
Universidade de Aveiro

Departamento de Eletrónica,
Telecomunicações e Informática

2017

Rui André

Cruz Lebre

Mecanismo de Gestão de Áreas de Utilizador para

Repositórios de Imagem Médica

Accounting Mechanism for Shared Medical

Imaging Repositories

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/159140319?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Universidade de Aveiro

Departamento de Eletrónica,
Telecomunicações e Informática

2017

Rui André

Cruz Lebre

Mecanismo de Gestão de Áreas de Utilizador para

Repositórios de Imagem Médica

Accounting Mechanism for Shared Medical

Imaging Repositories

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia de Com-
putadores e Telemática, realizada sob a orientação científica do Doutor Car-
los Manuel Azevedo Costa, Professor Auxiliar do Departamento de Eletrónica,
Telecomunicações e Informática da Universidade de Aveiro.

o júri / the jury

presidente / president Prof. Doutor Joaquim Manuel Henriques de Sousa Pinto
Professor Auxiliar do Departamento de Eletrónica, Telecomunicações e Informática da Universi-

dade de Aveiro

vogais / examiners committee Prof. Doutor José Paulo Lousado
Professor Adjunto, Dep. de Informática, Comunicações e Ciências Fundamentais, da Escola

Superior de Tecnologia e Gestão de Lamego do Instituto Politécnico de Viseu

Prof. Doutor Carlos Manuel Azevedo Costa
Professor Auxiliar do Departamento de Eletrónica, Telecomunicações e Informática da Universi-

dade de Aveiro (orientador)

agradecimentos /

acknowledgements

Gostava de agradecer, em primeiro lugar ao meu orientador, Carlos Costa,
pela oportunidade, orientação e apoio durante o mestrado. Os seus con-
selhos, recomendações e discussões foram fundamentais para a realização
deste trabalho. Um agradecimento especial também ao Luís Bastião pelo
apoio fundamental quase diário durante a realização da dissertação. Quero
também deixar uma palavra de apreço a todos os elementos do grupo de
Bioinformática por proporcionarem um ambiente de entreajuda e divertimento
dentro e fora espaço aberto dedicado ao grupo.

Quero também agradecer aos meus amigos Helder, Joana e Xavier,
não esquecendo a Mélanie, o João e o Jerónimo pelo apoio e amizade,
passando também pelo André, a Raquel, o Tiago, a Rita e a Soraia.

Finalmente, um agradecimento especial aos meus pais, Mário Lebre e
Julieta Lebre, e ao meu irmão, Sérgio Lebre por todo o suporte.

Palavras Chave Informática Médica, PACS, Imagem médica, Armazenamento Cloud, Com-
putação Cloud, Repositórios Partilhados, DICOM.

Resumo A imagem médica em formato digital é um elemento presente nas mais
variadas instituições prestadoras de cuidados de saúde, afirmando-se como
um imprescindível elemento de suporte ao diagnóstico e terapêutica médica.
Nesta área, os formatos e processos de armazenamento e transmissão são
definidos pela norma internacional DICOM. Um ficheiro deste tipo contempla,
para além da imagem (ou vídeo), um conjunto de meta-dados que incluem
informação dos pacientes, dados técnicos relativos ao estudo, dose de radi-
ação, relatório clínico, etc.
Um dos maiores problemas associados aos repositórios de imagem médica
está relacionado com a grande quantidade de dados produzidos que impõe
desafios acrescidos ao armazenamento e transporte da informação, em par-
ticular em cenários distribuídos e de grande produção de estudos imagiológi-
cos.
Esta dissertação tem como objetivo estudar e explorar soluções que permi-
tam a integração do conceito de pertença e controlo de acesso em arquivos
de imagem médica, possibilitando a centralização de múltiplas instâncias de
arquivos. A solução desenvolvida permite associar permissões a recursos e
delegação a terceiras entidades. Foi desenvolvida uma interface programática
de gestão da solução proposta, disponibilizada através de web services, com
a capacidade de criação, leitura, atualização e remoção de todos os compo-
nentes resultantes da arquitetura.

Keywords Medical Informatics, Medical Imaging, PACS, Cloud Storage, Cloud Comput-
ing, Accounting, DICOM, Shared Repositories.

Abstract The production of medical images in digital format has been growing in the
most varied health care providers, representing at this moment an important
and indispensable element for supporting medical decisions. In medical imag-
ing area, the formats and transmission processes are defined by the interna-
tional DICOM standard. A file in this format contains image pixel data but also
a set of metadata, including information about the patient, technical data re-
lated to the study, dose of radiation, clinical report, etc.
One of the biggest problems associated with medical imaging repositories is
related to the large amount of data produced that poses additional challenges
to the transport and archive of information, particularly in distributed environ-
ments and laboratories with huge volume of examinations. This dissertation
aims to study and explore solutions for the integration of ownership concept
and access control over medical imaging resources, making possible the cen-
tralization of multiple instances of repositories. The proposed solution allows
the association of permissions to repository resources and delegation of rights
to third entities. It was developed a programmatic interface for management
of proposed services, made available through web services, with the ability to
create, read, update and remove all components resulting from the architec-
ture.

Contents

Contents . i

List of Figures . v

List of Tables . vii

Acronyms . ix

1 Introduction . 1
1.1 Overview . 1
1.2 Goals . 2
1.3 Outlines . 2

2 State of the Art . 5
2.1 Overview . 5
2.2 Picture Archive and Communication System 6
2.3 Digital Image Communications In Medicine 8

2.3.1 DICOM Information Model . 8
2.3.2 DICOM Data Format . 9
2.3.3 Digital Imaging and Communications in Medicine (DICOM) Services 10
2.3.4 DICOMweb . 13

2.4 Security . 17
2.4.1 Privacy and Confidentiality . 17
2.4.2 Authentication Mechanisms . 18
2.4.3 Image Encryption . 21

2.5 Dicoogle . 22
2.5.1 Storage Plugins . 23
2.5.2 Index Plugins . 23
2.5.3 Query Plugins . 24

2.6 Cloud Storage Services . 24
2.6.1 Google Drive . 24
2.6.2 Google Storage . 25
2.6.3 One Drive . 25
2.6.4 Amazon Web Services (AWS) S3 . 26
2.6.5 Dropbox . 27

2.7 Access Control Mechanisms . 27
2.7.1 OACC . 27

i

2.7.2 Apache Shiro . 27

3 System Wide Requirements . 29
3.1 System Wide Requirements . 29

3.1.1 Functional Requirements . 29
3.1.2 Non-Functional Requirements . 31
3.1.3 Use Cases . 32

4 Architecture and Implementation 35
4.1 Introduction . 35
4.2 Proposal . 35
4.3 Data Model . 37
4.4 Data Persistence . 45

4.4.1 Serializers . 45
4.4.2 Managers . 47

4.5 Services . 47
4.5.1 Login . 48
4.5.2 Logout . 49
4.5.3 Manage Users . 49
4.5.4 Manage Facilities . 49
4.5.5 Manage Organizations . 50
4.5.6 Manage Operations . 50
4.5.7 Manage Categories . 51
4.5.8 Manage Permissions . 52
4.5.9 Manage Roles . 52
4.5.10 Append/Remove User-Facility . 53
4.5.11 Append/Remove User-Organization 53
4.5.12 Append/Remove Permission-Role . 54
4.5.13 Append/Remove Facility-Organization 55
4.5.14 Append/Remove Category-Permission 55
4.5.15 Append/Remove Operation-Permission 56
4.5.16 Share . 57

4.6 DICOMWeb . 57
4.6.1 WADO-RS . 57
4.6.2 STOW-RS . 59
4.6.3 QIDO-RS . 61

4.7 Sql-Dim . 62

5 Results and Discussion . 65
5.1 Results . 65
5.2 Test Environment . 65
5.3 Test Methodology . 66
5.4 Test Results . 68

5.4.1 STOW-RS . 68
5.4.2 QIDO-RS . 69
5.4.3 WADO-RS . 70
5.4.4 Scalability . 71

6 Conclusions and Future Work . 73
6.1 Conclusion . 73

ii

6.2 Future Work . 73

7 Attachments . 75
7.1 User guide . 75

Bibliography . 87

iii

List of Figures

2.1 Major PACS Components. On the left, image acquisition devices (modalities).
Those modalities store acquired images on a digital archive (center). From there
images are accessed by radiologists at the viewing workstations (right). Adapted
from [6] . 7

2.2 DICOM Information Hierarchy. A patient can have multiple studies. Each study
can include various series. Each serie has one or more images. 9

2.3 DICOM file format. Acquired from [13] . 10
2.4 DICOM Data Element structure. Adapted from [13] 10
2.5 DICOM Storage Service . 12
2.6 DICOM Query Service . 12
2.7 DICOM Retrieve Service . 13
2.8 OAuth 2.0 flow chart. Adapted from [29]. 20
2.9 SAML flow chart. Adapted from [34]. 21
2.10 Dicoogle general architecture. Adapted from [42]. 23

3.1 Use case diagram of the system . 32

4.1 General entities in proposed system . 36
4.2 Overview of proposed system modules . 37
4.3 DICOM Information Model (DIM) Entity relationship diagram proposal for DIM

storage in database. 38
4.4 Access control mechanism entity relationship diagram proposal. 39
4.5 Database diagram proposal. 45
4.6 CheckPermissionFilter usage scheme . 48
4.7 Sequence diagram when accessing Web Access to DICOM persistent Objects

(WADO) from a third party viewer. 58
4.8 Sequence diagram storing file STore Over the Web (STOW-RS) from a third party

application. 60
4.9 Sequence diagram when querying Query based on ID for DICOM Objects

(QIDO-RS) from a third party viewer. 62

v

List of Tables

2.1 WADO-RS action types. Adapted from [19] . 15
2.2 STOW-RS action type. Adapted from [20] . 16
2.3 QIDO-RS action types. Adapted from [21] . 16
2.4 OAuth 2.0 Roles. Adapted from [29] . 19
2.5 Google Drive storage plans pricing. Adapted from [48], as it is in 29/01/2017 . . 25
2.6 Google Cloud Platform storage plans pricing. Adapted from [51], as it is in

29/01/2017 . 25
2.7 OneDrive storage plans pricing. Adapted from [52], as it is in 29/01/2017 26
2.8 AWS S3 plans pricing. Adapted from [54], as it is in 30/01/2017 26
2.9 Dropbox storage plans pricing. Adapted from [58], as it is in 29/01/2017 27

4.1 Method allowed in Login webservice, with its required parameters. 48
4.2 Method allowed in User webservice, with its required parameters. 49
4.3 Method allowed in Facility webservice, with its required parameters. 50
4.4 Method allowed in Organization webservice, with its required parameters. 50
4.5 Method allowed in Operation webservice, with its required parameters. 51
4.6 Method allowed in Category webservice, with its required parameters. 51
4.7 Method allowed in Permission webservice, with its required parameters. 52
4.8 Method allowed in Role webservice, with its required parameters. 53
4.9 Method allowed in UserToFacility webservice, with its required parameters. . . . 53
4.10 Method allowed in UserToOrganization webservice, with its required parameters. 54
4.11 Method allowed in PermissionToRole webservice, with its required parameters. . 54
4.12 Method allowed in FacilityToOrganization webservice, with its required parameters. 55
4.13 Method allowed in CategoryToPermission webservice, with its required parameters. 56
4.14 Method allowed in OperationToPermission webservice, with its required parameters. 56
4.15 Method allowed in Sharing webservice, with its required parameters. 57

5.1 Equipment specifications . 65
5.2 File size of each DICOM file . 67
5.3 Average values of time measured of 22776 files storage requests 69
5.4 Average values of time measured of 52000 query requests. 69
5.5 Average values of time measured of 27800 files storage requests 70
5.6 Scrutiny of requests made to REST webservices performed by Locust.io 71
5.7 Percentage values of requests completed in the given time 72

vii

Acronyms

CT Computed Tomography

CR Computed Radiography

MR Magnetic Resonance

US Ultrasounds

XA X-Ray Angiography

ECG Electrocardiogram

IT Information Technology

PACS Picture Archive and Communication System

DICOM Digital Imaging and Communications in Medicine

UID Unique Identifier

SOP Service-Object Pair

LAN Local Area Network

WAN Wide Area Network

HIS Hospital Information System

RIS Radiology Information System

NEMA National Eletrical Manufactures Association

ACR American College of Radiology

HIPAA Health Insurance Portability and Accountability Act

DIM DICOM Information Model

SOP Service-Object Pair

TLV Tag-Length-Value

VR Value Representation

AETitle Application Entity Title

TCP Transmission Control Protocol

IP Internet Protocol

SCU Service Class User

SCP Service Class Provider

WADO Web Access to DICOM persistent Objects

ix

STOW-RS STore Over the Web

QIDO-RS Query based on ID for DICOM Objects

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

VPN Virtual Private Network

ePR electronic Patient Record

SDK Software Development Kit

URI Uniform Resource Identifier

URL Uniform Resource Locator

API Application Programming Interface

AWS Amazon Web Services

REST Representational State Transfer

RESTful Representational State Transfer (web services implementing REST)

JSON JavaScript Object Notation

SOAP Simple Object Access Protocol

SSL Secure Sockets Layer

DES Data Encryption Standard

AES Advanced Encryption Standard

JPA Java Persistence API

JDBC Java Database Connectivity

DBMS Database Management System

CRUD create, read, update and delete

XML Extensible Markup Language

IdP Identity Provider

x

chapter 1
Introduction

This chapter provides an introduction to the thesis, such as the concepts of medical imaging and
gives also a glimpse on Dicoogle platform. Finally, the main goals of this thesis will be presented and
immediately after, all outline described.

1.1 overview
Digital Medical Imaging has seen its presence strengthened in healthcare institutions. It provides a

great support to medical sta� in terms of diagnosis and further decisions. Because of that, healthcare
industry has been following the general evolutionary tendencies in IT technologies. These institutions
have been increasingly providing new services to improve patients well-being, like telemedicine or
electronic Patient Record (ePR).

At institutional management level, healthcare systems had been improved. Hospital Information
System (HIS) and Radiology Information System (RIS) are examples of the use of information systems
in medical environment.

DICOM is a standard that defines how communications, data format and storage should be
accomplished in the digital medical imaging field. This medical data is agglutinated on one or multiple
files called DICOM object(s), which contains, besides images, metadata related to reports, study or
even patient and healthcare institution information.

PACS stands for Picture Archiving and Communication System. It is a system composed by one
or more archives. Besides this archiving task, Picture Archive and Communication System (PACS)
is associated with another one: the distribution of images, since some faculty do not practice in the
same department where images are acquired and even archived. This system supports the DICOM
files archiving.

Medical image acquisition produces a huge amount of data [1] and its storage and distribution
are associated with significant financial charges. Over time, the amount of data will tend to increase
exponentially and even small institutions can produce a large amount gigabytes of data. This issue is
a key concept in PACS with direct impact in archive, distribution and workflow performance.

1

PACS outsourcing is a good solution and current trend because of the lowest institutional budget
consumption. However, maintaining PACS over cloud may increase the communication latency to
retrieve medical studies.

The environment of PACS use is the clinical. This institutional clinical environment is divided
into departments with di�erent areas of activity. Therefore, the studies are also of di�erent modalities.
However, in addition to a departmental organization, there is also a need for division of infrastructures,
i.e. multiple files belonging to the same organization.

Over the last years, an open source PACS system has been continuously developed at UA.PT
Bioinformatics Group. It is a research group from Institute of Electronics and Informatics Engineering
of Aveiro, whose headquarters are in the University of Aveiro and propose the project "Dicoogle P2P
Network". Dicoogle is a PACS archive supported by a document based indexing system and distributed
engines that can be easily installed on a server or workstation capable of storing medical DICOM
images/files. Dicoogle is a platform able to extend by plugins since its documented architecture and
SDKs are provided.

However, the Dicoogle platform does not support the multi-archive and multi-user paradigm. Since
Dicoogle is a system that allows rapid development making use of the possibility of extension via
plugins and the available SDK, it was the choice for the development support of this thesis.

1.2 goals
The actual conjuncture of cloud computing providers is a good opportunity to reduce the costs of

acquisition and maintenance of hardware and software. I.e., the outsourcing of IT medical storage
system allows medical facilities to reduce the costs of investing in infrastructure, trained personnel and
licensed software. Besides that, cloud computing provides mechanisms to increase computing power
and storage, so healthcare institutions only pay the capacity needed to production.

However, the current PACS Dicoogle solution does not support the multi-archive paradigm. The
purpose of this thesis is to study the state of the art solutions for accounting management, aiming to
support multiple users with di�erent access permissions. This will open doors to a new paradigm of
shared medical imaging repositories.

At the end of this work, it is expected to have a unified, scalable and reliable information system.
The information system must implement an access control mechanism that can be integrated with
the Dicoogle platform. Parallel to the programmatic library developed to support this platform,
an abstraction layer must also be developed in the form of Representational State Transfer (REST)
services. This REST layer will allow the development of other applications that could, for example,
implement a storage system in the existing cloud services, using for this the management of users and
sharing of resources.

1.3 outlines
This thesis is divided in 5 chapters. A brief description will be following presented.

2

• Chapter 2: provides a description of the scenario where this thesis is inserted and also a
description of the state of the art, including a description of digital medical laboratories, DICOM
standard and an overview over PACS and its existing services. Finally, there is a brief description
of technologies related to this thesis.

• Chapter 3: gives the description of the requirements expected to be fulfilled at the end of the
development of this thesis. The section presents the functional and non-functional requirements
are presented.

• Chapter 4: in this section it is presented and described the thesis practical development:
Architecture and Implementation. It is shown the design and all the forward implementation
details, as well as the data model developed and services available.

• Chapter 5: of this chapter, nominated Results and Discussion, is presented the validation of
the system. Tests are shown and discussed, evaluating the impact of the solution in a matter of
scalability and time to be performed. There is also presented guidelines to use services.

• Chapter 6: finally, on the last chapter, it is presented conclusions and future work that can be
developed as a result of the work of this thesis.

3

chapter 2
State of the Art
In this chapter is presented a detailed analysis of the state of the art in systems and technologies
related to medical imaging such as PACS and DICOM. The reading of this chapter is fundamental to
understand the background and environment in which this document is inserted.

2.1 overview
In the last decades, the healthcare institutions have been adopting technologies and information

systems to diagnose and treat patient diseases [2]. Medical imaging is one of these technologies and it
is defined as the production of the visual representation of the Human body for use of clinical diagnosis
[3].

Before the digital era, medical images were acquired on analogue equipment and printed in
films. Therefore, archive and distribution entailed some constraints, like the maintenance cost and
examination retrieval time. This last one issue, access time, had been particularly important due the
real time access to studies by healthcare physicians

Nowadays, due the proliferation of Information Technology (IT) associated to medical equipment,
the number of imaging-based procedures is increasing, resulting in a speed-up of the workflows and
redution of costs to healthcare institutions.

Among medical imaging areas, subareas such Radiology and Nuclear Medicine are very popular. The
most common modalities are Computed Tomography (CT), Computed Radiography (CR), Magnetic
Resonance (MR) and Ultrasounds (US).

Small Sized healthcare institutions are benefiting of the increasing availability of medical equipment,
as referenced above, at lower costs. They are acquiring more devices, with higher resolutions. The
amount of images produced by these acquisition devices has opened the door to PACS distributed
environments and cloud services outsourcing, allowing it to scale up to supporting a growing amount
of medical data and metadata.

According to Frost & Sullivan Principal Analyst Nadim Daher [1], "even if diagnostic imaging
volumes continue to plateau around the 600 million procedures per year mark, overall storage and

5

archiving volume requirements for U.S. medical imaging data will cross the 1-exabyte mark by 2016".
For reference, 1 exabyte is 1,000 petabytes or 1,000,000 terabytes. This report, authors say that
1-exabyte mark defines the "medical imaging’s (...) entry into Big Data territory".

2.2 picture archive and communication system
Over the last years, health care institutions have made great investments in IT infrastructure to

maintain medical imaging laboratories. The amount of data generated in these laboratories is huge
and for that reason, a key issue.

The volume of data generated is very high in modalities like, for instance, in X-Ray Angiography
(XA), US, multi-slice CT and specially digital mammography [4]. So, to keep these data, it is primordial
to create robust and e�cient storage and communication infrastructures to ensure full availability
[1][5], even without requiring major upgrades and overhauls that increase the cost over time [1].

PACS are medical systems composed by a set of hardware and software that processes, stores,
distributes and provides medical images or a portion of them to, or from, a health care institution
[4][6]. They comprise modalities, digital image acquisition devices; digital image archives, storage to
acquired images; and workstations, devices to view those images [6].

Those components communicate typically , through network (Local Area Network (LAN) or subnet
in Wide Area Network (WAN)) [4] . The usage of PACS reduces the retrieve time of exams and the
need to use film jackets [4], but also the probability of losing studies.

PACS workflow has the following major steps (Figure 2.1: acquisition, distribution and displaying
[2][7]:

1. Acquisition: the process of acquiring or capturing the image in a digital codification, creating
a representation similar to reality. Those images can be acquired by two methods, they are:
scanning directly from digital equipment through examination procedures, or scanning from
analogical films, produced by early equipment, to keep compatibility between archives.

2. Distribution: mentioned in [2] as the process of moving images and metadata from PACS
to another node outside the sector. Most of medical imaging studies need to be moved from
acquisition (performed by modalities) to network workstations that will perform visualization.
Over PACS, the loss of studies in this process can be avoided regarding the traditional film
system. Additionally, PACS can also allow sharing studies among institutions in contrast to
sharing studies only inside the institution.

3. Visualization: is the process of viewing the medical images. Commonly, it is achieved using
workstations. These workstations include, among others, display and processing software,
allowing the user to search, retrieve, visualise, manipulate and share medical images [8].

By stating these processes, we can infer that PACS turns the workflow easier in medical imaging
environments, allowing clinics, physicians and technicians to access the data quickly.

6

Figure 2.1: Major PACS Components. On the left, image acquisition devices (modalities). Those
modalities store acquired images on a digital archive (center). From there images are accessed by
radiologists at the viewing workstations (right). Adapted from [6]

Over time, medical imaging laboratories trend to generate a large amount of data [1] that is an
issue that PACS Archives have to deal with. PACS needs to store and retrieve this big volume of
data and, at the same time, keep the communication delays acceptable to medical diagnosis. These
constraints lead to a problem in small medical institutions due to the economic limitations for creating
and maintaining the IT infrastructure. As a result, and joining the fact that PACS must have security
and reliability (such backup, redundancy and crash reports), PACS outsourcing is rising in the last
years.

PACS workflows comprise the examination procedure, image viewing, reporting and image archiving,
but also the patient registration on HIS and RIS. In PACS and Imaging Informatics: Basic Principles
and Aplications [7], the author proposes the general architectures that fit in di�erent kind of workflows.
Those are the stand-alone, client-server and web-based model.

• The stand-alone architecture approach has a central repository where the images acquired from
modalities, after the procedure, are immediately sent to it and then forwarded to previously
registered workstations. This workflow involves a store and forward approach. Despite of the
architecture mentioned has several benefits (because of the allowance to perform Query/Retrieve
operations and the modality can send images directly to workstations), there are some problems
related to study loss and studies that are being reviewed by more than one radiologist. This
happens because studies are transmitted without asking to a workstation.

• On client-server approach, studies are stored in a central repository from acquisition equipment.
Then, technicians use the worklist to retrieve the expected exams only when needed. After
image analysis, since workstations don’t have local storage, they are discarded. Workstations
retrieve studies without any pre-fetching strategies or Query/Retrieve. This can be a constraint
since PACS is single-point-of-failure and bandwidth has to be fast to not introduce a big delay.
Nonetheless, this architecture introduces a more e�cient control than stand-alone architecture.

7

• Web-based architecture follows the current trend in PACS architectures. To the review process,
workstations just need Internet access and a web browser/client. This architecture provides
a front-end for operating with images stored on a remote storage. It is the most e�cient
architecture in terms of bandwidth, portability and reliability. Although, there are some
limitations related to performance due to the computation power of client and the possible
bottleneck when many clients are accessing at the same time [9].

Nonetheless, there can arise several security issues related to the deploying of this architecture on
public cloud environments. So, patient privacy and security of sensitive patient data must be ensured.

2.3 digital image communications in medicine
DICOM stands for Digital Imaging and COmmunications in Medicine [6]. It is a standard created

by a consortium founded in the 80s formed by National Eletrical Manufactures Association (NEMA) and
American College of Radiology (ACR). DICOM Specifies a non-proprietary medical data interchanging
protocol, data format and file structure for medical images and its associated metadata [10].

With the uprising of digital medical imaging, manufacturers of medical imaging equipment started
to develop equipment able to acquire, store and transfer data across medical devices. The vendors had
developed their own protocols so, communication between devices from di�erent manufacturers started
to be a real challenge.

To solve this problem, the consortium mentioned above, in the mid-80s, released the ACR/NEMA-
300. At the end of the same decade, it was released the second version of the protocol, rectifying
several non-clear and contradicting the original text. In the 90s, the consortium created the third
version of the protocol with the name changed to DICOM. O�cially, this is the latest version.

This last version named at the time DICOM 3.0, has been constantly updated and extended since
1993, its release year. DICOM has a continuous process of development and is constantly updated and
extended to face the most recent issues in the medical imaging field. Although, most of the changes
are forward and backwards compatible. Presently, DICOM is the most important standard in medical
imaging and used by almost PACS [8] [11].

Over the years, the proliferation of DICOM compliant equipment enabled the exchange of data
between medical imaging devices and triggered the implementation of PACS. Nowadays, DICOM is a
recognized standard around the world [6].

2.3.1 dicom information model
DICOM Standard seeks to represent the real-world. The DIM defines the structure and organisa-

tion of information [12] representing items that match real life objects and describing their relationship.
DICOM hierarchy is Patient-Study-Series-Image. This represents real world organization on medical
facilities. A patient can have multiple studies. Each study can have multiple series from di�erent
modalities and each modality can produce a di�erent number of images. Figure 2.2 represents that
hierarchy.

8

Figure 2.2: DICOM Information Hierarchy. A patient can have multiple studies. Each study can
include various series. Each serie has one or more images.

Each hierarchy level has associated a unique ID. In the first level, there is Patient ID, followed by
Study Instance UID to study level. In the series level, there is the identifier Series Instance UID and in
the last level, image level, the identification is made with a Service-Object Pair (SOP) Instance UID.

2.3.2 dicom data format
DICOM standard has support for many kinds of information from di�erent modalities, reports

and waveforms (such as CT, XA, CR or Electrocardiogram (ECG)). Each DICOM file has metadata
headers related to the image (pixel data), such information is related to the patient, modality,
institution, radiation dosage and many other. The DICOM metadata header fields may vary according
to the modality of study. However, there are certain required fields. Those fields (data elements) are
defined in the previously introduced DICOM DIM [12] (Figure 2.3).

Data elements that compose a DICOM file follows a Tag-Length-Value (TLV) structure as shown
in figure 2.4. Tag is a pair of two values representative of group and element. It is represented by a
16-bit unsigned integer in hexadecimal. Exemplifying, Patient Name is identified by the group 0x10
and element 0x10. So, Patient Name is (0010, 0010). The second field, Length, represents, in bytes,
the length of the value field. Finally, the Value field contains the binary data of Tag, for instance, the
patient name, institution name or even pixel data.

An optional field is Value Representation (VR) that specifies how values are encoded. There are
27 ways to do that encoding. For example, PN for Patient Name or UI for Unique Identifier (UID).
This label is optional because the type can be reached using DICOM dictionary. In other words, the

9

Figure 2.3: DICOM file format. Acquired from [13]

dictionary defines for what the Tag stands for.

Figure 2.4: DICOM Data Element structure. Adapted from [13]

Because of the TLV structure, new tags can be defined in DICOM objects, increasing flexibility
in communication and functionality. DICOM parsers can be generic due to this dynamic structure,
decoding any kind of DICOM file.

2.3.3 DICOM services
DICOM defines a set of fundamental services for interoperability between application nodes. This

protocol is based on Transmission Control Protocol (TCP)/Internet Protocol (IP) and has the same

10

structure as DICOM objects. In other words, messages are also encapsulated as TLV elements.

Each service can be used between an SCU and an SCP following a client/server architecture. SCP
stands for Service Class Provider and represents a DICOM node providing services. PACS Archive is
an example of an SCP. SCU stands for Service Class User and is the node that consumes the DICOM
service. Workstations are examples of Service Class User (SCU) when using PACS Archive Server
services to retrieve DICOM images. Shortly, Service Class Provider (SCP) o�ers a service and SCU
consumes that service.

A DICOM Service is identified by an Application Entity Title (AETitle). Therefore, applications
are identified by IP, Port and AETitle which allows to run di�erent DICOM Services in the same host
device.

The standard defines also the procedure to communicate with the DICOM device. The first step
is the proposal of an exchange process. That process is called DICOM Association. In this procedure,
devices negotiate some parameters to exchange that will take place, like image compression type, data
encoding, or even what kind of information will follow. After this negotiation, the service negotiated
may take place [14].

Each DICOM service has several DICOM commands associated. The most important ones are
Verification (C-Echo), Storage (C-Store), Query/Retrieve (C-Find, C-Move/C-Get) and Worklist
Management (C-Find). Verification service allows a user/device to check end-to-end communications,
i.e. to verify connectivity between SCP and SCU.

storage service
Usually, storage service is provided by PACS Archives. The service is called when a node needs

to store an image in a repository. In practice, when SCU (modality or the image generator) sends
files to PACS Archive, it uses a C-Store request message for each image. The workflow, graphically
represented in figure 2.5, is as follows:

1. SCU sends C-Store request to SCP with the image metadata and pixel data

2. SCP replies with a C-Store response acknowledging the receiving status

11

Figure 2.5: DICOM Storage Service

query/retrieve service
Query/Retrieve is composed by two commands. This service is often used to search and download

studies from PACS Archive, usually to be reviewed by a technician in visualisation workstations.

Query Service allows SCUs to search for objects with parameters like name, date, modality and
so on, using C-Find command. One or more C-Find-response will be sent to the SCU, one per each
matched object (Figure 2.6).

Figure 2.6: DICOM Query Service

12

This is the first of the two phases. After the response, it begins the second step, the retrieval
phase. Retrieve allows the SCU to get or move files from a SCP. It uses the command C-Move or
C-Get. Retrieve procedure starts with a C-Move-request message to SCP, identifying the desired
objects previously searched.

C-Move does not download images instantly by itself. Instead of that, the SCP invokes a C-Store
command for each requested object from SCU. The C-Store is a request meaning that the image
archive is ready to transfer the study to a specific workstation/location. After the last object is
transferred, a C-Move-response is sent to acknowledge the conclusion of the process (Figure 2.7).

Figure 2.7: DICOM Retrieve Service

Therefore, SCU that will receive the images needs to support a Storage Service in order to receive
those objects.

It is important to note that a C-Store command usually is performed for each requested study, as
it might not be the most e�ective way to transfer a large number of studies [8]

2.3.4 dicomweb
Initially, DICOM Services were only supported over TCP/IP protocol [15]. Although, with the

rising of the popularity of Web Service technologies, there was the need to create a web-version of
the most common services: WADO-RS for searching using key parameters, QIDO-RS for retrieving
objects and STOW-RS for web storage [16][17].

DICOMweb is the web standard for medical imaging. It defines a set of services that compose

13

the family of Representational State Transfer (web services implementing REST) (RESTful) DICOM
services responsible for storing, retrieving and querying for medical data and metadata.

The intent of this standard is to provide a REST interface for developers to implement mechanisms
for accessing healthcare images since this standardized methods provide access to underlying imaging
systems that speak DICOM.

Usually, network administrators tend to implement measures related to security and policies like
firewalls. DICOM Protocol is often not recognised [8] by them so, the content is blocked. However,
using DICOMweb services, that content is recognized as HyperText Transfer Protocol (HTTP) and
therefore, allowed.

wado
WADO is a recent web-based extension to DICOM Protocol [18]. It allows the access to DICOM

objects like, for instance, images and reports. WADO extension allows DICOM persistent objects to
be encapsulated in a HTTP/HyperText Transfer Protocol Secure (HTTPS) connection and so can be
integrated on a web application.

WADO uses HTTP or HTTPS, and this protocol is normally accepted by network firewalls. WADO
is a retrieval service similar to C-Move and C-Get. However, it does not provide discovery analogous
to C-Find over PACS Archive. So, to download DICOM Objects, users need to know the resource
identifier.

wado-rs
WADO-RS is a RESTful version of WADO that enables the retrieving of specific studies, series,

instances or frames by reference through HTTP messaging. DICOM standard defines these action
types and its implementation should support the following types [19] represented in table 2.1.

14

Action Description Example

RetrieveStudy

Retrieves a set of DICOM instances
with the requested Study Unique
Identifier (UID). The response can be
DICOM or bulk data.

GET /studies/StUID

RetrieveSeries

Retrieves a set of DICOM instances
with the requested Study and Series
UID. The response can be DICOM or
bulk data.

GET /studies/StUID/series/SeUID

RetrieveInstance

Retrieves a set of DICOM instances
with the requested Study, Series and
SOP Instance UID. The response can
be DICOM or bulk data.

GET /studies/StUID/series/SeUID/in-
stances/InUID

RetrieveFrames

Retrieves a set of DICOM instances
with the requested Study, Series, SOP
Instance UID. The response is pixel
data.

GET /studies/StUID/series/SeUID/in-
stances/InUID/frames/FrameList

RetrieveBulkdata Retrieves the bulk data for a requested
BulkDataURI.

GET BulkDataURL

RetrieveMetadata

Retrieves the DICOM instances
presented as the study, series, or
instance metadata with the bulk data
removed.

GET /studies/StUID/metadata

Table 2.1: WADO-RS action types. Adapted from [19]

The requests examples in table 2.1 may contain some query parameters like the following ones:

• accept ...?"accept=" 1#media-type

• charset ...?"charset=" 1#charset

Besides the query parameters, some Headers may compose the GET RESTful request. The request
may contain various representation schemes requests, separated by a comma, in preference order:

• multipart/related; type="application/dicom" [dcm-parameters] Specifies that the re-
sponse can be DICOM instances. If transfer-syntax is not specified in "dcm-parameters", the
response will be in Explicit VR Little Endian Transfer Syntax for each instance.

• multipart/related; type="application/octet-stream" [dcm-parameters] Specifies that
the response can be Little Endian

• multipart/related; type="media-type" [dcm-parameters] Specifies that the response
can be compressed pixel data encoded

Note: Schemes above were adapted from [19].

After the request, the server should provide the desired document(s). If the document cannot be
returned, an error code will be sent. Supposing that the server cannot convert the requested data

15

to any of the requested media types/Transfer Syntaxes, the error code should be a "Not Acceptable"
response if no data is returned, or a "Partial Content" response if only some data is returned [19].

stow-rs
STOW-RS allows to store specific DICOM instances to the server. DICOM standard defines these

action types and its implementation should support the following action [20] as shown in Table 2.2.

Action Description Example

Store Instances
Creates new resources for the given
SOP Instances or appends to existing
resources on the Server.

POST /studies/StUID
or
POST /studies/

Table 2.2: STOW-RS action type. Adapted from [20]

qido-rs
QIDO-RS enables the searching for studies, series and instances by patient ID, and receive their

unique identifiers for further usage (i.e., to retrieve their rendered representations). DICOM standard
defines this action types and its implementation should support the following types[21].

Action Description Example

SearchForStudies

Searches for DICOM Studies that
match the query parameters and
returns a list of matching studies as
well as the desired attributes for each
one of it

GET /studies?StudyInstanceUID

SearchForSeries

Searches for DICOM Series that match
the query parameters and returns a list
of matching series as well as the desired
attributes for each one of it

GET /series?SeriesInstanceUID

SearchForInstances

earches for DICOM Instances that
match the query parameters and
returns a list of matching instances as
well as the desired attributes for each
one of it

GET /instances?...

Table 2.3: QIDO-RS action types. Adapted from [21]

Alongside the query parameters exemplified on Table 2.3, some Headers should compose the GET
RESTful request, indicating to the server the reponse formats preferred:

16

• multipart/related; type="application/dicom+xml Specifies that the results should be
DICOM PS3.19 XML

• application/dicom+json Specifies that the results should be DICOM JSON

• Cache-control: no-cache If this field is included, the search results should be the current
ones and not the cached ones

Note: Schemes above were adapted from [21].

The origin server would after perform the query indicated in the request. The response is determined
as follows:

• If there were no matches, a 204 (No Content) response shall be returned with an empty payload.

• If there were matches, a 200 (OK) response shall be returned with a payload containing results.

• If there were results remaining since last response, the response shall include a Warning header
field like: "Warning: 299 +service: There are <remaining> additional results that can be
requested"

2.4 security

2.4.1 privacy and confidentiality
Medical imaging and patient confidentiality is an important social and medical legal issue when

data is transmitted across public networks and stored on cloud [22]. Therefore, medical data and
metadata are considered valuable to many parties like hospitals, researchers, insurance companies, etc
[23]. Because of its value, medical data need to be secured. However, healthcare institutions cannot
sustain the responsibility of maintaining a secure storage. Usually, outsourcing is a solution to this
problem. Outsourcing is described as the contracting of various information system functions such
hardware support, software maintenance, network or managing of data centre among others [24].

In this document, it is described more strictly as exporting medical records to third party companies
whose core business is to provide computing power and storage to costumers. This makes telemedicine
and remote diagnosis possible or, at least, easier. However, medical institutions need to guarantee the
privacy which means that third party companies cannot be trusted since someone can have unauthorised
access to data.

There are di�erent aspects to take care like in storage field, where medical images should only be
accessed by authorised personnel, maintaining privacy. When medical images are being transmitted,
the transferred data should be confidential [25], avoiding attacks like, for instance, man in the middle
attack. When those aspects are guaranteed, there is an issue related to processing: query requests and
results should be ciphered.

The outsourcing to public providers is dependent on country laws [2]. There are some bureaucracy
and political issues to take care of. In the USA, there were already mandates for ensuring medical
data security issued by the federal government. For instance, Health Insurance Portability and
Accountability Act (HIPAA), where health care institutions are obligated to ensure that patient data
is only provided to authorised personnel [22].

17

Permanence of patient data is another topic that must be considered [2]. Data protection laws, in
some countries, require knowing where data is stored. In some countries, like Spain or France, storage
in the cloud may be di�cult due to health sensitive data storage on third party services law.

In these cases, encryption is the most useful approach to ensure data security [22]. This technique
can be used not only in storage but also in transmission through public communications. Nowadays,
in cases of telemedicine, Virtual Private Network (VPN) are being used for confidentiality purposes.

2.4.2 authentication mechanisms
A study was made of some of the authentication mechanisms that currently exist. This study aims

to understand how web authentication is processed as well as the di�erent types of approximation.

It was decided to address standards such as OAuth, SAML and OpenID in this document. This
approach allows better information about the future choice in the authentication system to be developed.

oauth
OAuth was created to solve the problem of secure authorization when OpenID system was adopted

[26]. OpenID allows authentication in the sense that a user can have login into a website by being
verified by another service (OpenID trusted provider), in other words, it is an authorization model
based on an IETF Standard [27]. However, the process forces the user to provide account credentials
to an application, so that application can be able to access resources from content provider [28]. For
instance, in the case of Google Drive API not requiring OAuth, the only way to a user provide delegated
access was to give that application his or her credentials, and only after it the application would
communicate with Google’s proprietary ClientLogin protocol. This mechanism leads to unnecessary
security vulnerabilities [29]:

• Third-party applications are required to store user’s credentials for future use if needed, and
typically the password store is in clear-text

• Servers are required to support password authentication regarding the security problems inherited
from passwords

• Third-party access gains full access to owner’s protected resources, leaving the resource owners
without the ability to restrict content access

• Resource owners cannot revoke access to third-party individual applications without revoking
the access to all the applications using the credentials. Even to do that, user must change the
third party’s credentials

• The compromising of any application that has access to user’s credentials results in the compro-
mising of those credentials and all the content associated with it

Based on these considerations, OAuth authentication protocol was born [26]. First initialized by
Blaine Cook and Chris Messina and then delegated to Internet Engineering Task Force (IETF), OAuth
allows a secure API authorization in a simple and standardised method [30].

18

The protocol allows a user to grant access to third-party client applications to access protected
resources on its behalf. That can be done without requiring user’s credentials [31]. To achieve
authorization, the user must log in on OAuth service which on it hand provides an access token
containing information about permission grants like specific scope, lifetime and other attributes. The
third party then uses that token to access the protected resources [26][29]. In conclusion, instead
of using resource owner’s credentials, the client simply obtains and uses the access token to access
protected resources hosted.

Coming back to the previous example, in the case of Google Drive API had support to OAuth, an
end-user could grant a third-party application access to his/her personal cloud storage, for instance, only
a couple of hours, without sharing his/her credentials. The user simply authenticates on the trusted
server, which on it hand issues the access token that would be used by the third-party application to
access shared data.

OAuth 2.0 RFC [29] defines certain roles on a typical framework use as shown in Table 2.4:

Role Description
Resource Owner Entity responsible for grant or deny access to a protected resource.

Resource Server The resource server is the hosting server, capable of, by the mean of access
token use, provide access to Resource Owner’s protected resources.

Client The client application that wants to access Resource Owner’s restricted
content. It needs Resource Owner’s access grant to do it.

Authorization Server The server responsible to issuing access tokens to clients after proper
successfully resource owner authentication and authorization.

Table 2.4: OAuth 2.0 Roles. Adapted from [29]

The OAuth 2.0 RFC describes the interaction between these four roles (Figure 2.8):

1. Authorization Request: Client requests authorization from Resource Owner to access content.

2. Authorization Grant: Client receives authorization grant from Resource Owner, which is a
credential representing that authorization.

3. Authorization Grant: The client requests an access token from Authorization Server, pre-
senting the authorization grant.

4. Access Token: Authorization Server issues an access token if authorization grant is valid.

5. Access Token: Client requests the access to the protected content in Resource Server, providing
the access token.

6. Protected Resource: If the access token is valid, Resource Server provides the requested
content.

19

Figure 2.8: OAuth 2.0 flow chart. Adapted from [29].

saml
SAML stands for Security Assertion Markup Language [32]. It is a standard which goal is to

exchange authentication and authorization between subject (user), a service provider and a identity
provider.

SAML defines encoding security assertions in a XML-based format [33]. SAML assertions are
statements defined in a Extensible Markup Language (XML) schema. For instance, a assertion can
state that a user (subject) "John Doe" has the email john@example.com and is member of the "general"
group.

The security of SAML relies on trust relationships among involved parties and in the security of
the transport protocols used for message exchanging. In figure 2.9 it is shown how the SAML standard
workflow is.

1. Request resource: Client requests resource from Resource Server to access content.

2. Redirect to SSO: However, client is not authenticated. Resource server redirects client to an
Identity Provider (IdP) so client can get authenticated.

3. Request SSO Service: The client requests an access token from Identity Provider.

4. Request Credentials: IdP issues an challenge that can be, for instance, username and
password.

5. Login: Client responds to IdP challenge.

6. Signed Access Token: If client response is valid, IdP sends back a signed access token

7. Access Token: Client requests the access to the protected content in Resource Server, providing
the access token.

20

8. Protected Resource: If the access token is valid, Resource Server provides the requested
content.

Figure 2.9: SAML flow chart. Adapted from [34].

SAML standard is useful when multiple services with multiple login credentials needs to centralize
login service.

2.4.3 image encryption
Nowadays, the transmission of medical images via the worldwide network, the Internet, has

grown rapidly to a daily routine [35]. Nevertheless, computer networks are complex and espionage
is a potential risk [36][37]. Moreover, the medical images are often distributed in the network of a
healthcare institution or Internet with a lot of metadata related to patients’ privacy [38][39]. So, we
face a security issue when transmitting data over network [37].

For ethical reasons, medical images should not be sent in a clear text way so, each one has to
be better protected [36]. Among the three pillars of security services (integrity, confidentiality and
availability), confidentiality is an essential feature related to medical imaging [38]. Encryption is the
best form and e�ective way of protection in cases like this [36][40].

As [38] states, image encryption is one of the most important fields of cryptography and Data
Encryption Standard (DES) is one of the most algorithms is this area.

Nonetheless, other agents apply di�erent techniques. In [35], author mention a solution which is
based on a system that can partially encrypt i.e. "encrypts only the smallest portion of the data that
makes the entire data set unusable". In same article [35], the author proposes a new method that
makes selective encryption for JPEG images. This method uses Advanced Encryption Standard (AES)
cypher.

21

DICOM standard does not specify the encryption mechanisms to be used. However, it refers to
other encryption algorithms such as AES, DES, 3DES to encode the data [6]. DICOM recently released
PS3.15 supplement for the standard that specifies in more detail some security measures to take care
of.

2.5 dicoogle
Dicoogle is a PACS archive supported by a document-based indexing system and by peer-to-peer

(P2P) protocols [41]. It has a modular concept given that it provides a software framework that allows
developers and researchers to quickly develop a new functionality.

The platform replaces the traditional relational database with a more agile process of indexing
and retrieval mechanism [42]. Dicoogle was designed to extract, index and store all the metadata
presented in DICOM medical files, including private tags, without any engineering or configuration
process [43][41].

The modular concept is provided by the plugin-based architecture (Figure 2.10) enabling di�erent
features to be separately developed and easily integrated [44]. The architecture allows developers and
users to add new extractions like, for instance, storage plugins to deal with new necessities and without
changing the core software [42].

Dicoogle has a Software Development Kit (SDK) created in order to simplify the development
of new features [45] by third parties and assure compatibility. To develop, programmers need to
implement the available interfaces and move the built package to Dicoogle Plugins directory. After
this process, Dicoogle will automatically load the new modules on startup. Dicoogle SDK makes
immediately available all operations related to storage, querying and indexation via its internal API
[42].

22

Figure 2.10: Dicoogle general architecture. Adapted from [42].

2.5.1 storage plugins
Storage plugins are responsible for storing and retrieving data [46]. They provide the persistence

mechanisms and are triggered every time a storage operation is requested. At a more low level, storage
plugins have the methods for retrieving the Uniform Resource Identifier (URI) (or Uniform Resource
Locator (URL)), identification of DICOM Files as well as, the methods to retrieve a DICOM object
matching a certain URL.

A simple implementation of this plugin can keep the relevant files in the local filesystem. However,
a more complex development can extend Dicoogle to support remote storage services like, for instance,
at cloud storage providers (e.g. Dropbox, Google Drive, Onedrive or Amazon S3).

2.5.2 index plugins
Index plugins are triggered every time a file is added to the system, just like storage plugins. In

practice, an Index Plugin can be activated in two distinct ways: the first one is through the Application
Programming Interface (API) (web services); the second one is through the web interface, where a

23

user can provide a path and select DICOM files to perform index operations.

The purpose of this type of plugins is to organise data in a format that allows its quick manipulation,
including processes of storing and extracting data. At the end of the indexing process, a log file is
presented, showing up, for instance, the number of errors and number of successfully indexed DICOM
Objects.

A fully deployed instance of Dicoogle should have at least one Dicoogle Index Plugin [46].

2.5.3 query plugins
Query plugins allow querying to seek and access indexed data through retrieve methods. They

have the mission to convert the data that fills the user search requirements in a given query to data
representation compatible with Dicoogle web interface. Often, there is a query plugin coupled to each
index plugin and bundled in the plugin set, precisely to make the conversion mentioned above.

2.6 cloud storage services
With the growing market of cloud storage triggered by the advent of the network and global

connectivity, there was a huge demand for outsourcing of storage to remote locations. Nowadays there
are a lot of providers like Microsoft, Google or Amazon o�ering these services at a acceptable storage
capacity/price ratio. Besides the price, these services o�er horizontal scaling and great availability.

One of the great advantages of cloud services is its resilience. I.e., the system is prepared to, if a
machine fails, readjust itself so the user never know that any machine failed[47].

Moreover, the healthcare institution saves budget that would be spent on a local data center
infrastructure like hardware, software licensing air conditioning, fire alarms, physical security, electricity
consumption and IT updates, for instance.

2.6.1 google drive
Google provides a file storage and synchronisation service not only for personal usage (with free

plans) but also for enterprise application.

The service, which name is Google Drive, o�ers every user 15GB of free storage, shared among
other Google apps like Gmail, the mail service, or Google Photos, the photo backup service. Besides
the free plan, the user can purchase additional monthly or yearly storage space plans, as can be seen
in Table 2.5.

24

Total Storage Monthly price (euros)
15 GB Free
100 GB 1.99
1 TB 9.99
10 TB 99.99
20 TB 199.99
30 TB 299.99

Table 2.5: Google Drive storage plans pricing. Adapted from [48], as it is in 29/01/2017

Apart from storage amount, Google Drive o�ers to developers a REST API, client libraries and
documentation to help on Google Drive applications development.

The Drive REST API allows not only the basic operations of downloading and uploading files but
also search for files, manage files metadata, create files, store application data and sharing personal
files[49][50], for instance.

2.6.2 google storage
Google Storage is a RESTful online file storage service similar to Google Drive. However, Google

Storage focus is on enterprise business since[51]:

• Space is unlimited

• Advanced storage modes: data can be stored in "cold" mode (rarely accessed) to save money

• REST API support for advanced business applications

• Allowance of resume a data transfer after failure

• Support for streaming

Storage Type GB per month price (euros)
Multi-Regional 0.026
Regional 0.02
Nearline 0.01
Coldline 0.007

Table 2.6: Google Cloud Platform storage plans pricing. Adapted from [51], as it is in 29/01/2017

2.6.3 one drive
Similar to Google Drive, Microsoft o�ers too a cloud personal storage starting with 5GB for users

with the free plan. Paid plans increase the storage amount limit and give other benefits like access to
proprietary Microsoft applications. In table 2.7 is the price list:

25

Total Storage Monthly price (euros)
5 GB Free
50 GB 1.99
1 TB ~5.83
5 TB ~8.33

Table 2.7: OneDrive storage plans pricing. Adapted from [52], as it is in 29/01/2017

Analogously to other user-level cloud storage services, Microsoft released a set of APIs for OneDrive
to allow developers to develop web services and client applications. The development of these
applications allows users of these web services and client apps to browse, view, upload or edit files
stored on OneDrive. These APIs were made available via a SDK that is available for .NET Framework,
iOS, Android and Python with a limited set of API for web apps and Windows.

2.6.4 AWS s3
AWS S3 (Simple Storage Service) is a service provided by Amazon with a novel storage utility with

a "pay-as-you-go" charging model[53]. This object storage service comes with a web service interface
(REST, Simple Object Access Protocol (SOAP)) to store and retrieve any amount of data from any
part of the world. Amazon claims its 99.99% availability[54] due to its support by a large power of
computation distributed across multiple data centers[55].

Standard Storage Monthly price (dollars) Infrequent Access Storage
First 50 TB 0.023 per GB 0.0125 per GB
Next 450 TB 0.022 per GB 0.0125 per GB
Over 500 TB 0.021 per GB 0.0125 per GB

Table 2.8: AWS S3 plans pricing. Adapted from [54], as it is in 30/01/2017

Amazon S3 distinguishes its service as a complete storage platform. It claims several key features[54]
like, for instance:

• Simplicity - Providing a web-based management console, mobile app, REST APIs and SDKs
for easy integration with third party applications

• Durability - Providing the service in several regions of world, AWS S3 includes redundancy
and the possibility to replicate data across multiple data centers

• Scalability - AWS S3 allows to store as much data as user requirements. Users can scale up
and down as their needs at the time so require.

• Security - AWS S3 supports data transfer over Secure Sockets Layer (SSL) and automatic
encryption when data is stored

26

2.6.5 dropbox
Dropbox is a file storage service that o�ers cloud storage, file synchronisation, personal cloud and

a client software application among other permissions like sharing files and folders[56].

Similarly to previous services, Dropbox provides paid plans: Pro, Business and Enterprise (Table
2.9) and a API permitting developer’s third party applications to access the stored data.

Dropbox uses AWS S3 services as third party cloud to store files[57].

Total Storage Monthly price (euros)
2 GB Free
1 TB 9.99

8 12

Table 2.9: Dropbox storage plans pricing. Adapted from [58], as it is in 29/01/2017

2.7 access control mechanisms
Access control is the protection of resources from unauthorized agents [59]. The use of system

resources is granted by a mean of permission, that process is called Authorization.

As the proposed system was an access control mechanism, a study of the relevant tools for this
project was made. It is important to emphasize that this study was carried out taking into account its
integration in the Dicoogle platform.

2.7.1 oacc
The Object Access Control (OACC) [60] is an application security framework that provides

authentication and authorization services. This framework focuses on providing a fully implemented
Java API to create security in accessing resources in a single access control paradigm. This API
facilitates the process of authenticating users and controlling access to resources in an application.

OACC needs a DBMS-backed data store. It can be MySQL.

2.7.2 apache shiro
Apache Shiro [61] is an opensource project under the Apache Software Foundation. It is a

Java security framework that provides developers services to secure the applications developed:
authentication, authorization, cryptography and session management. It can be used in any type of
application (mobile, web, command line or even enterprise).

However, Apache Shiro is not what Dicoogle platform needs. Due its complexity and di�culty
settings during its test, it was decided that Apache Shiro will not be used to provide authentication
and authorization on a multi-archive paradigm of Dicoogle.

27

chapter 3
System Wide Requirements

In this chapter there is the overall system architecture and implementation of the developed plug-
ins, focusing on system functional and non-functional requirements that the proposed system must
accomplish.

3.1 system wide requirements
On software engineering field, the software plan has some software requirements specification

that the a software system must satisfy after concluded the development. It is usually divided into
functional and non-functional requirements and may include a set of real-world actions called use cases.
On one hand, the functional requirements define what the system should do, on the other hand, the
non-functional describe how the system should behave[62]. This chapter illustrates the most important
ones, taken into account while developing the proposed solution.

3.1.1 functional requirements
In this project, it is possible to enhance some crucial functional requirements to satisfy the objective

of this work and to keep compatibility with Dicoogle SDK and DICOM standard.

interface to external services
The system should provide an interface to be used by external services. This interface should be

accessible through REST API. Besides the REST API the system should have a programatic Java
API so developers can use the interfaces available.

The provision of the interface allows external services or applications to access to the management
system of accounts, permissions and resources required for availability in a health care organisation.
The API delegates this management issues to the present system rather than assigning management
to these external applications.

29

manage organisations
The system must provide both REST and programatic API of services to manage the organisation

level on the hierarchy model. It should be possible to add and remove a user from an organisation but
also create and remove the organisation itself once a new or old organisation is added or removed to
and from the multi archive system.

manage facilities
New facilities belonging to an organisation should have both REST and programatic API services

that gives allowance to add user to that facility and add resources belonging to that facility. In addition,
a Facility will belong to an Organization. It should therefore be possible to assign an Organization to
a Facility, or vice-versa, in the services available in the API.

manage users
The system must have a user management subsystem and provide REST and Java API services to

access it. Operations like create, edit and remove a user must be possible. However, those operations
are not enough. The User must belong to an organisation and a facility, and the resources uploaded/sent
to the system must belong to that specific user and all users of the user facility. Having the "User"
entity in the system allow us to give di�erent permissions to each one.

manage permissions
Permissions are the entity that will allow a user to have access to a resource. A permission should

be composed by a category, operation and in some cases, a resource. An REST and Java API to
manage those permissions is a requirement.

share resources
Users that owns a resource or a batch of resources must have the ability to share those resources.

This means that a user A that owns the resource 1, must be able to give permission to user B (that
doesn’t have the allowance to access resource 1) to access the resource.

dicoogle compatibility
The system has the capability of being configured using a file that contains user specified settings.

This method is already being used by Dicoogle default available plugins. Values like a flag mentioning
if multiple archive system is or is not activated or even which is the DICOM model level by default
when indexing new studies (we will address further into this subject) should be easily configured. The
settings exemplified above are set after the plugin initialization, i.e. in run-time.

30

integrity control
The first one is the capability of being configured using a file containing user specified settings.

Values like data folder location, databases names, and other important application/environment
settings, need to be present on a file using XML notation. These setting are configured after the plugin
initialization. Another important requirement is the use of transactions in order to keep the data
integrity, assuring that the DICOM information model is secure, for instance, if an error occurs while
inserting a given study, the images of that study can not be indexed/stored because all images require
a study parent.

access control
The authentication and authorisation usage of API should only be given to authorised personnel

from the organisation which owns the resource required.

In addition, authorisation should be given only if the applicant is allowed to carry out the intended
operation in the required category. Therefore, a user who wishes to obtain a resource must, by necessity,
have read permissions for the resource category and permission to access the particular resource.

3.1.2 non-functional requirements

privacy and confidentiality
Personal medical data privacy is a requirement of great importance and is a very delicate issue.

Patient data must be handled carefully and its storage on third parties and transmission across
public networks should be handled carefully. The storage of medical information on cloud providers
encompasses the file transmission over public (and unsafe) networks. Additionally, institutions have no
guarantee that cloud providers ensure the data privacy. To take full advantage of cloud computing and
storage, like the scalability, redundancy and performance, there is the challenge to protect the privacy
of the patient’s medical data.

portability
The system should support di�erent personal cloud providers. As stated in Chapter 2, there are

multiple cloud providers that o�er free plans for personal cloud storage (Google Drive, OneDrive and
Dropbox, for instance). So, supporting portability is a key point.

Besides the multiple cloud providers support, the system should also allow di�erent implementations.
So, providing a library would allow the development of more applications that could port the system
to di�erent platforms.

performance and robustness
Medical institutions and sta� require almost a full availability of the system, a good performance

and robustness due to the sensitivity of the healthcare services provided. For instance, the system

31

must be available when a physician must perform a study and cannot have a significant delay or a
system crash. Therefore, minimal services must be provided.

accessibility and availability
It is a requirement that the services should be accessible from anywhere with a high ratio of

availability. However, security measures must be taken into consideration. This requirement is relevant
when a physician wants to access information from another location (telemedicine scenarios).

Thus, availability and accessibility are important issues to make the system e�cient and able to
meet the healthcare organisations interests.

3.1.3 use cases
During the project planning, several use cases scenarios were identified. Bellow, it is a description

of each one in more detail. In figure 3.1 it is shown the use case diagram of all the following diagrams.

Figure 3.1: Use case diagram of the system

revoking unauthorised users
With this system, the web access via API is always protected. A nonexistent user cannot have

access to resources. On the same line, a user that exists and is logged in the system but has not
permission to perform certain types of operations on certain types of resources as well as have access
or permission to see through the requested operation.

32

store objects
A user or modality may need to store objects via REST services. To do that, they may use

STOW-RS. When the request is made, its requester needs to provide authentication data. By using
that authentication data, the system will perform or not the operation, based on the authorisation
clearance of the requester.

access objects
Web access to DICOM objects is done via WADO. So, in this service, access permissions should

be verified in a similar way as the previous item "Store objects".

search objects
The Dicoogle platform supports query over DICOM objects, following the QIDO-RS standard.

Once again, queries must be protected: only authorised personnel should have access to query services.

share objects
The information system should allow a sharing mechanism. A user, who has permissions to do

so, must be able to share access permissions to another user on the system. This feature will allow
sharing of resource access, in this case DICOM objects, between facilities within the same organization
or even between organizations, to persons belonging to di�erent Roles.

33

chapter 4
Architecture and
Implementation
In this chapter is presented the overall architecture and implementation of the proposed system in order
to provide a functional access control mechanism for a multi-archive PACS. Since accessing speed
and usability were strong factors to take care of, technologies and implemented methods were carefully
chosen. Its description is also present in this chapter.

4.1 introduction
In the present thesis, it is expected an extension to the Dicoogle PACS system that can handle

a multi-user environment. State of the art review shows that there is a gap of integrated multi-
archive solution. The current solution does not allow the same archive to serve multiple organisations,
installations, users, and permissions.

The developed solution aims to allow, for example, the singular sharing of instances to another
user belonging to the system and, simultaneously, to one of the organisations constant in the archive,
as well as to allow the integrated management of the PACS at the organisational level.

Taking into account the current state of the art and the Dicoogle system in the present state of
production, it was considered the development of a access control mechanism system. The development
option arises from the fact that, among the existing solutions, none is adequate to the current constraints
with regard to requirements and integration of technologies.

4.2 proposal
In this thesis it is proposed a access control mechanism system that can manage a multi-archive

PACS in a simple instance.

35

Dicoogle is a PACS archive that does not support the multi-archive environment. However, this
PACS solution supports the development of plugins (written in Java) so a developer can extend the
main functions of the existing software. The system already has a user authentication mechanism used
in the web interface.

It is proposed the development of a library that interacts with the Dicoogle PACS and with
Dicoogle SDK in order to allow the restriction of access to resources, based, for this, on a permission
managing information system.

The development of this library allow that web requests can be authenticated including services
like, for instance, QIDO-RS, WADO or STOW-RS. Besides these obvious services, it will also be
allowed the addition of arbitrary permissions over resources like, for example, permissions for editing
the data of a facility or even the edition of information about a user.

Figure 4.1: General entities in proposed system

In general, at the end of this thesis, a software as-a-service should be available, allowing extensions
and application development to manage the access control mechanism (Figure 4.1) service in a
multi-archive Dicoogle PACS context.

In the following sections, it will be revealed the architecture and implementation of these systems,
which in turn will be explained in more detail.

The figure 4.2 illustrates an overview of the proposed system modules and its interaction with
Dicoogle core.

36

Figure 4.2: Overview of proposed system modules

4.3 data model
In the context of the requirement analysis, a data model was developed.

First of all, the data model should incorporate the DICOM Data Model or, at least, some attributes
containing the most relevant data. Entities like Patient, Study, Series or Instance are essential (Figure
4.3). Besides, these entities must be interconnected with the access control system.

The purpose of the existence of this model is to index all the relevant attribute information of the
DICOM metadata. Bellow, there is a description of those attributes. However, not all of them are
presented for a question of relevance to the developed work.

• Patient: In this entity, there is reference to the DIM levels of PatientID, PatientAge, Patient-
Name, PatientSex and PatientBirthDate.

• Study: The Study entity is the level immediately after Patient. Besides the natural StudyIn-
stanceUID, it also has a reference to its parent ID, in this case, PatientID.

• Series: Following the same reasoning, Series is the level immediately after Study and has also
the unique identifier SeriesInstanceUID and the parent id connection (StudyInstanceUID).

• Instance: In this last entity, there is information about the Instance of the DICOM Object.
Its parent id is related to the previous entity Series and is SeriesInstanceUID.

37

Figure 4.3: DIM Entity relationship diagram proposal for DIM storage in database.

Secondly, the system should manage the access control system (Figure 4.4). To do so, a model was
developed based on permissions granting or denial. After the requirement analysis, some entities were
classified as required to a multi-archive system.

DIM Entities (Figure 4.3) are interconnected with the access control mechanism via Entity
"Resource". A resource is identified by the UID of the Patient, Study, Series or Instance. By default,
the level is Study, i.e. when a file is added to the system, the Resource created will be of type Study
and identified by the StudyInstanceUID. All the permissions given to the resource will be at Study
level. However, that parameter can be changed and the default level can be Patient, Series or Instance,
besides Study.

On a multi-archive PACS, the system should support multiple Organizations. Each organisation
has one or more Facilities with employees or sta� (Users) associated. A user can have associated one
or more Roles and each Role one or more Permissions.

This first approach allows the system admins to assign roles with di�erent permissions to di�erent
users. For instance, a physician can have, simultaneously, the role that gives permissions to perform
exams and the role to review those exams. However, another di�erent user, that has only the
administration (or bureaucratic) role, must not have permissions to access those exams.

A permission must have information about what it represents. The entity Permission is a "super-
entity" that is related with entities like Resource, Category or Operation. Resource is the access control
system representation of a DICOM Object on the access control system. Category is used to identify
the type of permission that we are dealing with. For instance, a Category can be an Object, Operation,
Organization, Role, and so on. Operation is the entity responsible for storing the possible operations
that will be available in the archive, like "Read", "Write", "List", and more.

So, at the end, Facilities have Resources (DICOM Objects) associated and Users associated with
that Facility have access to those resources since they have permission to perform the desired operations.

Additionally, the data model must support the Resource sharing requirement. To do so, it was
added a connection directly from User to resource. This allows a User to share a Resource with another
user from another di�erent Facility and give it a specific permissions.

38

Figure 4.4: Access control mechanism entity relationship diagram proposal.

After this analysis and planning, there was created all the entities needed. The technology used
was Java with Hibernate Framework [63], an implementation of the native Java Persistence API (JPA).
The created entities are as follows, with the example of the source code developed to support them:

• Organization: An Organization is the entity that wants to have a multi-archive. It has a set
of Facilities and Users (or sta�) associated with it.

public class Organization implements Serializable {
@Id
@GeneratedValue
private Long id;

@Column(nullable = false)
private Date createdDate;

39

@Column(nullable = false)
private String name;

@OneToMany(mappedBy = "organization", cascade =
CascadeType.ALL, fetch = FetchType.EAGER)

private List<Facility> facilities;

@ManyToMany(mappedBy = "organizations", cascade =
CascadeType.ALL, fetch = FetchType.EAGER)

private List<User> organizationUsers;

...

Listing 1: Organization entity implementation

• Facility: A Facility is the physical structure that performs studies to patients. It has users
(sta�) and Resources associated to it. Besides these connections, the entity "Facility" has
attributes like name, contact, address and a main Organization.

public class Facility implements Serializable {
@Id
@GeneratedValue
private Long id;
@Column(nullable = false)
private Date createdDate;
@Column(unique = true, nullable = false)
private String name;
@Column(nullable = false)
private String street;
@Column(nullable = false)
private String number;
@Column(nullable = false)
private String postalCode;
@Column(nullable = false)
private String city;
@Column(nullable = false)
private String country;
@ManyToOne
@JoinColumn(name = "organization_id")
private Organization organization;
@ManyToMany(mappedBy = "facilities", cascade = CascadeType.ALL,

fetch = FetchType.EAGER)

40

private List<User> facilityUsers;
@ManyToMany(mappedBy = "facilities", cascade = CascadeType.ALL,

fetch = FetchType.EAGER)
private List<Resource> resources;

...

Listing 2: Facility entity implementation

• User: User is the entity on which every agent is inserted. User must have attributes like first
and last name, email and password. A User belongs to a Organization and assigned to a Facility.
The entity has a set of Roles and Permissions of shared Resources.

public class User implements Serializable {
@Id
@GeneratedValue(strategy = GenerationType.AUTO)
private Long id;
@Column(nullable = false)
private Date createdDate;
@Column(nullable = false)
private String title;
@Column(nullable = false)
private String firstName;
@Column(nullable = false)
private String lastName;
@Column(unique = true, nullable = false)
private String email;
@Column(nullable = false)
private String password;
@Column(nullable = false)
private Boolean hidden = false;
@ManyToMany(cascade = CascadeType.ALL, fetch = FetchType.EAGER)
private List<Facility> facilities;
@ManyToMany(cascade = CascadeType.ALL, fetch = FetchType.EAGER)
private List<Organization> organizations;
@ManyToMany(mappedBy = "users", cascade = CascadeType.ALL,

fetch = FetchType.EAGER)
private Set<Role> roles;
@ManyToMany(mappedBy = "users", cascade = CascadeType.ALL,

fetch = FetchType.EAGER)
private List<Permission> sharedPermissions;

41

...

Listing 3: User entity implementation

• Role: A Role is an entity that has a set of permissions and a name. For instance, the hypo-
thetical role FACILITY_ADMIN should have permissions to manage the Facility attributes,
Resources and Users. Besides, the Role has the list of the Users associated with it.

public class Role implements Serializable {
@Id
@GeneratedValue
private Long id;
@Column(nullable = false)
private Date created;
@Column(unique = true, nullable = false)
private String name;

@ManyToMany(mappedBy = "roles", cascade = {CascadeType.REMOVE,
CascadeType.PERSIST, CascadeType.REFRESH,
CascadeType.DETACH}, fetch = FetchType.EAGER)

private List<Permission> permissions;

@ManyToMany(cascade = CascadeType.ALL, fetch = FetchType.EAGER)
@JoinTable(name="Role_User")
private List<User> users;

...

Listing 4: Role entity implementation

• Permission: Permission is the entity consulted to check if a User can access to a Resource
or perform an Operation. It has connections to Operation, Resource and Category. A
Permission is not obligated to have a connection to Resource: there are some cases in which
there is not a Resource associated. Giving an example, a Permission to allow the "Edit"
Operation on the Category "Facility" does not have a Resource. Additionally, Permission en-
tity has a set of users that have the shared Permission and the set of Roles on which is associated.

public class Permission implements Serializable {
@Id
@GeneratedValue
private Long id;

42

@Column(nullable = false)
private Date created;
@ManyToMany(cascade = CascadeType.ALL, fetch = FetchType.EAGER)
@JoinTable(name="Permission_Role")
private List<Role> roles;
@ManyToMany(cascade = CascadeType.ALL, fetch = FetchType.EAGER)
@JoinTable(name="Permission_User")
private List<User> users;
@ManyToOne
private Operation operation;
@ManyToOne
private Resource resource;
@ManyToOne
private Category category;

...

Listing 5: Permission entity implementation

• Resource: A Resource can be any level of the DICOM Information Level, such as Patient,
Study, Series or instance. It has a UID attribute and a field indicating from which level of the
DICOM does it belong.

public class Resource implements Serializable {
@Id
@GeneratedValue
private Long id;
@Column(nullable = false)
private Date created;
@Column(nullable = false, unique = true)
private String instanceUID;
@Column(nullable = false)
private String modelLevel;
@OneToMany(mappedBy = "resource", cascade = CascadeType.ALL)
private Set<Permission> permissions;
@ManyToMany(fetch = FetchType.EAGER, cascade = CascadeType.ALL)
private List<Facility> facilities;

...

Listing 6: Resource entity implementation

43

• Category: This entity has the attribute name that indicates if the Permission is to a Facility,
Organization, Resource, or many others.

public class Category implements Serializable {
@Id
@GeneratedValue
private Long id;
@Column(nullable = false)
private Date created;
@Column(nullable = false, unique = true)
private String name;
@OneToMany(mappedBy = "category", cascade = CascadeType.ALL)
private Set<Permission> permissions;

...

Listing 7: Category entity implementation

• Operation: The Operation entity defines which operation is the Permission referenced for.

public class Operation implements Serializable {
@Id
@GeneratedValue
private Long id;
@Column(nullable = false)
private Date created;
@Column(unique = true, nullable = false)
private String name;
@OneToMany(mappedBy = "operation", cascade = CascadeType.ALL)
private Set<Permission> permissions;

...

Listing 8: Operation entity implementation

On figure 4.5 is presented the database diagram generated by MySql Workbench, a visual tool for
MySql.

44

Figure 4.5: Database diagram proposal.

4.4 data persistence

4.4.1 serializers
For each of the entities described above, Serializers have been created so that future users of

the developed library can obtain required objects (such as Organization, User, Permission) in the
JavaScript Object Notation (JSON) format.

Listing 9 Serializer source code for the Facility entity, with the JSON object returned for a sample
Facility object. It should be noted that the code and output (Listing 10) presented are mere examples.
There are Serializers for all entities described above, where the relevant attributes of each entity are

45

explained.

public class FacilitySerializer extends JsonSerializer<Facility> {
@Override
public void serialize(Facility facility, JsonGenerator jgen,

SerializerProvider provider)
throws IOException, JsonProcessingException {

jgen.writeStartObject();
jgen.writeNumberField("id", facility.getId());
jgen.writeStringField("createdDate",

facility.getCreatedDate().toString());
jgen.writeStringField("name", facility.getName());
jgen.writeStringField("number", facility.getNumber());
jgen.writeStringField("postalCode", facility.getPostalCode());
jgen.writeStringField("street", facility.getStreet());
jgen.writeStringField("uuid", facility.getUuid());
jgen.writeStringField("city", facility.getCity());
jgen.writeStringField("country", facility.getCountry());

if (facility.getOrganization() != null) {
jgen.writeStringField("organization_id",

facility.getOrganization().getId().toString());
}

jgen.writeEndObject();
}

}

Listing 9: Serializer example for Facility entity

{
"id": 132,
"createdDate": "2017-04-09 00:23:42.0",
"name": "RBACTest",
"number": "1",
"postalCode": "4000",
"street": "rbac street",
"uuid": "1001",
"city": "rbac city",
"country": "rbac country"

46

}

Listing 10: Serialization of a Facility object example

4.4.2 managers
After the development of the entities and their integration with Java Database Connectivity (JDBC),

there was a need for a layer of abstraction that facilitated the use of the library. The manager layer
was created for that purpose. The use of this layer of abstraction obligated to delegate procedures to
operations on the database.

After analysing the necessary and potentially most used operations, we opted for the development
of two managers: UserManager and ResourceManager.

The UserManager is responsible for checking a user’s authorisation and permissions, as well as
obtaining a user based on the session token. Contains methods such as userHasAuthorization (checking
a user’s authorisation to perform an operation), userHasPermissions (checking permission to perform
an operation in a certain category or perform an operation on a specific resource or resource set),
getUser (obtain a User object based on session token).

On the other hand, there is the ResourceManager, responsible for creating resources and associated
permissions in the database. Contains methods such as createResource based on the resource’s
DICOM object, createResourceWithUser for resource creation with associated permissions, or even
createResourceWithFacility for creating a feature and association belonging to the Facility in question.

The existence of these layers of abstraction aims at allowing simplification of the development and
logic associated with documented operations.

4.5 services
In order to provide an interface for developers, it was developed a set of services that allows the

interaction with the database. Those services are provided by a REST API. All the services were
developed as a Dicoogle plugin (Jetty service plugin) and the main goal was to have access to the basic
create, read, update and delete (CRUD) functions of the proposed access control mechanism system.

However, those services must be protected against unauthorised accesses. To do so, it was developed
a filter, called CheckPermissionFilter, that works as a barrier between the requester of the operation
and the operation itself.

Once the reception of the request takes place, the filter checks which permissions are needed to
perform the requested operation. After that procedure, as shown in figure 4.6, the CheckPermissionFilter
searches for the HTTP request header attribute "Authorization" where must be in a Dicoogle session
token, represented by an alphanumeric string of characters.

A connection to Dicoogle’s core is made to get data about the token such as the user that is
logged in. Since there are distinct accounting systems, it is required to verify, first of all, if the user
is a member of the access control system. Secondly, the system will check 1) if one of the user’s

47

Figure 4.6: CheckPermissionFilter usage scheme

roles contains one permission or, if it is the case, all the permissions to perform the operation; 2) if a
permission was shared by another user that allows the requester to accomplish the operation.

After the authentication and authorisation testing, there are two results possible: the user is able
to perform the operation and the user is not authorised. In the first case, the requester gets a 400
(Bad Request) HTTP error code when is accessing to an invalid service, or a 403 (Forbidden) HTTP
error it has not authorisation to perform the operation. In the second case, CheckPermissionFilter
allows the user to access the required path.

The following subsections will describe the services developed. On each category, there is a table
representing the endpoint of each service, allowed methods and the expected response.

Note that in all the services, except the Login service (Section 4.5.1) there is required that a HTTP
Header "Authorization" must be sent and contain the session token relative to the requesting user, and
the token must be valid. That token is obtained after a successful request to Login service.

4.5.1 login
The Login service allows a client to authenticate to the Dicoogle platform. After this authentication,

a session token in JSON format is returned and can then be used to perform other operations in the
system.

• Endpoint {server}/multi_archive/login

• Description This endpoint allows to Login on Dicoogle. Providing a username and a password
to this service will allow to obtain a access token required to almost every service above.

Method Parameters Response

POST username, password

HTTP 200 Response Code and JSON
with the attributes token and status,
providing the status with "success" or
"error"

Table 4.1: Method allowed in Login webservice, with its required parameters.

48

4.5.2 logout
This service is used to log o� the user.

• Endpoint {server}/multi_archive/logout

• Description This endpoint allows to Logout from Dicoogle. Providing the access token, when
login was made, to this service will logout and make that token deprecated.

4.5.3 manage users
The user management service allows the creation, edition, and removal of users. However, if the

user does not have permissions to perform operations in this service, the service will not execute the
request.

• Endpoint {server}/multi_archive/users

• Entities User

• Description This endpoint allows the CRUD operations related to the entity User.

Method Parameters Response

GET id or email or no parameters
JSON containing id, title, firstName,
lastName, email, createdDate or HTTP
400 Error Code when user not found

POST id, firstName, lastName, email,
password

JSON containing id, title, firstName,
lastName, email, createdDate, which
can be a user created at the time or
earlier

DELETE id or email
HTTP 200 Response Code with no
data or HTTP 400 Error Code when
user not found

Table 4.2: Method allowed in User webservice, with its required parameters.

4.5.4 manage facilities
This service allows the creation, edition and removal of facilities on the system.

• Endpoint {server}/multi_archive/facilities

• Entities Facility

• Description This endpoint allows the CRUD operations related to the entity Facility.

49

Method Parameters Response

GET id or name or no parameters

JSON containing id, name, number,
postalCode, street, uuid, city, country,
createdDate or HTTP 400 Error Code
when facility not found

POST name, number, postalCode,
street, uuidAtCP, city, country

JSON containing id, name, number,
postalCode, street, uuidAtCP, city,
country, createdDate, which can be an
organization created at the time or
earlier

DELETE id or name
HTTP 200 Response Code with no
data or HTTP 400 Error Code when
facility not found

Table 4.3: Method allowed in Facility webservice, with its required parameters.

4.5.5 manage organizations
The Organizations service lets a User add or modify an Organization as long as the user have

authorisation to perform the operation.

• Endpoint {server}/multi_archive/organizations

• Entities Organization

• Description This endpoint allows the CRUD operations related to the entity Organization.

Method Parameters Response

GET id or name or no parameters
JSON containing id, name, createdDate
or HTTP 400 Error Code when
organization not found

POST name

JSON containing id, name,
createdDate, which can be an
organization created at the time or
earlier

DELETE id or name
HTTP 200 Response Code with no
data or HTTP 400 Error Code when
organization not found

Table 4.4: Method allowed in Organization webservice, with its required parameters.

4.5.6 manage operations
The manage operations service lets authorised Users to perform CRUD (Create, Read, Update

and Delete) operations on the entity Operation.

50

• Endpoint {server}/multi_archive/operations

• Entities Operation

• Description This endpoint allows the CRUD operations related to the entity Operation.

Method Parameters Response

GET id or name or no parameters
JSON containing id, name, createdDate
or HTTP 400 Error Code when
operation not found

POST name
JSON containing id, name,
createdDate, which can be an operation
created at the time or earlier

DELETE id or name
HTTP 200 Response Code with no
data or HTTP 400 Error Code when
operation not found

Table 4.5: Method allowed in Operation webservice, with its required parameters.

4.5.7 manage categories
This service allows the creation, edition and removal of categories of "resources" on the system.

However, if the user does not have permissions to perform operations in this service, the service will
not execute the request.

• Endpoint {server}/multi_archive/categories

• Entities Category

• Description This endpoint allows the CRUD operations related to the entity Category.

Method Parameters Response

GET id or name or no parameters
JSON containing id, name, createdDate
or HTTP 400 Error Code when
category not found

POST name
JSON containing id, name,
createdDate, which can be an category
created at the time or earlier

DELETE id or name
HTTP 200 Response Code with no
data or HTTP 400 Error Code when
category not found

Table 4.6: Method allowed in Category webservice, with its required parameters.

51

4.5.8 manage permissions
This service allows the creation, modification and removal of permissions. This service has a

particularity in relation to the previous ones: the creation of a new permission, obligates to have
previously created a operation and a category, as well as the existence of a Resource if the category is,
precisely, Resource.

• Endpoint {server}/multi_archive/permissions

• Entities Permission

• Description This endpoint allows the CRUD operations related to the entity Permission.

Method Parameters Response

GET resourceName and operationName and
categoryName or id or no parameters

JSON containing id, name, createdDate
or HTTP 400 Error Code when
permission not found

POST
resourceName and operationName and
categoryName or resourceId and
operationId and categoryId

JSON containing id, resource, category,
operation, createdDate, which can be an
permission created at the time or
earlier

DELETE resourceName and operationName and
categoryName or id

HTTP 200 Response Code with no
data or HTTP 400 Error Code when
permission not found

Table 4.7: Method allowed in Permission webservice, with its required parameters.

4.5.9 manage roles
Similarly to the services already mentioned, the managing role Role allows the creation, editing

and removal of objects from the Role entity. This service assumes the existence of permissions to be
associated with Role, although it is not mandatory.

• Endpoint {server}/multi_archive/roles

• Entities Role

• Description This endpoint allows the CRUD operations related to the entity Role.

52

Method Parameters Response

GET id or name or no parameters
JSON containing id, name, createdDate
or HTTP 400 Error Code when role
not found

POST name
JSON containing id, name,
createdDate, which can be an role
created at the time or earlier

DELETE id or name
HTTP 200 Response Code with no
data or HTTP 400 Error Code when
role not found

Table 4.8: Method allowed in Role webservice, with its required parameters.

4.5.10 append/remove user-facility
Append/Remove User-Facility service allows a user to join an facility. It assumes that both objects

are already in the system. Permissions are also required to e�ect the request, for whatever the intended
operation, in the User and Facility categories.

• Endpoint {server}/multi_archive/userToFacility

• Entities User, Facility

• Description This endpoint allows to append a User to a Facility or remove a User from a
Facility.

Method Parameters Response

POST idUser, idFacility

HTTP 200 Response Code with no
data or HTTP 400 Error Code when
some error occurred with the
parameters provided

DELETE idUser, idFacility

HTTP 200 Response Code with no
data or HTTP 400 Error Code when
some error occurred with the
parameters provided

Table 4.9: Method allowed in UserToFacility webservice, with its required parameters.

4.5.11 append/remove user-organization
Append/Remove User-Organization service allows a user to join an organization. It assumes that

both objects are already in the system. Permissions are also required to e�ect the request, for whatever
the intended operation, in the User and Organization categories.

• Endpoint {server}/multi_archive/userToOrganization

53

• Entities User, Organization

• Description This endpoint allows to append a User to a Facility or remove a User from a
Facility.

Method Parameters Response

POST idUser, idOrganization

HTTP 200 Response Code with no
data or HTTP 400 Error Code when
some error occurred with the
parameters provided

DELETE idUser, idOrganization

HTTP 200 Response Code with no
data or HTTP 400 Error Code when
some error occurred with the
parameters provided

Table 4.10: Method allowed in UserToOrganization webservice, with its required parameters.

4.5.12 append/remove permission-role
Append/Remove Permission-Role service allows to make a connection between a Role and a

Permission. It assumes that both objects are already in the system. Permissions are also required to
e�ect the request, either the operation is creation or removal, in the Permission and Role categories.

• Endpoint {server}/multi_archive/permissionToRole

• Entities Permission, Role

• Description This endpoint allows to append a Permission to a Role or remove a Permission
from a Role.

Method Parameters Response

GET idRole

JSON containing the list of permissions
of the role with the id idRole or HTTP
400 Error Code when invalid or not
found Role

POST idRole, idPermission

HTTP 200 Response Code with no
data or HTTP 400 Error Code when
some error occurred with the
parameters provided

DELETE idRole, idPermission

HTTP 200 Response Code with no
data or HTTP 400 Error Code when
some error occurred with the
parameters provided

Table 4.11: Method allowed in PermissionToRole webservice, with its required parameters.

54

4.5.13 append/remove facility-organization
Append/Remove Facility-Organization service allows to assign a Facility to an Organization

or vice-versa. It assumes that both objects Facility and Organization are already in the database.
Permissions are also required to e�ect the request, either the operation is creation or removal, in the
Facility and Organization categories.

• Endpoint {server}/multi_archive/facilityToOrganization

• Entities Facility, Organization

• Description This endpoint allows to append a Facility to a Organization or remove a Facility
from a Organization.

Method Parameters Response

GET idOrganization

JSON containing the list of facilities
belonging to the Organization with the
id idOrganization or HTTP 400 Error
Code when invalid idOrganization or
not found Organization

POST idFacility, idOrganization

HTTP 200 Response Code with no
data or HTTP 400 Error Code when
some error occurred with the
parameters provided

DELETE idFacility, idOrganization

HTTP 200 Response Code with no
data or HTTP 400 Error Code when
some error occurred with the
parameters provided

Table 4.12: Method allowed in FacilityToOrganization webservice, with its required parameters.

4.5.14 append/remove category-permission
Append/Remove Permission-Category service makes available methods to remove or create as-

sociations of Permission to/from Category. It assumes that both objects are already in the system.
Permissions are also required to e�ect the request, either the operation is creation or removal, in the
Permission and Category categories.

• Endpoint {server}/multi_archive/categoryToPermission

• Entities Category, Permission

• Description This endpoint allows to append a Category to a Permission or remove a Category
from a Permission.

55

Method Parameters Response

GET idPermission

JSON containing the Category of the
given Permission with id idPermission
or HTTP 400 Error Code when invalid
idPermission or not found Permission

POST idPermission, idCategory

HTTP 200 Response Code with no
data or HTTP 400 Error Code when
some error occurred with the
parameters provided

DELETE idPermission, idCategory

HTTP 200 Response Code with no
data or HTTP 400 Error Code when
some error occurred with the
parameters provided

Table 4.13: Method allowed in CategoryToPermission webservice, with its required parameters.

4.5.15 append/remove operation-permission
Append/Remove Permission-Operation service makes available methods to remove or create

associations of Permission to/from Operation. It assumes that both objects are already in the system.
Permissions are also required to e�ect the request, either the operation is creation or removal, in the
Permission and Operation categories.

• Endpoint {server}/multi_archive/operationToPermission

• Entities Operation, Permission

• Description This endpoint allows to append a Operation to a Permission or remove a Operation
from a Permission.

Method Parameters Response

GET idPermission

JSON containing the Operation of the
given Permission with id idPermission
or HTTP 400 Error Code when invalid
idPermission or not found Permission

POST idPermission, idOperation

HTTP 200 Response Code with no
data or HTTP 400 Error Code when
some error occurred with the
parameters provided

DELETE idPermission, idOperation

HTTP 200 Response Code with no
data or HTTP 400 Error Code when
some error occurred with the
parameters provided

Table 4.14: Method allowed in OperationToPermission webservice, with its required parameters.

56

4.5.16 share
Share endpoint gives the user the ability to give their permissions to third users. Those users are

already on the system and do not need to have special permissions to receive the shared permissions.
In addition, the requester should submit the user ID to which the resource should be shared. Likewise,
the resource ID must be in the HTTP request as well.

Given the assumptions, it is assumed that both objects are already in the system. Permissions are
also required to e�ect the request, either the operation is creation or removal, in the Permission and
Operation categories.

• Endpoint {server}/multi_archive/share

• Entities Resource, User, Permission

• Description This endpoint allows to append a Operation to a Permission or remove a Operation
from a Permission.

Method Parameters Response

POST idUser, idResource

HTTP 200 Response Code with no
data or HTTP 400 Error Code when
some error occurred with the
parameters provided

DELETE idPermission, idUser, idResource

HTTP 200 Response Code with no
data or HTTP 400 Error Code when
some error occurred with the
parameters provided

Table 4.15: Method allowed in Sharing webservice, with its required parameters.

4.6 dicomweb
In order to protect the access to DICOMWeb standard services, it was applied the same concept

as the one previously mentioned. On each DICOMWeb service, it is extracted the Authorization token
that is part of the HTTP header. Next, the authorisation token is passed to the database manager
library that contains methods to evaluate the authorisation clearance of the user.

4.6.1 wado-rs
In the WADO-RS service, similarly to the previously described services, the Dicoogle session token

is obtained through the HTTP Header "Authorization".

Subsequently, using the dbmanger library, the authorisation check is performed for the user in
question. The permission requirement in WADO-RS is the GET operation of the "Resource" category.
This verification is done using the abstraction provided by the UserManger class, a class designed to
simplify the verification of authorisations and permissions.

57

If the user does not have permission from Resource GET or does not have permission to access the
requested resource, a response will be sent with the HTTP 403 Forbidden error code. On the contrary,
if the user is authorised and has all the necessary permissions, the whole process will proceed normally
as a WADO-RS service following the DICOM Standard should proceed.

The figure 4.7 represents a sequence diagram demonstrating the workflow of an HTTP request
to the WADO-RS plugin. In the points below, the steps of this workflow are deepened. Note that
it will be assumed that the session token sent in the request is valid and the corresponding user has
permissions to perform the requested operations.

Figure 4.7: Sequence diagram when accessing WADO from a third party viewer.

1. Login - Login via HTTP REST service host/multi_archive/login described in section 4.5

2. AuthorizationToken - After phase 1, when successful, the session token that will be used to
gain access in the following phases is returned

3. AccessDicomObject - After phases 1 and 2, all requirements to perform an order to the
WADO-RS service are completed. At this stage, an HTTP request must be made with the
POST method where the HTTP "Authorization" header with the session token obtained in the
previous steps must be included. If the token is not sent, the user/client application will get an
error code from the WADO-RS service. In addition to this requirement, the request must also
include the UID of the intended object

4. GetUser - After receiving the Authorization Token, it is made verification of compliance with
the cache of users logged into the system

5. User - If the token matches one of the users currently connected to the system, information
about that user will be returned

58

6. CheckUserPermission - Once the user has been obtained, it is checked if the user is authorized
and allowed to perform resource creation operations (necessary permission to access the WADO
service)

7. Permission Granted / Denied - The permission to continue to carry out the operation is
granted or denied (we will assume granted)

8. GetURIFromIndexedObjects - To get the file, it is required to know its location. This
procedure is done by querying the index plugin about the URI where the file is located

9. URI - If the DICOM object exists, the URI corresponding to its location is returned

10. GetDicomObject - The filestorage plugin is requested from the file present in the URI returned
in the previous phase

11. RetrieveDicomObject - DICOM file is returned, in case that URI is valid

12. DicomObject - File is sent to client over HTTP

4.6.2 stow-rs
The STOW-RS service, in addition to the usual Dicoogle authorisation token verification, has

undergone other changes.

Based on the change in the Authorization for access to the service, similarly to the service previously
mentioned (WADO), it is used the session token for obtaining the user. For the STOW-RS service,
the Add permission in the Resource category is required.

Using the ResourceManager abstraction level, the Resource is created in the database.

This feature will be created according to the model level of the DICOM standard contained in the
STOW-RS plugin settings. For example, if the DICOM standard model level is by default Study, each
time a DICOM file is stored, a resource will be created whose default model level will be Study and
the ID will be the StudyInstanceUID. In a final phase, the facilities to which the user is associated are
obtained and, to each of them, the new Resource is associated, for the purposes of access or listing
permissions.

The workflow of the DICOM STOW-RS service plugin with the active multi-file option, where it
is assumed that the access permission is guaranteed, is demonstrated in the sequence diagram shown
in figure 4.8. Below the steps are deepened, case by case:

1. Login - Login via HTTP service Rest host/multi_archive/login described in section 4.5

2. AuthorizationToken - After phase 1, when successful, the session token that will be used to
gain access in the following phases is returned

3. StoreDicomObject - After the token has been obtained, it is already possible to request the
operations to the STOW-RS plugin. Through an HTTP REST request with the POST method
in the host/ext/stow service where the HTTP "Authorization" header with the session token
obtained in phase 1 and 2 must appear, the DICOM file is sent to the store operation on the
Dicoogle platform

59

Figure 4.8: Sequence diagram storing file STOW-RS from a third party application.

4. GetUser - After receiving the Authorization Token, it is made verification of compliance with
the cache of users logged into the system

5. User - If the token matches one of the users currently connected to the system, information
about that user will be returned

6. CheckUserPermission - Once the user has been obtained, it is checked if the user is autho-
rized and allowed to perform resource creation operations (necessary permission to access the
STOW-RS service)

7. Permission Granted / Denied - The permission to continue to carry out the operation is
granted or denied (we will assume granted)

8. StoreObject - After the permissions are verified, the DICOM file is sent to storage, from where
a URI is returned

9. URI - The URI corresponding to the location of the DICOM file is returned after storage
operation

10. IndexObject - All relevant attributes of the DICOM object are indexed. In the case of the
present thesis, in a MySql Database Management System (DBMS)

11. CreateObject - Once indexed, it is necessary to create a Resource entry in the resource access
control system, with the resource identification (UID), with the category (Resource) and the
corresponding DIM level (by definition, Study, being possible that would be Patient, Series or
Instance)

60

12. Status - Return of the created Resource object, if it was created successfully or already exists
in the system

13. HTTP Status - the error code is returned to the application as soon as there is an error or
the resource is successfully added to the DBMS and there is a Dicoogle platform

4.6.3 qido-rs
The development of authentication and filtering in QIDO-RS has become cumbersome. One more

time, REST requests must contain the HTTP "Authentication" Header. Subsequently, the Dicoogle
core search method is invoked, which sends the query request to the plugins. That query contains the
session token.

The query submitted is processed by a particular plugin, sql-dim. In this plugin, it is done the
Authorization and permission check of the List operation for the Resource category on the specified
user. After verification, one of the following two options may occur: the user does not have the
authorisation to perform queries on the system and an empty result list is returned; or, on the other
hand, the user has permissions and the execution proceeds.

In the latter case, in which the execution proceeds, the SQL query is performed. The sql! (sql!)
statement is the result of the transformation performed on the search parameters. The query filters the
results to only authorised objects appear in result list. Only features that meet one of the following
requirements will be returned:

1. the resource belongs to one of the Permissions of one of the User Roles

2. the resource belongs to one of the Facilities to which the User is associated

3. the resource belongs to one of the Permissions shared with the User

Below, in Figure 4.9, the sequence diagram representing the workflow of the query operation whose
request is made via HTTP to the QIDO-RS plugin is shown, assuming that the user who performs the
query holds the permissions required to the service:

1. Login - Login via HTTP service Rest host/multi_archive/login described in section 4.5

2. AuthorizationToken - After phase 1, when successful, the session token that will be used to
gain access in the following phases is returned

3. QueryForDicomObjects - Once the token is obtained, it can be included in the HTTP REST
request, in the HTTP "Authorization" header of the POST method. The inclusion of the token
is critical for results to be returned: if the token is not sent or otherwise invalid, the query is
not executed and an empty result set is returned. In addition to the token and the query itself,
it is necessary to send the expected attributes of the objects found in the query. The endpoint
to which the request is to be sent is host/multi_archive/qido

4. Search - After validation, the QIDO-RS plugin delegates the query to all query plugins. Among
them, there is SQL-DIM (see section 4.7). This plugin is prepared for the multi-file paradigm
and will return only DICOM objects that are contained in one of the user’s permission sets that
requests the QIDO-RS plugin

61

Figure 4.9: Sequence diagram when querying QIDO-RS from a third party viewer.

5. GetUser - After receiving the Authorization Token, it is made verification of compliance with
the cache of users logged into the system

6. User - If the token matches one of the users currently connected to the system, information
about that user will be returned

7. CheckUserPermission - Once the user has been obtained, it is checked if the user is authorized
and allowed to perform resource creation operations (necessary permission to access the QIDO-RS
service)

8. Permission Granted / Denied - The permission to continue to carry out the operation is
granted or denied (we will assume granted)

9. QueryResultFields - All results already filtered against the user are returned to the QIDO-RS
plugin

10. QueryResultSet - QIDO-RS sends the HTTP response in JSON format with the result of the
query. The result is represented in a list of JSON objects corresponding to each result returned
in the previous point

4.7 sql-dim
Dicoogle’s architecture is based on the development of index and filestorage plugins so that basic

DICOM index and retrieval service operations are ensured. Besides these types, there is also a third
one relevant for the well funtioning of Dicoogle platform, there is the query plugins.

62

Usually, the plugin that supports the index operations is also responsible for querying. On the
main page of the public repository of the Dicoogle project [64], an index/query plugin, the Lucene
plugin, is available. Lucene plugin is a plugin based on Apache Lucene Library. It supports index and
query on DICOM meta-data.

However, in the development of this thesis, it was used another index/query plugin, the sql-dim.
Instead of Apache Lucene library, Sql-dim uses the JPA framework. So, sql-dim allows the index and
querying of DICOM files in a MySql engine.

The use of this plugin over Lucene plugin allows integration with MySql and unification of the
access control system. This integration is noticed in the query function of this plugin. The SQL query
developed for searching the indexed attributes is not limited to the search parameters search. In order
to protect resources, the agent performing the query operation must provide its session token for
identification. Resource filtering is delegated to the database management system via SQL query.

The query developed is a query that, in addition to searching the required resource and returning
the requested parameters, combines the list of results with other constraints. These constraints focus
on filtering the results list. Only results with one of the following conditions will be returned, in which
the resource(s):

1. appears in one of the permissions of one of the roles of the requesting user

2. belongs to one of the facilities to which the user is associated

3. is one of the resources shared with the user

63

chapter 5
Results and Discussion

The Results and Discussion chapter presents the work done and its validation. The test methodology
is presented, the results are presented and discussed. In addition, it is demonstrated the use of the
services described in the previous chapter.

5.1 results
The addition of an user management mechanism introduces temporal delay on the execution

supported. This impact arises from the need to verify, for each of DICOMWeb services, the entity
making the request and, in addition, verify its authorization and permissions for the service in question.

In order to evaluate the performance impact, several automatic tests were performed. These
tests simulate the massive usage of QIDO-RS, STOW-RS and WADO services. For a most accurate
analysis, all benchmarks on performance impact (DICOMWeb services over Dicoogle vs. DICOMWeb
services over Dicoogle with user management support) must have the same execution conditions as for
example, the amount of RAM, CPU processing speed or even the processor load.

After the tests have been carried out, a processing and analysis of the data obtained will be
presented, as well as a results representation in the form of graphs.

Finally, the results will be discussed and interpreted as much as possible.

5.2 test environment
The tests were carried out in an instance of macOS Sierra 10.11.5 operating system which

specifications are presented in Table 5.1

CPU Intel Core i5 2.7GHz with 3MB shared L3 cache
RAM 8 GB 1867 MHz DDR3
ROM SSD 128 GB PCIe-based

65

Table 5.1: Equipment specifications

To ensure maximum testing equality, time measurements were performed under the following
conditions:

• Same software version including operating system or even DBMS (MySQL 5.7.17)

• Same amount of RAM

• Same DICOM objects dataset

• Same system load and number of active applications and services

• Similar test replications, the only change factor being the authorization and provision of an
access token

5.3 test methodology
Two types of tests were developed on various components of the system. These two types are

divided into load tests and unit/validation tests.

With regard to unit tests or validation tests, 3 tests were written. These three tests aim to
validate the DICOMWeb services (QIDO-RS, STOW-RS and WADO-RS). In the case of the QIDO-
RS tests, queries were constructed at each level of DICOM information (DIM): Patient, Study,
Series and Instance, with search parameters such as Modality, SOPInstanceUID, SeriesInstanceUID,
StudyInstanceUID or PatientID. The queries were repeated 400 times.

Attempting to STOW-RS plugin tests, it used 5694 DICOM files (instances) with the default level
of resources creation of "Study". The tests were performed 5 times in order to obtain the most reliable
results possible. The distribution of files per size is described in table 5.2

66

Number of files Size (Kilobytes)
2224 131
1120 290
960 163
417 132
368 514
352 394
156 515
78 130
2 7360
2 14340
2 17106
2 8947
2 15449
2 7357
1 14339
1 14693
1 14341
1 7366
1 6054
1 7358
1 16671

Table 5.2: File size of each DICOM file

Finally, to test the impact of adding the user management mechanism to the WADO-RS plugin, a
list of 900 instances (SOPInstanceUID) was obtained. With these 900 identifiers, requests were made
to the WADO-RS service with the request of the first frame of the object. All 900 instances were in
the list of permissions associated with the test user. This set of tests was repeated 4 times.

For the entire set of tests, the Unirest library was used. This library allows the invocation of
REST services. The temporal duration of service,from the time of the creation of the request until
the answer to that same request, was recorded. Values such as Status code of the response, name of
the file to be stored (STOW-RS), query (QIDO-RS), SOPInstanceUID (WADO-RS), wait time and
response body were saved in a logfile.

Note that the tests were done in the system without authentication and in the system with
authentication. These tests were identical, only with one change, in the case of the system with
authentication: the addition of the session token in each request made. Before the service tests starts,
a request was made to the login service in order to obtain the service access token.

Finally, a set of tests were performed to evaluate the solution scalability. There were 7 tests in
which all of them ended up reaching the goal of 20000 requests. In each of the following cases, there
was a hatch rate. This is the rate that the Locust.io spawns a virtual user. For instance, in the first
case, a user was spawned every second until a total of 1000 users. The test ended up when the users
performed 20000 requests in total.

67

• 1000 users with 1 hatch rate

• 10000 users with 1 hatch rate

• 50000 users with 1 hatch rate

• 1000 users with 10 hatch rate

• 10000 users with 10 hatch rate

• 50000 users with a rate of 10 hatches/s

• 100000 users with a rate of 50 hatches/s and a total of 50.000 orders

These load tests were performed taking advantage of the Locust.io tool. This tool allows the
creation of tasks in which it is possible to test the endpoints. The endpoints and operations tested
were:

• GET /multi_archive/categories

• GET /multi_archive/facilities

• POST /multi_archive/facilities

• GET /multi_archive/facilities?id=1124

• DELETE /multi_archive/facilityToOrganization

• POST /multi_archive/facilityToOrganization

• POST /multi_archive/login

• GET /multi_archive/operations

• GET /multi_archive/organizations

• POST /multi_archive/organizations

• GET /multi_archive/permissions

• GET /multi_archive/roles

• GET /multi_archive/users

• GET qido-rs series

5.4 test results

5.4.1 stow-rs
In this section is presented the comparative result related to the STOW-RS plugin. About 22776

time measurements were taken from a set of 5694 di�erent files. The table and graph below show
average values:

68

- Without protection Mechanism With protection Mechanism
Average (ms) 51 483

Table 5.3: Average values of time measured of 22776 files storage requests

As we can see in the table, the storage over web operation grows 10 times comparatively between
the original STOW-RS plugin and the STOW-RS plugin with the authentication mechanism developed.
Despite the relatively high value (500 ms), an equally large temporal increase was expected.

In this plugin there are considerably more operations to the database than in the previous system
without multi-archive support, enumerating:

1. authorization check

2. permission check

3. storage operation (common between solutions)

4. resource creation

5. association of resource to set of user facilities or, in case the user does not belong to any facility

6. creating access permissions on the part of the user in particular to the created resource

7. operations of creation of permissions

8. user query when verifying the access token

However, even considering the factors listed above, it exists a considerable di�erence in this
operation and, in a future work, an algorithmic revaluation must be done in order to reduce the time
of each operation. However, the dataset used for testing consisted essentially of files of small size (85%
of files had less than 290 kB and 99% less than 515 KB). This factor contributes to the fact that
the discrepancy between performances is so di�erent. In an actual environment of use, since DICOM
objects will be larger, this discrepancy should be diluted. I.e., performance values will increase in the
storage operation without access control mechanism, which will make the increase of time due to this
mechanism no longer so relevant.

5.4.2 qido-rs
Turning now to the case of the QIDO-RS plugin, Table 5.5 shows the proposed solution performance

versus the original implementation. In this case, 26 queries were developed that were executed a total
of 500 times, on each ou the four DIM levels, resulting in a total of 52000 queries to the QIDO-RS
service, and the averages presented:

- Without protection Mechanism With protection Mechanism
Average (ms) 21 109
Average w/ response (ms) - 97
Average wo/response (ms) - 128

69

Table 5.4: Average values of time measured of 52000 query requests.

Particularly in the test of this service, in the analysis of the data collected during the tests, it was
decided to present, in the case of the solution with the permissions management mechanism, both the
global average and the average referring to the cases in which the server returned empty responses in
contrast to the media in which the server returns composite responses with results. In the cases where
there was no response, it was due to lack of user access permissions.

As expected, an empty response due to lack of permissions takes less time to get, since less query
is required to the database. The addition of 29 ms is due to the need to execute another query to get
the resources requested in the DBMS.

In relative terms between the system without multi-file support and with multi-file support, the
temporal execution time is respectively 21 ms and 109 ms. Thus, there is an increase of approximately
5 times the original value, an acceptable value for the operations in question.

5.4.3 wado-rs
In order to test the remaining service, the WADO-RS, a set of 988 SOPInstanceUIDs was obtained

and, for each of them, it was invoked the REST service. All instances belong to studies whose user has
authorization of access.

Four replicates were performed, totaling around 3930 time measurements. The averages are shown
below:

- Without protection Mechanism With protection Mechanism
Average (ms) 42 311

Table 5.5: Average values of time measured of 27800 files storage requests

As in previous cases, there was an increase in the execution time of requests for web access to
DICOM objects. In this case, the increase corresponds to approximately 7 times the original value.

Again, the explanation for this event is in the need to verify the authorization and permissions
relating to a particular operation over a category or access to a resource.

These operations include the verification of the existence of permissions in one of the user’s roles,
the user’s shared permissions list, or the resources’s membership in one of the facilities where the user
is associated. All these operations are intensive in requests of access to the database, reason why the
relative temporal increase is expected.

In the case where the access times are smaller, the di�erence becomes more noticeable, except in
cases where more queries/writing are required in the database.

70

5.4.4 scalability
Several load tests have been performed in order to validate server behavior and its responsiveness

when there is a high a�uence.

The tests performed using the Locust.io tool, in which it is possible to test endpoints and obtain
statistics on the operations performed. It allows individual testing of a set of arbitrary endpoints.
After starting execution indicating the host on which the tests will fall, the test phase can be started.
The tool simulates users with actual requests. In the test presented below in the 5.6 table, a total of
20.000 orders were made. These requests were made by a set of 100.000 virtual users at a rate of 50
user spawns per second. Requests are parallelized at the time of execution.

Name # reqs # fails Avg (ms) Min
(ms)

Max
(ms)

Median (ms) req/s

GET /categories 5162 0 1232 4 95403 96 3
GET /facilities 1668 0 1354 75 92591 200 1
POST /facilities 1100 0 1316 8 49920 100 0.2
GET /facilities
?id=1124

4836 0 1256 4 95664 88 2.5

DELETE
/facilityToOrganization

3436 0 1161 9 83023 99 2.1

POST
/facilityToOrganization

3000 0 1256 9 60154 99 1.1

POST /login 698 0 9 3 197 6 0.1

GET /operations 5714 0 1271 4
101390

90 2.4

GET /organizations 3766 0 1386 73
101395

170 2.2

POST /organizations 1552 0 1633 7 93983 110 0.7
GET /permissions 4648 0 1422 90 92518 190 2.7
GET /roles 4441 0 1287 72 95675 180 2.4
GET /users 3943 0 1154 72 95018 170 2.1
GET qido-rs /series 6036 0 2333 5 92390 310 3.5
Total 20000 0 1291 26

Table 5.6: Scrutiny of requests made to REST webservices performed by Locust.io

As is perceptible in table 5.6, there was no failures in the 20.000 orders, meaning that all orders
were completed with valid response.

On average, a total of 26 requests were made per second, which translates into an average response
time of around 1291 ms, with the QIDO-RS service being the slowest, with a mean of 2333 ms. However,
this service was also the most requested with 6036 requests, which may have resulted in an overload.
It should be noted that both the minimum and the median response times are far below the average
(between 3 and 90 ms and between 6 and 200 ms, respectively). It is possible to conclude that the

71

average response time was very influenced by the requests that represent the maximum value obtained
from the response time.

For each service, the percentage of requests completed in the time presented is displayed. Taking
the case of GET multi_archive/users, 100% of requests were answered in less than 95018 ms. However,
99% of total requests were answered at 16000 ms, which is a considerable drop in values. With the
help of table 5.7 we verify that 50% of requests were answered in less than 170 m.

Name # reqs 50% 66% 75% 80% 90% 95% 98% 99% 100%
GET /categories 5162 96 230 440 700 2400 6800 13000 20000 95403
GET /facilities 1668 200 350 540 800 2700 6700 13000 16000 92591
POST /facilities 1100 100 200 380 650 3300 9200 14000 21000 49920
GET /facilities?id 4836 88 220 430 650 2400 6900 13000 22000 95664
DELETE
/facilityToOrganization

3436 99 240 460 700 2500 6700 12000 18000 83023

POST
/facilityToOrganization

3000 99 230 410 670 2700 7400 14000 21000 60154

POST /login 698 6 8 9 11 18 33 52 69 197
GET /operations 5714 90 230 430 670 2600 7400 13000 20000 101390
GET /organizations 3766 170 290 470 710 2400 7400 15000 23000 101395
POST /organizations 1552 110 300 610 1000 5400 9700 15000 18000 93983
GET /permissions 4648 190 330 540 810 2900 7400 14000 23000 92518
GET /roles 4441 180 310 540 790 2700 6800 13000 20000 95675
GET /users 3943 170 290 470 700 2200 5900 12000 16000 95018
GET qido-rs /series 6036 310 1100 2300 3300 7200 12000 18000 24000 92390

Table 5.7: Percentage values of requests completed in the given time

72

chapter 6
Conclusions and Future
Work

6.1 conclusion
This dissertation main objective was to study and develop a user accounting mechanism for a

DICOM based PACS archive. The idea was to support a new concept of multi-archive medical imaging
repository that aggregates and manages several instances, resources, users and permissions. Therefore,
the work began by studying and analysing the existing access control mechanisms and permissions
management systems, in order to understand how state of the art solutions could be adapted to solve
the challenge. It was concluded that no existing solution satisfied the project requirements and a new
system was designed, implemented and validates in the scope of this dissertation.

It is possible to identify several contributions of the work described in this document. First, an
accounting mechanisms for medical imaging repositories; Secondly, the integration and evolution of
an open source platform, i.e. the Dicoogle PACS; Thirdly, the development of a Web API of services
for management of proposed architecture and transparent integration with third applications; Finally,
developed services were integrated with most recent DICOMWeb standard, supporting the STOW-RS,
QIDO-RS and WADO services.

The proposed architecture was validated through exhaustive tests and the results show that
temporal overhead introduced by services proposed is acceptable in a real-world environment.

6.2 future work
Although the contributions of this dissertation work are significant, there is still room for im-

provements and implementation of new functionalities. Next, we will present two future work paths
assuming the existence of a multi-archive solution:

73

• The implementation of a multi-user medical imaging archive integrated with personal cloud
storage services like, for instance, Dropbox, Google Drive or others;

• A web portal for end-user management of proposed architecture, consuming the services available
through Rest API.

74

chapter 7
Attachments

7.1 user guide
In this section a user guide will be presented, which will not only show the creation from the

zero of the database system, creating users and managing permissions, but will also show the use of
available DICOMWeb services (WADO, QIDO-RS and STOW-RS).

The user and permissions management platform has a default root user so that the first instance
management would be possible. Otherwise, all management attempts would be blocked on filters by
lack of authorization.

The following steps represent a workflow of operations in order to have permissions to perform
DICOMWeb requests.

1. Login
By invoking this step you can get the session token required for the next steps. We will use
username: dicoogle, password: dicoogle (root account)

curl --request POST --url http://localhost:8080/multi_archive/login
--header "content-type: application/x-www-form-urlencoded"
--data "username=dicoogle&password=dicoogle"

Listing 11: Login webservice call

{"status":"success","token":"31737d53-0ea8-4507-8ccc-899d037750e9"}

Listing 12: Login webservice response

2. Create Organization
The following request allows the creation of an Organization with the name "Demo Organization".

75

curl --request POST --url
http://localhost:8080/multi_archive/organizations --header
"authorization: 31737d53-0ea8-4507-8ccc-899d037750e9" --header
"content-type: application/x-www-form-urlencoded" --data
name=Demo\%20Organization

Listing 13: Create Organization webservice call

{"id":1105,"createdDate":"Thu Jun 15 01:48:37 WEST
2017","name":"Demo Organization"}

Listing 14: Create Organization webservice response

3. Create Facility
In this procedure it is possible to create a Facility with the following attributes:

• Name: Demo Facility
• Number: 0
• PostalCode: 0000-000
• Street: Demo Street
• uuidAtCP: 0000
• City: Demo City
• Country: Demo Country

curl --request POST --url
http://localhost:8080/multi_archive/facilities --header
"authorization: 31737d53-0ea8-4507-8ccc-899d037750e9" --header
"content-type: application/x-www-form-urlencoded" --data
"name=Demo\%20Facility&
number=0&postalCode=0000-000&street=Demo\%20Street&
uuidAtCP=00000000&city=Demo\%20City&country=Demo\%20Country"

Listing 15: Create Facility webservice call

{"id":1106,"createdDate":"2017-06-15 01:55:33.0","name":"Demo
Facility","number":"0","postalCode":"0000-000","street":"Demo
Street","uuid":"00000000","city":"Demo City","country":"Demo
Country"}

Listing 16: Create Facility webservice response

4. Append Facility – Organization
After executing the following request the “Demo Facility” will have “Demo Organization” has
its main organization.

76

curl --request POST --url
http://localhost:8080/multi_archive/facilityToOrganization
--header "content-type: application/x-www-form-urlencoded"
--data "idOrganization=1105&idFacility=1106" --header
"authorization: 31737d53-0ea8-4507-8ccc-899d037750e9"

Listing 17: Append Facility – Organization webservice call

5. Create User
A User will be created after the following procedure with the following attributes:

• firstName: DemoFirstName
• lastName: DemoLastName
• email: demo@email.com
• title: mr
• password: demopassword

curl --request POST --url http://localhost:8080/multi_archive/users
--header "content-type: application/x-www-form-urlencoded"
--header "authorization: 31737d53-0ea8-4507-8ccc-899d037750e9"
--data "firstName=DemoFirstName&lastName=DemoLastName
&email=demo\%40email.com&title=mr&password=demopassword"

Listing 18: Create User webservice call

{"id":1107,"createdDate":"2017-06-15 11:19:25.0",
"firstName":"DemoFirstName","lastName":"DemoLastName",
"title":"mr","email":"demo@email.com"}

Listing 19: Create User webservice response - A JSON containing all information about the
recently created User object but not password.

6. Append User to Organization
After this step, User created with ID 1107 will be associated to Organization with ID 1105.

curl --request POST --url
http://localhost:8080/multi_archive/userToOrganization --header
"content-type: application/x-www-form-urlencoded" --data
"idUser=1107&idOrganization=1105" --header "authorization:
16c92604-fc20-4f1e-a53e-6df4e2dbff57"

Listing 20: Command to append a user to an organization. Only error code 200 if it was
successful.

7. Append User to Facility
After this step, User created with ID 1107 will be associated to Facility with ID 1106.

77

curl --request DELETE --url
http://localhost:8080/multi_archive/userToFacility --header
"content-type: application/x-www-form-urlencoded" --data
"idUser=1107&idFacility=1106" --header "authorization:
96fe14a1-a5dc-4861-89b8-69b5c2a27e7d"

Listing 21: Command to append a user to an facility. Only error code 200 if it was successful.

8. Create Role
In this step, we will create the first Role in the system. The role will be called DemoRole.

curl --request POST --url http://localhost:8080/multi_archive/roles
--header "content-type: application/x-www-form-urlencoded"
--data name=DemoRole --header "Authorization:
96fe14a1-a5dc-4861-89b8-69b5c2a27e7d

Listing 22: Create Role webservice call

{"id":1108,"createdDate":"Thu Jun 15 23:34:03 WEST
2017","name":"DemoRole"}

Listing 23: Create Role webservice response

9. Create Categories
We need to create Categories. The main and required categories on the system are Organization,
Facility, Category, Operation, Permission, Role, User, Share and Resource. Each one of the
categories above will be created, in the same order.

curl --request POST --url
http://localhost:8080/multi_archive/categories --header
"content-type: application/x-www-form-urlencoded" --data
name=Organization --header "Authorization:
96fe14a1-a5dc-4861-89b8-69b5c2a27e7d"

{"id":8,"createdDate":"2017-04-08 19:42:23.0","name":"Organization"}

curl --request POST --url
http://localhost:8080/multi_archive/categories --header
"content-type: application/x-www-form-urlencoded" --data
name=Facility --header "Authorization:
96fe14a1-a5dc-4861-89b8-69b5c2a27e7d"

{"id":5,"createdDate":"2017-04-08 19:42:23.0","name":"Facility"}

78

curl --request POST --url
http://localhost:8080/multi_archive/categories --header
"content-type: application/x-www-form-urlencoded" --data
name=Category --header "Authorization:
96fe14a1-a5dc-4861-89b8-69b5c2a27e7d"

{"id":4,"createdDate":"2017-04-08 19:42:23.0","name":"Category"}

curl --request POST --url
http://localhost:8080/multi_archive/categories --header
"content-type: application/x-www-form-urlencoded" --data
name=Operation --header "Authorization:
96fe14a1-a5dc-4861-89b8-69b5c2a27e7d"

{"id":7,"createdDate":"2017-04-08 19:42:23.0","name":"Operation"}

curl --request POST --url
http://localhost:8080/multi_archive/categories --header
"content-type: application/x-www-form-urlencoded" --data
name=Permission --header "Authorization:
96fe14a1-a5dc-4861-89b8-69b5c2a27e7d"

{"id":9,"createdDate":"2017-04-08 19:42:24.0","name":"Permission"}

curl --request POST --url
http://localhost:8080/multi_archive/categories --header
"content-type: application/x-www-form-urlencoded" --data
name=Role --header "Authorization:
96fe14a1-a5dc-4861-89b8-69b5c2a27e7d"

{"id":11,"createdDate":"2017-04-08 19:42:24.0","name":"Role"}

curl --request POST --url
http://localhost:8080/multi_archive/categories --header
"content-type: application/x-www-form-urlencoded" --data
name=User --header "Authorization:
96fe14a1-a5dc-4861-89b8-69b5c2a27e7d"

{"id":13,"createdDate":"2017-04-08 19:42:24.0","name":"User"}

79

curl --request POST --url
http://localhost:8080/multi_archive/categories --header
"content-type: application/x-www-form-urlencoded" --data
name=Share --header "Authorization:
96fe14a1-a5dc-4861-89b8-69b5c2a27e7d"

{"id":12,"createdDate":"2017-04-08 19:42:24.0","name":"Share"}

curl --request POST --url
http://localhost:8080/multi_archive/categories --header
"content-type: application/x-www-form-urlencoded" --data
name=Resource --header "Authorization:
96fe14a1-a5dc-4861-89b8-69b5c2a27e7d"

{"id":10,"createdDate":"2017-04-08 19:42:24.0","name":"Resource"}

Listing 24: Create Categories webservice call. It is shown a command that invokes the web
service and then the respective response (JSON)

10. Create Operations
The are some fundamental Operations that are needed so the general users can perform the
basic procedures, like adding a file or list a file. The basic operations that we will address are:
Add, Delete, Get, List and Update.

curl --request POST --url
http://localhost:8080/multi_archive/operations --header
"content-type: application/x-www-form-urlencoded" --data
name=Add --header "Authorization:
96fe14a1-a5dc-4861-89b8-69b5c2a27e7d"

{"id":14,"createdDate":"2017-04-08 19:42:34.0","name":"Add"}

curl --request POST --url
http://localhost:8080/multi_archive/operations --header
"content-type: application/x-www-form-urlencoded" --data
name=Delete --header "Authorization:
96fe14a1-a5dc-4861-89b8-69b5c2a27e7d"

{"id":15,"createdDate":"2017-04-08 19:42:35.0","name":"Delete"}

curl --request POST --url

80

http://localhost:8080/multi_archive/operations --header
"content-type: application/x-www-form-urlencoded" --data
name=Get --header "Authorization:
96fe14a1-a5dc-4861-89b8-69b5c2a27e7d"

{"id":16,"createdDate":"2017-04-08 19:42:35.0","name":"Get"}

curl --request POST --url
http://localhost:8080/multi_archive/operations --header
"content-type: application/x-www-form-urlencoded" --data
name=List --header "Authorization:
96fe14a1-a5dc-4861-89b8-69b5c2a27e7d"

{"id":17,"createdDate":"2017-04-08 19:42:35.0","name":"List"}

curl --request POST --url
http://localhost:8080/multi_archive/operations --header
"content-type: application/x-www-form-urlencoded" --data
name=Update --header "Authorization:
96fe14a1-a5dc-4861-89b8-69b5c2a27e7d"

{"id":18,"createdDate":"2017-04-08 19:42:35.0","name":"Update"}

Listing 25: Create Operations webservice call. It is shown a command that invokes the web
service and then the respective response (JSON)

11. Create Permissions
Creating permissions is needed to let user created above do something. For this guide we will
create the following permissions:

• Add Resources
• List Resources
• Get Resources

curl --request POST --url
http://localhost:8080/multi_archive/permissions --header
"Authorization: 96fe14a1-a5dc-4861-89b8-69b5c2a27e7d" --header
"content-type: application/x-www-form-urlencoded" --data
"operationName=Add&categoryName=Resource"

{"id":36,"createdDate":"2017-04-08
19:44:37.0","resource":null,"operation":
{"id":14,"createdDate":"2017-04-08

81

19:42:34.0","name":"Add"},"category":
{"id":10,"createdDate":"2017-04-08
19:42:24.0","name":"Resource"}}

curl --request POST --url
http://localhost:8080/multi_archive/permissions --header
"Authorization: bedb9e12-93ea-4e3d-a517-7e9ba21c25a8" --header
"content-type: application/x-www-form-urlencoded" --data
"operationName=List&categoryName=Resource"

{"id":1109,"createdDate":"Fri Jun 16 02:09:31 WEST
2017","resource":null, "operation":
{"id":17,"createdDate":"2017-04-08 19:42:35.0","name":"List"},
"category": {"id":10,"createdDate":"2017-04-08
19:42:24.0","name":"Resource"}}r

curl --request POST --url
http://localhost:8080/multi_archive/permissions --header
"Authorization: bedb9e12-93ea-4e3d-a517-7e9ba21c25a8" --header
"content-type: application/x-www-form-urlencoded" --data
"operationName=Get&categoryName=Resource"

{"id":1110,"createdDate":"Fri Jun 16 02:10:22 WEST
2017","resource":null,"operation":
{"id":16,"createdDate":"2017-04-08
19:42:35.0","name":"Get"},"category":
{"id":10,"createdDate":"2017-04-08
19:42:24.0","name":"Resource"}}

Listing 26: Create Permissions webservice call. It is shown a command that invokes the web
service and then the respective response (JSON)

12. Append Permissions to Role
After the permissions are created we will associate them to DemoRole.

curl --request POST --url
http://localhost:8080/multi_archive/permissionToRole --header
"Authorization: bedb9e12-93ea-4e3d-a517-7e9ba21c25a8" --header
"content-type: application/x-www-form-urlencoded" --data
"idRole=1108&idPermission=36"

curl --request POST --url

82

http://localhost:8080/multi_archive/permissionToRole --header
"Authorization: bedb9e12-93ea-4e3d-a517-7e9ba21c25a8" --header
"content-type: application/x-www-form-urlencoded" --data
"idRole=1108&idPermission=1109"

curl --request POST --url
http://localhost:8080/multi_archive/permissionToRole --header
"Authorization: bedb9e12-93ea-4e3d-a517-7e9ba21c25a8" --header
"content-type: application/x-www-form-urlencoded" --data
"idRole=1108&idPermission=1110"

Listing 27: Command to append a paermission to a role. No JSON returned but only error
code 200 if it was successful.

13. Append Role to User
For now, Demo User will have only one Role: DemoRole. All associated permissions will be
permissions of Demo User.

curl --request POST --url
http://localhost:8080/multi_archive/roleToUser --header
"Authorization: bedb9e12-93ea-4e3d-a517-7e9ba21c25a8" --header
"content-type: application/x-www-form-urlencoded" --data
"idRole=1108&idUser=1107"

Listing 28: Command to append a user to a role. Only error code 200 if it was successful.

14. Logout
Now, we will logout the dicoogle (root) account.

curl --request POST --url
http://localhost:8080/multi_archive/logout --header
"content-type: application/x-www-form-urlencoded" --header
"Authorization: bedb9e12-93ea-4e3d-a517-7e9ba21c25a8"

Listing 29: Logging out from the system using the access token.

{"status":"success"}

Listing 30: Create Facility

15. Login with DemoUser
In this step, we will get the session token to the recently created DemoUser.

83

curl --request POST --url http://localhost:8080/multi_archive/login
--header "content-type: application/x-www-form-urlencoded"
--data "username=demo@email.com&password=demopassword"

{"status":"success","token":"f3346243-16ee-482f-9ad3-f285bf208c80"}

Listing 31: Create Facility

16. Request to STOW-RS using DICOM sample file
For user to request the storage of a DICOM file over the service STOW-RS, additionally to the
request without the accounting platform, the HTTP header Authorization must be sent with
the session token.

curl -i -X POST -H "Content-Type: multipart/form-data" --header
"authorization: f3346243-16ee-482f-9ad3-f285bf208c80" -F
"data=@/Users/rui/Downloads/ThesisDataset/xr_chicken2.dcm;
type=application/dicom" http://localhost:8080/ext/stow

Listing 32: STOW-RS

HTTP/1.1 100 Continue

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Access-Control-Allow-Headers: X-Requested-With, Content-Type,

Accept, Origin, Authorization, Content-Length
Access-Control-Allow-Methods: GET,POST,HEAD,PUT,DELETE
Date: Fri, 16 Jun 2017 09:14:16 GMT
Accept-Ranges: bytes
Server: Restlet-Framework/2.1.2
Vary: Accept-Charset, Accept-Encoding, Accept-Language, Accept
Content-Length: 0

Listing 33: Create Facility

17. Querying with QIDO-RS
Only users with the permission to list resources are available to perform this step. So, because
we gave that permission above, DemoUser is able to querying using QIDO-RS.

curl --request GET --url
"http://localhost:8080/ext/patient?PatientID=CHICKEN" --header
uthorization: 5aac7479-71a7-4610-b00f-1f1d030b1042"

Listing 34: Create Facility

84

{"studies": [{"attributes": {"StudyInstanceUID":
"1.2.392.200036.9125.2.36232624471.64658633050.171611"},
"series": [{"attributes":{"Modality":"CR", "SeriesInstanceUID":
"1.2.392.200036.9125.3.36232624471.64658633051.171614"},
"images":[{}]},
{"attributes":{"Modality":"CR","SeriesInstanceUID":
"1.2.392.200036.9125.3.36232624471.64658633051.171615"}
,"images":[{}]}]}]}

Listing 35: Create Facility

18. Web access using WADO-RS
In this step, we will request the access over web to a resource that we previously sent to Dicoogle
platform using STOW-RS.

curl --request GET --url http://localhost:8080/ext/instance/
1.3.12.2.1107.5.4.5.35017.4.0.494841222911107.512/frame/1
--header "Accept: multipart/related" --header "authorization:
5c719df1-6e77-4f55-b439-5b77f7e0c7d2" --header
"type:application/dicom"

Listing 36: Create Facility

85

Bibliography
[1] A. F. S. H. Article, Prepare for Disasters & Tackle Terabytes When Evaluating Medical Image

Archiving, 2008. [Online]. Available: http://ww2.frost.com.

[2] L. A. B. Silva, “Medical Imaging Services Supported on Cloud”, PhD thesis, 2011.

[3] S. Parker, Mcgraw-hill dictionary of scientific and technical terms. McGraw-Hill Education,
2003.

[4] E. Iadanza and J. Dyro, Clinical engineering handbook, ser. Biomedical Engineering. Elsevier
Science, 2004, isbn: 9780080476575.

[5] C. Costa, J. L. Oliveira, A. Silva, V. G. Ribeiro, and J. Ribeiro, “Design, development, ex-
ploitation and assessment of a Cardiology Web PACS”, Computer Methods and Programs in
Biomedicine, vol. 93, no. 3, pp. 273–282, 2009, issn: 01692607. doi: 10.1016/j.cmpb.2008.10.
015.

[6] O. S. Pianykh, Digital imaging and communications in medicine: A practical introduction and
survival guide, 1st ed. Springer Publishing Company, Incorporated, 2008.

[7] H. Huang, Pacs and imaging informatics: Basic principles and applications. Wiley, 2004.

[8] T. M. Godinho and C. Costa, “Distributed pacs: Performance and availability”, p. 83, 2013.

[9] J. Zhang, J. Sun, and J. N. Stahl, “PACS and Web-based image distribution and display”,
Computerized Medical Imaging and Graphics, vol. 27, no. 2, pp. 197–206, 2002, issn: 08956111.
doi: 10.1016/S0895-6111(02)00074-5.

[10] W. D. Bidgood, S. C. Horii, F. W. Prior, and D. E. Van Syckle, “Understanding and Using
DICOM, the Data Interchange Standard for Biomedical Imaging”, Journal of the American
Medical Informatics Association, vol. 4, no. 3, pp. 199–212, 1997.

[11] P. Mildenberger, M. Eichelberg, and E. Martin, “Introduction to the DICOM standard”,
European Radiology, vol. 12, no. 4, pp. 920–927, 2002.

[12] NEMA, Digital Imaging and Communications in Medicine (DICOM) Part 3: Information Object
Definitions. 2004.

[13] B. Kristianto, C. Wen-yaw, and T. Yuh-show, “DICOM Waveform Generator”, 2008.

[14] NEMA, Digital Imaging and Communications in Medicine (DICOM) Part 7 : Message Exchange.
2003, vol. 3.

[15] A. P. Alves, T. M. Godinho, and C. Costa, “Assessing the relational database model for
optimization of content discovery services in medical imaging repositories”, in 2016 IEEE 18th
International Conference on e-Health Networking, Applications and Services (Healthcom), IEEE,

87

http://ww2.frost.com
https://doi.org/10.1016/j.cmpb.2008.10.015
https://doi.org/10.1016/j.cmpb.2008.10.015
https://doi.org/10.1016/S0895-6111(02)00074-5

Sep. 2016, pp. 1–6, isbn: 978-1-5090-3370-6. doi: 10.1109/HealthCom.2016.7749484. [Online].
Available: http://ieeexplore.ieee.org/document/7749484/.

[16] L. A. B. Silva, C. Costa, and J. L. Oliveira, “Semantic search over DICOM Repositories”, in
Proceedings - 2014 IEEE International Conference on Healthcare Informatics, ICHI 2014, IEEE,
Sep. 2014, pp. 238–246, isbn: 9781479957019. doi: 10.1109/ICHI.2014.41. [Online]. Available:
http://ieeexplore.ieee.org/document/7052496/.

[17] G. V. Koutelakis and D. K. Lymperopoulos, “PACS through web compatible with DICOM
standard and WADO service: Advantages and implementation”, in Annual International Con-
ference of the IEEE Engineering in Medicine and Biology - Proceedings, IEEE, Aug. 2006,
pp. 2601–2605, isbn: 1424400325. doi: 10.1109/IEMBS.2006.260761. [Online]. Available:
http://ieeexplore.ieee.org/document/4462329/.

[18] NEMA, Digital Imaging and Communications in Medicine (DICOM) Part 18 : Web Access to
DICOM Persistent Objects (WADO). 2009, vol. 3, pp. 1–21.

[19] 6.5 WADO-RS Request/Response. [Online]. Available: http://dicom.nema.org/dicom/2013/
output/chtml/part18/sect%7B%5C_%7D6.5.html (visited on 01/26/2017).

[20] 6.6 STOW-RS Request/Response. [Online]. Available: http://dicom.nema.org/medical/
dicom/current/output/chtml/part18/sect%7B%5C_%7D6.6.html (visited on 01/26/2017).

[21] 6.7 QIDO-RS Request/Response. [Online]. Available: http://dicom.nema.org/medical/
dicom/current/output/chtml/part18/sect%7B%5C_%7D6.7.html (visited on 01/26/2017).

[22] F. Cao, H. K. Huang, and X. Q. Zhou, Medical image security in a HIPAA mandated PACS
environment, 2003.

[23] W. K. Seng, M. H. Kim, R. Besar, and F. Salleh, “A Secure Model for Medical Data Sharing”,
International Journal of Database Theory and Application, no. January 2008, pp. 45–52, 2006.

[24] A. Chaudhury, K. Nam, and H. R. Rao, “Management of information systems outsourcing: A
bidding perspective”, Journal of Management Information Systems, vol. 12, no. 2, pp. 131–159,
1995.

[25] A. Al-Haj, “Providing Integrity, Authenticity, and Confidentiality for Header and Pixel Data of
DICOM Images”, Journal of Digital Imaging, vol. 28, no. 2, pp. 179–187, Apr. 2015.

[26] S. Abolfazli, Z. Sanaei, M. H. Sanaei, M. Shojafar, and A. Gani, Encyclopedia of Cloud Computing.
2015, pp. 1–15, isbn: 9781118821978.

[27] E. Hammer-Lahav, “The oauth 1.0 protocol”, RFC Editor, RFC 5849, Apr. 2010, http :
//www.rfc-editor.org/rfc/rfc5849.txt. [Online]. Available: http://www.rfc-editor.
org/rfc/rfc5849.txt.

[28] R. Boyd, Getting Started with OAuth 2.0. O’Reilly, 2012, p. 82, isbn: 9781449311605. [Online].
Available: http://shop.oreilly.com/product/0636920021810.do.

[29] D. Hardt, “The oauth 2.0 authorization framework”, RFC Editor, RFC 6749, Oct. 2012,
http://www.rfc- editor.org/rfc/rfc6749.txt. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc6749.txt.

[30] “A primer to the oauth protocol”, Linux J., vol. 2011, no. 206, Jun. 2011, issn: 1075-3583.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1992856.1992864.

[31] K. Liu and K. Xu, “OAuth based authentication and authorization in open telco API”, in
Proceedings - 2012 International Conference on Computer Science and Electronics Engineering,
ICCSEE 2012, vol. 1, IEEE, Mar. 2012, pp. 176–179, isbn: 9780769546476. doi: 10.1109/
ICCSEE.2012.275. [Online]. Available: http://ieeexplore.ieee.org/document/6187855/.

88

https://doi.org/10.1109/HealthCom.2016.7749484
http://ieeexplore.ieee.org/document/7749484/
https://doi.org/10.1109/ICHI.2014.41
http://ieeexplore.ieee.org/document/7052496/
https://doi.org/10.1109/IEMBS.2006.260761
http://ieeexplore.ieee.org/document/4462329/
http://dicom.nema.org/dicom/2013/output/chtml/part18/sect%7B%5C_%7D6.5.html
http://dicom.nema.org/dicom/2013/output/chtml/part18/sect%7B%5C_%7D6.5.html
http://dicom.nema.org/medical/dicom/current/output/chtml/part18/sect%7B%5C_%7D6.6.html
http://dicom.nema.org/medical/dicom/current/output/chtml/part18/sect%7B%5C_%7D6.6.html
http://dicom.nema.org/medical/dicom/current/output/chtml/part18/sect%7B%5C_%7D6.7.html
http://dicom.nema.org/medical/dicom/current/output/chtml/part18/sect%7B%5C_%7D6.7.html
http://www.rfc-editor.org/rfc/rfc5849.txt
http://www.rfc-editor.org/rfc/rfc5849.txt
http://www.rfc-editor.org/rfc/rfc5849.txt
http://www.rfc-editor.org/rfc/rfc5849.txt
http://shop.oreilly.com/product/0636920021810.do
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc6749.txt
http://dl.acm.org/citation.cfm?id=1992856.1992864
https://doi.org/10.1109/ICCSEE.2012.275
https://doi.org/10.1109/ICCSEE.2012.275
http://ieeexplore.ieee.org/document/6187855/

[32] OASIS, OASIS Security Services (SAML) TC | OASIS, 2008. [Online]. Available: https :
//www.oasis- open.org/committees/tc%7B%5C_%7Dhome.php?wg%7B%5C_%7Dabbrev=
security%20http://www.oasis-open.org/committees/tc%7B%5C_%7Dhome.php?wg%7B%5C_
%7Dabbrev=security (visited on 07/11/2017).

[33] A. Armando, R. Carbone, L. Compagna, J. Cuellar, and L. Tobarra, “Formal analysis of SAML
2.0 web browser single sign-on”, in Proceedings of the 6th ACM workshop on Formal methods in
security engineering - FMSE ’08, 2008, pp. 1–10, isbn: 9781605582887. doi: 10.1145/1456396.
1456397.

[34] N. Ragouzis, J. Hughes, R. Philpott, E. Maler, P. Madsen, and T. Scavo, “Security Assertion
Markup Language (SAML) V2.0 Technical Overview (OASIS)”, May, no. February, p. 50, 2007.

[35] W. Puech and J. M. Rodrigues, “Crypto-Compression of Medical Images by Selective Encryption
of DCT”, EUSIPCO’05: European Signal Processing Conference, p. x, 2005. [Online]. Available:
http://hal-lirmm.ccsd.cnrs.fr/lirmm-00106485.

[36] W. Puech, “Image encryption and compression for medical image security”, in 2008 1st Inter-
national Workshops on Image Processing Theory, Tools and Applications, IPTA 2008, 2008,
isbn: 9781424433223. doi: 10.1109/IPTA.2008.4743800. [Online]. Available: https://hal-
lirmm.ccsd.cnrs.fr/lirmm-00371814.

[37] A. Kanso and M. Ghebleh, “An e�cient and robust image encryption scheme for medical
applications”, Communications in Nonlinear Science and Numerical Simulation, vol. 24, no. 1-3,
pp. 98–116, 2015, issn: 10075704. doi: 10.1016/j.cnsns.2014.12.005. [Online]. Available:
http://dx.doi.org/10.1016/j.cnsns.2014.12.005.

[38] M. Sokouti, A. Zakerolhosseini, and B. Sokouti, “Medical Image Encryption: An Application
for Improved Padding Based GGH Encryption Algorithm”, The Open Medical Informatics
Journal, vol. 10, no. 1, pp. 11–22, 2016, issn: 1874-4311. doi: 10.2174/1874431101610010011.
[Online]. Available: http : / / www . ncbi . nlm . nih . gov / pubmed / 27857824 % 20http : / /
www . pubmedcentral . nih . gov / articlerender . fcgi ? artid = PMC5090780 % 20http : / /
benthamopen.com/ABSTRACT/TOMINFOJ-10-11.

[39] L.-b. Zhang, Z.-l. Zhu, B.-q. Yang, W.-y. Liu, H.-f. Zhu, and M.-y. Zou, “Medical Image
Encryption and Compression Scheme Using Compressive Sensing and Pixel Swapping Based
Permutation Approach”, vol. 2015, 2015.

[40] W. Cao, Y. Zhou, C. Chen, and L. Xia, “Medical image encryption using edge maps”, Signal
Processing, vol. 132, no. September 2016, pp. 96–109, 2017, issn: 01651684. doi: 10.1016/j.
sigpro.2016.10.003. [Online]. Available: http://dx.doi.org/10.1016/j.sigpro.2016.10.
003.

[41] C. Costa, C. Ferreira, L. Bastião, L. Ribeiro, A. Silva, and J. L. Oliveira, “Dicoogle - An
open source peer-to-peer PACS”, Journal of Digital Imaging, vol. 24, no. 5, pp. 848–856,
Oct. 2011. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/20981467%20http:
//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3180530%20http://link.
springer.com/10.1007/s10278-010-9347-9.

[42] E. Pinho, T. Godinho, F. Valente, and C. Costa, A Multimodal Search Engine for Medical
Imaging Studies, 2016. doi: 10.1007/s10278-016-9903-z.

[43] C. Costa, F. Freitas, M. Pereira, A. Silva, and J. L. Oliveira, “Indexing and retrieving DICOM
data in disperse and unstructured archives”, International Journal of Computer Assisted
Radiology and Surgery, vol. 4, no. 1, pp. 71–77, Jan. 2009. doi: 10.1007/s11548-008-0269-7.
[Online]. Available: http://link.springer.com/10.1007/s11548-008-0269-7.

[44] F. Valente, C. Costa, and A. Silva, “Dicoogle, a Pacs Featuring Profiled Content Based Image
Retrieval”, PLoS ONE, vol. 8, no. 5, P. V. Benos, Ed., e61888, May 2013, issn: 19326203.

89

https://www.oasis-open.org/committees/tc%7B%5C_%7Dhome.php?wg%7B%5C_%7Dabbrev=security%20http://www.oasis-open.org/committees/tc%7B%5C_%7Dhome.php?wg%7B%5C_%7Dabbrev=security
https://www.oasis-open.org/committees/tc%7B%5C_%7Dhome.php?wg%7B%5C_%7Dabbrev=security%20http://www.oasis-open.org/committees/tc%7B%5C_%7Dhome.php?wg%7B%5C_%7Dabbrev=security
https://www.oasis-open.org/committees/tc%7B%5C_%7Dhome.php?wg%7B%5C_%7Dabbrev=security%20http://www.oasis-open.org/committees/tc%7B%5C_%7Dhome.php?wg%7B%5C_%7Dabbrev=security
https://www.oasis-open.org/committees/tc%7B%5C_%7Dhome.php?wg%7B%5C_%7Dabbrev=security%20http://www.oasis-open.org/committees/tc%7B%5C_%7Dhome.php?wg%7B%5C_%7Dabbrev=security
https://doi.org/10.1145/1456396.1456397
https://doi.org/10.1145/1456396.1456397
http://hal-lirmm.ccsd.cnrs.fr/lirmm-00106485
https://doi.org/10.1109/IPTA.2008.4743800
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00371814
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00371814
https://doi.org/10.1016/j.cnsns.2014.12.005
http://dx.doi.org/10.1016/j.cnsns.2014.12.005
https://doi.org/10.2174/1874431101610010011
http://www.ncbi.nlm.nih.gov/pubmed/27857824%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5090780%20http://benthamopen.com/ABSTRACT/TOMINFOJ-10-11
http://www.ncbi.nlm.nih.gov/pubmed/27857824%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5090780%20http://benthamopen.com/ABSTRACT/TOMINFOJ-10-11
http://www.ncbi.nlm.nih.gov/pubmed/27857824%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5090780%20http://benthamopen.com/ABSTRACT/TOMINFOJ-10-11
https://doi.org/10.1016/j.sigpro.2016.10.003
https://doi.org/10.1016/j.sigpro.2016.10.003
http://dx.doi.org/10.1016/j.sigpro.2016.10.003
http://dx.doi.org/10.1016/j.sigpro.2016.10.003
http://www.ncbi.nlm.nih.gov/pubmed/20981467%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3180530%20http://link.springer.com/10.1007/s10278-010-9347-9
http://www.ncbi.nlm.nih.gov/pubmed/20981467%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3180530%20http://link.springer.com/10.1007/s10278-010-9347-9
http://www.ncbi.nlm.nih.gov/pubmed/20981467%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3180530%20http://link.springer.com/10.1007/s10278-010-9347-9
https://doi.org/10.1007/s10278-016-9903-z
https://doi.org/10.1007/s11548-008-0269-7
http://link.springer.com/10.1007/s11548-008-0269-7

doi: 10.1371/journal.pone.0061888. [Online]. Available: http://dx.plos.org/10.1371/
journal.pone.0061888.

[45] C. Viana-Ferreira, C. Costa, and J. L. Oliveira, “Dicoogle relay - A cloud communications
bridge for medical imaging”, in Proceedings - IEEE Symposium on Computer-Based Medical
Systems, IEEE, Jun. 2012, pp. 1–6, isbn: 9781467320511. doi: 10.1109/CBMS.2012.6266402.
[Online]. Available: http://ieeexplore.ieee.org/document/6266402/.

[46] Dicoogle plugin development. [Online]. Available: https://github.com/bioinformatics-
ua/dicoogle/wiki/Plugin-Development (visited on 01/24/2017).

[47] L. A. B. Silva, “Federated architecture for biomedical data integration”, 2015.

[48] Google, Google Drive storage plans & pricing, 2016. [Online]. Available: https://support.
google.com/drive/answer/2375123?hl=en (visited on 01/29/2017).

[49] S. Devarakonda, P. Sevusu, H. Liu, R. Liu, L. Iftode, and B. Nath, “Real-time air quality
monitoring through mobile sensing in metropolitan areas”, Proceedings of the 2nd ACM SIGKDD
International Workshop on Urban Computing - UrbComp ’13, p. 1, 2013. doi: 10.1145/2505821.
2505834. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2505821.2505834.

[50] I. Claros, R. Cobos, E. Guerra, J. De Lara, A. Pescador, and J. Sanchez-Cuadrado, “Integrating
open services for building educational environments”, IEEE Global Engineering Education
Conference, EDUCON, pp. 1147–1156, 2013, issn: 21659559. doi: 10.1109/EduCon.2013.
6530253.

[51] Google, Cloud Storage - Online Data Storage - Google Cloud Platform, 2016. [Online]. Available:
https://cloud.google.com/storage/ (visited on 01/30/2017).

[52] Microsoft, Microsoft OneDrive, 2014. [Online]. Available: https://onedrive.live.com/about/
en-US/plans/ (visited on 01/29/2017).

[53] M. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel, “Amazon S3 for Science Grids: a
Viable Solution”, in Proc. ACM Int. Workshop on Data-aware Distributed Computing, 2008,
pp. 55–64, isbn: 978-1-60558-154-5. doi: http://doi.acm.org/10.1145/1383519.1383526.

[54] Amazon, Amazon Simple Storage Service (Amazon S3), 2011. [Online]. Available: https :
//aws.amazon.com/s3/%20http://aws.amazon.com/s3/ (visited on 01/30/2017).

[55] S. S. Garfinkel, “Commodity grid computing with Amazon’s S3 and EC2”, Usenix, pp. 7–13,
2007.

[56] D. Quick and K. K. R. Choo, “Dropbox analysis: Data remnants on user machines”, Digital
Investigation, vol. 10, no. 1, pp. 3–18, 2013, issn: 17422876. doi: 10.1016/j.diin.2013.02.003.

[57] I. Drago, M. Mellia, M. M Munafo, A. Sperotto, R. Sadre, and A. Pras, “Inside dropbox”,
the 2012 ACM conference, p. 481, 2012. doi: 10.1145/2398776.2398827. [Online]. Available:
http://traces.simpleweb.org/dropbox/%20http://dl.acm.org/citation.cfm?doid=
2398776.2398827%7B%5C%%7D5Cnpapers3://publication/doi/10.1145/2398776.2398827.

[58] Dropbox, Dropbox Business, 2014. [Online]. Available: https://www.dropbox.com/?landing=
dbv2/ (visited on 01/29/2017).

[59] R. W. Shirey, Internet Security Glossary, Version 2, RFC 4949, Aug. 2007. doi: 10.17487/
RFC4949. [Online]. Available: https://rfc-editor.org/rfc/rfc4949.txt.

[60] OACC | Java Application Security Framework. [Online]. Available: http://oaccframework.org/
(visited on 07/09/2017).

[61] Apache Shiro | Simple. Java. Security. [Online]. Available: https://shiro.apache.org/
(visited on 07/09/2017).

90

https://doi.org/10.1371/journal.pone.0061888
http://dx.plos.org/10.1371/journal.pone.0061888
http://dx.plos.org/10.1371/journal.pone.0061888
https://doi.org/10.1109/CBMS.2012.6266402
http://ieeexplore.ieee.org/document/6266402/
https://github.com/bioinformatics-ua/dicoogle/wiki/Plugin-Development
https://github.com/bioinformatics-ua/dicoogle/wiki/Plugin-Development
https://support.google.com/drive/answer/2375123?hl=en
https://support.google.com/drive/answer/2375123?hl=en
https://doi.org/10.1145/2505821.2505834
https://doi.org/10.1145/2505821.2505834
http://dl.acm.org/citation.cfm?doid=2505821.2505834
https://doi.org/10.1109/EduCon.2013.6530253
https://doi.org/10.1109/EduCon.2013.6530253
https://cloud.google.com/storage/
https://onedrive.live.com/about/en-US/plans/
https://onedrive.live.com/about/en-US/plans/
https://doi.org/http://doi.acm.org/10.1145/1383519.1383526
https://aws.amazon.com/s3/%20http://aws.amazon.com/s3/
https://aws.amazon.com/s3/%20http://aws.amazon.com/s3/
https://doi.org/10.1016/j.diin.2013.02.003
https://doi.org/10.1145/2398776.2398827
https://www.dropbox.com/?landing=dbv2/
https://www.dropbox.com/?landing=dbv2/
https://doi.org/10.17487/RFC4949
https://doi.org/10.17487/RFC4949
https://rfc-editor.org/rfc/rfc4949.txt
http://oaccframework.org/
https://shiro.apache.org/

[62] A. Alves, “DICOOGLE: No-SQL to support big data environments”, 2016.

[63] Hibernate, Hibernate. Everything data. - Hibernate, 2015. [Online]. Available: http : / /
hibernate.org/ (visited on 07/07/2017).

[64] U. Bioinformatics, Dicoogle - Open Source PACS, 2017. [Online]. Available: https://github.
com/bioinformatics-ua/dicoogle (visited on 07/08/2017).

91

http://hibernate.org/
http://hibernate.org/
https://github.com/bioinformatics-ua/dicoogle
https://github.com/bioinformatics-ua/dicoogle

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Overview
	Goals
	Outlines

	State of the Art
	Overview
	Picture Archive and Communication System
	Digital Image Communications In Medicine
	DICOM Information Model
	DICOM Data Format
	DICOM Services
	DICOMweb

	Security
	Privacy and Confidentiality
	Authentication Mechanisms
	Image Encryption

	Dicoogle
	Storage Plugins
	Index Plugins
	Query Plugins

	Cloud Storage Services
	Google Drive
	Google Storage
	One Drive
	AWS S3
	Dropbox

	Access Control Mechanisms
	OACC
	Apache Shiro

	System Wide Requirements
	System Wide Requirements
	Functional Requirements
	Non-Functional Requirements
	Use Cases

	Architecture and Implementation
	Introduction
	Proposal
	Data Model
	Data Persistence
	Serializers
	Managers

	Services
	Login
	Logout
	Manage Users
	Manage Facilities
	Manage Organizations
	Manage Operations
	Manage Categories
	Manage Permissions
	Manage Roles
	Append/Remove User-Facility
	Append/Remove User-Organization
	Append/Remove Permission-Role
	Append/Remove Facility-Organization
	Append/Remove Category-Permission
	Append/Remove Operation-Permission
	Share

	DICOMWeb
	WADO-RS
	STOW-RS
	QIDO-RS

	Sql-Dim

	Results and Discussion
	Results
	Test Environment
	Test Methodology
	Test Results
	STOW-RS
	QIDO-RS
	WADO-RS
	Scalability

	Conclusions and Future Work
	Conclusion
	Future Work

	Attachments
	User guide

	Bibliography

