
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forward sweep. It can be seen that during the measuring cycle the diode polarity can be 

switched at around 2 V.  

 

Figure 2.9 SPM images of rGO matrix with Ni particles in a) Kelvin Probe Force Microscopy mode and b) Spreading 

resistance mode. Current-voltage dependence on the c) most conductive (Ni particle) and d) less conductive (rGO matrix) 

areas. 

 

In order to exclude the supposititious ferroelectric polarization effect, the relation between 

the current hysteresis and PFM response has been determined by increasing the voltage sweep 

range step by step [34]. During all the experiments the PFM response was absent and signal 

fluctuation were at the noise level. The current-voltage behavior of the rGO point also shows 

nonlinearity similar to the Schottky effect but does not have any hysteresis behavior (Figure 
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2.9 (d)). This could be due to the effect of Ni particle on current-voltage behavior of the 

sample that mainly leads to the switchable diode effect [35]. 

Based on the analysis of our results, the switchable diode behavior in the sample can be 

explained qualitatively by the Ni particles modulation of Schottky-like barriers at both bottom 

and top (cantilever’s tip) electrodes. The ideal Schottky barrier at a metal-semiconductor 

interface is determined by the difference of the metal work function and the semiconductor 

electron affinity. The work function of rGO is taken as 4.4 eV [36], the work function of Ni is 

4.6 eV [37] and the work function of Pt is about 5.3 eV [33]. The NiO layers should also be 

taken into account because oxygen contributes significantly to the electronic state of Ni 

particle shells, as confirmed by XPS and HAADF-STEM methods. The NiO band gap energy 

is 3.6 eV and the electron affinity is 5.3 eV [38]. When rGO, Ni and Pt are joined together in a 

diode-like structure during the C-AFM experiment, it is obvious that the electrons move faster 

from Pt to rGO due to the higher work function of Pt than that of rGO leaving behind positive 

charges in NiO. Then current depletion regions are formed by the differences in charge carrier 

velocity through the bottom and top electrodes (cantilever’s tip), respectively and the built-in 

current–voltage switchable diode effect (Figure 2.10).  

The influence of NiO is taken into account because of its considerable role as a buffer 

layer. The effect was considered in the scope of equilibrium energy band diagrams. The 

equilibrium energy band diagrams of rGO/NiO/Ni/Pt heterostructures are shown in Figure 

2.10. In this structure, the height and width of the contact barrier between graphene, Ni and Pt 

are defined as differences in work functions -e. In the NiO contact area the widths of the 

contact barrier are correspondingly defined as eΔNiO - e. Compared with the contact barrier 
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between rGO, Pt and Ni the energy band bending at the NiO interface (Φw, ΨNiO < e) is 

much smaller due to the large work function of NiO. In addition, the ultrathin p-type NiO 

layer reduces the contact barrier width at the NiO/Ni interface (ΔNiO, -e+Ni). Therefore, 

with the presence of the NiO buffer layer, electrons can pass through the barrier more easily 

[35]. 

 

Figure 2. 10 The equilibrium energy band diagrams of rGO/Ni/Pt structure. 

 

2.6 Conclusion 
 

In summary, we showed a new one-step hydrothermal approach for the controlled 

synthesis of rGO/Ni nanocomposites using N2H4.H2O as a reducing agent. We observed that 

N2H4.H2O concentration is a key experimental parameter to control the size, morphology, 

distribution and crystalline structure of Ni particles at the GO surface. N2H4.H2O has a major 
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role in this reaction not only because it allows control of the nucleation and growth of metallic 

Ni NPs through the reduction of Ni ions, but also by reducing the surface of GO. The results 

obtained on the synthetic process showed that the increase of N2H4.H2O concentration in the 

reaction medium corresponds to an increase of Ni NPs sizes, varying from 145 to 900 nm, and 

also affects the Ni particles morphologies, from spherical to spiky and finally big 

agglomerates. For the preparation of all nanocomposites we did not use any alkaline media, 

despite of the previous reports on such NPs growth, indicating that the pH value can be 

adjusted in solution using an appropriate amount of N2H4.H2O. For nanocomposites with spiky 

NPs (rGO/spiky Ni) it was observed that the increase of the reaction time promotes the growth 

of Ni nanothorns. The results also indicate that spiky Ni particles are composed of a core/shell 

structure: a metallic Ni core and a few nm thin outer layer of NiO. Furthermore, it is observed 

that the thickness of the NiO outer layer increases with the increase of the reaction time. 

By means of spreading resistance SPM mode we have shown that spiky Ni particles 

implemented in the rGO matrix enhance conductivity with nonlinearity in current-voltage 

dependence if the output electrodes are attached. Via the equilibrium energy band, we 

confirmed that all the experimental structure components (Ni particles, rGO, NiO and Pt-tip) 

are exactly in place, even NiO plays a role of gate insulator. In general, this structure works 

like a graphene-based transistor switch or embedded in a graphene based matrix switchable 

diode both of which could be very useful for graphene based embedded nanoelectronics 

applications. 
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A.1 Supplementary material of chapter 2 
 

Figure A.1.1 shows FTIR spectra of GO, G/Ni3, G/Ni4 and G/Ni5 nanocomposites. GO 

profile pattern represents a complete oxidation of graphite. The broad band at high frequency 

(2800-3600) cm
-1

 and also a band at 2360 cm
-1

 related to vibration of OH group. Adsorption 

bands in 1722 cm
-1

, 1620 cm
-1

 and 1044 cm
-1

 confirmed the vibration of C=O (in COOH), 

C=C and C-O groups respectively. In rGO/Ni FTIR spectrum there are two weak peaks at 

1558 cm
-1

 and 1176 cm
-1

. The former is related to C-O vibration band and the later one is 

related to graphene sheets vibration. The rest of oxygen functional groups do not exist 

anymore according to the reduction of GO[1]. 

 

FigureA.1.1 FTIR spectra of GO, G/Ni3, G/Ni4 and G/Ni5. 

 

High-angle annular dark-field scanning transmission electron microscopy (HAADF-

STEM) of G/Ni5 nanocomposite with corresponding elemental information in the core of a Ni 

particle and in a single nanothorn are shown in Figures A.1.2 and A.1.3, respectively. This 
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information indicated that the core and the nanothorn of Ni particle composed of about 99% 

metallic Ni and around 1 % oxygen. This confirmed a very thin oxidation layer covering the 

Ni particles both around the cores and the nanothorns. 

 

 

 

 

 

 

 

 
 

FigureA.1.2 High-angle annular dark-field scanning transmission electron microscopy of G/Ni5 nanocomposite and 

corresponding elemental information at selected area of Ni core. 
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FigureA.1.3 High-angle annular dark-field scanning transmission electron microscopy of G/Ni5 nanocomposite and 

corresponding elemental information at selected area of one single nanothorn. 
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Chapter 3 

Solvothermal synthesis of Ni/rGO nanocomposite: from nickel nanoclusters 

to homogeneously distributed discrete nickel nanoparticles 
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3.1 Scope 

 

Here we present a two-step synthesis protocol based on a solvothermal method 

supplemented by a thermal treatment under H2 atmosphere to decorate reduced graphene oxide 

(rGO) with nanosized nickel nanoparticles (Ni NPs).  

The control of the size of Ni NPs to values less than 10 nm and of their density at the 

surface of Ni/rGO nanocomposite was successfully achieved by the control of the reaction 

time. The obtained results showed that, at the initial stage of the solvothermal process, the GO 

surface is saturated by the formation of Ni nanoclusters. With the increase of the reaction time 

it was observed that the adjacent nanoclusters are able to coalesce and form monodisperse 

ultrafine Ni NPs at the surface of rGO nanosheets. The thermal treatment of the 

nanocomposites under reducing atmosphere of H2 showed to play a crucial role for the 

formation of metallic Ni NPs. The electrophysical properties (work function and conductivity) 

of the Ni/rGO nanocomposites were founded in direct dependence on the Ni NPs size and NiO 

buffer layer width. We proposed a crucial role of the NiO buffer layer thickness in Pt-NiO-Ni-

NiO-rGO interface changing the conductivity from metallic to Schottky contact and to p-n 

heterojunction making the prepared Ni/rGO nanocomposite a favorable material in the scope 

of nanoelectronics and lithium ion batteries. 
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3.2 Introduction 

 

Graphene oxide (GO) has been widely explored as a substrate for the controlled growth of 

different type of NPs to develop new multifunctional nanocomposites with interesting 

properties able to achieve high performance on different areas of application. The high active 

surface area, light weight, thermal stability and high electron transport properties are 

remarkable features that makes graphene an extraordinary substrate for the integration with 

different types of NPs[1]. These extraordinary properties in combination with the singular 

properties of different inorganic NPs can provide a new category of nanomaterials for 

nanoelectronics [2], biomedical [3], energy storage [4], catalysis [5], chemical and biological 

sensor applications [6]. Among inorganic NPs, Ni NPs have been the focus of intense research 

due to its remarkable magnetic, [7, 8] conductive [9], catalytic [10] and hydrogen storage [11] 

properties. However, accurate control of the nanocomposite synthesis parameters is needed in 

order to maximize the synergistic effects of the different components and obtain a significant 

improvement on its final properties. Indeed the large particle size, agglomeration and non-

homogeneously distributed NPs on substrate, impairs their functionalities [12].  

Hydrothermal methods are the most explored approaches for the synthesis of graphene 

nanocomposites due to the massive and cost-effective production. Several works reported the 

formation of micrometric size of nickel oxide (NiO) particles via hydrothermal route for the 

preparation of rGO based nanocomposites [13-15]. The precise control over particles 

morphology was reported as an important advantage of hydrothermal synthesis process [16, 

17]. Recently, we reported that the effective control of the concentration of strong reducing 

agent, hydrazine, in solution medium is a key factor for the reduction of cationic Ni ions and 

controlled growth of spiky Ni NPs on rGO surface [18]. Generally, despite the simplicity of 

the hydrothermal methods, it is difficult to obtain nanosized Ni with narrow particle size 

distribution in graphene based nanocomposites. Curiously, Zhou et al. reported a multistep 

methodology for synthesis of Ni/graphene nanocomposite for hydrogen storage with Ni NPs 

size of 10 nm, however it was reported a broad NPs size distribution [11, 19]. Literally, a few 

studies states that an accurate control of the concentration of Ni precursor can be the key 
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experimental factor for the preparation of Ni/graphene nanocomposites with very small and 

well distributed NPs [19, 20].  

Solvothermal method is considered a more elegant approach for the synthesis of metal and 

metal oxide NPs and respective graphene-based nanocomposites due to the better control over 

the size and size distribution of NPs, morphology and crystallinity [21]. Several factors 

including reactant concentration, additives, pH, reaction time and temperature are involved to 

produce NPs with desired size and morphology [22]. In addition, solvothermal methods can 

have a strong impact on GO structure during the nanocomposites preparation. Nethravathi et 

al. observed that the reduction of GO can occur at low temperature (120 °C-200 °C) for both 

non-reducing (water) and reducing solvent (ethylene glycol or ethanol), however the extent of 

the reduction is higher in case of using the reducing solvents [23]. 

The use of stabilizer agents for the controlled growth of NPs is conventional in 

solvothermal methods. Recently, Tian el al reported a one-step production of Ni/rGO 

nanocomposites using ethylene glycol as a solvent and poly(N-vinyl-2-pyrrolidone) as a 

stabilizer. These authors observed the formation of spherical Ni NPs with an average size of 8 

nm well distributed at the rGO surface, which provides excellent properties for catalysis [24]. 

Unprecedented work performed by Li et al. described the preparation of carbon monoliths 

evenly decorated with superfine Ni NPs through the formation of covalent bonds with carbon 

(Ni-C) by solvothermal method. The nanocomposite was synthesized using Ni nitrate as a 

precursor, ethanol as a solvent, ascorbic acid as a stabilizer and hydrazine as a reducing agent. 

After thermal treatment, the nanocomposites showed a very uniform dispersion of isolated Ni 

NPs with an average size of 10 nm and a very narrow size distribution [25]. A novel approach 

for the synthesis of Ni/graphene nanocomposites was also recently reported by Zhang et al. 

using pre-doped graphene with sulfur and nitrogen (N-S-G) for the functionalization with 

hybrid Ni tetrapyridyloxyphthalocyanine (NiTPPc) via solvothermal method. The results 

showed that the establishment of π-π interactions allows a homogenous coverage of the N-S-G 

surface with the NiTPPc nanocrystals with an average size of around 10 nm. The authors 

reported that the nanocomposite exhibits superior electrocatalytic activity towards the oxidation of 

bisphenol A, comparing with pristine NiTPPc or N-S-G [26]. 
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In this current study, we report a new and efficient two step synthesis of nanosized and 

mono dispersed Ni NPs homogeneously decorated the surface of rGO nanosheets. The 

solvothermal treatment promotes the nucleation and growth of Ni nanoclusters at the surface 

of rGO through the reduction of Ni acetate in diethylene glycol. It is observed that the size of 

the Ni nanoclusters formed at the surface is dependent on the solvothermal reaction time and 

can varied from just a few nanometers until a maximum of approximately 10 nm. The 

subsequent thermal treatment in a reductive hydrogen atmosphere at 450 ºC, promotes the 

crystallization into metallic Ni NPs. Moreover, we provide an experimental confirmation of the 

theoretical results previously obtained by Cheng et al. dedicated to the first-principle calculation of 

electronic structure of the graphene/metal oxide interfaces [27]. Particularly, the Schottky 

barrier height (SBH) and the Schottky-Mott limit (SML) were calculated for the 

graphene/Ni/NiO-Ni interface which is similar to the one investigated in the current work for 

the Ni/rGO composites. Finally, we provide a comparison of theoretical and experimental 

values for the SBH, SML and work function (WF). A sufficient conductivity decreasing and 

WF increasing as function of the Ni NPs radius and a NiO buffer layer width were observed 

which are consistent with the theoretical predictions described [2, 27]. These crucial results 

make the Ni/rGO a favorable nanocomposite for the nanoelectronics (Shottky contact, n-p 

heterojunctions) and lithium ion battery (anode material) application areas. Consequently, we 

propose a remarkable benefit of the Pt-NiO-Ni-NiO-rGO interface as a part of embedded 

electronic circuit where a variation of conductivity from metallic to those characteristic of a 

Shottky contact or a p-n heterojunction is needed. 

 

3.3 Material and Methods 

 

3.3.1 Materials 

Graphite powder (powder, >45 mm, 99.99%, Sigma-Aldrich), Diethylene glycol 

(≥99.0%, Sigma-Aldrich) and Nickel (II) acetate tetrahydrate (99.999%-Ni, Stream 

Chemicals) were purchased and used as received. 
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3.3.2 Synthesis of graphene oxide 

 

GO was obtained from graphite using the modified Hummers method, usually considered 

as a top-down approach for the synthesis of graphene. Basically, it consists on the exfoliation 

of graphite into individual GO layers via oxidative process [28]. Briefly, 2 g of graphite was 

dispersed in a 50 mL of sulfuric acid, after that 7 g of potassium permanganate was added 

slowly to the reaction medium and kept aging during 2 hours. The reaction was stopped by 

addition of H2O2 (30 wt % in water). The resultant suspension was intensively washed with 

distilled water by filtration until solution reach neutral pH. Finally, GO solution was 

lyophilized and a dried powder was obtained. 

 

3.3.3 Solvothermal synthesis of nickel/graphene oxide nanocomposites (Ni/GO) 

 

For the synthesis of Ni/GO nanocomposites, 2 mg of Ni (II) acetate was first dissolved in 

10 mL diethylene glycol (DEG) for 3 hours stirring. After that 10 mg of GO was added to the 

solution and sonicated during 15 minutes in order to obtain a homogeneous brownish GO 

dispersion in DEG. The mixture was transferred to a 25 mL Teflon autoclave and heated at 

150 ºC for 1, 3, 6 and 24 hours. The resultant samples were labeled as Ni/GO1, Ni/GO3 and 

Ni/GO6 and Ni/GO24, respectively. After cooling down, the samples were subjected to 

centrifugal separation and then washed extensively with deionized water and finally freeze 

dried.  

To investigate the effect of the reaction temperature, one sample was prepared under same 

experimental preparation and heating at 200 ºC for 24 hours and labeled as Ni/GO 24 (200 

ºC). 
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3.3.4 Thermal annealing of nanocomposites under hydrogen atmosphere (Ni/rGO) 

 

All the samples prepared by solvothermal method were heat treated in a tubular furnace at 

450C with the heating rate of 5 C/min, under hydrogen flow of 8 mL/min during 2 h. The 

obtained samples were labeled as Ni/rGO1, Ni/rGO3, Ni/rGO6 and Ni/rGO24, respectively. 

 

3.3.5. Materials Characterization 

 

The powder X-ray diffraction (XRD) patterns of the samples were collected at room 

temperature in a continuous scanning mode (step 0.04°) on a powder diffractometer 

PANalytical Empyrean with a secondary monochromator CuKα X-radiation in the range of 

5°-90°. The Raman spectra were collected using Thermo Scientific DXR smart Raman 

spectrometer with excitation wavelength of 532 nm with a power of 10 mW. Transmission 

electron microscope (TEM) and high resolution TEM (HRTEM) images were taken with FEI 

Tecnai G2 20 and FEI Titan
3
 80-300 microscope. FTIR data were collected from KBr pellets 

using FTIR Bruker Tensor 27 with the resolution of 4 cm
-1

 in the range of 4000 cm
-1

 to 500 

cm
-1

. X-ray photoelectron spectroscopy (XPS) was carried out in a system equipped with 

SPECS Phoibos 150 and monochromatic Al Ka X-ray source. The spectra were recorded at 

normal emission take-off angle and with a pass-energy of 20 eV. XPS data in this study were 

calibrated for BE C1s = 284.5 eV [29]. Inductively coupled plasma optical emission 

spectroscopy (ICP-OES) technique was used to determine the Ni content in each synthesized 

nanocomposite. This measurement was carried out using an ICP-OES, Horiba Jobin-Yvon, 

Activa M model with forward power of 1000W, 12 L/min argon flow plasma and sheath gas 

0.8 L/min equipped with Burgener MiraMist nebulizer. About 5mg of each sample were 

weighted and digested with 1mL HNO3 p.a. and 1mL HCl p.a. on a microwave oven system 

(CEM MARS 5). The samples were collected to 100 mL flasks and were filled with milli Q 

water.  
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Nanoscale characterization of the samples was carried out by using a commercial scanning 

probe microscope Ntegra Prima (NT-MDT) operating in semicontact and contact Atomic 

Force Microscopy (AFM), Kelvin Probe Force Microscopy (KPFM), Spreading Resistance 

(SR) and Conductive Atomic Force Microscopy (c-AFM) modes permitting the topography, 

surface potential distribution, conductivity and local current measurements to be measured. Pt-

coated NSG03/Pt cantilevers with a resonance frequency of 100 kHz and a force constant of 4 

N/m were used. KPFM technique [30] allowed to measure a work function (WF) difference 

between the tip and the sample according to the equation 

 

 CPD  
 tip  sample

  
              (1) 

 

where Wtip is a WF of the SPM tip, Wsample is a WF of the sample, e is the elementary 

charge, and VCPD is the measured contact potential difference, viz. the surface potential. AC 

voltage of the second pass was 0.1 V, lifting height was 50 nm. Bias voltage applied to the 

samples during the SR and c-AFM measurements varied in the range of 1-10 Volts. All the 

scanning probe microscopy (SPM) measurements were carried out in ambient conditions at 

humidity of about 30%. 

 

3.4 Results and discussion  

 

3.4.1 Solvothermal synthesis of Ni/GO nanocomposites 

 

The synthesis of Ni/GO nanocomposites was performed by solvothermal method using 

DEG as both solvent and reducing agent for controlling the Ni NPs growth on the surface of 

GO nanosheets. Our experimental results were conducted under mild temperature conditions 

(150 ºC) using different reaction times for the accurate control of the size and density of Ni 

NPs. The XRD analysis of the as-prepared nanocomposites does not clearly indicate the 
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presence of the characteristic peak of Ni crystalline phase, suggesting that, if the Ni species 

are present at the surface of GO, they are in the amorphous state (Figure 3.1a)). In fact, it was 

already reported that the use of DEG at a reaction temperature near its boiling point (244 ºC) 

promotes a higher reduction reaction rate and degree of crystallinity of the Ni NPs. In this 

study, the sample prepared at 200 ºC showed also bigger Ni particles (≈1µm) with higher 

crystallinity than the ones prepared at 150 ºC and randomly distributed on rGO surface. (see 

XRD in Figure A.2.1 and SEM in Figure A.2.2 in supplementary material section).  

With respect to the Figure 3.1a), the XRD pattern of GO is also shown that presents a 

sharp peak at 10.1º with a calculated (Bragg equation) basal d spacing of 8.7 Å which is 

characteristic of (002) planes. The XRD spectrum of Ni/GO1 showed a similar peak position 

for GO, which indicates a low degree of reduction for short periods of solvothermal reaction 

time. Indeed, it was observed a significant shift and broadening of the characteristic GO peak 

for higher 2θ values with the increase of reaction time for samples Ni/GO3, Ni/GO6 and 

Ni/GO24. The appearance of XRD (002) peak for Ni/GO3, Ni/GO6 and Ni/GO24 at 22.7º, 

confirm the successful conversion of GO to rGO due to the high reduction of oxygen 

containing functional groups [31, 32]. In addition the broadening of (002) peaks indicates a 

short-range order in stacked graphene layers with increase of the reaction time [1]. The 

increasing of interplanar spacing of the samples with the reaction time might be due to the 

introduction of Ni species into the GO structure. Lee et al reported the synthesis of rGO/α-

Ni(OH)2 hybrid composites using ethylene glycol medium. In their study, it was reported that 

the (002) plane of GO did not shift significantly after the preparation of the different 

nanocomposites, although they used different experimental conditions (temperature of 180 ºC 

during 6h and NaOH as a reducing agent) [33].  

The FTIR analysis of GO displayed high intensity bands that are attributed to several 

oxygen functional groups (Figure 3.1b). The broad band with a maximum at ~3450 cm
-1

 is 

usually attributed to -OH stretching vibrations. The characteristic stretching vibrations of C=O 

at 1730 cm
-1

, C=C at 1626 cm
-1

, C-O at 1222 cm
-1

 and C-O-C at 1057 cm
-1

 are also clearly 

present. The two small bands at 2930 and 2855 cm
-1

 can be assigned to the asymmetric and 

symmetric vibrations of CH2 stretching, that became more evident with the increase of 
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reaction time due to the GO reduction [34]. FTIR spectrum of sample Ni/GO1 showed the 

lower decrease of the intensity of bands corresponding to the oxygen functional groups, 

suggesting that 1 hour of solvothermal reaction time has a small impact on the reduction of 

GO, which is in good agreement with the XRD data discussed before. For the samples, 

Ni/GO3, Ni/GO6 and Ni/GO24 the reduction of GO is much more evident. The reduction of 

oxygen functional groups is evidenced by the decrease of intensity of the bands at 1730, 1222 

and 1053 cm
-1

 which clearly indicate the conversion into rGO. It was also observed for those 

samples that the C=C band shifts for lower wavelength values of 1575 cm
-1

. 

Figure 3.1 XRD profile and FTIR spectrum of Ni/GO nanocomposites synthesized using different solvothermal reaction 

times. 

 

Wang et al. suggests that this shift can be attributed to the π electrons interactions in the 

polarizable aromatic ring being transformed into cation–π interactions [35]. Moreover, the 

band at 3450 cm
-1

 for Ni/GO samples was not just limited to the OH contribution, it can also 

be attributed to stretching vibrations of metal hydroxide (Ni(OH)2) [33]. Indeed, it was 

observed for those samples the appearance of a new peak at 3635 cm
-1

 which can be attributed 

to the formation of nickel hydroxide as reported by Jeevanandam et al [36]. The appearance of 

two new peaks in the region 1500-1000 cm
-1

 may also suggest the presence of Ni(OH)2. 

Niederberger et al. recently reviewed the mechanisms for the formation, growth and surface 

functionalization of metal oxide NPs in organic solvents [22]. In this work, several 

nonaqueous systems were proposed for the formation of M-OH and M-O-M bonds through 
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organic reactions. The Guerbet-type reaction reported, seems to be the most appropriate 

organic mechanism for formation of a metal hydroxide using primary alcohols as solvent. 

However, we believe that the mechanism for our system should not be restrict to the organic 

reaction proposed because the oxygen functional groups presented at GO surface play also an 

important role on the mechanism of nucleation and growth of Ni.  

X-ray photoelectron spectroscopy (XPS) analysis was carried out to determine the 

chemical structure of GO and Ni/GO nanocomposites. High resolution detailed spectra of C1s 

and Ni2p of samples GO and Ni/GO1, Ni/GO3, Ni/GO6 and Ni/GO24 are shown respectively 

in Figure 3.2 a) and b). The C1s spectra show a significant decrease of the intensity of carbon 

containing oxygen groups (C-O) with the increase of solvothermal reaction time (Figure 3.2a)) 

[37]. Nevertheless, for samples with solvothermal treatment times higher than 3h the C1s 

spectra showed similar profile. This data suggests that 6 hours of solvothermal treatment is 

enough to reduce the GO. High resolution detailed spectra of Ni2p for Ni/GO samples showed 

the appearance of two major peaks centered at 872.9 and 855.8 eV that can be assigned to 

Ni(OH)2 phase [38].  

 

Figure 3.2 High resolution XPS of C 1s a) and Ni 2p b); Raman spectra c) for the nanocomposites Ni/GO after solvothermal 

treatment at different reaction times (1h, 3h, 6h and 24h). 

 



Solvothermal synthesis of Ni/rGO nanocomposite: from nickel nanoclusters to homogeneously distributed discrete nickel 

nanoparticles 

 

 

95 

Raman study of the nanocomposites were performed in order to access the structural 

changes induced by the solvothermal process. All samples showed the presence of 

characteristic D and G bands of the GO (Figure 3.2c)). The ID/IG ratio correlate with the 

average size of sp
2
 domains with the level of disorder in graphene planes [39]. The ID/IG ratio 

calculated for GO sample was 0.93, which is very similar with the values observed for the 

samples after solvothermal treatment of 1h and 6h, 0.93 (Ni/GO1) and 0.92 (Ni/GO6) 

respectively. These results suggest that the integration of Ni species on GO surface occurs 

preferentially on defect regions without causing significant disturbs on the aromatic structure. 

However, for sample with higher reaction time (24h) it was observed a considerable increase 

of the ID/IG value to 0.98 (Ni/GO24). This pronounced increase of ID/IG value corresponds to 

the decrease of graphene domains (G band) and correspondingly increase of structural defects 

(D band) [40]. These results suggest an increased integration of Ni NPs into the rGO structure 

causing the formation of more aromatic carbon structural defects.  

 

3.4.2 Reduction of Ni/GO nanocomposites by thermal treatment under hydrogen 

atmosphere 

 

After solvothermal reaction, all samples were thermal treated under a reductive 

atmosphere of hydrogen at 450 ºC during 2h, in order to induce the formation of crystalline 

metallic Ni NPs at the surface of rGO. XRD pattern of Ni/rGO nanocomposites showed a peak 

at 25.0º that can be assigned to rGO layers with the interplanar spacing of 3.52 Å [41] (Figure 

3.3a). The results showed a slight shift of the (002) peak for higher 2θ values when compared 

with the values observed for the respective samples after solvothermal treatment. These 

changes are caused by a more effective reduction of rGO after the thermal treatment in a 

reducing hydrogen atmosphere, which improve the decomposition and removal of residual 

oxygen groups and consequently promotes a higher rearrangement of the aromatic structure 

[42]. The XRD patterns of Ni/rGO1, Ni/rGO3, Ni/rGO6 and Ni/rGO24 nanocomposites also 

showed the clear presence of metallic Ni phase after thermal treatment under reductive 

hydrogen atmosphere.   Three peaks at 44.43, 51.99 and 76.31 can be attributed to (111), 
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(200) and (220) crystal planes of Ni NPs with fcc crystal structure (JCPDS, no. 04-0850). It 

was also observed a shoulder at ~43º that can be attributed to the (200) plane of NiO (JCPDS, 

no. 47-1049) [43]. These results can suggest that the Ni NPs are composed by a core of 

metallic Ni and a shell of NiO as recently reported by Wang et al [43]. However, there is also 

the possibility of the peak at 43º be attributed to rGO due to the re-staking process of the 

nanosheets [44]. 

 

 

Figure 3.3 XRD patterns a) and FTIR b) of different Ni/rGO nanocomposite after thermal treatment under hydrogen at 

450 ºC during 2 h (Ni/rGO). 

 

FTIR spectra for Ni/rGO nanocomposites are shown in Figure 3.3b. The results showed 

that the thermal treatment used, promoted a significant reduction in the intensity of the peaks 

associated to oxygen functional groups, in particular for the sample Ni/rGO1. However, the 

results revealed that some oxygen functional groups remain on the rGO structure, such as C-

OH (3420cm
-1

), C=O (1740cm
-1

), C-O (1270 cm
-1

), C-O-C (1050cm
-1

) after this reduction 

conditions. The peak at 1640 cm
−1

, attributed to the skeletal ring vibrations (C=C) suffers an 

unusual shift for lower frequency after the reduction treatment with hydrogen. Yoon et al. 

reported that after hydrogenation of rGO the C=C bonds appear at region 1550 cm
-1

. At the 

region of 1400-1380 cm
-1

 it is also observed the appearance of two main peaks that are usually 

attributed to -C-H vibrations. These results can suggest that the graphene structure can be 
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doped with hydrogen after thermal treatment. Furthermore, it is possible to observe an 

increase of the intensity of the bands corresponding to CH2 asymmetric stretching at 2920 cm
-1

 

and symmetric stretching at 2850 cm
-1

, suggesting the possible hydrogenation of the graphene 

structure [45].  

High resolution XPS spectra of C1s and Ni 2p from samples Ni/rGO1, Ni/rGO3, Ni/rGO6 

and Ni/rGO24 heat treated with H2 are shown in Figure 3.4. C1s spectra showed a significant 

reduction of oxygen functional groups of rGO when compared with the respective spectra 

obtained for samples before this treatment. The small shoulder at 286 eV correspondents to C-

O bonds, which shows the presence of some residual oxygen functional groups on the 

graphene planes for all the samples after thermal treatment under H2 atmosphere as observed 

by FTIR.  

The high resolution Ni2p spectra exhibit two main components for all the samples. A 

shoulder around 853 eV that can be attributed to the metallic nickel (Ni
 
(0)) and the peak 

around 855 eV is related to the oxidized Ni species (NiO) [43]. These data suggest that the 

surface of Ni NPs is oxidized in the form of NiO instead of Ni(OH)2, as observed before the 

reductive thermal treatment.  

 

 

 

 

 

 

 

 

Figure 3.4 High resolution XPS of C 1s a) and Ni 2p b) for the nanocomposites Ni/rGO prepared after thermal treatment 

in hydrogen atmosphere at 450 ºC during 2h. 
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Raman studies of samples Ni/rGO1, Ni/rGO6 and Ni/rGO24 after H2 reduction showed 

that ID/IG ratio calculated were 0.94, 0.96 and 0.99 respectively (Figure 3.5). These data are 

similar to the values observed before the reduction treatment, that suggest no significant 

structural changes on the rGO sheets during the thermal treatment. 

 

Figure 3.5 Raman spectra of different nanocomposite samples after reduction under hydrogen atmosphere at 450 ºC 

during 2h. 

The obtained results suggested that the thermal treatment did not affect notably the 

structure of rGO, in contrast, it was observed that has a strong effect on the structural 

properties of Ni NPs on the final nanocomposites (see SEM images (Figure A.2.3) in 

supplementary material section). The structural analyses of the different nanocomposites after 

thermal annealing at 450 ºC under reducing atmosphere were examined by TEM. Figure 3.6 

shows the TEM images of Ni/rGO1, Ni/rGO3, Ni/rGO6 and Ni/rGO24. For all samples, it was 

observed the presence of very small round shaped Ni NPs homogenously distributed on the 

rGO surface. In fact, samples Ni/rGO1 and Ni/rGO3 show a lower contrast between the Ni 

NPs and the surface of rGO nanosheets, contrarily to samples Ni/rGO6 and Ni/rGO24 which 

show a higher contrast. These results suggest, since the thermal treatment time is similar for 

all the samples, that the reaction time during the solvothermal synthesis plays an important 

role on the nucleation and growth of Ni nanoclusters at the rGO surface. Evidences obtained 

by the analyses of Ni NPs size distribution in the inset of Figure 3.6 show a quite similar size 
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distribution for samples Ni/rGO1 (5.9±3.2 nm), Ni/rGO3 (4.4±2.6 nm) and significant 

increase of NPs size for sample Ni/rGO6 (8.7±4 nm) and Ni/rGO24 (10.50±3.8). Curiously, it 

can be observed by TEM images that the concentration of Ni NPs at the surface of rGO sheets 

decrease with the increase of solvothermal reaction time. These results suggest that 

solvothermal synthesis of Ni/GO nanocomposites occurs through two different stages. The 

first stage of nucleation of Ni nanoclusters limited by the saturation of the surface of GO, 

afterwards, the second stage that corresponds to the growth of the Ni NPs through the 

coalescence of neighbor Ni nanoclusters and reduction of GO to rGO as confirmed before by 

XPS, FTIR and XRD.  

 

 
Figure 3.6 TEM images of the Ni/rGO nanocomposites after reduction under hydrogen atmosphere at 450 ºC during 2h 

(Ni/rGO1 a), Ni/rGO3 b), Ni/rOG6) and Ni/rGO24). 

In order to further investigate the previous assumption, the topography of Ni/rGO samples 

was investigated by AFM (see Figure 3.7a). AFM images showed the flat surface of rGO 
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nanosheets with homogeneous distributed Ni NPs for all the synthesized nanocomposites. The 

NPs size distribution calculated using AFM data showed the average sizes of around 11.0, 

11.5, 13.0 and 22.0 nm for samples Ni/rGO1, Ni/rGO3, Ni/rGO6 and Ni/rGO24, respectively 

(Figure 3.7b). 

 

Figure 3.7 a) AFM images of the GO and Ni/rGO nanocomposites after thermal annealing under hydrogen atmosphere at 

450 ºC during 2h, b) Ni NPs size distribution and c) density of NPs at the surface of the different nanocomposites. 

 

Although the size distribution of Ni NPs at the surface of rGO obtained by AFM 

measurements didn’t correspond exactly to the values obtained by the TEM analysis, they 

followed the same increasing trend according to the increase of solvothermal reaction time. 

The deviation from the real size of NPs reflect the limitation associated with the size of AFM 

tip apex radius. Interestingly, the calculations of the density of the Ni NPs at the surface of 

rGO (Figure 3.7c) showed a significant decrease with the increase of solvothermal reaction 
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time. These data are in good agreement with those observed by TEM, where it was suggested 

that the growth of the Ni NPs over time occurs predominantly by the coalescence of smaller 

Ni NPs at the surface of rGO nanosheets.  

The schematic representation in Figure 3.8, proposed that for the short solvothermal 

reaction times (1h) a primary heterogeneous nucleation of Ni species occurs at GO surface, 

resultant from the Ni precursor decomposition and establishment of interactions with the 

oxygen functional groups at GO surface [46]. In fact, the precise nature of the species 

involved in this stage is not completely clear due to high diversity of oxygen functional groups 

available at GO surface. With the increase of the solvothermal reaction time, in particular for 

samples 3h, 6h and 24h, it is possible to observe by TEM the continuous growth of Ni NPs, 

probably by the possible coalescence of the neighbor primary nanoclusters. Furthermore, it 

was also observed that after the coalescence of the primary nanoclusters into NPs, no more 

primary nanoclusters can be formed at the free surface of rGO for samples 3h, 6 and 24 h. In 

order to confirm this behavior, the quantification of the Ni for the samples prepared under 

different reaction times was determined by ICP. The results obtained showed the following 

quantity of Ni for samples: Ni/rGO1 (8.0 %m/m), Ni/rGO3 (3.0 %m/m), Ni/rGO6 (2.8 %m/m) 

and Ni/rGO24 (2.8 %m/m). In fact, it can be confirmed that after 1h of reaction time it was 

obtained the Ni saturation of GO surface (higher concentration of Ni). Curiously, it was 

observed a marked decrease in concentration of Ni for reaction times ≥ 6 hours (2.8 %m/m) 

rather than a constant concentration of Ni over all the reaction time. These results suggested 

that the quantity of Ni at the surface of GO is related with the level of the reduction of GO. As 

discussed before, according to the XPS results, the reduction equilibrium of GO occurs for 6h 

solvothermal treatment and for the same reaction time it is now observed a constant 

concentration of Ni (2.8 %m/m) for nanocomposites.  

This behavior (schematized in Figure 3.8) indicates that the oxygenated surface of GO 

(Figure 3.8a) plays an important role on the nucleation and anchorage of primary nanoclusters, 

(green spheres Figure 3.8b), probably some of the primary clusters can coalesce during 

solvothermal reaction time to form Ni NPs at rGO surface (blue spheres Figure 3.8c). In the 

meantime, and simultaneously, some of these primary nanoclusters can be released from the 
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GO surface due to the removal of oxygen anchorage sites during the reduction process (green 

spheres Figure 3.8c). Increasing the reaction time up to 6h continually increasing the size of 

NPs (red spheres Figure 3.8d) and finally after 24h the bigger NPs with lower coverage 

density are formed (yellow spheres in Figure 3.8e) from coalescence of smaller ones (red 

spheres in Figure 3.8e) on rGO surface (pathways of smaller nanoparticles movement is 

shown in red on rGO).  

 

Figure 3.8 Schematic representation of nucleation and growth of Ni NPs at GO surface (not to scale): Solvothermal 

treatment of GO in DEG using nickel acetate as a precursor during t=1h, t=3h, t=6h and t=24h. After solvothermal synthesis, 

all the Ni/GO nanocomposites were thermal treated under hydrogen atmosphere at 450 ºC during 2h in order to form metallic 

Ni NPs. 

The combination of these two phenomena can explain the constant decrease of the density 

of primary Ni nanoclusters and the constant growth of Ni NPs over the solvothermal reaction 

time. 

The structural surface of the Ni/rGO nanocomposites heat treated with H2 was further 

investigated by HRTEM. The HRTEM images of the nanocomposites Ni/rGO1, Ni/rGO3, 

Ni/rGO6 and Ni/rGO24 are shown in Figure 3.9. For all the Ni NPs investigated on the 

a) 

b) 

c) 

d) 

e) 
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different nanocomposites we observed the marked lattice fringes corresponding to the crystal 

planes, Ni(111) with a interplanar distance of approximately 0.2 nm and the NiO(111) with 

interplanar distance of approximately 0.24 nm [43]. These results suggest the formation of 

core-shell structure of Ni/NiO at the surface of rGO for all the samples after thermal treatment 

under hydrogen atmosphere. In fact, the results obtained suggest that the formation of NiO 

shell is more pronounced for the samples with higher reaction times. Moreover, HRTEM 

image of sample Ni/rGO24 showed the coalescence between two Ni/NiO NPs at the surface of 

rGO nanosheets (blue dot-line). Recently Li et al. reported an in situ atomic-scale observation 

of coalescence driven nucleation and growth at liquid/solid interfaces of Bi/SrBi2Ta2O9 [47]. 

These results reinforce our predictions that suggest the decrease of the density of Ni NPs on 

the surface of rGO occurs due to the coalescence of the neighboring nanoclusters to larger 

NPs. 

 

 

 

 

 

 

 

 

 

 

 

Figure3.9 HRTEM images of the nanocomposites Ni/rGO1 a), Ni/rGO3 b), Ni/rGO6 c) and Ni/rGO24 d). The blue dot-

line shows the coalescence between two Ni/NiO NPs on rGO. 
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3.5 SPM measurements of Ni/rGO nanocomposites 

 

Kelvin Probe Force Microscopy (KPFM) carried out for the reference rGO sample shows a 

homogeneous potential distribution corresponding to the work function of ~ 4.7±0.4 eV 

(Figure 3.10a)). The value is consistent with the previously reported data (Table 3.1). 

KPFM responses measured on the surface of the Ni/rGO nanocomposites suggest a 

distribution of the electric potential. The Ni NPs appeared as dark dots with a lower VCPD 

signal (higher WF) as compared to the rGO matrix (Figure 3.10). Being measured at the very 

local scale (~2 x 2 µm), the sample Ni/rGO1 demonstrates a uniform KPFM response (Figure 

3.10 (b)). For the 1h sample this kind of behavior could be linked with an effect of doping of 

the rGO matrix with Ni ions without formation of the NPs and/or nanoclusters. On the 

contrary, the samples Ni/rGO3, Ni/rGO6 and Ni/rGO24 show a random distribution of the 

NPs at the local scale (Figure 3.10 (c-e)). The results correlate well with the TEM data (Figure 

3.6), even though the size of the particles cannot be determined precisely due to the large tip 

apex radius (~ 25 nm) and huge impact of electrostatic interaction between the tip and Ni/rGO 

composite surface. It has been pointed out that increasing the heating time (from 1 to 24 

hours) gives rise to increase of both the Ni NPs size and NiO layer thickness. The latter plays 

an important role in the interaction between the Ni NPs via a changing the electrostatic force 

from attractive to repulsive [18]. This assumption fully correlates with the VCPD values (Figure 

3.10 (b-e)) which decreasing with increasing of the Ni NPs diameter and NiO width. 

The Ni/rGO3 and Ni/rGO6 samples show similar KPFM responses from the Ni NPs 

distributed in the rGO matrix (Figure 3.10 (c, d)). However, the difference of 3 and 6 hour’s 

reactions causes the variation of Ni NPs types where the big particles could be formed from 

the aggregation of the smaller ones. Probably, due to this effect, the distribution of the Ni NPs 

into rGO matrix for the Ni/rGO3 and Ni/rGO6 samples are obviously different. At the same 

number of scans, an additional KPFM phase which corresponds to the work function of 

graphene was measured in these samples. This phase appears as a strong background, 

especially in the Ni/rGO6 sample. The pattern of this background is close to that 

characterizing the NPs distribution. We suppose that one of the possible reasons underlying 
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the appearance of such a background could be due to the formation of graphene NPs during 

the heating (annealing) of rGO matrix accompanying the Ni/rGO3 and Ni/rGO6 samples 

fabrication. Additional KPFM measurements performed at different second pass heights (10-

100 nm) and integral current amplifying (0.1-1 nA) confirm the dissimilar nature of the Ni and 

background nanoparticle signals. In contrast, the Ni/rGO24 sample shows a clear distribution 

of the individual Ni NPs with lower density due to the change of electrostatic forces to the 

repulsive (the size of the NPs shown in Figure 3.10 (e) correlates with the TEM data presented 

in Figure 3.6). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.10 Topography (left) and corresponding KPFM response (right) of (a) reference rGO sample; the KPFM 

responses of Ni/rGO1 (b) 3 (c), 6 (d) and 24 (e) composites. 
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                         Table 3.1 Recommended work functions for polycrystalline materials [48] 

 

   Material (polycrystalline)    Work function (eV) 

Pt  5.5 ± 0.4  

Graphite 4.60±0.34 

rGO 4.30±0.2 

Ni 5.2±0.2 

 

The variation in the VCPD (WF) of the nanocomposites should be associated with a 

difference in the NiO shell width. The crucial role of the buffering NiO shell in electro-

physical behavior of the Ni/rGO nanocomposite has been previously shown in our previous 

work[18]. Our results suggested that the increase of Ni NPs size causes the increase in the NiO 

layer width, thus changing the conductivity of the Ni NPs in the rGO matrix and tuning the 

dielectric permittivity of the Ni/rGO nanocomposites. These results have been predicted in the 

theoretical work reported by Cheng et al. [27] devoted to the calculation of Schottky Barrier 

Height (SBH) and Schottky-Mott (S-M) limit of the interface between graphene (GR), Ni and 

NiO layers. The reported values for SBH and S-M were -0.414 eV and -1.023 eV, 

respectively. The positive charge doping in NiO layer was predicted to take place over the 

depth of about 1.2 Å, which is consistent with the 0.609 eV difference between SBH and S-M 

[27]. This correlates with the KPFM data obtained on the Ni/rGO composites (Figure 3.10 (b - 

e)). 

The surface roughness studied during the contact Spreading Resistance (SR) 

measurements was found to be around 10 nm. The SPM topography is characterized by the 

smoothed surface morphology specific to all the Ni/rGO samples (the topographies recorded 

in the semicontact mode and presented in Figure 3.10 (a, b) coincides with that captured in the 

contact mode). The roughness does not influence the measured current distribution (Figure 

3.10 (a), Figure 3.11 (e)). In general, the SR signal represents a real mapping of the sample 

conductivity which, for the Ni/rGO (1, 3, 6) nanocomposites, demonstrates a very similar 



Solvothermal synthesis of Ni/rGO nanocomposite: from nickel nanoclusters to homogeneously distributed discrete nickel 

nanoparticles 

 

 

107 

behavior (Figure 3.11 (a-c)). The surface of these composites is composed of the almost 

uniformly conductive and insulating regions. This behavior of conductivity could be explained 

by a trend of Ni NPs towards compact packing (probably due to a strong electrostatic 

attractive force between the NPs) forming the conductive chains and planes (blue arrow in 

Figure 3.11 (c, f)). The insulating regions could be explained as appearing due to the 

deterioration of the rGO matrix induced by Ni NP rearrangement (red arrow in Figure 3.11 (c, 

f)). The SR mapping of the Ni/rGO24 composite differs from that characteristic of the 1, 3, 6 

samples: corresponding measurements show conductivity pattern combining the responses 

from individual and grouped Ni NPs distributed in rGO matrix (Figure 3.11 (d)). These data 

are fully consistent with the KPFM results (Figure 3.10 (e)), thus reaffirming the suggestion 

regarding the great influence of electrostatic repulsive forces between the NPs on the 

conductivity of the Ni/rGO24 nanocomposite. Finally, the SR signal of the reference rGO 

sample corresponds to the almost insulating behavior and can be measured only at 10 V 

(Figure 3.11 (e)). These data completely confirm a huge impact of Ni NPs to the highly 

increase of the rGO matrix conductivity.  

The c-AFM measurements were done at the most conductive parts of the Ni/rGO 

nanocomposites and the reference (rGO) sample (Figure 3.12 (a) compares the currents 

registered at ± 3 V). The current–voltage dependence obtained for the rGO sample shows a 

standard nonlinear p-type semiconductor behavior (Figure 3.12 (b)). The I–V dependence of 

the Ni/rGO1 sample demonstrates a typical Ohmic behavior with two distinct regions: 0 ± 25 

nA (0 ± 0.05 V) and ± 25 nA ± 50 nA (± 0.05 V ± 3 V), respectively. In this measurement, the 

microscope apparatus saturation current was achieved at ± 3 V (50 nA). This type of I–V 

curve is associated with a metallic conductivity of doped rGO matrix [49]. The staircase 

current-voltage behavior is explained by the Coulomb blockade effect describing by the 

cooperative quantum tunneling of electrons across Ni NPs. 

The forward and backward current-voltage dependences obtained for the Ni/rGO (3, 6, 24) 

nanocomposites show an obvious diode-like rectifying I–V characteristic (Figure 3.12 (d-f)). It 

can be seen that during the measuring cycle the diodes polarity can be switched in the range of 

0.5-4 V. 
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Figure 3.11 The SR signal measured in the Ni/rGO 1 (a), 3 (b), 6 (c), 24 (d) at 1 V and rGO (e) at 10 V; f) schematic 

representation of the deterioration of the rGO matrix induced by Ni NP rearrangement. 
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Figure 3.12 a) A comparison of the currents registered in Ni/rGO and rGO samples at ± 3 V; current-voltage behavior of 

the rGO (b), Ni/rGO1 (c), 3 (d), 6 (e) and 24 (f) samples. 

 

Based on the analysis of the I-V curve (Figure 3.12), the switchable diode behavior in the 

Ni/rGO (3, 6, 24) samples can be explained by the interaction between Ni NP, NiO shell and 

rGO matrix and modulation of diode barriers at both bottom and top (cantilever’s tip) 

electrodes. In particular, the Ni/rGO3 sample demonstrates the Ohmic behavior for the 

backward pass (Figure. 11(d)), which probably reflects some residual metallic coupling 

between Ni NPs. The increase of NiO width causes the typical Schottky-like I–V characteristic 

in the Ni/rGO6 sample (Figure 3.12 (e) and schematized in Figure 3.13) and n-p 
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heterojunction behavior in the Ni/rGO24 sample (Figure 3.12 (f) and schematized in Figure 

3.13). In terms of the n-p heterojunction, the interface Pt-NiO plays a role of n-type area and 

the interface rGO-NiO plays a role of p-type area. Both, the n-type and p-type areas are 

connected via the Ni NP: Pt-NiO-Ni-NiO-rGO (Figure 3.13). These results support the 

theoretical predictions recently described by Cheng et al [27]. Moreover, our assumption is 

consistent with the KPFM measurements of the Ni/rGO24 nanocomposite showing that the 

broadening of the NiO shell causes the increase of the work function (Figure 3.10 (b - e)) and 

decrease of the conductivity (Figure 3.12 (a)). 

 

Figure 3.13 The schematic view of the energy diagram organized in the Ni/rGO nanocomposites and the effect caused by 

the NiO buffer layer. 

 

3.6 Conclusions 

In summary, we reported solvothermally fabrication of reduced graphene oxide decorated 

with Ni from nanocluster to fine discrete NPs homogeneously distributed on the surface of 

rGO. Four different reaction time 1h, 3h, 6h and 24h were used in solvothermal synthesis. 

Further reduction in hydrogen atmosphere caused the formation of metallic Ni nanocluster and 

Ni NPs on the rGO surface. 
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It was found that simply controlling the reaction time in solvothermal process dictate the 

size and size distribution of the particles at the final stage. The role of hydrogen reduction has 

been assumed to reduce the nanocomposite to form metallic Ni. This treatment had strong 

influence for further reduction of GO only for those samples that were solvothermally heat 

treated in short reaction time (1h and 3h).   

The potential advantage of this proposed method is to design different matrix of Ni/rGO 

exhibiting different electronic functionalities. As it was shown by electrophysical 

measurements the work function and conductivity were founded in direct dependence on the 

Ni NPs size, NiO buffer layer width and Ni NPs concentration. This allows manipulating the 

conductivity of Pt-NiO-Ni-NiO-rGO interface from metallic with quantum Coulomb blockade 

effect (Ni/rGO1) to Schottky (Ni/rGO6) towards to n-p heterojunction behavior (Ni/rGO24) 

making the prepared Ni/rGO nanocomposite a favorable material for nanoelectronics 

applications. 
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A.2 Supplementary material of chapter 3 
 

XRD pattern of Ni-GO sample that solvothermally synthesized under the condition of (200 

°C, 24h) is shown in Figure A.2.1. The broadened band at around 23° is related to the rGO [1]. 

Three peaks at 44.7°, 52° and 76.5° corresponding to (111), (200) and (220) of Ni planes in 

fcc crystal structure [2] showed the formation of metallic Ni in solvothermal treatment at the 

temperature of 200 °C. 

 

Figure A.2.1 XRD spectra of sample Ni-GO 24 synthesized by solvothermal method at 200 °C. 

 

Different scales of SEM images (Figure A.2.2) of Ni-GO that prepared by solvothermal 

method at 200 ºC for 24h reaction time showing the presence of Ni particles with the size of 

around 1µm randomly distributed on the surface of rGO. Comparing this images with the 

SEM images (see Figure A.2.3) obtained from sample Ni/rGO24 which prepared in two steps 

solvothermal (150 ºC, 24h) and hydrogen reduction treatment (450 ºC, 2h) showed the 

successful two steps synthesis for decoration of rGO with nanosized Ni NPs.  
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               Figure A.2.2 SEM images of sample Ni-GO 24 prepared by solvothermal method at 200 °C, 24h). 

 

 

Figure A.2.3 SEM images of sample Ni/rGO24 prepared by two steps: solvothermal (150 ºC, 24h) and hydrogen reduction 

treatment (450 ºC, 2h). 
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4.1 Scope 

 

The Ni/rGO (3, 6 and 24) nanocomposites reported in chapter 3 were heat treated under 

reducing atmosphere of hydrogen (H2) at 450 ºC. The aim of this treatment was to investigate 

the thermal stability or possible structural changes of these nanocomposites regarding their 

future potential application in the area of heterogeneous catalysis. The obtained results showed 

the good structural stability of Ni/rGO nanocomposites during 2 hours of thermal treatment 

with remaining of well dispersed of Ni NPs on rGO surface. An intense heating treatment on 

Ni/rGO24 nanocomposite under inert atmosphere of argon (Ar) at 900 ºC during 2 hours was 

performed in order to complete reduction of NiO shell to metallic Ni. This sample containing 

pure metallic Ni NPs was further treated under the same thermal annealing condition (in H2 

atmosphere and at 450 °C) and characterized. After intense thermal treatment in Ar, it was 

observed that the NPs were completely reduced to metallic Ni. However, during this treatment 

the NPs migrated at the rGO surface through the etching process and formed Ni aggregates 

leaving trenches behind on the rGO network. The further heat treated of this sample under H2 

at 450 °C promoted the formation of more trenches on rGO. 
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4.2 Introduction 

Highly dispersed metal or metal oxide NPs on thermally stable supports can be used for 

heterogeneous catalytic reactions [1]. The two-dimensional graphene structure offers a high 

potential as a catalyst support for metal and metal oxide NPs [2] due to its high specific 

surface area, high thermal and electrical conductivity and low mass transfer phenomena. 

Catalytic reactions normally operate under medium temperature (from 100 ºC to 400 ºC) to 

high temperature (> 400 ºC) consequently the thermal stability of the deposited NPs is an 

important parameter that needs to be controlled [1]. During these catalytic reactions involving 

temperature, the increase of particles size via sintering can occurs, leading to reduce the 

surface area of particles and impairs their catalytic activity. So, the design of well dispersed 

NPs on substrate with anti-sintering properties is highly demanding [3]. In this regard, the 

stability of NPs on substrate under reaction temperature is an important factor that should be 

taken in to account for fabrication of catalyst materials. 

On the other hand, new findings reveals that the existence of foreign atoms on graphene 

can manipulate the graphene structure [4]. It was indicated that the different metal atoms of 

Cu, Pt and Au can have different interactions with graphene structure. For Pt atoms, it was 

reported the ability to etch the graphene layer while in case of Cu atoms it was observed the 

ability of mending it. However, for Au atoms neither etching nor mending effects were 

reported on graphene structure. 

Etching of graphitic structure by transition metal NPs through the catalytic hydrogenation 

of carbon has been reported as an interesting way for fabrication of nanopatterned graphene 

[5]. In this method, transition metals NPs like Ni or Fe are introduced on the graphene sheets. 

After thermal treatment at high temperatures of 700 ºC to 900 ºC under hydrogen atmosphere, 

these NPs cause the catalytic reaction between hydrogen and carbon producing methane gas. 

This process creates channels, pits and islands on graphene surface which can change the 

electronic properties of graphene [6]. Controlled cutting of graphene can creates nanoribbons 

with a desired size, shape and defined crystallographic edge showing different electronic 

properties that can be applicable in future electronic integrated devices [7] .For example, Wei 

L. Wang et al [8] applied benzenoid graph theory and first-principles calculations to  
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investigate the magnetic properties of arbitrarily shaped finite graphene flakes. It was shown 

that the spin of each flake is depending on its shape suggesting an avenue to nanoscale 

spintronic through the sculpting of graphene fragments. 

The etching process occurs preferably on the smooth surface of carbon while the pitting 

process frequently happens on the defective surface. In fact, the prevalence of these processes 

can be dictated by NPs size. Usually, it was observed that the formation of pits occurs in the 

case of bigger NPs size, while the etching is a product of smaller ones[9]. S. Datta 

demonstrated the etching of few layer graphene on SiO2/Si substrate by thermally activated Fe 

NPs [10]. Few layer graphene (FLG) with a proper amount of Fe(NO3)3H2O solution was spin 

coated on SiO2/Si substrate, afterward transferred to furnace and heated at 900 °C under H2/Ar 

flow during 45 minutes. At this temperature, Fe NPs (15nm) were formed and diffused along 

the SiO2 and graphene surface and etched the few layer graphene on the substrate. It was 

explained that these etched trenches were oriented with the crystal lattice of graphene. The 

etching mechanism of few layers graphene is similar to the hydrogenation mechanism of bulk 

carbon which was reported before by A. Tomita [11]. In that work, the catalytic activities of 

transition metals (Fe, Co, Ni, Rh) in hydrogenation process of graphite was investigated. It 

was revealed the formation of channels, both with irregular shape or with preferred orientation 

in basal planes of graphite are made by the catalyst particles. 

The size of NPs is an important factor to design the etch on the graphene surface. 

According to Lijie. Ci [12] the width of channels made by nanosized Ni (1nm - 40nm) under 

Ar/H2 flow and at high temperature (750 ºC -1100 ºC) is comparable with the NP size. 

Moreover, the size of NPs dictate the edge structure of etches. It was observed that the 

narrower channel made by the smaller Ni NPs (< 10 nm) created a zigzag edge while the 

bigger ones (> 10 nm) creates the armchair edges. These different shapes determine the 

electronic properties of the final material. Nanoribbons with zigzag edge shows metallic 

behavior while with armchair edge, they are semi-conductive or semi-metallic [13]. Besides, 

etching of graphene by non-metallic NPs was also reported [14]. Libo et al. prepared few layer 

graphene (FLG) on Si/SiO2 substrate and thermally treated under H2 atmosphere at 850-1100 

ºC. The formation of SiOx NPs with various sizes, mostly less than 30 nm and several trenches 



Structural changes of Ni/rGO nanocomposites by thermal annealing 

 

 

128 

on FLG were observed. It was shown that the SiOx NPs can tailor few FLG into regular pieces 

with smooth edges. The results suggested that the tailoring of graphene lattice occurs by the 

motion of SiOx NPs along the graphene lattice and the tailored trenches exhibit high selectivity 

of the crystallographic orientation, similar to the behavior reported for metallic NPs. In 

addition, it was reported that under the same experimental conditions of heating and in the 

absence of SiOx NPs no trenches were formed. 

Catalytic etching of monolayer of graphene decorated with zinc oxide NPs which was  

thermal treated at 250 °C under Ar atmosphere has been also reported [6]. The authors 

repeated the thermal treatment for several times in order to investigate the evolution of etched 

channels on the graphene surface. It was explained that the etching process occurs by 

gasification of graphene through the solid-state reaction of ZnO + C => Zn + CO.  XPS data 

showed the presence of both Zn and ZnO binding energies which revealed the involvement of 

NPs in graphene etching process. Moreover, Raman analysis showed the increase of defects 

after several heating treatments that confirmed the promotion of etched channel by repeating 

the heat treatment. 

The concept of cutting graphitic materials using metallic NPs is not new. In 2006, Wang et 

al. introduced a new approach for cutting multi walled carbon nanotubes (MWCNT) based on 

the solid state reaction between NiO NPs and carbon [15]. To achieve this, the NiO NPs were 

deposited on MWCNT and then heated under Ar atmosphere at 900 ºC for 2h. It was shown 

that at this temperature NiO reduced to Ni by consumption of carbon from MWCNT (NiO + C 

=> Ni + CO) and this caused the cutting of nanotubes to form smaller ones. 

Here we investigated the structural changes of Ni and rGO in Ni/rGO nanocomposites by 

heat treatment under reducing and inert atmosphere (H2 and Ar) and different temperatures 

(450 ºC and 900 ºC). The results suggest that the thermal treatment at 450 °C under reducing 

atmosphere doesn’t promote significant structural changes in Ni/rGO nanocomposites. On the 

contrary, the thermal treatment at 900 °C under Ar atmosphere caused the complete 

elimination of oxide shell of Ni NPs in Ni/rGO nanocomposites, however anisotropic etching 

of the few layers of rGO sheets by Ni catalyst and formation of Ni aggregates were observed.  
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4.3 Experimental section 

 

4.3.1 Thermal annealing treatment of Ni/rGO nanocomposites 

 

The Ni/rGO3, Ni/rGO6 and Ni/rGO24 nanocomposites that their preparation and 

characterization were explained in previous chapter were now heat treated in a tube furnace at 

450 C with the heating rate of 5 C/min under hydrogen flow of 8 mL/min during 2 h and 

labeled as Ni/rGO3-H2, Ni/rGO6-H2 and Ni/rGO24-H2 respectively.  

Sample Ni/rGO24 was heat treated in a tube furnace at 900 ºC with the heating rate of 5 

ºC/min under Ar flow of 10 mL/min during 2h and was labeled as Ni/rGO24-Ar. This later 

sample was kept in the furnace and further heated in H2 atmosphere at 450 C under the same 

conditions referred before for this gas and labeled as Ni/rGO24-Ar-H2. All the experimental 

conditions used are summarized in Table 4.1. 

 

Table 4.1 Experimental conditions used for the thermal treatment of the nanocomposites Ni/rGO3, Ni/rGO6 and Ni/rGO24. 
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4.3.2 Characterization 

 

Raman spectra were collected in a Thermo Scientific DXR smart Raman spectrometer 

with excitation wavelength of 532 nm with the maximum power of 10 mW. Transmission 

electron microscope (TEM) images were taken with FEI Tecnai G2 20 microscope. FTIR 

spectra were collected using KBr pellet technique with FTIR BRUKER TENSOR 27 with the 

resolution of 4 cm
-1

 in the range of 4000 cm
-1

 to 350 cm
-1

. X-ray photoelectron spectroscopy 

(XPS) measurements were carried out on a PHI 5600 CI spectrometer (Physical Electronics) 

equipped with a hemispherical analyzer operated at pass energy of 29 eV. Monochromated Al 

Kα radiation (at 350 W) was used. Base pressure of the system was around 2 x10
-8

 Pa. The Ar 

ions (Ar
+
) of 3.5 keV with the rate of 0.05 nm/s was used. A transfer system (Physical 

Electronics) was used to guarantee transport from the glove-box in Ar atmosphere without 

exposing the samples to the ambient air.  

 

4.4 Results and discussion 

 

4.4.1 Structural study of samples Ni/rGO3-H2, Ni/rGO6-H2 and Ni/rGO24-H2 

 

The first studies were performed in order to access the effect of the thermal treatment 

under H2 atmosphere on treated Ni/rGO3-H2, Ni/rGO6-H2 and Ni/rGO24-H2 nanocomposites. 

FTIR and Raman spectra of the nanocomposites after annealing under (450 ºC, H2, 2 h) are 

shown in Figure 4.1 (a) and (b) respectively. FTIR results showed the presence of a band at 

around 1570 cm
-1

 that can be related to the in plane skeletal vibration of hexagonal aromatic 

ring in  graphene [16]. It was reported the presence of a band in the range of 1585-1565 cm
-1

 

can be assigned to the reduction of GO. Moreover, the bands observed in the range of 1640-

1620 cm
-1

 are generally attributed to the hydroxyl groups, however they can be overlapped 

with C=C vibration of aromatic carbon [17], [18]. The presence of C-O and C-O-C groups 
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indicate these oxygen functional groups are thermally stable at this heating condition and were 

not completely eliminated. Raman spectra showed the presence of the characteristic G and D 

bands of rGO. The calculated ID/IG were 0.94 ,0.98 and 0.96 for the nanocomposites Ni/rGO3-

H2, Ni/rGO6-H2 and Ni/rGO24-H2 respectively. 

 

Figure 4.1 FTIR (a) and Raman (b) spectra of the three nanocomposites after annealing at 450 ºC in H2 during 2h. 

 

These ID/IG values are similar to the ID/IG obtained values before annealing reported in 

chapter 3, which can suggest that no significant structural changes on the rGO sheets occurred 

during annealing in H2 atmosphere. The values of ID/IG reported for sample Ni/rGO6 and 

Ni/rGO24 in chapter 3 are 0.96 and 0.99 respectively. 

XPS spectra of C1s and Ni2p3 for the different nanocomposites are shown in Figure 4.2 a) 

and b) respectively. The peak of C1s of rGO is similar for all samples, showing mainly a sharp 

peak at 284.5 eV corresponding to the C=C/C-C covalent bonds and the presence of small 

shoulder of C1s peak at higher binding energy (around 286.5) revealed the existence of some 

oxygen functional groups in all samples [16]. These results indicate that the annealing 

treatment at 450 °C under H2 didn’t promote further oxygen reduction, which is in consistent 

with our FTIR and Raman results. These results showed that after a second thermal treatment 

of rGO, a similar XPS profile to the first thermal treatment (chapter 3) was observed, that 

a) b) 
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suggest the thermal stability of rGO at 450 °C under H2 atmosphere. Regarding Ni analysis, 

two peaks at 853 eV and 855.4 eV can be ascribed to Ni(2p3/2) of metallic Ni and Ni(2p3/2) of 

NiO respectively, which indicates that Ni is in both metallic and oxide phase in all samples 

that can be related to the Ni/NiO core-shell structure as was suggested in the previous chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.2 XPS C1s (a) and Ni2p3 (b) spectra of nanocomposites annealed under H2 atmosphere at 450 º C for 2 hours. 

 

The Table 4.2 represents the calculated relative atomic concentration of each element (C, 

O and Ni) in the different nanocomposites from the XPS data. The obtained C/O ratio for 

samples Ni/rGO3-H2, Ni/rGO6-H2 and Ni/rGO24-H2 are 21.4, 22 and 23.5 respectively, which 

showed a comparable degree of oxygen reduction of rGO for all samples. In this case, the 

concentration of Ni in the samples is similar. This can be related with the superficial analysis 

nature made by XPS that cannot be compared with the previous Ni content results obtained 

from ICP analysis for the same samples discussed in chapter 3, which was a bulk analysis. 

 

 

 

a) 
b) 
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Table 4.2 Atomic concentration for C, N, O and Ni of the nanocomposites after annealing at 450 ºC in H2 during 2h. 

During the XPS analysis, Ar
+ 

sputtering was applied to the Ni/rGO6-H2 and Ni/rGO24-H2 

samples surface to remove/diminish the shell of Ni NPs and analyze the depth profile. The 

XPS spectra of these samples after Ar
+
 sputtering are shown in Figure 4.3. The obtained data 

showed the appearance of a sharp peak at around 853 eV for both samples which can be 

assigned to Ni2p3 of metallic Ni. Due to the high reactivity of Ni towards the oxygen, it is 

difficult to explain the origin of this oxide shell around Ni core, which can be formed during 

the synthesis and/or after, by the air exposure. To clarify this point, further XPS studies were 

performed on reference samples of Ni and NiO (commercially obtained). The XPS for Ni and 

NiO were collected before and after Ar
+ 

sputtering. In order to investigate re-oxidation of Ni, 

sputtered Ni sample was kept in the lab exposed to the air for 1.5 h and further analyzed by 

XPS (Figure 4.4). 

 

Figure 4.3 XPS spectra of Ni/rGO6-H2 and Ni/rGO24-H2 after Ar+ sputtering 
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The spectrum of Ar
+ 

sputtered Ni after exposing to air showed the appearance of the NiO 

peak confirming the fast surface oxidation of Ni and is comparable with previous XPS results 

(Figure 3.4). Comparing the XPS spectra of samples Ni/rGO3-H2, Ni/rGO6-H2 and Ni/rGO24-

H2 before Ar
+ 

sputtering and after Ar
+ 

sputtering (Figure 4.3) with reference spectra suggested 

that the Ni NPs are composed of a metallic core and an outer oxidized shell.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 XPS reference spectra of (a) Ni before Ar+ sputtering, after Ar+ sputtering, and after the sputtered sample was 

exposing to the air (for 1.5 h), NiO (b) before and after Ar+ sputtering 

 

To observe the effect of thermal treatment on Ni NPs in Ni/rGO nanocomposites the TEM 

study was carried out for sample Ni/rGO6-H2, (see Figure 4.5). It can be seen that Ni NPs 

were still well distributed on rGO surface and were not sintered during 2 h heating at 450 °C 

under H2 atmosphere. These results suggested that this nanocomposite can be favorable to use 

in heterogeneous catalysis which needs to be operated up to 450 °C. However, the existence of 

few trenches on rGO can be observed indicating the rGO underwent some catalytic etching 

process. Catalytic etching of graphene with NPs was reported to be occurred under H2, oxygen 

and water vapor environments. The etching mechanism suggested to be related with the 

presence of metal NPs attached to the defects of graphite and step edges. At high temperature, 

the oxidizing or reducing agents attached to the metal NPs react and form atomic H2 or oxygen 

which are released and diffused to the surface of graphene and react with carbon atoms located 

at the edges and desorbed in the form of CO, CO2 or CH4. Metal NPs move on through the 

graphene surface and create the trenches [19]. As it can be seen in Figure 4.5 (red circles), the 

a) b) 
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etched channel width is comparable with the particles size. The low propagation of channels 

might be due to the small size of the NPs. It was reported that in hydrogenation of graphite by 

Ni particles the channel propagation rate increases by increasing the particle size [20]. 

 

 

 

Figure 4. 5 TEM images of Ni/rGO6-H2 indicating well dispersed Ni NPs and a few trenches made by catalytic etching 

of rGO. red circles show the dimension of trenches are comparable with the NPs size. 

 

C. W. Keep [21] studied the catalyzed hydrogenation of graphite by Ni particles. In this 

study graphite was coated with Ni and heated under H2 atmosphere. The nucleation of round 

shaped Ni particles in the size range of (10-25 nm) from Ni film occurred at the temperature 

between 825-925K.The size of the particles were increased by increasing the temperature and 

at around 975 K those particles that were in contact to edge or step edge started creating the 

channel along the basal plane. It was showed that the channel propagation rate is temperature 

dependent and was increased by increasing the temperature. 
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4.4.2 Morphology and structural study of samples Ni/rGO24-Ar and Ni/rGO24-Ar-

H2 

 

TEM images of Ni/rGO24-Ar are shown in Figure 4.6. It can be seen that the intense 

thermal treatment at 900 °C caused the increase of Ni NPs size (Figure 4.6 a) most probably 

due to the migration of NPs (Figure 4.6 b) on the surface of rGO, coalescence and formation 

of large aggregates with the maximum final size of around 150 nm leaving many trenches at 

the rGO surface. Recently, the etching of graphene with Ni NPs was explained as “Pacman” 

mechanism by Qiu et al [22]. It was suggested that this mechanism is dependent on the close 

contact between graphene and Ni NPs and also their size. The occurrence of the anisotropic 

channels was explained as due to the specific active sites of the catalysts (Ni NPs). A catalyst 

with irregular shapes (see Figure 4.6 c and the magnified image in 4.6 d) contains more active 

sites and as a result, it doesn’t continue the constant channel direction. The bigger particles are 

more complicated in shapes, having more facets and consequently more active sites, which 

results in an increase of the probability for the formation of bending channels on the rGO 

surface[11].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 TEM images of a) distribution of Ni in Ni/rGO24-Ar b) migrated Ni NPs on rGO to form aggregates c) 

formation of trenches and bigger size of Ni by coalescence of Ni NPs, d) a single NP. 

a) b) 

c) d) 
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The mechanism of etching of rGO by Ni NPs under Ar atmosphere at 900 °C can be 

explained as the same mechanism reported by X. Wang [15], in which the reduction of NiO to 

Ni occurs by consumption of carbon atoms and creating the trenches on rGO surface. TEM 

images of sample Ni/rGO24-Ar-H2 which was firstly treated in Ar and then in H2 are shown in 

Figure 4.7.  It can be seen that Ni NPs are randomly distributed on the highly-etched surface of 

rGO (see Figure 4.7 a and b). The existence of random trenches on rGO rather than 

crystallographic oriented etching might be due to the structure of rGO which contains several 

oxygen groups and defects. HRTEM image of Ni NPs interacted on rGO surface is shown in 

Figure 4.7 c. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 TEM images (a, b) of Ni/rGO24-Ar-H2 showing randomly distributed of Ni and the accumulation of trenches 

on rGO c) HRTEM of etched rGO by Ni NPs. 

In order to obtain further structural details of the etched samples, complementary FTIR, 

Raman and XPS measurement were performed.  

a) b) 

c) 
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Figure 4.8 (a) shows the FTIR spectra of samples Ni/rGO24-Ar and Ni/rGO24-Ar-H2. It is 

possible to observe that the intensity of all bands related to the oxygen functional groups 

decreased significantly, when compared with FTIR of Ni/rGO24-H2, (see Figure 4.1a) which 

was treated under H2 at 450 °C revealing the higher extent of rGO reduction at higher 

temperature of 900 °C. The presence of the band at 1640 cm
-1

 which was attributed to C=C 

showed that after intense thermal annealing the aromatic structure of graphene was not 

destroyed. The Raman spectra in Figure 4.8 (b) showed a significant increase of the ID/IG ratio 

to 1.1 and 1.4 for Ni/rGO24-Ar and Ni/rGO24-Ar-H2 respectively. The increase of ID/IG value 

after thermal annealing suggest the introduction of more defects which might arises through 

the etching process [6]. It was reported that the origin of D band of Raman spectrum in single 

layer graphene after etching process can be due to the presence of edges caused by etching 

process or due to the defects caused by high temperature treatment [7]. It is worth noting that 

the value of ID/IG is not representative of degree of oxidation or reduction since the increase of 

this value can be caused by varied factors such as edges, charge puddles and other defects 

[23]. The higher value of ID/IG for Ni/rGO24-Ar-H2 might accompanied this idea that 

increasing the number of edges during annealing in Ar introduced more active carbons 

through the formation of edges resulting higher catalytic hydrogenation of rGO and formation 

of more trenches during H2 annealing. It was reported that the carbon atoms located on the 

edges are more active than those on  basal plane [10].  

 

 

 

 

 

 

 

 

Figure 4.8 FTIR (a) and Raman (b) spectra of etched Ni/rGO24-Ar and Ni/rGO24-Ar-H2 samples. 

a) b) 
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XPS spectra of C1s and Ni2p3 of Ni/rGO24-Ar and Ni/rGO24-Ar-H2 are shown in Figure 

4.9 (a) and (b), respectively. The appearance of a sharp peak for C1s at 284.4 eV showed the 

high reduction level of the rGO in the nanocomposites. In case of Ni it was observed the 

presence of two peaks at 853 eV and at 871 eV which can attribute to Ni2p3/2 and Ni2p1/2. This 

results confirm effective reduction to metallic Ni  and complete elimination of NiO shell [24].  

Table 4.3 showed the atomic percentage of C, O and Ni for Ni/rGO24-Ar and Ni/rGO24-

Ar-H2. The C/O ratio for Ni/rGO24-Ar and Ni/rGO24-Ar-H2 are 63.7 and 44.8 respectively. 

This difference can be due to the higher consumption of carbon atoms for sample Ni/rGO24-

Ar-H2 than Ni/rGO24-Ar through the etching process and formation of more trenches which is 

in consistent with the Raman results.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 XPS C1s (a) and Ni2p3 (b) spectra of Ni/rGO24-Ar and Ni/rGO24-Ar-H2 after heat treatment under Ar and 

H2. 

 

Table 4.3 Atomic concentration of samples Ni/rGO24-Ar and Ni/rGO24-Ar-H2 after heat treatment at 900 ºC under Ar. 

  

a) b) 
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4.5 Conclusion 

In conclusion, we studied the stability of Ni/rGO nanocomposites under H2 reducing 

atmosphere at 450 °C. Three samples, Ni/rGO3, Ni/rGO6, Ni/rGO24 prepared by 

solvothermal method were heat treated during 2 h and characterized. The FTIR and Raman 

results showed a good degree of stability for all samples. XPS analysis showed that the Ni NPs 

have core /shell structure of Ni and NiO respectively.  

Sample Ni/rGO24 was heat treated at high temperature of 900 °C under Ar for 2 h for 

complete reduction of NiO shell of NPs and further heat treated under H2 at 450 °C for 2 h. It 

was shown that thermal treatment under inert atmosphere of Ar at 900 °C is capable for 

complete elimination of NiO shell from the particles. 

Under this condition, the migration and aggregation of Ni NPs and etching of rGO were 

observed. At this stage FTIR and Raman results showed the higher degree of reduction of the 

oxygen groups and appearance of more defects on rGO. XPS data revealed the complete 

reduction of NiO to metallic Ni. The further annealing in H2 atmosphere caused the formation 

of more defects. This can be due to the formation of trenches which introduce more active 

carbon on edges and undergoes catalytic hydrogenation of carbon on rGO surface.  

To bring the catalytic cutting of graphene to the application, it needs more studies and 

investigation in other to fully understand the mechanism behind this interesting phenomenon 

and also needs more efforts to find a way to precisely patterning the graphene in order to be 

applicable in electronic areas of application. 
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5.1 Conclusion Outlines 

 

In this thesis two different approaches for the synthesis of Ni NPs decorated rGO surface, 

Ni/rGO under different experimental conditions, hydrothermal and solvothermal, are 

documented. In each experimental approach, the control of various reaction parameters was 

found to be strongly essential on the final structure of the nanocomposites which in turn affects 

their properties. In this regard, several conclusions can be drawn from this thesis as listed below.  

 

Regarding the hydrothermal method: 

 Using the hydrothermal methodology, the size, morphology, crystalline structure 

and distribution of the Ni NPs on rGO surface can be controlled by the hydrazine hydrate 

(N2H4) concentration in the reaction solution. In this method, there is no need to use 

stabilizing agents or alkaline media which shows that this proposed method is a 

straightforward approach and easy to be implemented. 

 The increase of N2H4 concentration leads to an increase of the size of the metallic 

Ni NPs on rGO surface. The Ni/rGO nanocomposite containing the well distributed 

metallic Ni NPs with the smallest particles’ size of 145 nm was obtained using 0.17 mol/L 

N2H4. Ni/rGO nanocomposite with spiky Ni NPs (300 nm) with Ni/NiO core-shell 

structure was obtained using 0.83 mol/L N2H4 in reaction solution. The growth of 

nanothorns in this structure was controlled by the reaction time. Increasing the reaction 

time leads to increase the size of these nanothorns.  

 The current-voltage (I-V) characteristic of spiky Ni/rGO nanocomposite showed 

nonlinear and highly reproducible current hysteresis behavior indicating a large resistive 

switching which can be described as the switchable diode effect. It was shown that the 

outer shell of NiO around the Ni NPs is acting as a buffer layer which should be taken in to 

account for equilibrium energy band diagram. I-V characteristic of rGO showed 

nonlinearity similar to Schottky effect without any hysteresis behavior which suggested the 

Ni NPs are mainly responsible for switchable diode effect of this nanocomposite.  
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Regarding the solvothermal method: 

 This method allows obtaining smaller Ni NPs at rGO surface, typically less than 

10 nm. The optimized reaction parameters allow to control the size and size distribution of 

Ni NPs in Ni/rGO nanocomposites as well as the degree of GO reduction by only 

controlling the reaction time. The increase of the reaction time leads to an increase of the 

size of Ni NPs and concomitantly to the decrease of the density of NPs on rGO surface. A 

heat treatment under H2 atmosphere at 450 ºC was crucial for formation of metallic Ni NPs 

after the solvothermal reaction. 

 I-V characteristics of solvothermally synthesized Ni/rGO nanocomposites showed 

switchable diode effect for the samples were obtained during 3, 6 and 24 h reaction time. 

This behavior was due to the interaction of Ni/NiO core-shell structure in rGO matrix and 

cantilever’s tip as electrodes. I-V characteristic of Ni/rGO nanocomposite that was 

obtained during 1 h reaction time showed the ohmic behavior. For this sample, the current 

saturation was achieved at ± 3V (50nm). These results confirmed that electrophysical 

properties are dependent to the structure of Ni/rGO nanocomposites. 

 Higher temperature heating treatment of Ni/rGO under Ar atmosphere (900 ºC) 

caused the migration of Ni NPs on rGO and formation of anisotropic trenches through the 

etching of rGO nanostructure. 

 

 

5.2 Future work 

 

At this moment, the chemical mechanism that can describe the formation of the highly 

monodisperse Ni NPs at the surface of GO by solvothermal method is not yet fully understood. 

Several characterization techniques are now being considered in order to obtain valuable 

information for clarification of the structural changes observed over the different reaction time. 

In fact, the strategy consists on the establishment of a correlation between the Ni 

morphology/contents with the degree of reduction of GO during the different phases of the 
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synthesis. However, the very promising electronic properties already observed for the current 

obtained Ni/rGO nanocomposites synthesized by the hydrothermal and solvothermal methods, 

allows that these materials can now be explored for several applications. Currently, the potential 

application of Ni/rGO nanocomposite is under investigation for the assembly with biomolecules 

for the development of new nanobiomaterials for harvesting energy. Study the effect of 

integration of rGO/spiky Ni NPs in to the self-assembled diphenylalanine (FF) peptide 

microtubes’ structure is ongoing work which has been conducted at the Physics department, 

University of Aveiro. This work is motivated by the recent results of professor Kholkin’s group 

[M. Ivanov et al., “High Resolution piezoresponse Force Microscopy Study of Self-Assembled 

Peptide Nanotubes,” MRS Adv., vol. 2, no. 2, pp. 63–69, 2017]. According to their obtained 

results the introduction of rGO to peptide microtubes, significantly modifying the piezoelectric 

properties with the appearance of radial (vertical) piezoresponse that was confirmed via PFM 

analysis.  

Moreover, nanosized Ni/rGO nanocomposite can be a favorable candidate for enhancement 

of hydrogen adsorption through the spillover mechanism in solid state hydrogen storage 

application. Spillover is a transport of active species generated on one substance (activator) to 

another (receptor) that would not normally adsorb it. Yang et al [L. Wang and R. T. Yang, “New 

sorbents for hydrogen storage by hydrogen spillover - a review,” Energy Environ. Sci., vol. 1, no. 

2, pp. 268–279, Jul. 2008.] showed that metal support interaction is the key for the spillover. He 

proposed the Bridge-building technique (making contact between metal, support and receptor by 

carbon precursor such as glucose) for enhancement of hydrogen adsorption capacity on the 

receptor. Our work suggests that by well integration of Ni/rGO nanocomposite to the hydrogen 

adsorbent materials (receptor) rGO can act as a bridge-building material between activator and 

receptor as well as the support for metal particles. 
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