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A crescente necessidade de sistemas de funcionamento auténomo aliada a
reducdo de consumo por parte dos dispositivos microeletrénicos ao longo dos
altimos anos, tem motivado a investigac3o de dispositivos para auto geracio.
O desenvolvimento de um dispositivo para energy harvesting, considerando
uma determinada aplicagdo, requer o seu estudo e otimizagdo. Consequente-
mente, a modelacio do sistema para efeitos de simulacdo torna-se impera-
tiva. A utilizacdo de modelos matematicos analiticos ou FEM é uma abor-
dagem standard no desenvolvimento de um modelo para computacdo. No
entanto, estas abordagens apresentam-se morosas, devido as resticdes tem-
porais estabelecidas ndo sé pelo desenvolvimento do modelo, mas também
pela sua simulacdo. Neste trabalho, a aplicacio de Redes Neuronais Artifi-
ciais para a modelacdo da dindmica de um harvester baseado em levitacdo
magnética é investigada. A recolha de dados requerida pela metodologia
das Redes Neuronais Artificiais imp6s o desenvolvimento de um dispositivo
adequado para a aquisicdo de dados intrinsecos ao sistema. Uma estacdo
de testes foi construida com o objetivo de induzir excitacdes rotacionais no
dispositivo e adquirir a dindmica de movimento mecanico dos imanes em
levitacdo. Diferentes arquiteturas de redes e técnicas de implementacio sdo
abordadas neste trabalho, de modo a otimizar as caracteristicas do modelo.
Das diferentes abordagens tidas para implementacdo de um modelo de redes
neuronais, a configuracdo denominada neste trabalho como NARX BRoc
permitiu a obtenc3o de correlacbes superiores a 95% para simula¢ées dentro
e fora da gama de treino, quando comparadas com resultados experimentais.
O desempenho do gerador desenvolvido é também analisado e discutido de
acordo com aplicacées pretendidas
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The increasing necessity for autonomous functioning systems alied with com-
sumption reduction by microelectronic devices over the last years, has mo-
tivated the research on self-powering devices for remote applications. De-
veloping an energy harvestring device for a determined application requires
its study and optimization. Therefore, modeling the dynamics of the system
for simulation purposes becomes mandatory. The use of analytical math-
ematical models or FEM is a standard approach for the development of
computable models. However, this approach reveals to be time-consuming
due to temporal restrictions established not only by the model development
but also by its simulation. This work investigates the application of Artificial
Neural Networks on the modeling of magnetic levitation systems for energy
harvesting purposes. The data collection implied by a Neural Network ap-
proach demanded the development of a device suitable for the acquirement
of information intrinsic to the system. A testing station was built with the
goal to induce rotational excitations on the device and acquire the motion
dynamics of the levitation magnet. Different network architectures and im-
plementation techniques are approached in this work in order to optimize the
characteristics of the model. From the different approaches taken for proper
model implementation, the configuration named in this work as NARX BRo¢
allowed the attainment of correlation values above 95% for simulations inside
and outside the training range, when compared with experimental results.
Also, the performance of the developped generator is analyzed and discussed
according to intended applications
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Chapter 1

Introduction

1.1 Context

In the course of the last four decades the development of low consumption electronic devices
has been a field of huge technological advancements. Those advances allied with a continuous
evolution of wireless communications and a progressive size reduction of electronic devices in
general, has allowed an application range enlargement for autonomous systems for data acquire-
ment and transmission [1]. As a result of this technological progress the interest in developing
an equally self-employed and renewable energy source led the academic community to resort to
Energy Harvesting technologies. This concept, also known as energy scavenging, represents a pro-
cess from which it is possible to draw electrical energy from a certain environment, usually for low
consumption applications.

The wide range of applicable fields for this energy generation technique motivates the inves-
tigation of transduction systems for several environments with distinct characteristics and energy
sources where there is the need to power electronic circuits or other components, whether being
for data reading or transmission, manipulating a physical variable or any other low power appli-
cation [2].

From the wide variety of potential electrical energy sources, a considerable number of meth-
ods to obtain it arises, multiplying the number of devices and configurations already developed
and the possibility for new ones to be engineered. While Solar, Chemical and Thermal power are
considered viable sources, the harnessing of energy from natural or artificial motion has been rec-
ognized as one of the most applicable energy sources for the transduction of electric power [3,
4].

The harness of electrical energy from motion is mainly accomplished through one of the three
transduction principles, piezoelectricity, electrostatics or electromagnetic induction. All three
present inherent advantages and disadvantages, however, piezoelectric and electromagnetic gen-
erators have been receiving special attention from the academic community, particularly because
of their higher energy density, easy application and reduced maintenance requirements [5, 6].

The design and conception of a motion energy transduction system must be performed not
only to take advantage of available mechanical energy in the surrounding environment, but also
in order to reduce the need of human intervention whether for maintenance or any other kind of
manipulation [7, 8]. Features like functional and manufacturing simplicity, reliability, low main-
tenance requirement and low intermittence are key topics when approaching the development of
an energy harvesting device.

Magnetic levitation based harvesters use the electromagnetic induction principle for motion
to electricity transduction. The varying magnetic flux through a coil induces an electromotive
force on the coil which results in a current when the circuit is closed with a load resistance. The



electromagnetic induction allied with a magnetic levitation architecture has been proving its ver-
satility and reliability in numerous energy transduction applications. This induction mechanism
presents a simple functioning principle as well as good efficiency and low degradation, making
this an excellent transduction method to develop a low cost, highly autonomous and long lasting
harvester device (figure 1.1). In addition, the replacement of a mechanical transmission system
for a magnetic levitation system allows the removal of components like springs or other parts used
to transfer inertial energy, diminishing losses through mechanical dissipation.

end magnet

magnet
— spacer

o— coil

F—— cylinder

Figure 1.1: LBEH with electromagnetic transduction principle [9]



1.2 Objectives

The proposed work for this thesis consists in the design, construction and modeling of the
dynamics for a motion-driven LBEH generator prototype. The mathematical modeling though
Analytical, Semi-Analytical, Numerical or Empirical analysis has been the main approach taken in
the literature, however, modeling the architecture of an energy harvester is usually a cumbersome
and time consuming process, mainly when high accuracy is demanded. Machine Learning tools
like Artificial Neural Networks(ANN) are known for the ability of emulating non-linear dynamic
systems over time, such as the proposed generator [10, 11].

Having ANN mathematical modeling techniques into account, and considering the purpose of
this prototype its dynamic analysis, for subsequent dimensional and functional optimization, the
mining for the maximum amount of data regarding its performance becomes a requirement. The
acquired data aims for the creation of an output database, function of the behavior of the generator
under distinct external conditions, making it possible to train a neural network structure.

The necessity for data mining implies the development of a testing platform, capable of emu-
lating the stimulation that would be applied to the generator in its potential working environment
and consequently the acquisition module able to read and save the data extracted from the func-
tioning process of the generator when the excitation is applied.

In this way, the main objectives for this thesis may be summarized in the following topics:

* Development and construction of a generator prototype for the transduction of motion en-
ergy into electricity.

* Development and programming of a test bench for the generator, including acquisition
module and actuator.

¢ Structuring of a neural network able to replicate the dynamics of the device.

* Acquired data implementation and network training for prediction simulations.






Chapter 2

Literature review

2.1 LBEH concepts

Harvesting energy from the motion of artificial or natural environments has been showing
great potential for a wide range of applications. The existence of several applicable transduction
methods and the vast number of possible sources makes this a very rich and diversified area of in-
vestigation concerning architectures of harvesters. However, favorable features provided by elec-
tromagnetic levitation harvesters makes it a very important subject of study for the academical
community.

According to reviewed literature, magnetic levitation harvesters possess rather similar struc-
tural configurations. It often consists in a levitating case on which a free magnet levitates due
to magnetic repulsion, as can be seen in figure 2.1. Cylindrical harvesters are the most common
structural shape presented on the literature, however, other parameters and aspects are proposed
in several publications[12, 13].

A standard configuration by Soares dos Santos et al [5], in which a small dimension cylindrical
harvester is presented for low consumption applications. Figure 2.1 shows the proposed generator
on the referred article.

Figure 2.1: Proposed magnetic levitation harvester by Soares dos Santos et al [5]

While assuming a classical cylindrical configuration, other generators are presented with var-
ious enhancement features or just dimensional variations. Mann and Owens [2] propose a rather
similar device (figure 2.2), however, adding a guiding wire for friction reduction and external mag-
nets, provide the harvester a bistable potential well, thus increasing its nonlinear properties.



Figure 2.2: LBEH with guiding wire and external magnets proposed by B.RPMann et al. [2]

Nammari et al [12] also propose a device with similar configuration, that combines the non-
linearities of the magnetic forces with mechanical springs linear properties in order to evaluate its
behavior for a wide range of mechanical and magnetic stiffness ratios (figure 2.3).

Figure 2.3: Electromagnetic levitation harvester with magnetic and mechanic spring combination
(12]

Other approaches take into consideration heavier mass systems for lower frequency applica-
tions, where despite architectures similar to the previously presented, dimensional enlargement
is considered in order to provide more inertia to the system [14, 15].

Outside cylindrical configurations, Berdy et al. [6] proposed a block shaped harvester in order
to allow a thinner device. The overall structure and working principles are analogous to the ones
presented previously, in this case, disk or ring magnets were replaced by parallelepiped magnets,
as can be seen in figure 2.4



|

—

Figure 2.4: Box shaped magnetic levitation harvester proposed by Berdy et al. [6]

2.2 LBEH modeling

The development of the governing mathematical equations for a LBEH is one of the most
important steps in its development and optimization. The dynamic simulation, and the tran-
sient analysis of the system provide important information for dimensional tuning. For a better
comprehension of the various interpretations made by each author, the equations have been re-
written in order to comply an homogeneous variable system presented in the nomenclature. It
has also been considered a global referential system, so the analysis made in the different articles
can be correctly interpreted. The adopted referential system can be seen in figure 2.5.

D 77
Figure 2.5: Referential structure used for modeling analysis

Although power outputs are often modeled and computed, this review focuses on the analysis
of parameters that play a direct role on the motion differential equations. Those variables are the
following:

» Magnetic Field of stationary and levitating magnets : Magnetic Field density emanated from both
constrained and free magnets

« Interaction between magnetic forces: Repulsive forces between two or more magnets



¢ Induced eletromotive force: Induced eletromotive force resultant from the relative motion be-
tween coil and magnet

¢ Coil induced current: Eletrical current generated by the eletromotive force induced in the coil

« Friction and Damping Forces: Forces resultant from mechanical contacts, Lorentz force or air
flow resistance

In the literature the described topics are often approached using 1 of 4 different mathematical
methodologies, Analytical, Semi-Analytical, using Numerical techniques like FEM or using Empir-
ical approaches [2, 5, 9, 16].

Analyzing the literature it is possible to conclude that there are two main methodologies con-
cerning the dynamic modeling for a levitation system. Most authors opt for the classical second
order differential spring damper mass equation, which is a trustworthy method to model this kind
of mechanical systems [4, 5, 6, 9, 12, 14, 15, 17, 18]. On the other hand, some authors prefer
to analyze the frequency response of the levitating magnet using the Multiple Scale technique to
approximate the solution of the perturbation problem [16, 19]. For the differential analysis, the
canonic equation for system representation is generally set as —mZ = mX + cx + kjyqgx [4]. This
equation expresses the response of the magnet when an external excitation is applied to the LBEH
body. In this type of analysis, the biggest difference studies comes from the way that the system
variables modeling is performed. Also, some authors also take into consideration the dry friction
forces, Ff;. that actuate on the LBEH system.

Magnetic Field

Magnetic field modeling is required for a well developed model. This is due to its influence on
all the electromagnetic system properties, from magnetic repulsive forces, to emf, induced current
and the resultant magnetic damping force. Proper definition of the magnetic field provides a more
reliable model of a LBEH system. The majority of the reviewed literature includes this step in
their analysis, mostly using analytical and FEM techniques. Both Coulomb and Equivalent Surface
Current models have been used by authors to obtain the magnetic flux density as a function of
radial and axial distances or of a 3 dimensional coordinate. Berdy et al.[6] used the Coulombian
model [20] to calculate the z-directed flux at an arbitrary point in a three-dimensional coordinate
system for a block magnet.

The Equivalent Surface Current [21] model is also used in the literature to model the magnetic
flux density as a function of z and r to the center of the magnet. In this analysis the author dis-
cretized the magnet into a finite set of current loop elements and then superimposes the magnetic
fields of the constituent current loops to obtain the magnetic flux density [5].

In numerical approaches to this problem, the FEM is prominent amongst studies [4, 22]. Sar-
avia et al. [9] used this technique to compute the magnetic field on a LBEH magnet array and
respective fixed magnets, as well as the influence on each other. Figure 2.6, shows an example of
the magnetic field FEM computation result. Wang et al. [14] also use this technique to tackle the
problem, the authors focus on the effect of magnetic pole inversion on the magnetic flux density
of a magnet array, figure 2.7.



6394€-001 : >6.731€-001
60586001 : 6.391-001

Densit Piot: B, Tesia

Figure 2.6: FEM simulations for magnetic flux density distribution [9]
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Interaction Magnetic Forces

For the magnetic levitation and restoring forces modeling, several different approaches are
taken in the literature. One of the most common is an Numerical/Empirical method that consists
in the fitting of real measurements (figure 2.8) into a power series . Mann et al. as well as other
authors [9, 14, 15, 19] use this approach with practical measured values. It is most often used a
polynomial with order 3 and 1 terms, k;x + ksx®.

Considering purely Analytical approaches, Bernal et al [16] considered the equation based on
the Coulombian model, where the force exerted by an external magnetic field B, on 2D magnets
with magnetization M is given by equation 2.1.

F= —f (M.7)B(x)d?x, 2.1)
S

Considering the magnets interacting surfaces, the authors then obtains a derivable polar coor-
dinate expression 2.2, from which its possible to compute force values recurring to Bessel integral
functions of order one.

dM/Z 21
FZ=M(f f B.(x)dBpdf
0 0

dM/Z 21
- f f B.(x)d6pdd ) 22)
x=0 Jo 0 x==hy
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Figure 2.8: Measured values for curve fitting [19]

Nammari et al.[12] take a hybrid approach when analytically computing the magnetic forces
deriving the interaction energy between magnets recurring to the Bessel functions [5], then apply-
ing the previously referred polynomial fitting technique to the obtained values in order to enhance
computational efficiency with a simpler accurate model.

Electromotive Induced Force

This variable is most frequently derived from Faraday’s Law of induction. However, some more
exhaustive approaches use the Ampeére’s Circuital law [4] or equations like the Maxwell-Faraday
one for the modeling of electromotive induced force. Another variable parameter is the coils con-
figuration itself. Some Semi-Analytical analysis take into consideration a discrete coil made of
individual circular rings [5] or even as a solid cylindrical tube with dimensions similar to the ones
of the real coil [17].

From the Faraday’s Law of induction, many computable equations are obtained, resulting from
different approaches and derivations of it. Some authors apply it almost directly, considering a
voltage proportional to the speed of the magnet, ¢ = a%, in which the proportion term is the
magnetic coupling coefficient [6]. In studies like the one published by Kecik et al. [15], a dynamic
coupling coefficient is modeled, this model takes into consideration the variable couple coefficient
effect in the induced emf and also its effect on the dynamics of the device.

Other authors like Saravia et al [9] apply this Law to use in a discrete analysis, where it is pos-
sible to obtain the summation of the flux in every loop of the coil as can be seen in equation 2.3.

nc nc
e=-() | Bandai)i=-) o'% (2.3)
i=1v$ i=1

In a similar approach to the one proposed by Saravia et al [9], Soares dos Santos et al [5] makes
use of the Maxwell-Faraday equation to model the output voltage in the coil generated by the time-
varying magnetic flux that permeates it. The author takes into consideration a coil composed of a
set of singular circular turns and a 3D surface bounded by a closed contour defined by each turn.
From the original Maxwell-Faraday equation for induction 2.4

VxE=—-———, 2.4
x a7 (2.4)

a computable equation is obtained using the Kelvin-Stokes theorem and considering an uni-
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form spatial distribution along coils,

Kl N, N,
V=2n&(z )

Tj
B,(r, Zk)rdr) (2.5)
k=1j=170

Coil induced current

A standard framework to obtain the current induced in the coil is to directly apply Ohm’s Law,
V = Ryotqi-1, with the dynamic electromotive force induced in the circuit. This approach is most
times done taking into account voltage as, V = a.x, but it is mostly accurately computed when
considering also a dynamic coupling coefficient [6, 12]. Berdy et al. took this aspect into consider-
ation in their article and simulated current values using equation 2.6.

. a(x(1)x
(f)=—7-— (2.6)
Rroad + Rcoil
More complete approaches account not only the resistive load of the system but also inductive
loads [2, 5, 16]. Relating the electromotive induced force on the coil with the impedance through
differential equations, Mann et al. formulated the problem using equation 2.7. Analogous ap-

proaches taken in related studies [5, 16, 9] use similar equations.
Li+iR+ax=0 2.7)

Friction and Damping Forces

One of the most important set of variables to model when looking to accurately simulate the
dynamics of an harvester are the friction and damping forces. The Karnopp friction model was
used in the literature to model the friction forces between moving magnet and the inner surface
of the device [5]. This model considers the speed of the magnet to compute the referred forces.

fre if = fpw, <fre <fbwl7
Fpy = 4 fooy + Koy o i 08
~feo, + k,,nd—); if 45 < Vi
Where,
fre=mi—mg—Fpag, + Frag, — Fe (2.9)

While the force resultant on the magnet lies between the break-away interval (fyw, <fre <fow,),
friction equals to fe.

After distinguishing those force limits, the model defines two different friction conditions for
each movement direction, in which f,, and fcop represent the Coulomb friction forces for positive
and negative speeds respectively, while k,, and k,, represent the damping coefficients for the
same conditions.

Damping forces are approached in the literature mainly accounting for two main principles:
the viscous damping and the electromagnetic damping. While viscous damping is always consid-
ered according to static models [4, 5, 19], the damping resultant from Lorentz Force on the coil has
strong dynamic features. Berdy et al. [6], consider a position dependent electromagnetic damping
coefficient according to the equation 2.10.

() = L) 2.10)
¢ RLoad + RCoil '
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For compactness sake, a qualitative analysis to several reviewed studies on the subject is pre-
sented in tables 2.1 and 2.2.
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Authorf[Article]

Magnetic Field

Interaction Magnetic Forces

Eletromotive Induced Force

Coil Induced Current

Friction and Damping Forces

B.PMann et al.
[19]

Empirical/Numerical Method Real Mea-
surements fitted into a power

series Fmag (x) = 23

n
anXx
n=0%"

Analytical Method Kirchoff  Law ap-
plied to the generator circuit

. X
i@
Rpoad*Rcoil

Analytical Method Static damping coefi-
cient ¢, where ¢ = cp + ce and

Ce = R 0T R
load Rint

B.PMann et al.
[2]

Analytical Method Magnetic field cal-
culated at a location rp due
to a magnet located at rg is

Ho o MsTpls

Analytical Method Magnetic interaction
forces calculated from the poten-
tial energy of a magnet at rp in the
field generated by a magnet at rg
isU=-mp.B

Differential Analysis Use of a first order dif-
ferential equation to relate dynam-
ics and current output Li + iR +
ax=0

D.EBerdy et al [6]

Analytical Method Use of Coulom-
bian model to calculate
magnetic flux density at
point (i,j,k) for block
shaped magnet

Analytical Method Use of Coulombian
model to calculate force between
two rectangular magnets

Analytical Method Use of Faraday’s law of induc-
tion to calculate the emf induced on the

le=qdX
c01lsfadt

Analytical Method Ohm’s Law applied
to circuit with dynamic mag-
netic coupling coeficient
i(1) = (D)X

RpoadtRcoil

Analytical Method Consideration of static
Fpo:. = (1)
Fric = “mod (1)
namic Fe = ce(z(1))z(1)

cp and dy-

A.R.Foisal et al
(4]

Numerical Method Magnetic flux
density in a coil produced
by a magnet at a distance of

dyic

Analytical/Numerical Method Resultant
magnetic force equations set as
HoHm [ He
4an 5%
and estimation of kmag using the
linear region of simulation

F=

H,
(sz] =kmagx

Analytical Method Reference to Ampére’s Cir-
cuital Law with voltage across coil given
bye=-BLpx

Analytical Method Static total damping co-
efficient ¢ = cp + ce with ce =
(N.B)?
Rpoad*Rcoil*i®Lcoil

A.G.Bernal et al
[16]

Analytical/Numerical Method Use of
the magnetic scalar potential
to obtain the magnetic field
density equation and further
comparison with FEM model

Analytical Method Single Magnet force
equations obtained from the
integration  of the surface
term of magnetostatic field
F = $g(M.7)Be(x)d% x

Analytical Method Integration of the the emf on
the coil from Faraday’s law in integral
form fc E.dl=- [g %—?dzx

Differential Analysis Induced current rela-
tion with emf equation set as ¢ =

(Reoil * Rpoad)i+Leoilt

M.L.Morgado et
al[17]

Analytical Method Consideration of
the Magnetic field density as
the product of the gradient
with the magnetic potential
vector B=V x A

Semi-Analytical Method Modeling of both
magnets forces using amperian
current model equations [23]

C.M.Saravia et al
(91

Empirical/Numerical Method Use of
the FEM to model the mag-
netic field density and its
mutual influence inside and
outside all the magnets

Empirical/Numerical Method Real Mea-
surements fitted into a power se-

ries Fmag (x) = aox+a3x3+a5x5

Analytical Method Use of Faraday’s Law to obtain
the induced voltage in the coil

Numerical Method Representation of the
eletromechanical system in state
space form and integration using
the Runge-Kutta algorithm

Analythical Method Static considera-
tion of viscous damping coeff.
Fq = cqx, friction damping coeff.
Ff = Cpsign(x] and electromag-
z¢H?
Rrotal

netic damping coeff. ce =

Table 2.1: LBEH modeling Summary I
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Author|[Article]

Magnetic Field

Interaction Magnetic Forces

Electromotive Induced Force

Coil Induced Current

Friction and Damping Forces

M.P. Santos et al
5]

Semi-Analytical Method Use of the
equivalent surface current
model and discretization
of the magnet into a finite
set of current loops. Use of
elliptic integrals of first to
third order

Analytical Method Derivation of the inter-
action energy between magnets re-
curring to the Bessel function to
obtain the computation model

Semi-Analytical Method Consideration
of the coil as a set of singular
turns. Use of the Faraday-Maxwell
equation to model the induced
emf

Analytical Method Consideration and mod-
ulation of the magnetic damping
force, and dry friction force using
the Karnopp friction model

Kecik et al. [15]

Numerical Method Real Measurements fit-
ted into a power series Fmag (x)=

g an”

Analytical Method Constant air flow damp-
ing coeff. c¢q and dynamic elec-
tromagnetic couple coefficient
ce(z(1))

Wang et al [14]

Semi-Analytical Method Use of the
equivalent surface current
model and discretization
of the magnet into a finite
set of current loops. Use of
elliptic integrals of first to
third order

Analytical Method Derivation of the inter-
action energy between magnets re-
curring to the Bessel function to
obtain the computation model

Semi-Analytical Method Consideration
of the coil as a set of singular
turns. Use of the Faraday-Maxwell
equation to model the emf in the
coil

Analytical Method Consideration and mod-
ulation of the magnetic damping
force, and dry friction force using
the Karnopp friction model

Table 2.2: LBEH modeling Summary II




2.3 ANN on dynamic system modeling

Artificial Neural Networks are a prominent Machine Learning algorithm, which allow for the
computation of a quite extensive range of arithmetical and logical functions[10].

Machine learning algorithms are used nowadays in many application, such as function ap-
proximation, pattern recognition, prediction or clustering [24]. The use of ANN in dynamic system
modeling falls under the Prediction category, for which Feed-Forward Multi-Layer ANN are most
frequently used. Most reviewed studies use ANN dynamic systems models as a control implemen-
tation tool [11, 25, 26]. Furthermore this method can also be used for system identification analysis
or behavior prediction[10, 27]. This applies to nonlinear dynamics such as mass-spring-damper
or magnetic levitation systems. However, besides the wide application range of this methodology,
its direct application on LBEH systems modeling has not been registered in the literature .
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Chapter 3

Method

3.1 Energy Harvester Prototype

A magnetic levitation based harvester for low frequencies application is proposed in this sec-
tion. The prototype developed in this work takes into consideration existent devices that use non-
linear properties from magnetic levitation to maximize motion potential, thus maximizing out-
puts [5, 14, 15, 18].

In this work, the presented architecture seeks to solve inherent questions to the energy har-
vesting viability issues. Reliability, low maintenance requirement and low intermittence, are rele-
vant subjects on the approach taken during the development and construction of the device.

3.1.1 Dimensioning of the harvester

When looking to develop an energy harvester prototype with a certain architecture, dimen-
sioning the device for intended applications is a step of major impact on its overall performance
and viability [7, 8].

Theoretical LBEH intended application conditions and inherent properties where used as de-
velopment foundations. The emulation of such inputs into an oversimplified model of the device
helps to have a reference of its behavior for certain overall measurements, hence being a very
useful tool for the attribution of dimensions to the prototype. For this work, a few a priori as-
sumptions where used, in order to perform simulations and obtain an approximate response of
the developing generator, for certain conditions.

Length dimensioning

The intended high inertial properties (when compared to other magnetic levitation devices [5,
28, 29]) required for the harvester, defined some construction and dimensional principles, which
were used for initial size attribution in performed simulations. For the sake of compactness and
prototype construction viability, a dimensional range was set from 200 mm to 300 mm. This gap
was used for posterior simulation and result comparison.

Taking only into account the gravitational, centrifugal and magnetic interaction forces, an
oversimplified model was sketched as can be seen in figure 3.1. The horizontal disposition of the
device comes from its main goal application being for rotation purposes, from which its analysis
in this configuration becomes important.

Considering this scheme, where a referential x is considered at the center of the device, a gov-
erning equation 3.1 was formulated. In this model, friction and damping forces where considered
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Figure 3.1: Simplified analysis to horizontal magnetic levitation system

negligible, in order to perform a simple initial analysis to the dynamics of the magnet [5, 9].

Mm% = Fyag (X) — Finag, (x) + m.g.sin(0(0) + m.(0(1)*.x (3.1)

The simulation was performed using the software Simulink®, and from the formulated gov-
erning equation, the following block diagram was assembled (figure 3.2).

centrifugal force

Dervative

; Magnet array speed values
gravity force * VP Magnet array speed values?
sn 9.8 Dl
Sine Wave Sine function °

(excitation angle theta(t)) Gravity Force Gain Integrator Integratort

magnetic forces

Magnetic Repulsion
DT

o
.

Magnet array speed values1 -

Magnetic Repuisiont
DT

L]

Magnet Array Half Height

Half Harvester Haff Height

Figure 3.2: Horizontal levitation block diagram

For the input angle variation, values of + 0.35 radians (+ 20 degrees) and 0.5 Hz frequency were
selected as average values for a desired sinusoidal external excitation. Its output multiplied by the
gravitational force emulates the harmonic acceleration applied to the levitating magnet. Addition-
ally, the centrifugal force resultant from rotation of the device is introduced to the system. Solving
the governing equation 3.1 for the acceleration, X = %(Fmag1 = Frag, + m.g.sin(p) + m.w?.x), the
remaining influential forces to the acceleration of the magnet are obtained.

Since the fixed magnets influence (Fy;qg, and Fiqg,) is function of the position of the levitation
magnet, this variable must be properly manipulated and applied to a function that characterizes
this force in relation with the distance to the magnets. The specific distance between the levi-
tating magnet and both fixed magnets is calculated considering a referential in the center of the

18



harvester, (figure 3.1).

The force-displacement function of the end magnets was then introduced to this simulation
using a Lookup table, into which, values from a magnetic force computing script were loaded [5].
These values were computed using properties from hypothetical applicable magnets, possible to
see in figure A.1 and A.2 on appendix A. The plotted values for this function can be visualized in
figure 3.3.

100 T T

80 b

60 "

Force(N)

40 -

distance (m)

Figure 3.3: Magnetic repulsive force as a function of displacement

The fully programed block diagram, allowed the execution of simulations for a variety of lengths
for the device, with constant values for the magnet of respectively 35 mm and 100 grams for height
and mass.

From those simulations, a few scope diagrams describing the speed of the magnet over time
can be seen in figure 3.4. The evaluation of these results was made with view to achieve balance
between performance and size.

From the displayed graphs it is possible to conclude the speed improvement from the length of
220 mm to 230 mm. While in the first configuration the levitating magnet reaches maximum speed
values of approximately 0.4 m/s, the second one reaches magnitudes of almost 0.6 m/s, which rep-
resents an improvement of about 50%. The speed improvement for the other two lengths isn’t so
noticeable due to the similar maximum speed magnitude presented in both graphs. Therefore
the 220 mm configuration was set aside, defining a minimum length of 230 mm for the device.
The enlargement of the harvester does not enhance these values significantly, thus the maximum
length of the device was set as 250 mm. As it is possible to realize from figure 3.5, the maximum
speed value for the 250 mm configuration does not vary much from the 270 mm, hence the per-
formance improvement ratio with size enlargement does not necessarily pay off. Also, increasing
the variable range of the device would add extra complexity to its design and construction.

Apart from speed evaluation, the simulation also allows the visualization of the position re-
sponse through time for the magnet inside the device. In figure 3.6, the position of the magnet
over time related with the input angle sinusoid is shown for a configuration of 230mm, permitting
a brief idea of its behaviour inside the harvester when stimulated with that specific excitation.
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Figure 3.4: Speed simulation plots for various lengths of the harvester

Coil dimensioning

Optimizing components such as coil size is a complex analysis that needs dedicated work on
the subject [30]. Therefore, a simplistic analysis was taken under consideration to dimension this
component. The coil slots dimensioning was made with view to maximize the output potential
of the generator. Maximizing coil turn number was one of the main goals in this topic. It was
assumed that a configuration in which the coils’ length is larger than the magnet array height
hinders the generated voltage due to inverse magnet field variations on the coil, thus diminishing
the induction effect [1]. Therefore, a coil with maximum loop number was considered, with the
restriction that its length should not exceed the magnet array height.

These assumptions where introduced as further design requirements, enabling the dimen-
sioning of the coil in relation to used magnet array size and other external variables.

3.1.2 Structural design

After the presented theoretical analysis, the dimensional features for the prototype were set.
This step allowed the conception of the first sketches, permitting the search for applicable mate-
rials and parts for its construction.

Due to low frequency intended implementation, and rotation application purpose, some ini-
tial aspects were established in order to initiate the design of the device. The choice of electromag-
netic induction as the transduction process, due to its functioning and constructional simplicity,
allied with a magnetic levitation based architecture defined the starting sketch for the develop-
ment of the harvester.

Three additional requirements where introduced in the developing concept, which affected
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Figure 3.5: Magnet speed response comparison for 250 mm and 270 mm configuration
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Figure 3.6: Position of the magnet over time

the design of the harvester. The idea of a guiding system for the levitation magnet was introduced
based on other harvesters already developed [2, 12] and had the purpose of diminishing mechan-
ical frictional losses from magnet and inner walls contact. Another desired functionality was the
possibility to vary the length of the harvester for alternative configuration testing. The last design
influential feature comes from the need of acquiring the position of the levitating magnet over
time. Also, optimization assumptions like the minimization of radial distance between levitating
magnets and coils, or the necessity of maximum smoothness on the inner surface must be taken
into concern.

With the dimensioning of the device performed, and the overall functionality defined, a few
material availability restrictions where introduced to the design plan, due to dimensional or tech-
nical constrains. The first defined parts were the fixed and levitating magnets. Ring type fixed
magnets with diameter of 27 mm where chosen in order to allow a guiding shaft for the moving
magnet. For the levitating magnet array, 25 mm magnets with internal threads were selected to
enable the assemble between these magnets and the guiding shaft. Specifications of the magnet
can be seen in figure A.1 and A.2, on appendix A.

From the defined topics and rules for the development of the harvester, a few sketches where
made taking into consideration its overall dimensions and design properties. In figure 3.7 it is
possible to visualize a first CAD sketch made for a possible device construction.

This first prototype sketch, was made to provide a concept for the proposed device. All re-
quired features where introduced to this model, however it contained several construction and
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Top Magnet 1

Levitating Magnet

Top Magnet 2
Levitation Case

Figure 3.7: First CAD of possible harvester configuration

functionality limitations.

Although fixed magnet 2 is constrained with 2 elastic rings, a bolt assembled to fixed Magnet 1
enables its position regulation, adjusting the height of the levitation case. However, the length vari-
ation asymmetry would probably result in output diminishing by the coil close to the adjustable
fixed magnet, since the magnetic flux through it would decrease. Another technical limitation of
this model lies in the unavailability of parts with a 27 mm inner diameter needed for the assemble
of the fixed magnets, and an exterior diameter suitable for the machining of relevant coil slots.
Another critical functional flaw is the positioning of the linear bearing inside the fixed magnet
2, which would result in the magnetic interaction between magnet and metallic balls, increasing
friction on the guiding shaft system.

Taking into account the number of variables present in the development of a device of this
nature, and evaluating all the flaws detected in this concept model, it was necessary to schematize
the variables that influenced the design of the harvester.

Application Features Introduced Requirements Optimization Demands
- Low Frequency -Levitation guiding shaft -Diminishing of radial distance
Rotation Motion Harvest from levitating magnet to coil
-Adjustable fixed magnets
-High Inertial Properties distance -Smooth and low friction
. ) inner surface
-Eletromagnetic -Possibility to acquire the
transduction position of the magnet over -Maximization of distance
time between fixed magnet and
-Magnetic Levitation based linear bearing
architecture

Dimensional Attribution . o
Material Availability /
* Construction Restrains

. -Unavailable default sized
— Structural Design

parts with correct inner and outter

|Dimensi0na1 Validation | diameter
I T | -Inability to machine inner diameter

for desired length

Figure 3.8: Device design scheme with associated variables
The analysis of figure 3.8 makes it easier to take into consideration all the internal and external

features that conditioned the development of the device. The introduction of Material Availability
and Construction Restrains parameters is of primary importance when considering the concep-
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tion of a prototype, as it will define the material selection and will posteriorly influence the overall
design.

From the referred limitations in terms of material and development possibilities, it was con-
cluded that the inner surface body and the external coil support body would have to be assembled
from different parts, one definitive construction feature, defined as a base for the new design. This
decision was made due to the impossibility of machining the correct inner diameter for a piece
with the required length, also, the possibility of machining it in two or three parts was dismissed,
as it would be very hard to assure coaxiality between parts. With these new pre-sets defined, a
new concept was projected, similar to the previous model but with the necessary improvements
and alterations. After a few design enhancements and several sketches, a conceivable device was
modelled. A section view of this new configuration can be seen in figure 3.9.

Figure 3.9: Final Energy harvester prototype CAD

This new configuration solves all the enumerated issues in the previous model analysis. Not
only the construction inconsistencies were solved due to previous material selection, but also
other situations related with the linear bearing assembly and the displacement variation system
of the end magnets. However, from this new configuration, some disadvantages arise. One of the
most relevant topic is the unavoidable enlargement of the distance between magnet and coil, due
to the fact of the body being composed of an internal (acrylic tube) and external part.

Regarding the presented solutions, the displacement variation system for the end magnets was
solved creating two internal threaded caps in which the end magnets assemble. The thread on the
caps allows for the coupling of those components with the main body, simultaneously allowing
the length regulation of the device. The assembly between magnets and caps was made using two
cylindrical parts that would attach to both magnets and caps making use of a strong adhesive. As
itis possible to visualize, one of the caps as well as the corresponding cylindrical part, are drilled in
order to allow the assembly of the bearing for the guiding shaft. Furthermore, new coil dimensions
where assigned to the prototype, assuming a 5 magnet array with an approximate height of 35 mm,
it was possible to maximize its dimensions using the coil dimensioning assumptions presented
earlier in section 3.1.1.

In order to acquire the position of the levitating magnet, an external structure was assembled
to the drilled cap. This structure, as can be seen in figure 3.10, has the purpose of holding a sensor
unit, which measures its distance to the disc inserted in the tip of the shaft, allowing to track the
position of the levitating magnet.
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Figure 3.10: Sensor support structure

This structure ensures a steady position of the sensor in relation to the harvester, permitting
the acquisition of accurate data for any desired external excitation.

3.1.3 Construction of the device

As referred in the previous section, the development of the device was made taking into con-
sideration some material availability issues, figure 3.8. The need for a low friction inner surface,
and the inability to machine it without the required precision, lead to the mandatory choice of a
component with correct inner diameter and surface smoothness for the previously picked mag-
nets. Since the diameter of the levitating magnet is 25mm, an acrylic tube with dimensions of 26 x
30 mm in diameter was chosen to perform the levitation case.

Regarding the magnets, the already referred 27 x 16 x 5 rings were picked for the fixed magnets,
and 25 x M5 x 5 threaded pot magnets where chosen to couple for the levitating array configura-
tion.

The material for the three parts that compose the external body had three main requisites: it
could not be ferromagnetic (preferentially non-metallic) in order to cause no interference in the
motion of the magnet; it should present low degradation to elements exposure; and be easy to
machine. For these parts, the engineering plastic Ertalon was selected for the referred properties
as well as dimensional availability. From a tube with diameter dimensions of 50x30, three parts
where machined. The same procedure was performed for the remaining plastic components (caps
and respective cylinders, shaft tip disc and sensor coupling part), yet, a nylon rod was used instead
as raw material.

For the remaining components like the levitation guiding shaft and sensor support structure,
steel and aluminum rods where used respectively. The necessary threads were then machined in
order to allow the assemble of the different parts.

The coils were custom made for this generator using AWG 35 wire (0.1426 mm of diameter).
The wire selection was made with loop number maximization in view, but considering a larger
wire diameter than the one considered by Soares dos Santos et al. [5] to avoid large coil internal
resistance. The only non processed component was the SKF linear bearing, chosen in order to
fulfill the dimensional need imposed by the diameter of the levitation shaft. Figure 3.11 presents
the developed generator after full assembly.
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Figure 3.11: Assembled Generator prototype

The different drawings for the components are presented in appendix A.

3.2 Testing Station

In order to draw useful information from the system, it is required to simulate real application
conditions. The main objective for this testing station is to record the position of the magnet over
time inside the generator, for a correspondent stimulation angle. For this purpose, a structure with
respective actuator and sensing module was developed. This section explains the development of
the testing structure, as well as its programming and the data acquisition process itself.

3.2.1 Development and Construction
Actuation Module

The actuation module, as can be seen in figure 3.12, composed by an aluminum base, a servo
motor, a metallic arm and an acrylic plastic grip, has the objective of applying sinusoidal stimula-
tions on the generator for a desired Amplitude and Frequency.

Figure 3.12: Testing Station Structure

The referred servo-motor is a Dynamixel® MX106-R, which has an embedded closed loop PID
control system for a wide range of intrinsic variables such as position, speed among others [31].
This device has a maximum torque of 80 kg.cm, which is enough for the application in this work.
However, if the need for testing a bigger model of a generator arises, the base has a set of 4 extra
holes in which it is possible to assemble a second motor with just a few component alterations.
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Sensing Module

Acquiring the position of the magnet over time required a device able to measure the distance
to an object with reasonable precision and sampling rate.

A microsonic® Nano 15/CU ultrasonic sensor was picked considering its adequate technical
features and size.

Figure 3.13: Microsonic Nano 15/CU

This sensing device has a 20mm to 250mm measuring range, compact size, good sampling rate
and precision, making it suitable for the intended application. The output is a 0-10 linear voltage
which can be regulated for different intervals using a teach-in pendent, however the configura-
tion and data acquisition method will be discussed later in this work. See figures A.4 and A.5 in
appendix A for more detailed informations on the sensing unit.

Control and Data Acquisition Unit

In order to control the servo motor and record the data acquired by the ultrasonic sensor, a
Control Unit was developed using an Arduino® NANO board. The electric scheme of this unit can
be seen in figure 3.14.

Rs 485 Serial )l

Sensor Output USB Serial Com.
(0-10V)

Figure 3.14: Testing Station Electric Circuit

The Control board (Arduino®) performs the following operations:

e Calculation of the external angle excitation to apply over time

¢ Communicates calculated angle values with the Servo motor, via Rs485
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* Reads analog inputs from ultrasonic sensor

* Sends both angle and position information to laptop via serial communication

The Rs485 communication integrated circuit, MAX 485, as can be seen in figure 3.15, has the

objective to differentiate the Serial communication signal, as is required by the RS485 electrical
standards.

o [1] ‘f- (8] vec
L2 —3 B
oe 3} 6] A
ol [4] W 5] onp

MAX485

Figure 3.15: Max 485 Integrated Circuit Scheme

This electronic component is powered on pins 8 and 5 (Vcc and GND) from the 5V Source pro-
vided by the Arduino®. The RE and DE pins control the direction of information flow (Tx or Rx),
while the pins DI and RO are the physical connections for sent or received information respec-
tively. Pins A and B are the differential signal receivers or emitters, according to the communica-
tion type established (Tx or Rx). The use of a capacitor parallel with the power source is to keep a
steady voltage input, in order to avoid noise during the communication process.

The Resistive Voltage Divider has the purpose of reducing the Sensor Output range from 0-10V
to 0-5V in order to allow analog readings from the Arduino®

Vin 01

R1
}Q Vout

R2

I

Figure 3.16: Resistive Voltage Divider

As it is possible to see from figure 3.16, this circuit makes use of two Resistors, where R1=R2

in order to ensure and equal voltage drop in both resistors, confining the potential V,,; between
them in a 0-5V interval.

3.2.2 Programming and data Recording

In this section the main Control Unit program will be briefly explained. Also, the configuration
of the sensor and output reading will be talked through. The data collecting and organizing meth-
ods will also be taken into consideration in this section, for they are an important part of the data
preparation process for neural network training.

27



The Station main program was made recurring to Arduino® IDE, therefore the script was wrote,
debugged and uploaded from this platform. It was programmed to perform all the 4 referred op-
erations once per cycle. This is important in order to synchronize data computed by the Arduino®
and data generated by the Sensor.

Angle calculation

In order to reply real application stimulations, sinusoidal low frequency rotations must be ap-
plied to the device. For this effect, a time dependent sine wave formula was implemented in the
Script based on the following equation 3.2.

0(1) = asin(2nft+¢) 3.2)

This equation describes the angle over time, for a wave with desired features.

The wave emulation strategy consists in sending these computed wave angles to the servo
motor every cycle. Since the cycle time of the code is approximately 10 ms, theoretically the Servo
will move to a new angle approximately 100 times per second with constant speed, performing an
approximation of the stimulation the generator would get in a real application.

For training purposes, there is also the need of applying different waves in a synchronous way,
as will be explained further in section 3.2.2. This means that a continuous wave with variable pa-
rameters over time must be sent to the servo. Non continuous wave excitation would result on
invalid system inputs on real applications. Hence, varying Period and Amplitude on the excita-
tion wave without abrupt angle changes is mandatory. The script excerpt presented in figure 3.17
contains the code for four waves with different periods and same amplitude variation over time.

while (millis()<waitingtime) {} //Waiting routine
tempo = millis() / 1000.0; // Time calculation (seconds)

while (tempo>SimulationTime+waitingtime s){} //Simulation stop routine

if (tempo<TimePeriod+waitingtime_s) {

tempowl=tempo-waitingtime_s; //Time sst as 0 for wave 1

maxwaveangle=int (tempowl/10) *5+15;

waveangle = maxwaveangle * sin((€.28 / Periodwl) * tempowl);

}
else if (tempo>TimePeriod+waitingtime s && tempo<l*TimePeriod+waitingtime s) {

tempowZ=tempo-TimePeriod-waitingtime_s; //Time sst as 0 for wave 2

maxwaveangle=int (tempow2/10) *5+15; //Wave amplitude variable over time (+5 every 10 seconds)
waveangle = maxwaveangle * sin((€.28 / Periodwl) * tempow2); //Second wave computation (Periodwl)
}

else if (tempo>Z*TimePeriodtwaitingtime s && tempo<3*TimePeriod+waitingtime s) {
tempow3=tempo-Z2*TimePeriod-waitingtime_s; //Time set as 0 for wave 3
maxwaveangle=int (tempow3/10) *5+15; //Wave amplitude variable over time (+5 every 10 seconds)
waveangle = maxwaveangle * =in((€.28 / Periodw3) * tempow3); //Third wave computation (Periodwl)
}

else {
tempowd4=tempo-3*TimePeriod-waitingtime_s; //Time sst as 0 for wave 4
maxwaveangle=int (tempow4/10) *5+15; //Wave amplitude variable over time (+5 every 10 seconds)
waveangle = maxwaveangle * sin((€.28 / Periodw4) * tempowd); //Fourth wave computation (Periodwl)

}

Figure 3.17: Variable parameters wave computing

The four different waves come from the need of synchronizing the waves when varying the
Period. A TimePeriod is defined in order to establish the time each wave lasts. When that time
ends, the Period is changed and the wave time is zeroed to guarantee that all waves start at angle
0. Wave periods were also selected with synchronization in view.
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The amplitude is varied over time, with a function that sets the starting amplitude interval as
(-15,15 degrees), and increases this value by 5 degrees every 10 seconds. The more a wave lasts,
the greater the amplitude value it reaches before restarting with a new period.

Communication with Servo

In this section, the communication with the used servo motor is discussed. The Dynamixel
MX 106-R has a 4 pin connector, as can be seen in figure 3.18, in which two pins (Vcc and GND)
Power the motor with 24 V, and the other two (D+ and D-) perform the RS 485 communication
interface.

FINT: GMND FIMT: Gh
FINZ: VDD PINZ: VD
PING: D+ PIMG: D+
FiNA: D- FIbA: D=

Figure 3.18: MX-106 Connector

The communication with the device is made via data packages. In order to allow communica-
tion with the motor and computer, a SoftwareSerial object Rs485Serial was declared. The circuit
presented in the previous section 3.14, takes care of the signal differentiation, therefore the infor-
mation send from the Arduino is performed using a simple Rs485Serial.write command, which
sends Serial data with the defined baud rate. The data package configuration can be seen in figure
3.19.

|OxFF||0xFF| ID| INSTRUCTION| PARAMETER 1]... PARAMETER N||CHECK SUM|

Figure 3.19: MX-106 Instruction package [31]

This package consists in 2 sets of 8 bits set to 1 (2 sets of FF in hexadecimal), which trace the
message start. The next bytes contains the ID of the motor, the length of the message (Length =
number of parameters+2), and the instruction desired to perform, respectively (see figure
3.20).

For this specific application, the used instruction is strictly the WRITE_DATA, since the only
exchanged information was the desired positions sent to the motor.

The first parameter to send corresponds to the memory address of the variable which is de-
sired to change. In this particular case, the Goal Position addresses are the 0x1E and 0x1E how-
ever there is only the need to send the first register in the package. The last byte in the instruc-
tion data package (CHECKSUM) is used to check if the information sent during communication is
not damaged. The logical operation to construct this byte is described in the following equation,
Check Sum =~ (ID + Length + Instruction+ Parameterl + ...+ Parameter N), where "~" is
the Not Bit operator. Taking this into consideration, a function was developed in order to auto-
matically compute the check sum byte for a given data package, it can be visualized in figure A.6
on annexed documents.
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No.of
Value Name Function
Parameters

[No execution.
0x01 PING ) ) . 0
It is used when controller is ready to receive Status Packet

0x02 | READ_DATA | This command reads data from Dynamixel 2

0x03 | WRITE_DATA | This command writes data to Dynamixel 2 or more

It 1s similar to WRITE_DATA_ but it remains in the standby state without
0x04 | REG WRITE X X . 2 or more
lbeing executed until the ACTION command arrives

0x05 ACTION This command initiates motions registered with REG WRITE Q
0x06 RESET This command restores the state of Dynamixel to the factory default setting. 0
0x83 | SYNC WRITE (This command is used to control several Dynamixels simultaneously at a time. 4 or more

Figure 3.20: MX-106 Possible instructions [31]

Since the motor has 12 bits in the goal position register (4095 positions in 360 degrees), the
output angle from the sinusoidal function (3.2) must also be processed in order to be sent to the
motor. The first step is to convert the sinusoidal angle output into viable angles for the motor.
Considering the zero position of the servo as 180 degrees, the value computed from the sinusoidal
function must be add to this value, desired angle = 180 + 0(¢). After this step, it is necessary to
send the desired angle value in a correct manner to the registers of the motor. This is done using
another created function that converts the resultant float value into proper hexadecimal pack-
ages. The function created for this effect can be seen in the figure A.7, presented in the annexed
documents.

With all the data processing performed, the packages are sent byte by byte using the Rs485Serial
Communication object inside a for cycle.

Sensor Calibration

The sensor calibration is described in this section, it defines the displacement interval in which
the sensor will output the entire analog range. The transformation of the displacement measured
by the sensor into correct levitating magnet position, is also talked through.

In this work the whole sensor range was needed, consequently the sensor was configured to
measure from 20 to 250 mm. Figure 3.21 shows the steps followed in order to configure the sensor
unit. The left column steps were followed in order to set the output scale to vary from 0 to 10 Vin
the intended interval. However, for Arduino® reading purposes, this output had to be restrained
between 0 and 5V, for which the previously referred Resistive Divider was applied, figure 3.16.

In order to obtain distance measurements from the sensor, the resistive divider output was
injected into an analog input pin. The Arduino® nano board uses a 10 bit adc converter, from
which will result a reading of 0 to 1023. The measurement range of the sensor was related with the
reading performed by the Arduino®, resulting in the linear graph, presented in figure 3.22.
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Figure 3.21: Steps to configure the measuring range of the sensor unit
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Figure 3.22: Analog Read over Sensor distance curve

From the displayed line, the equation for the ADC reading to distance relation can be formu-
lated (3.3), from which it is possible to accurately calculate the disk distance to the Sensor, from
now on denoted as xp;k-

Xpisk = 0.2248 x ADCread + 20 (3.3)

However, this value would not correspond yet to the real position of the magnet inside the
generator, therefore, a geometrical transformation was applied to this values in order to calculate
them relatively to the initially considered referential 3.1.

In the presented figure 3.23, it is possible to view the referential systems and measures consid-
ered for the referential exchange. The nomenclature of the values can be seen in table 3.1.

The goal of this step is to have a coordinate system in the center point of the generator, for
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Figure 3.23: Analog Read over Sensor distance curve

Variables Description Value (mm)
XSensor Disk distance to Sensor -
XDisk Position of the disk relatively to Blind Zone mark -
XTop Distance of levitating magnet to fixed magnet -
XTop, Distance of levitating magnet center to fixed magnet -
XGen Distance of levitating magnet center to the center of the generator -
% Half the inner length of the generator 115 to 125
BZ Blind zone of the sensor 20
% Magnet array half height 17.5

Table 3.1: Figure 3.23 variable description

agreement with previous analysis. This procedure was performed according to the following rea-
soning:

-Considering a xp; i referential, which has origin in the blind zone line, and a xs¢;sor referen-
tial which corresponds to the real distance from sensor to disk, the following applies:

Xpisk = XSensor —BZ. (3.4)

-Considering a second referential system x7,,, now measuring the distance from the inner
top of the generator and the top surface of the levitating magnet, it is also possible to assume that
equation 3.5 is true.

XDisk = XTop- (3.5)

This assumption is done considering equal displacement between referential systems and the
points they are measuring, thus mutually canceling their effect on the referential transformation.
-Performing the measuring point exchange to the middle point of the magnet,

hy
XTop, = XTop + —Z”g 3.6)

allows for a real measure of the center of the magnet to the right top of the generator.

-The last step consists in transforming the x7,,,, coordinates into values in the xg., referential
system. For this, the following equation, 3.7 was applied,

XGen = _(xTopc - IEJ) 3.7
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which relatively to the true distance measured by the sensor is as follows, 3.8

XGen = —XSensor + BZ —

Data Storing

hM ag

L
+_
2

(3.8)

All data from each simulation, both collected and generated from the Arduino® platform, was
stored in .txt files using the open source software CoolTerm. This program reaches to the selected
serial port and has the option of printing the received information into a desired format file.

The .txt file format was selected due to the simplicity of reading its content using MATLAB®.

Data Band Selection

Having the data collection process correctly implemented, it was now possible to generate and
acquire the necessary data for the network training process. The input data range selection was
made with view to cover most possible working amplitudes and frequencies. This line of thought
was taken in order to provide the network the maximum application conditions for training.

Input wave was generated by the Arduino® while being applied as external excitation for the

generator, the generated waveform can be seen in figure 3.24.
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Figure 3.24: Input excitation wave

This generated sinusoidal input wave repeats the same angle amplitude sequence four times
for four different frequencies. The angle and frequency variation can be seen in table 3.2, where
the frequency values, were selected taking into consideration intended application properties and
the synchronization between excitation waves, for continuity purposes. The time interval for am-
plitude change was set as 10 seconds for 2 main reasons. The first reason was synchronization (10
seconds correspond to a complete number of cycles for every selected wave), the second reason
was to guarantee stationary regime in all waves. This means that, when a new excitation wave
starts, the position of the magnet affects the behavior of the device, for that particular wave, in the
first wave cycles. However it has been verified experimentally that 10 seconds were enough for the
motion response to tend to a repetitive pattern of values.
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Frequency (Hz) Angle Amplitude (degrees) time interval (s)

15 0-10
20 10-20
f1=0.4 25 20-30
30 30-40
35 40-50
15 50-60
20 60-70
f2=0.5 25 70-80
30 80-90
35 90-100
15 100-110
20 110-120
£3=0.8 25 120-130
30 130-140
35 140-150
15 150-160
20 160-170
f4=1 25 170-180
30 180-190
35 190-200

Table 3.2: Input excitation wave Properties over time

This phenomenon can be verified in figure 3.25, where the magnet presents a non uniform
behavior for the first 2 cycles. It takes more time to stabilize in higher frequency bands, where
the magnet does not reach the extremities of the generator, and is more accentuated in frequency
transitions, where there is an abrupt negative amplitude variation.

Magnet response for 10 seconds of specific wave configuration
T T T T T

Magnet position(mm)
& 0 N
3 S =)

T

A
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Time (s)

Figure 3.25: Magnet behavior for a particular 10 second period of a wave

From the selected input data, the acquisition of the position of the magnet over time provided
the target data for network training. A representative plot of the behavior of the magnet over time
for the given excitation wave is shown in figure 3.26.

34



100 T

80

60 ||

20

Magnet position(mm)
o
I

‘l
-60 ”
-80|-
_1 00 1 | | | | 1 | | |
0 20 40 60 80 100 120 140 160 180 200
Time (s)

Figure 3.26: Magnet response to input excitation shown in figure 3.24

For an easier visualization of the motion response by the magnet, figure 3.27 shows the sub-
plots for the four different frequencies contained in the input excitation wave.
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Figure 3.27: Magnet response to input stimulation of figure 3.24 (separated by frequency)

3.3 Dynamic system modeling using Artificial Neural Network

The Neural Network design and training algorithms where implemented recurring to the MAT-
LAB software Neural Network Toolbox.
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3.3.1 Network Architecture

The presented modeling problem falls under the category of time series analysis. While many
network architectures are able to perform predictions for systems such as the one presented in
this work, the NARX (Non-linear AutoRegressive model with eXogenous input) architecture is a
popular approach for time series system modeling, mainly due to its good predictive and adaptive
features [25]. Considering the available Network types provided in the used toolbox, the NARX ar-
chitecture can be considered the most suitable strategy to approach this problem from a machine
learning solution perspective. Another strong feature of this type of network is the fact that it can
be trained using static backpropagation algorithms, since tapped delay lines at the input of the
network can be replaced with an extended vector of delayed values of input and targets [24].

The following figure 3.28, represents a schematic view of this Network Configuration (in Closed
Loop form).

Inputs Layer 1 Layer 2
N7 N\ 7 N
p (1) - n'(7) a'(n) a’(1)
D IW" —P LW N : —>
L §'x1 = n’(/) 5x1
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Figure 3.28: NARX general Architecture diagram [24]

Thedefining equation for this network model 3.9 [32], considering the input and target vari-
ables of this work as 8 and x respectively, can be expressed as follows

x(t) = f(x(t=1),..., x(t—dy),0(t-1),...,0(t — dg)) (3.9

where d, and dy correspond to the taped delay line maximum values for each input. In this
particular application, the 8(t) and x(t) correspond to excitation angle and position of the magnet
respectively (inputs and targets).

This network architecture is composed by two layers. Layer 1 has 2 inputs, the input vector
values and the target value backpropagation input. These inputs are inserted into Tapped Delay
Lines (TDL), which will contain the variables (0(f—1)),...,0(t — d) and (x(t—1)), ..., x(f — d) respec-
tively. This layer also contains the hidden neurons with the correspondent connection weights and
biases. The presented architecture considers a default tan-sigmoid transfer function as threshold
for the output of this layer. Layer 2 has as input the first layer output, the same neuron number
as Layer 1, correspondent weights and biases vectors, and a linear transfer output. Regarding the
configurable parameters of the Network, it is possible to define the Hidden layer S' neuron num-
ber and the length of the tapped delay lines.

The following table 3.3, contains the NARX variable nomenclature.

Considering this architecture as the most adequate available network structure for the im-
posed problem, the following steps consisted in defining the variable parameters (Hidden layer
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Variables Description
pl (1) Input Vector index 1 value
a(n First layer Output vector
a®(t) Neural Network Output value
St Number of Hidden Layer Neurons
y(1) Targets
TDL Tapped delay lines
w Weight matrix
b Bias vector

Table 3.3: NARX architecture variables

neurons and TDL), defining the architecture, preprocessing the acquired data and selecting the
most appropriate training algorithm.

Regarding the NARX model, the training process can be performed using two different con-
figurations. The Parallel Architecture 3.29a, where the output of the network during training is
fed back to the feedforward network, and the Series-Parallel Architecture 3.29b, in which the true
output target is used instead of feeding back the estimated output.

1] T

1 I 1

a’( )O—}IL)—P Feed ” al(t)e—PpD Feed ,

— Forward & L Forward a“(t)
T Network T Network >
e y(t) &#—PpD
L L

(a) Parallel Architecture (Closed-Loop) (b) Series-Parallel Architecture (Open-Loop)

Figure 3.29: Possible training an simulation NARX Forms [24]

Since the true output is available during training, the Series-Parallel form can be implemented.
This architecture has two main advantages. The first is that the input to the feedforward network
will be more accurate. The second is that the resulting network has a purely feedforward architec-
ture, and static backpropagation can be used for training [11].

Taking into consideration such aspects, the network structure concept was mostly defined at
this point.

3.3.2 Network Parameterization

In order to properly configure the parameters of a network, it is a good practice to first define
the training method to use. For feedforward network structure there are three available training
algorithms.

-Levenberg-Marquardt

-Bayesian Regularization

-Scaled Conjugate Gradient

In this work, the Bayesian regularization and the Levenberg-Marquardt algorithms were used
to train different NARX networks. Prediction problems, such as the one in this work, are similar
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to function approximation problems, which for the Bayesian Regularization algorithm is appro-
priate, considering multi layer network training in this kind of applications [33]. This algorithm
also returns the effective number of parameters, correspondent to the number of total parameters
(weights and biases) that are used during the training of the network, which is good to estimate
the quality of the implemented structure for the presented problem.

The Bayesian Regularization algorithm also takes place within the Levenberg-Marquardt train-
ing process, hence this method was also used for network training, in order to conclude which
learning algorithm is more appropriate for the presented problem. Although this last consumes
more computation resources, its algorithm is the fastest among backpropagation methods in the
MATLAB toolbox.

The selection of variable structural features for the network such as Neuron Number or tapped
delay lines, must be done with the goal to maximize its performance, thus minimizing the mean
square error of the output when compared to target values. Due to the relation between input
data array size and possible parameter number(10000 or more data points to a maximum of 250
parameters), the chances of overfitting are very small, removing the overfitting possibility as a
design constrain for the network [24].

As previously referred, the Neural Network and its associated training algorithms were imple-
mented using the MATLAB Neural Network Toolbox. The developed code can be seen in appendix
B.

The script presented in B.1, performs all the necessary steps for the training procedure. Oper-
ation sequence is performed according to the following points:

* Reads the acquired data files and converts the data into proper training input format
¢ Implements the desired parametrization (TDL and Hidden Layer Neuron number)

» Applies the data preparation steps, defines the data division method and applies the indi-
cated ratios for training, validation and testing

* Enables the choice of the learning algorithm, epoch number, and also initiates the training
process.

* Computes the error between targets and outputs, as well as the performance of the Network.

Table 3.4 presents the performance (mean square error), equation 3.10, of several training
parameters for the two referred training algorithms, different initial conditions (Random initial
Weights and Biases values) and different variable parameters. Since Bayesian Regularization does
not have Validation, the Epoch limit has been set as 1500. It has been verified experimentally that
increasing those values does not improve the training process and the chances of overfitting are
increased.

mse = E i(e")2 = k %(y‘ —a?)? (3.10)
NG NG .

This table has the purpose to aid in the analysis of training performance between networks
with different parameters and learning algorithms. Its analysis also helps to correctly define the
most suited parametrization configuration.

Analyzing the table it is possible to conclude that the Neuron number increase does not nec-
essarily represent an error decrease for the learning process. However, the enlargement of the TDL
delay, results in good performance enhancement (decrease).

A further analysis to the effect of TDL increasing in the network performance, suggests that
this enhancement tends to become irrelevant when applying more than 7 delay lines, at which
value is possible to obtain performances around 0.29 for both training algorithms.
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Levenberg-Marquardt Bayesian Regularization
’ HLN ‘ TDL performance values mean perf performance values mean perf
2 1.1984 | 1.0848 | 1.2589 1.1807 1.3430 | 1.2971 | 1.2905 1.3102
10 3 0.6502 | 0.8653 | 0.8203 0.7786 0.8500 | 0.6452 | 0.6339 0.7097
4 0.5670 | 0.5842 | 0.5479 0.5663 0.5792 | 0.5660 | 0.5506 0.5653
5 0.3579 | 0.3470 | 0.3879 0.3643 0.3430 | 0.3486 | 0.3355 0.3424
2 1.0774 | 1.0536 | 1.0129 1.0480 1.3633 | 1.2685 | 1.4323 1.3547
1 3 0.6279 | 0.6588 | 0.6403 0.6424 0.6086 | 0.6119 | 0.6262 0.6156
4 0.4981 | 0.6106 | 0.4606 0.5231 0.5395 | 0.5630 | 0.5455 0.5493
5 0.3575 | 0.3522 | 0.3867 0.3655 0.3271 | 0.3328 | 0.3250 0.3283
2 1.2431 | 1.1210 | 0.9150 1.0930 1.2806 | 1.3482 | 1.3296 1.3195
12 3 0.6317 | 0.6324 | 0.6840 0.6494 0.6183 | 0.6082 | 0.6060 0.6108
4 0.5340 | 0.4927 | 0.5977 0.5415 0.5414 | 0.5378 | 0.5488 0.5427
5 0.3496 | 0.3536 | 0.4931 0.3988 0.3283 | 0.3139 | 0.3398 0.3273

Table 3.4: NARX learning performance for variable parameters

Considering the computation and training time an influential development quality feature for
a Network, it must be projected to use the least computational resources possible. Therefore, the
selection of a 10 Hidden layer Neurons structure and the implementation of 7 Tapped delay lines
seemed to be the most suitable configuration for the presented problem.

Training Validation

The training process provides various validation tools that when properly studied provide im-
portant performance indicators of the implemented network quality. In this training validation,
the following tools where analyzed:

* Regression- Relation between Training, Testing and Validation data Outputs with Targets.
¢ Error Autocorrelation- Correlation between prediction error and previous time-steps errors
¢ Cross-correlation- Correlation between prediction error and input sequence

The following analysis compares these training outputs for both used learning algorithms.
In order for the network to be properly validated, the following properties must be confirmed.
Regression values must be as close as possible to 1. The prediction errors, e(t) = y(f) — y(¢) =
y(t) - a?(t) must be uncorrelated with each other from one time step to another, and the predic-
tion errors must also be uncorrelated with the input sequence [34].

Regression provides a measure of training and testing data fitting to the targets. The following
table, 3.5, shows average values for testing and training regression for the used learning algorithms.

Levenberg-Marquardt | Bayesian Regularization
Training fit 0.99992 0.99995
Testing fit 0.99991 0.99995
Validation fit 0.99992 -

Table 3.5: Training Regression average values for both used learning algorithms

The represented regression values show that both testing and training data present good fitting
to the target data for both learning algorithms. The Levenberg-Marquardt algorithm also uses a
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Correlation

Correlation

validation data set, hence its regression is also taken into consideration. The overall good fitting of

different sets of data with targets are an indicator that overfitting did not occur [24].

Autocorrelation of Error 1 Correlation between input 1 and Error 1 =Target 1 - Output 1
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(c) Bayesian Regularization training error Autocorrelation

Figure 3.30: Network training Error Correlation and Autocorrelation

Error autocorrelation is a powerful performance indicator for the network, especially for pre-
diction problems. For the prediction error to be uncorrelated, this function should be an impulse
at zero. However, the algorithm only computes an estimate of the true autocorrelation function,
therefore values for Lag#0 will never be equal to zero. For that reason, confidence intervals are
introduced to the plot, on which the correlation values must fall. In figures 3.30a and 3.30c, only a
few number of Lag points fall off the confidence values which indicates that the error correlation
is low for both training algorithms, thus validating the tapped delay lines imposed on the NARX
model [24].

Error cross-correlation follows an analogous logic to Autocorrelation in terms of its analysis.
In figures 3.30b and 3.30d, we can see that the cross-correlation values fall inside the confidence
lines for all the Lag band, which indicates that no problematic is associated with this particular
parameter.

The referred performance qualifiers tend to validate the training process. The parameter choice
seems adequate for the approached problem, therefore all steps have been taken in order to ac-
quire a well accomplished model for our generator behavior under working circumstances.

Since the simulation process of a network consists in a multiple step ahead prediction, the sim-
ulation must be performed in closed loop. This means that no real target data is provided to the
network during simulation, therefore, it must perform multiple step ahead calculations based on
previously calculated values. According to the developers of the used toolbox, close loop simula-
tions often get better results when a posterior closed loop train is performed on the already trained
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open loop network [35]. Therefore, this procedure was implemented in the designed structures in
order to compare its results with the networks that have only been trained in open loop.

3.3.3 Network Simulation

After proper parametrization and training validation of the network, the developed model was
simulated. This step is important for the experimental validation of the implemented network,
which corresponds to the verification of its performance emulating the motion response by the
magnet for various external excitation inputs. The network validation implies the replication of
the studied system response to inputs that fall off the training data band. This means that a prop-
erly constructed and trained network structure should be able to approximate, with relative con-
fidence, the dynamics of the generator for stimulations which features are not contained in the
training set.

The trained network was simulated recurring to the Software Simulink®. The net structure, re-
sultant from the script used to implement and train it, was converted into a block that contains all
the features of the created network. This step was accomplished using the gensim(net,ts) function.
The argument 'net’ corresponds to the created network structure and ’ts’ is the time step used by
the network for each predicted value. From the generated NARX block, the simulation diagram
is build. Figures 3.31a and 3.31b show two implementations of network blocks into diagrams, for
simulation purposes.

g

Sine Wave Input Angle

g

Scope

NARX

(a) Network simulation for NARX block with intrinsic Open-loop
features

o

Sine Wave Input Angle Scope

NARX

(b) Network simulation for NARX block with intrinsic Closed-
loop features

Figure 3.31: Possible training an simulation NARX Forms [24]

Figure 3.31a shows the simulation diagram for a NARX with intrinsic open-loop features. Fig-
ure 3.31b, shows the diagram of a NARX that has been trained in closed-loop, hence, its internal
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configuration already possesses the closed-loop features required for simulation.

In order to properly synchronize network prediction values with the real data, the time step
must be as close as possible to the acquisition sample time. The Arduino® controller records and
prints one angle and one position value for each loop, and considering the simulation time for the
training data acquisition as 200 seconds, the average sampling rate sr can be calculated, ts = sr =
o ;ffb"g;‘lo‘;f ’;’;t 2" Zﬁfl —. Since the input data vector contains 17039 elements, the resulting time step
is of approximately 0.0117s. It is important to underline that this value is not dependent of the
used simulation time, it is dependent of internal and external factors that affect the hardware, as
well as the implemented code complexity. This means that for different simulations, regardless of
its duration, the sampling rate should always be approximate.

The simulations outputs as well as their posterior analysis and experimental validation can be
analyzed in chapter 4.
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Chapter 4

Results

Regarding the results obtained in this work, two main subjects where taken into consideration.

The Networks testing results are presented and analyzed in order to determine an optimal
configuration for final implementation.

The created generator power outputs are also matter of analysis in this chapter. Its study is
important not only for applicability purposes but also to provide validation data regarding the
functioning of the developed prototype.

4.1 Generator Performance

The estimation of the generator power outputs demanded the measurement of voltage drop
between the terminals of a load resistance. From the Maximum Power Transfer theorem, it is
known that a load with impedance equal to the source enables the maximization of power outputs
[36]. Taking such considerations into view, the generator coils circuits were closed with a resistive
load equivalent to each coil impedance, approximately 785(2, performing a total resistance R; of
1570Q2 (considering a total resistive impedance for the source).

Inducing the generator with a specific stimulation during a defined amount of time provided
the necessary data for the computing of Power outputs at specific conditions.

The generator was subjected to two distinct work condition waves, and the voltage values of
all 4 coils where collected during T=10 seconds. The data was collected with a sampling rate of
0.05 using a dSpace DS1102. Figures 4.1 to 4.10 present plots of the generated Outputs values.

Coil induced Voltage (V)

_2 L L L L L L L
0 1 2 3 4 5 6 7 8 9 10
Time (s)

Figure 4.1: Coil 1 load resistance potential for a 20 degrees 0.5 Hz stimulation
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Coil induced Voltage (V)
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Figure 4.2: Coil 2 load resistance potential for a 20 degrees 0.5 Hz stimulation
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Figure 4.3: Coil 3 load resistance potential for a 20 degrees 0.5 Hz stimulation
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Figure 4.4: Coil 4 load resistance potential for a 20 degrees 0.5 Hz stimulation
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Figure 4.5: Coil 1 load resistance potential for a 25 degrees 0.5 Hz stimulation
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Figure 4.6: Coil 2 load resistance potential for a 25 degrees 0.5 Hz stimulation
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Figure 4.7: Coil 3 load resistance potential for a 25 degrees 0.5 Hz stimulation
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Figure 4.8: Coil 4 load resistance potential for a 25 degrees 0.5 Hz stimulation
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Figure 4.9: Rectified generated voltage from all coils at 20 degrees and 0.5 Hz stimulation
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Figure 4.10: Rectified generated voltage from all coils at 25 degrees and 0.5 Hz stimulation
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The respective data for each coil, for the two separate waves, was then used to compute the
following output features:

¢ Load Current i(¢) = %’?

* Average Power Py,g = %fOT v(0).i(t).dt

¢ Maximum instantaneous Power Output Py, =max(v(#).i(z))

* Energy generated during stimulation period E = fOT v().i(t).dt

The computed values are presented in tables 4.1. These were calculated accounting for a recti-
fied coil signal (module), also, the summation of different coil potential was carried out. This step
was done to estimate the total output potential of the generator.

Pavg (mW) | Ppax(mW) | E(m])
Coil 1 0.438 12.4 4.4
Coil 2 0.73 12.3 7.3
Coil 3 0.66 11.6 6.6
Coil 4 0.237 5.7 2.4
All Coils 1.8 13.6 18.2

Table 4.1: Output values for stimulation at 20 degrees amplitude and 2 second period

Pavg (mW) | Ppax(mW) | E(m])
Coil 1 0.56 20.7 5.6
Coil 2 0.925 14.6 9.3
Coil 3 1.19 25.1 11.9
Coil 4 0.59 11.8 59
All Coils 2.6 22 26

Table 4.2: Output values for stimulation at 25 degrees amplitude and 2 second period

4.2 Network Testing

This section presents the results of the developed Networks for a wide variety of input stimula-
tions. The Networks simulation for model validation and enhancement was performed according
to three main topics:

* Comparison of outputs from two distinct learning algorithm based NARX
¢ Comparison between open-loop training results and open+closed-loop training results

* Comparison of the different models results for external excitations outside the training range

The NARX simulation consists in a determined number of consecutive step predictions. Since
there are no target inputs during the intended simulation, this process must be done in a closed-
loop configuration. As previously referred in chapter 3, for prediction optimization, it is often
advised to perform a close-loop train to the already trained open-loop network. Considering two
appropriate learning algorithms for the presented problem, it becomes relevant to correlate the
effect of the loop configuration chosen for training with the two distinct learning algorithms. In
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this section the evaluation of different training configuration is used to validate the implemented
models and determine a suitable NARX model for all applications of the presented problem.

In order to perform a more reliable analysis to the results of each method, three networks
where trained for each training configuration. Table 4.3 presents the implemented configurations
as well as its nomenclature in posterior analysis.

Training Architecture
Open Loop | Open and Closed Loop
Levenberg-Marquardt | NARXLMgp NARXLMoc
Bayesian Regularization | NARXBRg NARXBRoc

Table 4.3: NARX training configurations

For this analysis, four specific excitation features where selected. One that is included in the
training sample, and three that are not. The selected waves had the following characteristics:

Amplitude (degrees) | Frequency (Hz)
Wave 1 35 0.8
Wave 2 22 1
Wave 3 20 0.67
Wave 4 28 0.67

Table 4.4: Network testing used wave configurations

The wave selection was made with view to cover a strategic set of possibilities. Wave 1 proper-
ties are contained in the training sample, Wave 2 frequency is also used in the training set but its
amplitude is not, Wave 3 amplitude is covered in the training sample but not for that specific fre-
quency and for Wave 4 neither of its parameters are included inside the training data. This has the
purpose of determining if any specific configuration is better at generalizing for different inputs.

Figures 4.11 to 4.26 show the simulation results for the different proposed NARX configura-
tions.
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Figure 4.11: BRp NARX simulation results for Wave 1
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Figure 4.18: LMpc NARX simulation results for Wave 2
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Figure 4.19: BRp NARX simulation results for Wave 3
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Figure 4.20: BRoc NARX simulation results for Wave 3

51



Magnet position (mm)

-100 .
0

100

-60 H—Experimental Results
< NARX LMy
80 H|-NARX LM,
wonne: NARX LMoa
-100 L
0 1

Figure 4.21: LMo NARX simulation results for Wave 3
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Figure 4.24: BRoc NARX simulation results for Wave 4
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Figure 4.26: LMpc NARX simulation results for Wave 4
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For a proper validation of the created NARX structures and a more reliable choice of optimal
configuration, the simulation results where submitted to a numerical evaluations. All the different
network configurations where tested and compared to real experimental values in order to deter-
mine their generalization performance. For that matter three similarity indicators, mean squared
error, correlation coefficient[5], and mean percentage error where calculated using immse() and
xcorr() MATLAB® functions. The xcorr() function was used to obtain the correlation coefficient at
lag 0, which is presented in percentage for a more intuitive analysis. As for mean percentage error,
it was computed using equation 4.1,

100 & T,— P
MpE:_Zu
n o Ty

4.1)

where T, and P, correspond to target and predicted series respectively. The accuracy descrip-
tors computing script can be seen in figures B.6 and B.7, in annexed documents.

MSE CC MPE
Average | Minimum | Average | Maximum | Average | Minimum
NARXBRo 196.65 149.19 94.46% 97.04% 31.27% 11.17%
NARXBRoc | 145.32 127.66 97.19% 97.55% 24.12% 14.18%
NARXLMp | 302.85 132.99 94.38% 97.43% 38.59% 2.91%
NARXLMopc | 192.60 117.19 96.34% 97.74% 31.51% 22.13%

Table 4.5: Simulation accuracy descriptors for NARX with different training configurations (Wave
1y

MSE CcC MPE
Average | Minimum | Average | Maximum | Average | Minimum
NARXBRop | 412.85 167.81 91.87% 96.75% 25.60% 20.15%
NARXBRoc | 14241 113.02 97.24% 97.82% 18.75% 16.87%
NARXLMop | 648.75 111.59 86.60% 97.85% 24.42% 14.48%
NARXLMopc | 214.13 78.04 95.87% 98.60% 18.19% 13.43%

Table 4.6: Simulation accuracy descriptors for NARX with different training configurations (Wave
2)

MSE CcC MPE
Average | Minimum | Average | Maximum | Average | Minimum

NARXBRg 164.49 47.76 96.80% 99.10% 27.82% 23.81%
NARXBRoc 27.63 24.60 99.52% 99.58% 26.89% 21.19%
NARXLMo 69.28 35.49 98.68% 99.33% 30.85% 5.99%
NARXLMoc 45.37 30.79 99.15% 99.41% 36.79% 12.01%

Table 4.7: Simulation accuracy descriptors for NARX with different training configurations (Wave
3)
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MSE CcC MPE
Average | Minimum | Average | Maximum | Average | Minimum

NARXBRo 65.63 18.87 98.86% 99.60% 9.62% 1.56%
NARXBRoc 42.64 33.86 99.22% 99.39% 6.10% 0.76%
NARXLMop 102.63 33.43 98.17% 99.48% 8.25% 1.9%
NARXLMopc | 121.84 48.65 97.80% 99.11% 15.66% 5.32%

Table 4.8: Simulation accuracy descriptors for NARX with different training configurations (Wave
4)

The light green cells indicate the best NARX results for that specific indicator. From an overall
analysis of the table, the verification that the prediction made by the Network tends to be more
accurate outside training range values is a good indicator for the NARX structure quality [24]. A
comprehensive reading of the Cross-correlation coefficient also indicates that globally, all Net-
works present reasonably good accuracy relatively to real experimental values.

A deeper analysis to the simulation descriptors leads to the conclusion that the BRoc structure
is the more consistent training configuration regarding best performance attainment. Although
other NARX configurations occasionally present best average or minimum/maximum values for
a specific descriptor, the referred configuration presents better generalization features inside and
outside training range.

Taking such conclusion into consideration, the remaining step consists in a deeper valida-
tion of this model through further simulation. The best performed Network among the trained
NARXBRgc was the object for this validation.

The wave configurations used for final validation can be seen in the following table 4.9.

Frequency (Hz) Amplitude 1 | Amplitude2 | Amplitude3 | Amplitude4 | Amplitude 5
(degrees) (degrees) (degrees) (degrees) (degrees)
1
0.8
0.67 17 22 28 35 38
0.5
0.4

Table 4.9: Wave configurations for final testing

Adding to the constant sinusoidal waves, four wave configurations resultant from wave sum-
mation where also tested in the network. These where implemented in order to verify the response
of the network for more complex inputs. The applied waves formulation can be seen in the follow-
ing table 4.10. For nomenclature simplification, these waves where identified as complex waves
(CWaves).

Wave formulation

CWavel | 15sin(31) +30sin(Z 1)
CWave2 | 15sin(Z% 1) +30sin(££ 1)
CWave3 | 10sin(Z 1) +30sin(27?)
CWave4 | 30sin(3Z 1) +30sin(% 1)

Table 4.10: Complex wave configurations for final testing

Figures 4.27 to 4.55 presents BRoc NARX results for all simulation conditions.
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100
80~
60~
E 4o-
£,
c 20
8
g 0%
Q
©
2 20
j=2)
©
= 401 HH i
HE i
60§ § s §
----- Experimental Results
-80 Masanr Simulink NARX BR . Outputs
—External Excitation Wave
-100 L L
0 2 4

Time (seconds)

Figure 4.53: Network Outputs vs Experimental results for CWave 2 (CC=99.18%)

64



100

80

60

40

20

Pt

0

BTy

-20

S

Magnet position (mm)

R T s

-40

| ——peeeees

e,

60[-%

ATy,

ernsgmmnerranasess

- Experimental Results
=80 Hauasd Simulink NARX BROC Outputs

aazgpppmsssaneer

— External Excitation Wave )
-100

1 1 1
0 2 4 10 12 14
Time (seconds)

20

Figure 4.54: Network Outputs vs Experimental results for CWave 3 (CC=97.98%)

100

Magnet position (mm)

Experimental Results
..... Simulink NARX BROC Outputs

—External Excitation Wave
-100
0 2 4

10 12 14 16 18 20
Time (seconds)

Figure 4.55: Network Outputs vs Experimental results for CWave 4 (CC=98.43%)

65



66



Chapter 5

Discussion and Conclusions

LBEH prototype

From the design of the prototype to its construction and testing, several aspects have been no-
ticed and pointed for future enhancements to posterior models. In terms of overall performance
it is safe to say that the developed device does fulfill most of the proposed desired characteristics.
Hence, it seems correct to assume that this device represents a good approximation to a pretended
applicable energy harvester. However, some aspects must be reviewed to prevent operation flaws,
retard degradation and optimize outputs.

Regarding experimental behavior issues, the most noticeable flaw lies in the usage of a metallic
linear bearing. The magnetic influence on the metallic balls, although weak and unnoticeable in
the first tests, tends to hinder the correct functioning of the bearing. Also, from visualization of
the experiments, it is concluded that the friction coefficient between the acrylic and the magnet
is also an optimization issue to take into consideration. Another experimentally verified issue is
the weak repulsion force exerted by the fixed magnets, which results in impact of the magnet array
on the caps if the input angle amplitude is too large. This phenomenon also results in magnetic
attraction when repulsing magnets make contact, locking the levitating magnet array in one of the
extremities of the device when this occurs.

The overall configuration of the generator still cares for some optimization. However, from the
outputs analysis and behavior, the developed model can be considered applicable for the intended
purposes.

LBEH modeling using ANN

The modeling of an electromagnetic levitation generator provides key information for the opti-
mization of the device and prediction of its energy scavenging potentialities for determined work-
ing environment features.

The problem approach using machine learning techniques has proven its potentialities not
only from the results quality perspective but also from a practical point of view. Besides providing
accurate prediction results for the model, using NARX allows for the modeling of a system that
would reveal very complex and time consuming when solved using Analytical, Semi-Analytical or
even other Numerical approaches. The method presented in this work, enables the obtainment of
the motion response over time to a determined input stimulation using nothing but recorded data
from the very same, while other methods require the formulation of all the complex subsystems
that are presented in a non-linear dynamic system. The developed NARX model also allows for
simulations with input outside the training data range.

Beside from this, behavior predictions using the approach taken in this work, are constrained
to features intrinsic to the generator used for data collecting. This presents a limitation when
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comparing to approaches taken in the literature, where it is possible to vary parameter that are
directly related to the harvesting device, like damping or friction coefficients.

Regarding computation time, this technique excels. Since a properly trained network, which
takes about 5 minutes to train when considering the best suiting configuration, can compute the
behavior of the magnet for a specific external excitation in approximately 1 second.

5.1 Conclusions and future work

The results presented in this work justify the proposed objective achievement. The develop-
ment of a LBEH was performed, and, according to output results and overall device performance
evaluation, it seems fair to state its applicability. The testing station also complied the intended
purpose, since it enabled the stimulation of the device and synchronous data acquisition.

A Neural Network was developed through the course of this work, the NARX structure did per-
form according to expectation and its applicability on non linear system prediction verified.

Regarding the NARX training for system modeling, the possibility to predict the modeled sys-
tem behavior with relative precision for a desired stimulation, proves the potential of this method-
ology in applications such as the one in this work. According to simulation results, it seems rea-
sonable to affirm that the modeling method used in this work is suitable for the application, thus
permitting the acquisition of useful information for future performance optimization.

Naturally, as result of a general prototype analysis, the realization that the physical model still
cares for a few enhancements becomes noticeable. Besides from the need of a working platform
for intended applications, such as a buoy if applied for sea motion transduction, the prototype
possesses a few topics that must be reviewed before development of applicable models. Depend-
ing on the specific application, the mobile components of the generator could still use some im-
provements. In order to improve the motion of the magnet inside the generator, more than one
strategy can be used. The use of a second guiding shaft for the levitating magnet would signif-
icantly reduce friction between magnet and the inner walls. However this approach will confer
a less compact architecture, as well as enhancing the chances of component failure and degra-
dation. In case this methodology is applied, the appliance of linear bearings with polymer balls
instead of metallic ones can prevent degradation due to oxidation, and avoid the interaction of
the magnetic field in the bearing performance. In case the use of a guiding shaft is discarded, the
use of an inner surface with less friction than acrylic is advised. The alteration of fixed magnets
configuration is also required in future model development. More than one magnet for each cap
seems necessary, since the repulsive force of a single magnet per cap appears to be insufficient to
prevent impact in high amplitude stimulations.

The experimental data collected from the developed model, as well as the information pro-
vided by the ANN modeled system can be very useful for future performance optimization. There-
fore, the development of a new prototype based on the presented model and enhanced according
to the experimental and theoretical information provided by this work is suggested as future work.
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Appendix A

Generator/Testing Station

A.1 Generator

A.1.1 Components and drawings

Article ID ITN-25
Material NdFeB
strength approx. 14 kg
Pot diameter D 25 mm

Pot height H 7 mm
Thread M 5
Magnetisation N38

Coating Nickel (Ni)
Max. working temperature 80°C
Tolerance +/- 0.1 mm
Steel Q235 (China)
Weight 21g

Figure A.1: Levitation array Magnets

Shape Ring

Outer diameter 26,75 mm

Inner diameter 16 mm

Height 5mm

Tolerance in size +/-0,1 mm

Direction of magnetisation axial (parallel to height)

Material NdFeB (Neodymium Iron Boron)

Type of coating Nickel (Ni-Cu-Ni)

Strength approx.83 kg approx. 814N

Weight 13,7157 g

Manufacturing method sintered

Magnetisation (Grade) N42 —
Max. working temperature 80°C 2675 mm
Curie temperature 310°C

Residual magnetism Br 12900-13200G 1.29-1.32T
Coercive field strength bHc 10.8-12.0kOe  860-955 kA/m
Coercive field strength iHc =12 kOe =955 kA/m
Energy product (BxH)max  40-42 MGOe  318-334 kJ/m?

Figure A.2: Fixed Magnets
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A.1.2 Output Computing

§Variable assignment

R1=TB8.Z;

Rc=T85;

Ec=El1+Ec;

3Load acquired values
load('all coils a2{ p2.mat')
load('all esolls a2s_p2.mat')

%Teat 1 values
colll=10*all coils al20 p2.¥(1l).Data;
coilZ=10*all coils aZ0 p2.¥(I).Data;
co0il3d=l0*all coils a0 p2.¥(3).Data;
coil4=10*all_coils_azl_pz.¥ (4} .Data;
coill=sgre (coill. "2} :

collZ=gqgrc (colll.*2);

coild=sqgre (coill3,."I);

coild=agrt (coild.*2);

§Test Z valuea

coilli=10%all coils_a25 p2.¥(1).Data;

c0ilZl=10*all coils_alb pZ.Y(Z).Data:

coil31l=10%all coils a25 pZ.Y¥Y(3).Data;

coil4l=10*all coils_al5_pZ.Y (%) .Data:

coilll=aqgrt (coilll."2);

coil?l=sqrt (coil2l.*2);

coil3l=sgrt (coil3l."2);

coildl=aqrt (coildl."~2);

3Coil OUWCDUT SUMMATLiON

Ve={}z

Vil,l}=coill+collZ+colli4+colls;

ViZ,l}=coilllt+coilll+coilldl+ooildl:

Vil,11=V{1,1}(1,200:end-c00)

Vi2,11=v{2,11 (1,200:end-600) ;

%Power computing cycle

for 1=1:1

for j=1:2
tij,i}=linspace (0,10,8ize (Vij,i},2) ) %time wector
I{j,;}-?fj,i]fkt; (Current calculation
Pij,id=IMj,i}.*Vij,i}; %Power calculation
MaxV{j,i}=max (V{j,1}); %Max voltage
ddx=find (V{j,il==MaxV{j,i}}: %Max voltage index
MaxP{j,i}=MaxV{j,i1}*I{j,i}(1,idx); %Max power
avgP{j,it=crapz(cil, i}, P{3,.1})/10:; 3Average Fower
E{j,i}=trapz(€{j,1i),P(J,i}}; %Energy= Fower intergal
end
end

Figure A.3: Generator Outputs computing script
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A.2 Testing station

A.2.1 Components and drawings

nano-15/CU

17 wildth AF —,

_/_ 1 % anzlogue 0-10V

operating range
design
operating maode

particularities

means of measurement
transducer frequency
blind zone

aperating range
maximum range
reproducibiiity
accuracy

operating voltage Uy
voltage ripple
no-load current consumption

type of connection

[ R 250 mm

20 - 250 mm
cylindrical M12
analogue distance measuraments

narrow sound field

echo propagation time measurement

380 kHz

20 mm

150 mm

250 mm

+0.15%

+ 1 U {temperature dnift internally compensated)

15V bis 30 V DC, verpolfest
+10%

<25 mA

4-pin M12 Initiator plug

Figure A.4: Sensor data sheet 1
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nano-15/CU

output 1

response time

delay prior to avallability

Input 1

matenal

ultrasonic transducer

class of protection to EN 60529
operating temperature

storage temperature

weight

scope for settings

Indicators

particularities

analogue output
voitage: 0-10 V (3t Ug = 15 V), short-circutt-proof
switchable nsing/falling

24 ms
= 200 ms

Teach-in Input

brass sleave, nickel-plated, plastic parts, PET
polyurethane foam, spoxy resin with glass contants
P67

-25°C to +70°C

-40°C to +85°C

15g

TeachHn
Teach-in ober Com-Eingang an Pin 2

1 x LED green: working, 1 x LED yellow: object in the window

narrow sound field

Figure A.5: Sensor data sheet 2
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A.2.2 Code excerpts

void CheckSum({bvte dat[], int d)
int e;
int i;
int idmx;
c = 0;
i=0;
ide = 0;
F (idx = 2; idx < d; idx++)
{

c += dat[idx];

i =¢c & OxFF;

i=-1i;
dat[d] = 1i;

Figure A.6: Function to automatically generate CheckSum byte

void AngToReg(float ang, byte dat[]

float wal;

int intwval;

val = ang * (40%5.0 / 3&0);
intval = int({wval);

byte regl = intval & O=ff;

yte regl = (intval >> B) & Oxff;

dat[e] = regl;

dat[7] = regZ;

Figure A.7: Function to automatically allocate angle value into correct memory registers
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Appendix B

NARX implementation Codes and
Simulation Diagrams

B.1 NARXimplementation and training codes

e

£F ading

[WaveAngles, Mag Position]=Read File('fi:

inputSeries = WavehAngles;
targetSeries = Mag_ Position;

definition

% HABRX imp

inputDelays HEH
feedbackDelays = 1:7;
hiddenLayexrSize = 10;

net = narxnet (inputDelays, feedbackDelays, hiddenLayerSize);

and division

[inputs, inputStates, layerStates, targets] = preparets(net, inputSeries, {}, targetSeries};

net.divideFcon="1 ek _ock’;
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

o

net.trainParam. epochs=1500;
[net,tr] = train(net,inputs,targets, inputStates, layerStates):

outputs = net (inputs,inputStates, layerStates);
errors = gsubtract (targets, outputs);
performance = perform(net, cargets, oUtputs);

Figure B.1: Network implementation and training using the NN toolbox functions

netc = closeloop(net):
[inputs, inpucStates, layerStates, cargecs] = preparets(netc, inputSeries, {},targecSeries);
[netc, trc]=train(netc,inputs,targets, inputStates,layerStates);

performancec = perform(netc, CAIQgeTs, OUTPUTS)

Figure B.2: Network code excerpt for close loop implementation and training
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B.2 Simulation Diagrams

NARX LMO NARX LMOC

OFEN-Loop L OFEN-Loop LM

AR LMK

NARX BROC

/\/ NARX BRO

T e [ OFEM Loop BR OFEN-Locp LM

Figure B.3: NARX training configurations simulation diagram

96



 BROC1|

v

To Warkspacet

Sine Wavel

A4

v

Figure B.4: NARX BROC simulation diagram

Bim_comple:;

To Workspace1

2\ gy o)
"o 4\
Sine Wave Gain
Scope
L NARX BROC1
Sine Wave1 Gaint

Figure B.5: NARX BROC complex wave simulation diagram
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B.3 Error computing

[ExpWaveAng, ExpHag Pos]=Read File('test Fl,5 AZ8.txt'): 3Experimental values reading
ExpMag Pos=cellimat (ExpMag Pos); %Convertion of cell to double

%Resample of experimental vector into aame aize as simulation vector
ExpMag Pog cs=resample (ExpMag Pos,size (ERO mat,2),size (ExpMag Pos,2)):
SHSE computation

|for i=1:3

m3eBRO(1,1) = immse (ExpMag Pos_ts, BRO _mat(i,:)):

maeBROC (1,1} = immse (ExpMag Poas_ta, BROC mat(i,:)};

maelMO(l,1) = immse (ExpMag Pos_ts, LMO mac(i,:)):
mselMOC (1,4} = immse (ExpMag FPos_ts, LMOC mat(i,:)):
end

IMPE computation

|for k=1:3

MPE_ERO(1,k) =(l00/size(BRO_mat(k,:),2))*sum((ExpMag Poa_ts-BRO mat (k,:)) ./ExpMag_Pos_ts)
MFE BROC(1,k) =(100/size(BROC mat(k,:),2))*sum((ExpHag Pos ta-BROC mat(k, :}). /ExpMag Pos_ta)
MEE IMO(l,k} = (L00/size (LMO mat(k,:),2) ) Ysum| (ExpMag Pos te=-LMO mat(k,:)). /ExpMag Pos _ta ):
MFE_LMOC(1l,k) = [(100/size (LMOC_mat (k,:).Z))*sum((ExpMag Pos_ts-LMOC mat (k,:)) . /ExpMag Fos_ts
end

$Crosa correlation cosefficient computation

|for c=1:3

CC BRO(l,c) = xcorr(BRO mat(c, :},ExpMag Poa ta,0, 'coeff'});

Figure B.6: Error Computing Script pt.1
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khverage CC
avgCC_BRO=mean (CC_BRO) :
avgCC BROC=mean (CC_BROC) :
angC:IMan ;CC_I.H-D} 2
avgllC LMOC=mean (CC_LMOC) :

SMaximum CC
maxCC_BRO=max (CC_BRO) ;
maxCC_BROC=max (CC_BROC) ;
maxCC_LMO=max (CC_LMO) ;
maxCC_LMOC=max (CC_LMOC)

WAverage MSE
avgmzeBR0=msan (exrrBRO) ;
avgmseBROC=mean (errBROC) 2
avgmselLMO=mean (errLMO) ;
avgmseLMOC=mean (rrLMOC) :

tAverage MSE
minmseBRCO=min (errBRO) ;
minmseBROC=min (errBROC) ;
minmselMO=min (exclMO) ;
minmse LMOC=min (errLMOC) ;

YAverage MPE

avgMPEBERC=mean (aba (MPE BRO) ) ;
avgMPEEROC=mean (aba (MPE_BROC) ) :
avgHPELMO=mean (aba (MPE LMO) ) ;
avgMPELMOC=mean (aba (MPE_LMOC) ) ;

(Minimum MEE

minMFEERC=min [abs (MFE_BRO) ) ¢
minMPEBROC=min (aba (MPE BROC) ) :
minMPELMC—min (abs :HFE_LHDJ Y
minMPELMOC=min (abs (MFE_LMOC) ) :

Figure B.7: Error Computing Script pt.2

99



	Contents
	List of Figures
	List of Tables
	Nomenclature
	Nomenclature
	Introduction
	Context
	Objectives

	Literature review
	LBEH concepts
	LBEH modeling
	ANN on dynamic system modeling

	Method
	Energy Harvester Prototype
	Dimensioning of the harvester
	Structural design
	Construction of the device

	Testing Station
	Development and Construction
	Programming and data Recording

	Dynamic system modeling using Artificial Neural Network
	Network Architecture
	Network Parameterization
	Network Simulation


	Results
	Generator Performance
	Network Testing

	Discussion and Conclusions
	Conclusions and future work

	Bibliography
	Appendices
	Generator/Testing Station
	Generator
	Components and drawings
	Output Computing

	Testing station
	Components and drawings
	Code excerpts


	NARX implementation Codes and Simulation Diagrams
	NARX implementation and training codes
	Simulation Diagrams
	Error computing


