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palavras-chave 
 

Internet das coisas; Sistemas de monitorização; Computadores de 
placa única; Baixo consumo de energia; Redes Ad hoc. 

resumo 
 

A Internet of Things (IoT) é uma categoria genérica das arquiteturas 

de TIC que inclui o uso de sistemas baseados em sensores e 

comunicações. Um elemento comum das arquiteturas IoT é o 

agregador que recolhe dados de sensores nas proximidades e 

reencaminha-os para serviços remotos de mais alto nível. O projeto 

VR2Market, no qual este trabalho está integrado, usa duas 

implementações do agregador de dados, implementados em Android 

e RPI.  

Com o novo módulo proposto, inspirado na IoT, é possível migrar os 

agregadores de dados para dispositivos mais pequenos e mais 

eficientes mantendo a abstração de programação de alto nível.   

Neste trabalho, propomos e implementamos uma nova versão do 

agregador de dados, chamado VR-Banway, usando o módulo 

computacional Intel Edison, tendo em consideração a integração de 

novas camadas de serviços no VR2Market, especialmente no que diz 

respeito ao suporte de redes Ad hoc. 

VR-Banway provou ser uma solução capaz de substituir o 

componente de agregador de dados existente no sistema 

VR2Market. A nova abordagem usa um módulo mais pequeno, reduz 

o consumo de energia e é mais portátil. VR-Banway foi usado no 

contexto de monitorização de bombeiros, mas está preparado para 

ser implementado noutros domínios. 
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abstract 
 

Internet of Things (IoT) is a generic category of ICT architectures that 

includes the use of sensor-based, communication-enabled systems. A 

common architectural element in IoT is the sensors gateway that 

collects data from nearby sensors and relays them to higher-order 

remote services. The VR2Market project, in which this work is 

integrated, uses two implementations of the gateway, based on 

Android smartphones and RPI boards. 

With the new proposed IoT-inspired computing module, it is possible 

to migrate gateways to a smaller, more efficient hardware, while 

retaining the high-level programming abstraction. 

In this work, we propose and implement a new version of the 

gateway, named VR-Banway, using the Intel Edison compute module, 

taking into consideration the integration with additional service layers 

in VR2Market system, especially with respect to the required Ad hoc 

networks support. 

VR-Banway proved to be a solution capable of replacing the existing 

gateway component in the VR2Market system. The new approach 

uses a smaller module, reduces power consumption and is more 

portable. VR-Banway has been used in the context of firefighters 

monitoring, but is ready to be deployed in other domains. 
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1 Introduction  

 

Internet of Things (IoT) is a generic category of ICT architectures that includes the 

use of sensor-based, communication-enabled systems. A common architectural element 

in IoT is the sensors gateway that collects data from near-by sensors and relays them to 

higher-order remote services.  

The VR2Market project [1], in which this work is integrated, uses two 

implementations of the gateway, based on Android smartphones and RPI boards. The 

VR2Market is a project that aims to monitor and support people and teams in dangerous 

professions, monitoring his vital signals, context and surrounding environment aspects. 

The project is a collaboration of a consortium involving several partners from technology 

to psychology. 

The initial objective of this dissertation is to refactor VR2Market system to address 

known issues on transport layer and sensor integration in order to improve it and to 

prepare it to different areas and scenarios namely IoT scenarios. 

Our main focus was on the personal data aggregator. The personal data 

aggregator (VR-Unit) is the data entry point to VR2Market incoming from team members 

in the field. The refactoring of an existing solution (Android and RPI) aims at the 

deployment of a personal aggregator that is more efficient, in terms of power 

consumption, and smaller and, also, the exploit of new single-board computers like Intel 

Edison were a step towards smaller and low power consumption solution. With new IoT-

inspired computing modules, there was an opportunity to migrate the existing 

aggregators to smaller, more efficient hardware, while retaining the high-level 

programming abstraction. 

However, some previously identified issues remained as objectives in the 

refactoring work, namely the lack of Bluetooth Low Energy sensors (for new sensor 

integration and more efficient power management) and the support of Ad-hoc network 

resources API which can be exploited also to add bidirectional communication between 

the aggregator and the rest of the system with QoS assurance. 
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 Objectives and Contributions 1.1

 

The objectives of the current work are to refactor the existing personal aggregator 

unit based on RPI used in VR2Market to new requirements and technological evolutions: 

 Integrate BLE sensors, namely BITalino. 

 Add support for messaged based interface and integrate NetAPI, a new 

Ad hoc messaging transport layer API to the solution and, with it, add 

bidirectional communication support. 

 Port the existing solution to other Linux based SBC - Intel Edison more 

precisely.  

 

As a high-level objective, this refactoring will allow deploying a new version of the 

gateway, named VR-Banway, using the Intel Edison compute module, extending the 

existing usage scenarios of VR-Unit (the current VR2Market gateway solution) to more 

wide area of IoT, as well as, the addition of BLE support and port to Intel Edison allow a 

smaller footprint either in power requirements and overall form factors – when compared 

with existing RPI solution.  

 

Contributions:  

 Refactored VR-Unit: Personal aggregator deployed in RPI. 

o Added support to new BLE sensors. 

o Ad hoc communication service using NetAPI service. 

 VR-Banway: Personal aggregator deployed in Intel Edison. 

 

 

 

 

 



 

3 
 

 Dissertation Structure 1.2

 

This dissertation is composed by 9 chapters, including this one, all of them well 

divided by subjects: 

 Chapter 2 describes the State of Art related to the work developed in this 

dissertation and the IoT. 

 Chapter 3 describes the existing system, VR2Market, and alongside with it 

the changes and adaptations that this dissertation address. 

 Chapter 4 describes the refactoring done to the VR-Unit, namely what was 

added, and the issues addressed as well as the new components and the 

overall workflow of the system. 

 Chapter 5 describes the integration of a new communication service in VR-

Unit that use Ad hoc networks. With this integration we explain the new 

scenarios and features added to the system. 

 Chapter 6 describes the port of RPI based VR-Unit to a new single-board 

computer, Intel Edison, the VR-Banway. 

 Chapter 7 describes other major changes that were made in several system 

components. 

 Chapter 8 describes the evaluation of the refactored VR-Unit and new VR-

Banway in comparison with the existing RPI based VR-Unit solution also 

considering the added features. 

 Finally, Chapter 9 summarizes the conclusion descendant from all the work 

done and it is described some future work that can be done to improve the 

system. 

 

 

  



 

4 
 

 



 

5 
 

2 State of the Art 

 

The scope to the refactoring on the existing personal aggregator unit based on RPI 

is clearly within the scope of the broader area of Internet of Things (IoT) as most 

technical solutions we seek to improve are traditional concerns of IoT: low power 

consumption, data sharing, efficient data transport, sensor integration, and small 

footprint devices in which SBC can be included. Alongside this specifications, the 

constant evolution of the embedded systems (e.g. SBC) and communications 

technologies [2], [3], provide equipment and software capable of going along with the 

evolution of the monitor systems (e.g. VR2Market). 

In this chapter we will address each of these concerns and review existing 

solutions that might be applicable in the evolution of the new personal aggregator for 

VR2Market project. 

 

 Internet of Things overview 2.1

The IoT concept starts to appear due to the growing number of machines deployed 

in every single activity or local plus the constant expansion of the internet coverage [4]. 

In IoT, deployed gadgets or devices start to connect between themselves using available 

Internet connection [5]. For this reason, most IoT enabled devices already have 

connection capabilities to allow remote access (e.g. for configuration) and to relay the 

data they collect [6]. IoT can be seen as enclosing the physical objects (controller, 

sensor, actuator or a combination of these), the data processing units (e.g. deployed 

software) and the network transport layer (with or without Internet), as stated in 

Designing the Internet of Things [7]. 

The typical devices in the IoT area are not the common desktop computers or 

servers, but small devices usually coupled to deployed sensors or actuators with design 

with focus on low power consumption, small size and network connectivity. A good 

example scenarios are Smart Cities [8] where the embedded systems (e.g. the devices 

used) are spread in several strategic locations to, typically, monitor actions and 

behaviours and act accordingly, managing and controlling an activity by inter-operating 
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between themselves without human interaction [9]. Thanks to this characteristics one big 

range of IoT scenarios relies in monitoring systems, where there are huge amounts of 

sensors, data processors and actuators [7] and, with that, the related acquired, 

processed and shared data over the network that needs to be processed and analysed, 

also, by some high-level applications to transform it in useful information about the 

scenario different contexts [10], from the information conclusions can be formed and act 

accordingly to improve life welfare and lifestyle. 

 

2.1.1 Typical architecture 

 

In a typical IoT scenario, the system architecture follows a layered approach where 

acquisition, processing, sharing and visualization the collected data is addressed – each 

layer addressing one of these concerns [11] as shown in the Figure 1. 

 

 

Figure 1 – Layers of a typical Internet of Things architecture [11]. 
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The architecture can, also, be represented using three main components, 

Hardware, Middleware and Presentation [12] where the Hardware component comprises 

the Data Providers, Access Gateway and Internet layers, the Middleware component 

comprises the Middleware layer and the Presentation component comprises the 

Application layer described in the previously described model. 

The Hardware component, and respective layers, represent the physical data 

sensors, actuators, aggregator devices [13] and communication hardware responsible 

for collecting the sensed signals, aggregating and sharing them with the upper layers 

and components. The Middleware component acts as a bridge between the Hardware 

and Presentation components and it is responsible to manage the connected devices 

and organize the collected data [14] transforming it into information to provide it to the 

upper layers and components. The Presentation component represents the tools and 

applications that can exist in several platforms to access and present the collected 

information to the end users of the systems [15]. 

It is possible to approach IoT focused on the sensors (the things) and on the 

software components as in Figure 2. The sensors on left side (the Hardware) rely on 

“Sensor Gateway” also called aggregation gateway [16] (in Figure 2 depicted as the 

mobile device and “REST API” components) to gather the signals captured by the 

sensors. In this type of scenarios, and consequently the device used to fulfil this 

component features is called aggregator, responsible for feeding the Middleware and 

Presentation according to application scenario and specific requirements. This 

aggregator has an important role [17] in an IoT scenario. 
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Figure 2 – Components architecture of a typical Internet of Things scenario [18]. 

 

2.1.2 Sensors Gateway 

 

In a typical IoT architecture, one particular component that plays an important role 

in interfacing the edge devices (e.g. sensors) with the Internet, the Cloud or other 

services available in networks [19] is the sensor gateway component. This component 

has been named sensors gateway, IoT gateway [20] or even data aggregator and it is 

deployed in a device that stays between the sensors and actuators and the rest of the 

system as shown in Figure 3. 
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Figure 3 – Example of IoT gateway usage in a smart house monitoring system [20]. 

 

In terms of architecture, the sensors gateway makes the bridge and connectivity 

between the Data Providers and the Internet layers, so, it acts in the Access Gateway 

layer with the network role of being a central router point to interconnect all the smart 

devices together (sensors, actuators and even other aggregators) in order to collect and 

share the scenario adjacent data [21]. Aside from the internal network it also makes the 

bridge between the intranet and the internet [22] to allow the exterior accessibility to the 

internal hardware devices produced data and configure the devices behaviour. 

The sensors gateways were traditionally devices with low processing capability [23] 

and its only responsibility was to route the data directly from the sensors to the other 

components but, nowadays, more and more, the systems are using smart devices that 

are in charge of the sensors connectivity, collected data processing, filtering, storage and 

security communication aspects among other tasks [24]. These devices are selected 

based in hardware and, also, software requirements to perform the stated required tasks 

and making an interface between communication technologies that act in different levels, 

as in Figure 4, because the sensors and actuators do not have OS so the 

communication protocols are at a lower level and the data need to be shared with higher-

level devices and systems that use different technologies and protocols.  
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Figure 4 – IoT architectural components and communication protocols [25]. 

 

2.1.3 Efficient Messaging 

 

In the IoT scenarios, the collected data, provided by the sensors and aggregated in 

the Sensors Gateway, needs to be shared and exchanged in order to make it useful 

(information) to be analyzed and become the source of decisions and acts to improve 

and correspond to the system objectives. The data communication can be done using a 

wide range of technologies, where it stands out the messaging protocols that, in general, 

are chosen for the specific system so that it obey the devices constraints [26] about 

communication efficiency and at the same time the battery, memory and processor 

saving of the Sensors Gateway. 

The messaging purpose is to exchange messages using a broker to manage them, 

where the communication actors subscribe and publish in order to receive and send 

them respectively, as in Figure 5. There are several, most used and relevant, brokers 

like Kafka, RabbitMQ, Mosquitto and Kestrel [27], [28], [29], where Kafka and Kestrel are 

very similar, in terms of internal architecture and structure, and RabbitMQ and Mosquitto 

are in the same technological level both in terms of internal architecture and 

configuration parameters as of used messaging protocols. These last two, particularly, 

RabbitMQ have a large set of features [30] which allows to be more flexible and 

adaptable to the scenario requirements but that could be heavier, in terms of resources 

consumption, than the others, so, despite of the large range of scenarios where it can be 

used when there are resources restrictions and specific configuration requirements, 

other brokers, like Mosquitto, could be more suitable. 
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Figure 5 – Broker messaging concept, publish-subscribe pattern [26]. 

 

Aside of the brokers itself, all of them need to use communication protocols, that 

run over TCP or UDP protocols. There are many messaging protocols, designed for 

different operations and type of scenarios, among them some stand out for their 

recognition and evidence given, like, AMQP, MQTT, CoAp, STOMP and DDS [31]: 

 AMQP: This protocol provides a large range of features in terms of reliable 

queuing, security, topic-based and flexible routing of the messages. Most of 

them are, also, supported because this protocol implements its own link 

and transport layers [31] over the TCP/IP standard ones.  It is also 

programmable by the user in terms of access to the queues, their depth in 

terms of size, message headers, properties and annotations [32]. The 

internal management of the messages are through the publish-subscribe 

pattern using queues to maintain and share the messages. In conclusion is 

a protocol very comfortable in terms of configuration, reliable message 

delivery and security, although, it is more expensive in terms of processor 

and memory usage, so, sometimes it is not suitable for an  IoT scenario. 

 MQTT: This protocol was designed to be simpler, and consequently lighter, 

than AMQP [32]. It was implemented over TCP and Web sockets, so, it has 

also reliability and assure QoS [28] internally and from the TCP protocol in 

the message delivering. The internal structure, to manage the messages 

communication, is based in the publish-subscribe pattern using a topic-

based filtering [28]. It was developed to be mainly deployed in constrained-

resource devices, so, with the stated fact, this protocol is more suitable in 

IoT scenarios where the network signal can be weak, the hardware is 

minimum and with low power supply. 
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 CoAp: This protocol was designed and developed with the awareness of 

the constraints in the devices and networks in the IoT scenarios and similar 

[33]. It works over the UDP protocol so there is no reliability and QoS 

assurance in the message delivery, although, by using the HTTP REST 

model (only a modified subset of the REST API) it can mark the packages 

[31] in order to have some notification about the delivery status. As stated, 

using modified REST commands, this protocol does not follow the publish-

subscribe pattern, instead it uses a request-respond pattern. 

 STOMP: This protocol is text-based, analogous to HTTP [32], so it is 

labeled as a protocol that works in an higher-level than the ones stated 

before and, consequently, not appropriate to be used as a message broker 

in an IoT scenario [31], even being simpler and lighter than AMQP. 

Although it is a broker suitable and adaptable for many scenarios due to its 

simplicity accepting client connections from different technologies and by 

not using queues and topics and, instead, use semantic commands like 

HTTP [32]. 

 DDS: This protocol is different from the others in terms of its base 

architecture being data oriented instead of message oriented [31], that is, 

the client nodes post its own data and the other nodes post what type of 

data they want, in order to consume it [34]. 

 

Through the analysis of the described messaging protocols it is clear that for a 

specific scenario and their requirements the chosen protocol and broker have a 

significant impact on the behavior and efficiency of the overall system workflow, so there 

is no perfect protocol or broker, it just need to be chosen based on an evaluation of 

constraints and requirements. In Table 1, adapted from EEJournal - All About Messaging 

Protocols, by Bryon Moyer [31], is a brief comparison between the stated protocols in the 

general most important features to take into consideration when choosing the protocol to 

be used. 
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Protocol 
Message 

pattern 
QoS Security 

Suitable for 

constrained 

devices 

AMQP P/S Sophisticated TLS and SASL No 

MQTT P/S Some levels 
Manually by 

best practices 
Yes 

CoAp R/R 

Not native. 

Can use HTTP REST 

features 

DTLS Yes 

STOMP P/S Server-specific None No 

DDS P/S Sophisticated No standard Yes 

Table 1 – Messaging protocols internal architecture comparison [31]. 

  

 Communication using Ad hoc networks 2.2

In the VR2Market project, one relevant feature is to support Ad hoc 

communications between system nodes to overcome the absence of a traditional 

centralized network topology. A good example are the scenarios of critical response, 

disasters or hazardous professions where typical network resources may be absent, 

namely, due to infrastructures hazards (damage or destruction) [35], compromising the 

overall system communications. 

In the deployment of technological systems where data communication is present, 

and sometimes crucial, the respective communication topology infrastructure has several 

hardware components that represent a point of failure if it was damaged or destroyed, 

compromising all other components and communication channels. For example, if the 

communication technology is Wi-Fi based, the packets “routing” is made in a central 

point device [36], making it a central point that makes the connections between all the 

users and, consequently, a point of total failure. 

With the use of a wireless Ad hoc network the system does not need a central 

infrastructure, it assumes a decentralized topology [37], there is no central failure point 

that compromises the communication and the distance problem is also resolved by the 

base architecture of Ad hoc technology regarding to the used routing protocols to 

properly know the network nodes. In this type of networks there are many protocols like 

AODV (On-Demand Distance Vector), OLSR (Optimized Link-State Routing), RPL 

(Routing Protocol for Low power and lossy networks) and SPIN (Sensor Protocol for 
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Information via Negotiation) [38]. With the use of these protocols it is possible to know 

the neighbors nodes and calculate and decide the path to take in order to reach the non-

neighbors nodes by the maintained routing table [39]. With this routing mechanism, it is 

assured that the communication between any two nodes is guaranteed as long as there 

is a path between the nodes that routes the messages between the sender and the 

receiver. 

 

Figure 6 – Wireless Ad hoc nodes range [37].  
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3 The VR2Market and new opportunities 

 

The VR2Market is a project that aims to monitor and support people and teams in 

dangerous professions, monitoring their vital signals, context and surrounding 

environment aspects. The project is a collaboration of a consortium involving several 

partners from technology to psychology [1]. 

VR2Market is oriented to serve the firefighters in their missions, whether in fire or 

in accident and rescue scenarios. By applying this system the firefighters themselves 

can have a feedback about their body response in the several situations of the missions 

but also the commander or team chiefs have the perception about the welfare of the rest 

of the team members. 

In VR2Market system [1]  the assumption is that by monitoring both environmental 

and physiological status of the operational in the operation theater, it is possible to have 

a better management, at personal and team level, when they are at a danger situation 

and, also, in post operation, to track possible markers of conditions that demand 

attention and action on the long run (e.g. psychological support, physical deficits, etc.) as 

result of continuous exposition to hazardous conditions along the time. 

 

 Scenarios and workflows  3.1

The original VR2Market scenario is focused on firefight scenarios, where the 

firefighters have the sensors in their clothes and body. The broader scenario also 

includes support monitoring operational in several types of hazard jobs and scenarios.  

In either scenario each operational has an aggregator and several sensors, as in Figure 

7, that collects, processes, stores and sends the information to the Cloud and to the 

running external services if there are any. 
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Figure 7 – Sensors attached to the firefighter clothes. 

 

In a real fire scenario, VR2Market, through web UI, allows to show, the commander 

or team supervisor, the status of the firefighters in the field [1]. The information can be 

visualized in real time because the aggregator sends the data to the external service, as 

long as it has connection to the same network as the service. By doing this the 

supervisor or commander has a real-time vision of the firefighters location, their heart 

rate and body temperature and the environmental status present near the firefighter 

team. The collected information can also be visualized afterwards to analyze the ambient 

and fire evolution and the behavior of the firefighters in response to those changes. 

All the data is collected from the sensors equipped in the firefighter clothes as 

shown in Figure 7, where it is possible to see the several used gear, e.g., Vital Jacket 

shirt (1), GPS sensor (2), FREMU sensor (3), VR-Unit Android phone (4), HELMET 

sensor (7), it is used also two localization sensors, already used by the firefighters that 

are not included in the project but the data can be used to validate the collected values 

from the project sensors (5, 6). 

Besides just visualizing the physiological and environmental information, it is 

possible to receive alerts and alarms from the aggregator equipped in the subject. This 

type of warnings are showed as a more relevant event that needs more attention and 

proper response. 
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This monitoring scenario is already implemented in the VR2Market project where 

our system acts as the aggregator or Sensor Gateway. There is a real-time application to 

visualize the information in live mode and another application to analyze the collected 

information afterwards. 

 

 VR2Market Architecture 3.2

In the VR2Market architecture we clearly distinguish two scopes (Figure 8): data 

collection & monitoring and data processing & review. On the left side, the data collection 

in operational theater relies on VR-Unit (personal data aggregator) to gather information 

from the equipped sensors. VR-Unit relies the incoming data to the Data Collector 

component (mission level aggregator) that gathers all information incoming from a 

specific operation theater. It serves as bridge to the data handling and monitoring 

backoffice, present in the right side, that besides supporting online monitoring (VR-

Commander) also allows offline mission review (VR-Mission Review) and provide the 

data to analytics and third-party applications. 

 

 

Figure 8 – High level architecture of VR2Market. 

Briefly, the main components present in the VR2Market system are: 

 VR-Unit responsible for acquiring the data from the sensors. 



 

18 
 

 VR-Remote responsible for the configuration of the VR-Units. 

 Data Collector responsible for the aggregation of the data from all the VR-

Units. 

 VR-Data responsible for storing the collected data and providing access to 

it. 

 VR-Mission Review responsible for visualizing and analyzing the data after 

the acquisition. 

 VR-Commander responsible for visualizing the data in real time during the 

acquisition. 

 

The VR-Unit is the aggregator, present in each firefighter, that gathers and process 

all the data collected from the sensors attached to the firefighter equipment and it can be 

external configured by the VR-Remote component. It is an end point of the system 

because it is responsible for establishing the connection with the data sensors and 

acquire its data to aggregate, filter, store and send it to the rest of the system. Also, the 

VR-Mission Review and the VR-Commander are endpoints because their task is to 

provide a UI of the collected information to the end users of the system, the first one is 

for review the collected information after the acquisition while the second one is focused 

on online monitoring in real-time. 

The Data Collector and the VR-Data are responsible for providing access to the 

collected data. The first one aggregates all of it and provides it to the second one that 

makes it persistent, saving it in a database, and exposing it to other applications or 

components through a REST API. 

 

3.2.1 Sensors 

 

The VR2Market system collects data of diverse types (environment, location and 

physiological data). The values are provided by external sensors via Bluetooth: 

 Environmental data 

o FREMU sensor. 

o HELMET sensor. 

o Weather Station sensor. 

 Location data 
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o GPS sensor. 

o G2RAYS sensor. 

 Physiological data 

o Vital Jacket sensor. 

 

The environmental data collected by the sensors is very important in this system 

because it provides information about the surrounding environmental aspects of the 

subject with the sensors. In this type of scenarios, it is important to be aware of these 

factors in order to associate the environmental data and the corresponding reactions of 

the subject and, with that, also, preserve the welfare of the subject by warning him about 

any surrounding danger. The FREMU device (Figure 9 A) is capable of sensing and 

measure ambient temperature, carbon monoxide, atmospheric pressure and relative 

altitude. The HELMET device (Figure 9 B), is like a newer version of the FREMU due to 

the acquisition signals being the same plus the humidity, luminosity, nitrogen dioxide and 

sensor battery. These two sensors are made to be placed directly on the professional 

subjects, but, there is also a fixed sensor, the Weather Station (Figure 9 C), capable of 

sensing and measure ambient temperature, rain, wind direction, wind speed, 

atmospheric pressure, humidity, luminosity and sensor battery. 
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(A) 

 

(B) 

 

(C) 

 

 

(D) 

 

Figure 9 – Sensors examples:(A) FREMU, (B) HELMET, (C) Weather station, (D) G2RAYS. 

 

The location data is collected from the internal aggregator GPS and the G2RAYS 

(Figure 9 D), these devices are capable of sensing and measuring location, time and 

altitude. This type of data is used to relate and analyze the correlation between the 

location adversity versus the subject reactions at every moment.  

The physiological data is a crucial element in the system due to is direct relation 

with the welfare of the subjects, obtaining physiological signals there could be created a 

relation between all other collected data and take conclusions about the firefighters 

responses to the several present stimuli in a mission. The Vital Jacket, shown in Figure 

10, is capable of sensing and measure electrocardiography (ECG), body temperature 

and accelerometer (ACC) variations. Through the ECG it is also possible to calculate 

and determine the heart rate at each instant. 
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Figure 10 – Vital Jacket sensor and corresponding cloth. 

 

The current VR-Unit only support sensor communications via normal Bluetooth and 

the stated sensors use only this technology. In the application developed in this 

dissertation there is also support for Bluetooth Low Energy (BLE) communications and 

consequently there some new sensors that use this technology that can be integrated in 

the system. 

 

3.2.2 VRUnit: Android and RPI 

 

In VR2Market the VR-Unit aggregator, based on two implementations, Android and 

RPI platforms, is responsible for acquiring and processing the collected data by the 

sensors before transmitting it to the operation theater data collector (Data Collector). The 

main responsibilities of the aggregator are: 

 Find and make a connection with the sensors to receive their data. 

 Store locally the processed data. 

 Stream the processed data to the Data Collector component. 

 Send the processed data to remote location. 

 If possible, show feedback of the actual received data. 
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The VR-Unit architecture relies on a messaging paradigm having a broker as the 

main gateway to broadcast the collected data to internal components that process, filter, 

store and share the data. In the Android implementation, this approach is assured by 

using Broadcast Receivers, intents making it possible to share the collected data 

between the different activities and services. The RPI implementation is similar, but the 

broker mechanism relies on a RabbitMQ messaging server sharing the collected data to 

the different running threads or processes, equivalent to the Android services. 

The aggregator can be configured by an external application, as in Figure 11, the 

VR-Remote, or in the aggregator itself using its graphical interface. The application is 

able to listen for Bluetooth connections from external devices that configure the active 

sensors, network addresses, acquisition metadata and used hardware resources. 

 

Figure 11 – VR-Unit external configuration. 

 

The Android application (Figure 12) supports all the features required for the 

system and has the advantage of having a graphic user interface in the aggregator itself 

which allows the user, in certain scenarios, to configure and visualize the collected data 

directly on the aggregator. This version was already tested in the field by the 

professional firefighters in real scenarios and it has proved to be a stable version for 

acquiring data that can be analyzed afterwards. 
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Figure 12 – Android VR-Unit application. 

 

The application developed to run in the RPI also supports most of the system 

required features but misses the capability of sending the aggregated data to the cloud 

and the internal storage of it for post-viewing by the rest of the system components. 

Besides, this version was only developed and used in laboratory experiences, it was not 

tested in real scenarios but it also processes and produces good quality data, so, it is a 

solution that can also be refactored to be fully integrated in the system. 

These two implementations, despite being applicable in the actual system, do not 

fit in the objective of this dissertation due to their size and power consumption. Even the 

RPI implementation, being already a SBC, is still too big and consumes a considerable 

power from the battery supply. 

 

 

 

 



 

24 
 

3.2.2.1 RPI 

 

The Raspberry Pi (RPI) device is a small single board computer i.e. all computer 

components within one small size board. Besides typical computer it provides some 

onboard integrated resources: Bluetooth, Wi-Fi modules and provides configurable GPIO 

ports that allows developers to connect and control several electrical components. 

There are several available models, beginning in the model B to the RPI 3 (Figure 13) 

that was released in 2016, this last one was chosen because in our system we need 

some memory to store the data and a good processor that can accompany the 

communication rates of the sensors and, at the same time, do the rest of the data 

processing. By having on-board Wi-Fi and Bluetooth adapters, which are necessary in 

our system, this model is the most suitable to our requirements. In the following table, 

Table 2, we can check the RPI 3 specifications that proves to be more suitable for our 

system. 

 

Component Specification 

Processor 
Core 

Cortex-A53 64-bit Quad 

Core 

Clock 1.2 GHz 

GPU VideoCore IV 

RAM 1 GB 

SD / MMC microSD 

GPIO 40 ports 

Wi-Fi 802.11n 

Bluetooth 4.1 

Power consumption 800 mA 

Power source microUSB or GPIO 

Table 2 – Raspberry Pi 3 most important specifications. 

 



 

25 
 

 

Figure 13 – Raspberry Pi 3. Source: goo.gl/n4Jbzf. 

 

3.2.3 Data transport and persistence  

 

Data Collector is the VR2Market logical broker on the operational theater and acts 

as the gateway for the VR2Market backoffice. This component is the central point for 

data collection incoming from VR-Units. As in VR-Unit, the communication between VR-

Unit and Data Collector relies on a messaged based paradigm where the Data Collector 

receives the information and routes it VR-Data that is responsible for its storage and 

provide the information to online and offline components monitoring and analytics. 

Currently, communication between VR-Unit and Data Collector has two modes: 

P2P and messaging. P2P are supported on TCP or UDP sockets [40], messaging uses 

the AMQP protocol using RabbitMQ as message broker. Both modes are supported in 

both Android and RPI VR-Units and relay on a message based API to send and receive 

text based messages. The text messages with the sensors collected values follow a 

simple structure as showed in Table 3. 

 

Timestamp Aggregator Headquarter Team Message 

Hash 

Data 

248, 

timestamp 

109, add. ID 150, headq. 

ID 

151, team 

nº 

149, hash … 

Table 3 – Messages structure. 
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After receiving the message, the Data Collector filters and validates the messages 

routing them to VR-Data through REST API. In the VR-Data component, the received 

messages from the Data Collector are parsed, to get the sensors values, aggregator and 

acquisition information, and stored in a PostgreSQL database using the programming 

language Java and its Java Persistence API. After the data is persisted it becomes 

available to all components and services that require it through the provided REST API, 

so, this component, in terms of information, is the core component of the system where 

the validated, useful and organized information is stored and provided to other system 

components and third-party applications. 

 

 

Figure 14 – Sensors data flow from the VR-Unit to the Database. 

 

 

3.2.4 Front-End 

 

The current front-end components present in the VR2Market system are based in 

Java EE framework [41] applications deployed in a WildFly [42] server. The three front 

end components are the VR-Data, which has also a backend processing role, the VR-

Mission Review and the VR-Commander. 

The VR-Data front end (Figure 15) interface allows the end user to manage the 

acquisitions loaded and stored in the system, import, visualize, delete and export 

acquisitions to be used by other applications or systems. Besides the interface, this 
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component is also responsible for supporting a REST API which provides access to the 

stored information. 

 

 

Figure 15 – Project component to manage acquisitions (VR-Data). 

 

The main UI components are the VR-Mission Review and the VR-Commander, 

despite some specific requirements, both rely on JavaScript programming language to 

present the acquisitions information provided by the VR-Data component. The VR-

Mission Review (Figure 16) presents the information based on graphics and a map to 

trace the firefighter route. This visualization is static because all the information 

presented is from a past, ended acquisition, but the user can interact with the interface in 

order to navigate through the timeline of the mission and visualize the acquired values at 

a specific moment with more detail. 
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Figure 16 – Project component to visualize past collected data (VR-Mission Review). 

 

The VR-Commander (Figure 17) is the online monitoring solution to visualize the 

acquired information in real-time. Despite being a real-time interaction, the information 

flow is unidirectional, because this component only receives the incoming data 

streaming. The user can check, in an integrated Google Maps, the location of the 

firefighters and, for each one, visualize the sensors data being collected. 

 

 

Figure 17 – Project component to visualize real-time collected data (VR-Commander). 
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 New adaptations and opportunities 3.3

In the current implementation, there are some aspects that can be improved and 

some that need to be introduced for a better performance monitoring and adaptation to 

other types of scenarios. We focus our work in the reengineering and improvement of the 

VR-Unit, more specifically the RPI implementation, due to its orientation for IoT 

scenarios. We also adapt it to work in another SBC, Intel Edison, due to its properties of 

being as capable of processing as RPI but with some more features and small size with 

lower power consumption.  

By preparing the actual system to be used in other IoT scenarios, there are some 

features that clearly need to be enhanced in the system and other aspects that we saw 

as an opportunity to be valuable to integrate in a system like this: 

 Integration of software to work with BLE communications and, with that, 

integration of new sensors like BITalino. 

 Allow the aggregator configuration from external devices through Bluetooth. 

This feature is fulfilled for the Android system but not properly adjusted in 

RPI. 

 Ensure the collected data export to the Cloud and running external systems 

in the RPI implementation. 

 

Besides the adaptation of the RPI implementation, the new system opens the 

exploit of other solutions oriented to IoT scenarios and, for that, the need of new 

objectives and features to better suit in a scenario of that type, namely, small devices 

with lower power consumption, without compromising the system performance and 

features. With this innovative approach we decided to adapt the RPI implementation to 

run on Intel Edison, that satisfies the new requirements.  

In relation to the communication of the collected data from the aggregator to other 

system components or even to other aggregators, the NetAPI service, supported by Ad 

hoc networks, is an opportunity to have a network without any central point of failure or 

messaging distributor. Integrating this service, the system becomes independent of the 

Wi-Fi networks restrictions, and we, also, used this change to introduce bidirectional 

communication between the aggregator and the rest of the system components. With the 

stated communication flow, the system can now interrogate the aggregators in order to 
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check for the users welfare, trigger alarms and warnings and even maintain awareness 

about the connection status. 

With the stated specifications we are able to adapt the existing components, 

namely the VR-Unit, to explore new IoT scenarios and at the same time continue to use 

the new system in the existing platforms with a better performance and enhancement. 
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4 VR2Market System refactoring 

 

The Android VR-Unit already satisfies several of the requirements as aggregator of 

the project, namely, by support several sensors, providing internal storage and sharing 

the collected data to the Cloud. It also provides a graphic user interface that allows the 

user to configure it directly in the device. However, with Android evolutions, the native 

support of Ad hoc networks was lost, with Android OS changes, became unrealistic due 

to logistics and even changes to the APIs. The current RPI solution, is Linux based and 

while losing the UI available in Android devices, has the added value of being more 

easily extended to use Ad hoc networks and new sensors, namely those using BLE. The 

objective of the current work is to refactor the existing personal aggregator unit based on 

RPI used in VR2Market to new requirements and technological evolutions: 

- Integrate BLE sensors, namely, BITalino. 

- Support data sharing with the Cloud. 

- Add support for messaged based interface and Integrate NetAPI service, a new 

Ad hoc messaging transport layer API to the solution.  

- Add bidirectional communication support. 

- Port the existing solution to other Linux based SBC - Intel Edison more 

precisely.  

 

Exploiting SBC’s like Intel Edison seem is an interesting opportunity to both reduce 

the size and power consumption of the VR-Unit with similar computational power. This 

could be an opportunity to explore other scenarios either by exploring new SBC features 

or by exploring their smaller size. 
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 What we are adding and changing  4.1

 

The refactoring of the RPI implementation allowed identifying some extra features 

already deployed in Android version and port them to RPI version besides the initial 

objectives of this work: 

 Refactor the organization and structure of the data files in the local storage 

so that the files can be imported to the system backend. 

 The refactoring led to some options in technological changes like replacing 

the aggregator broker, RabbitMQ, to use a lighter one based on MQTT 

(Mosquitto) already proven in IoT scenarios. 

 

 RPI VR-Unit components 4.2

The RPI VR-Unit architecture is composed by the following components, as shown 

in Figure 18: 

 The manager component. 

 The storage component. 

 The configuration component. 

 The sensors drivers component. 

 The external services component. 

 The NetAPI management component. 
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Figure 18 – Component diagram for VR-Unit architecture. 

 

The manager component is responsible for controlling the execution of the 

aggregator application namely start and stop the overall acquisition workflow. 

The storage component is responsible managing the internal data storage 

including files organization and structure and handling the data flow either those from 

sensors or those when exporting to the Cloud. 

The configuration component is responsible for the advertising of the aggregator 

service via Bluetooth and receive external configuration from the user, adapting the 

acquisition workflow correspondingly. It also supports monitoring the VR-Unit 

components for configuration, execution and status review. 

The sensors drivers component are responsible for managing the communication 

and the data flows from the sensors and relaying it to the storage component and other 

components requiring it. 

The external services component is responsible for managing the communication 

and sensors data relay to external running services that require the collected data. 

These services include, namely, the rest of the VR2Market system backend. 

The NetAPI component is responsible for handling the interaction with the NetAPI 

Ad hoc network resources service. This includes, besides managing the messaging from 
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and to the VR-Unit, register and configure the aggregator running application in the 

NetAPI services in order to participate as a node of the Ad hoc network. 

 

 Acquisition workflow 4.3

When the aggregator is powered on it starts the execution of the application using 

the default configuration, detailed in the internal storage configuration file. The 

application starts by initiating the manager component that subscribes the aggregator 

status queue of the internal broker and decide, based on aggregator status parameter, 

the start, stop or restart the acquisition. This component is also responsible for initiating 

the execution of two i.e. the storage component and the configuration component. 

The storage component, when initiated, creates the data and status files in the 

internal storage. By managing that data, it stores it in the internal storage and in the end 

of the acquisition it creates a .zip file with all the created files and, if there is internet 

connection, send it to the Cloud (Dropbox). 

The configuration component, when initiated, read the default configuration file, 

already in the aggregator, and initiates the demanded components listed in the 

configuration file. After that it makes the advertise of the aggregator service via Bluetooth 

so the clients can initiate a connection with it in order to configure the collection 

parameters of the aggregator by sending other configuration file. If a configuration file is 

received, it reads it and initiates the demanded components. If the client wants to use an 

external service, a connection to the network of that service is required, so the 

aggregator need to receive another file from the client via Bluetooth that have the 

configuration to be used by the WPA supplicant service and connect to the specified 

network. 

When initiated, the sensor driver component, correspondent to the specified 

sensor, begins to search for the Bluetooth service advertised by the sensor to stablish a 

connection with it in order to read its collected data, validate it and then write it in the 

internal broker queue to be used by the rest of the components. 

When initiated, the external services component, subscribe the internal broker 

respective queues in order to access the collected data from the sensors. Then it 

establishes the demanded connections with the running external services, it can be 

through RabbitMQ, Mosquitto MQTT and TCP or UDP, in order to share with them the 

collected data.  
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When initiated, the NetAPI component, subscribes and create the necessary 

queues in the RabbitMQ broker server to use the NetAPI functionalities, registers the 

aggregator application in the NetAPI service to be recognized as a new node in the Ad 

hoc network and then it waits for interactions with other nodes and answer it with the 

appropriate behavior. 

 

 

Figure 19 – Activity diagram for the acquisition workflow. 
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5 NetAPI service integration 

 

The current RPI VR-Unit already supports Wi-Fi based connection, this allows the 

VR-Unit to use the typical network based on a central device, usually a router, so it has a 

centralized topology. The initial RPI version had, also, an Ad hoc interface that relied on 

a low-level programming level wrapping of socket based communication, over UDP, 

delegating to the programmers all the application level semantics. Such specifications 

are not available in the Android platforms because it does not have official support due to 

administration restrictions, in order to connect and use an Ad hoc network in a mobile 

platform, the user needs to have root permissions and that is forbidden in the 

commercialized mobiles [43]. 

 Recently a new API based on a message based paradigm was created to access 

the stated Ad hoc interface in the RPI and participate in the network, including basic 

QoS, the NetAPI. 

 

 NetAPI workflow 5.1

NetAPI is an API that provides application access to Ad hoc network resources.  In 

this service, applications can be registered to be known by the other nodes in the 

network, as applications that can be contacted to exchange messages of any kind as 

long as it follows a defined structure. NetAPI uses a broker mediated API based on 

RabbitMQ, i.e., main interaction with the Ad hoc network is made using messaging, from 

the application to the NetAPI service, and received, from the NetAPI service to the 

application, through this broker. To ensure the communication, there are some steps that 

the application needs to do:   

 The application must create and subscribe two queues in the RabbitMQ server, 

the "id_data" queue, where "id" is a unique identifier of the application, that is 

used to receive data messages and the "id_control" that is used to receive 

control messages. To send messages the application must write the message 

in one of two queues present in the RabbitMQ server, the "network_data" 

queue that is used to send data messages and the "network_control" that is 
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used to send control messages. This process is shown in Figure 20Error! 

Reference source not found.. 

 

 The application must register in the NetAPI service sending a proper 

control command ("register_application"). Besides this command, there 

are others as listed in Table 4. 

 

 

Figure 20 – RabbitMQ required queues to use the NetAPI. 

 

 

Commands Function 

network_status Discover if network is created or not. 

known_nodes Discover network registered nodes. 

network Turn network on or off. 

register_application Register application to use the NetAPI service. 

Table 4 – NetAPI most relevant commands. 
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The communication between the application and the NetAPI service or other 

applications in other nodes of the network, as in Figure 21, it is done by exchanging 

messages written in the RabbitMQ service queues, those messages need to follow a 

certain structure in order to be interpreted by the API. When it is intended to send a 

control message, which is a message with a NetAPI command associated, the 

application must serialize a JSON message with the following keys and values: 

 src_app_id: [integer] unique identifier of the application. 

 what: [string] command to execute. 

 args: [string] command arguments if needed. 

 id: [string] message identifier that would be present in the response of the 

command. 

The response message of the executed command has the following format: 

 what: [string] executed command. 

 args: [string] argument used in the request. 

 result: command result, the type depends on the command. 

 id: [string] message identifier used in the request. 

 

When it is intended to send a data message to another node the application must 

serialize a JSON message with the following keys and values: 

 src_app_id: [integer] unique identifier of the source application. 

 destination_name: [string] name or IP address of the destination node. 

 dest_app_id: [integer] unique identifier of the destination application. 

 qos: [integer] quality communication. 

 data: [bytes] data to be send. 

 mesg_id: [string] message identifier that would be present in the send process 

message if quality communication is set. 

When a node receives a message it has the following format: 

 src_address: [string] IP address of the source node. 

 src_app_id: [string] unique identifier of the source application. 

 data: [bytes] received data. 

 qos: [integer] quality communication. 
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Figure 21 – NetAPI messages communication flow. 

 

 Adding bidirectional communication  5.2

In the original system, the data communication has only one direction, i.e., the 

aggregator sends the collected data to the external services (e.g. Data Collector). With 

the integration of the NetAPI service we also exploit and add the capability, for the 

system, to communicate with the aggregator units becoming a bidirectional 

communication. 

To explore the bidirectional capabilities of NetAPI, a new application had to be 

added to the VR2Market architecture on the server side. This application acted as a 

gateway for relaying server-side messages to the VR-Unit (this flow was not required in 

initial scenarios). The developed application was deployed in the side of the data 

processing system that was deployed in the Data Collector component. It is a python 

application to serve as a bridge between the Data Collector existing Java application and 

the integrated NetAPI service, as in Figure 22. This application registers itself with the 

NetAPI service to participate in the Ad hoc network acting as a collector node to be 

contacted by the other nodes to receive its collected data and to broadcast commands to 

the other nodes. By adding this bridge application, the bidirectional communication is 

possible, so, we add the possibility of integrating new features to the existing system and 

to expand the range of scenarios where the system can be deployed and used. 
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Figure 22 – Sensors data communication flow using Bridge application. 

 

 The new scenarios and functionalities 5.3

With the introduce of bidirectional communication between the aggregators and the 

rest of the system we had some new functionalities that involve the overall data 

management and visualization system components and the aggregators. These entities 

can now exchange messages in a request and reply scenario, where the collector node 

(processing system side) sends commands to the aggregator nodes (data collection 

system side), as exemplified in Figure 23. 

In a fire fight scenario, it is important to maintain the knowledge of the welfare of 

the fireman, for that it was implemented a method to check the team status that works in 

a basic way of sending a message and get a response from the nodes in the network 

(e.g. fireman aggregator). This method request, by the collector node, to the NetAPI a list 

of the known nodes and send them a data message with a specific tag to be recognized 

in the nodes as a check team message. When the nodes receive the message, they 

send a reply message so the processing system application knows that the node is 

reachable and active. 

Another system feature is related to the synchronization of the aggregators internal 

clocks. RPIs do not have an RTC so its internal clock is only correct if it has connection 

to the internet to fetch the actual date, otherwise, when it is switched off the value of the 

date is lost and the next time it is switched on it will use the default date. Due to this 

restriction, it is necessary to send the processing system actual date to all nodes in the 
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Ad hoc network in order for the timestamps associated with the sensors data collected to 

be synchronized. The processing system needs to do the following steps to send its date 

to the nodes registered in the NetAPI: 

 Read the system date. 

 Construct a data message with the read date. 

 Request to the API a list of the known nodes. 

 Send the constructed message to all the nodes in the requested list. 

 

When the nodes receive the message, their internal clocks are updated with the 

received date and with that the reachable nodes maintain their clocks synchronized, 

useful for the data analysis after the mission is done. 

These new functionalities are supported by a QoS feature integrated in the NetAPI 

service which allows to be aware of the messages delivery status. By using this feature 

we have the capability to know if the messages exchanged between the network nodes 

are delivered or not, and with that take conclusions about the welfare of the aggregator 

subject (e.g. is reachable). 

 

 

Figure 23 – Broadcasting commands to Ad hoc network nodes. 
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6 VR-Banway: Refactoring for Intel Edison 

 

One of the objectives of this dissertation was to make a refactoring to the existing 

aggregator device, that was already developed and used in real scenarios, with the aim 

of reducing the overall size and power consumption without greatly impairing the 

processing capability of the application and extend the range of scenarios, where the 

system can be deployed, approaching the system to the IoT area using other more 

recent SBC that suits this kind of scenarios and requirements. 

The current system has a unit developed to run in the RPI, so, by reusing the 

existing implementation and adapt it for the new requirements the actual system 

continues to use the RPI as an aggregator and we also introduce the use of the Intel 

Edison board. 

 

 The Intel Edison 6.1

Intel Edison [44] is a very small SBC that supports several OS and already have 

integrated modules like flash memory, Wi-Fi and Bluetooth 4.0 adapters besides the 

dual-core processor, main memory and a separated microcontroller processor. These 

characteristics accompanied by the reduced size and very low power consumption make 

it very useful for IoT projects and scenarios. 

 

Component Specification 

Processor 
Intel Atom CPU 32-bit 500 MHz Dual 

Core 

Microcontroller Unit Intel Quark 100 MHz 

RAM 1 GB DDR3 

Flash Storage 4 GB 

GPIO 40 ports 

Wi-Fi 802.11 a/b/g/n 

Bluetooth 4.0 LE 

Table 5 – Intel Edison most important specifications. 
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The separated Microcontroller Unit, that processes alongside with the main 

processor, as shown in Figure 24, contain real-time peripheral control features for GPIO 

ports and serial bus interfaces (UART, SPI, 𝐼2𝐶, 𝐼2𝑆, IPC) and have system calls to 

control interrupts, manage memory and thread scheduling. With these capabilities we 

have, available at the same execution time and in the same board, a Microprocessor 

with OS and a Microcontroller where these two can process different code in parallel and 

the threads can communicate with each other between the two types of processors 

through the IPC serial bus interface. 

 

 

Figure 24 – Intel Edison Host CPU and MCU communication. Source: goo.gl/oVPPDb. 
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This single board computer can be attached to a Breakout Board, as in Figure 25, 

created by Intel too, which allow the users to have, besides the main board features, 

available programmable GPIO ports, microUSB port and power supply module. With the 

main board attached to the stated Breakout Board we have an aggregator with an 

acceptable processing capacity and same specifications as in the implementation in the 

RPI, but with a reduced size and lower power consumption, because of that, we also 

choose the use of Intel Edison as the system aggregator approaching the solution to an 

IoT scenario. 

 

 

Figure 25 – Intel Edison and Breakout Board. Source: goo.gl/aCFsVE. 

 

 VR-Banway: Intel Edison based VR-Unit 6.2

With the refactoring of the VR-Unit component to be deployed in an Intel Edison 

board, our objectives of having a smaller and more portable device, still useful in the 

actual scenario and guided to new IoT scenarios, were achieved. That said, we are 

adding an Intel Edison based VR-Unit, VR-Banway, to the existing system, working 

alongside the Android and RPI based solutions. 

With this aggregator device migration, the main concern is to make sure that this 

change does not compromise the actual system functionalities and performance, so, 

even being presenting a new aggregator it needs to fulfil all the requirements stated for 

the RPI implementation. The used programming language remains the same, and the 

application workflow continues to follow the same structure, as well as the way of storing 
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the collected data in the internal storage and sharing it to the external services and to the 

Cloud. 

 

 

Figure 26 – VR-Banway architecture. 

 

In the network communication of the collected data there were some constraints 

imposed by the use of this device, since the internal broker was changed, as explained 

below, from RabbitMQ to Mosquitto, due to requirements of the RabbitMQ server 

deployment, so by eliminating the RabbitMQ server we could not integrate the NetAPI 

service in VR-Banway due to its dependency with the RabbitMQ broker. Nevertheless, 

this constraint does not compromise the overall system workflow since it, originally, does 

not use this service. 
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6.2.1 Internal broker refactoring 

 

The RPI based VR-Unit internal broker relies on RabbitMQ broker, technology that 

includes three common messaging protocols (AMQP, MQTT and STOMP) and use, by 

default, AMQP, although when the server is installed in a device all the features and 

dependencies [30] are installed, even if it would not be all used. By doing this alongside 

with the installation of the RabbitMQ server it is also required to mainly install the 

Erlang/OTP libraries, which is a programming language and an execution environment, a 

java client library which requires also an installation of the Java Runtime Environment 

(JRE) among other dependencies. 

All the stated requirements make RabbitMQ a very heavy choice for our system, 

since we are trying to use Intel Edison, so, we replaced the internal broker for one that 

uses only the MQTT messaging protocol and has a lighter internal architecture. In order 

to have an API to manage the messages exchange with the MQTT protocol it was 

installed an Eclipse Mosquitto server which is a light server suitable for IoT scenarios, 

having minimal installation dependencies, low power consumption and memory usage, 

but, besides that, granting the same, or similar, capacities in terms of number of clients 

and connections, as shown in Figure 27, and quality of service [45]. 

 

Figure 27 – Message distributions types supported in MQTT [45]. 

 

With the replacement of the existent internal broker for the Eclipse Mosquitto 

server we ensured that the internal messaging, of the collected data, was done without 

losing any functionalities in the system aggregator, both in Intel Edison and in RPI 

implementations. 
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 New opportunities by using Intel Edison 6.3

With the use of SBC’s in this project, specially, with the integration of the Intel 

Edison, the range of acting scenarios can be expanded and the approximation of the 

system to IoT scenarios is more remarkable due to the device size, by being much 

smaller it fits in a larger range of objects, like wearables, and the low power 

consumption, its battery lasts an acceptable time for the acquisitions and good process 

power that satisfies the projects purposes. This way the system becomes more portable 

and flexible towards the scenario specifications and conditions. 

Although not implemented some new possible scenarios were discussed where 

VR-Banway can be deployed. The aggregator being so small (Intel Edison with battery 

module, as in Figure 28), with low power consumption and with the communication and 

process resources necessary to work with other devices (e.g. sensors), it can be 

deployed in several places with reduced size, since a packet of tobacco to a teddy bear, 

with, for instance, a accelerometer sensor. In this example scenario, the system can be 

deployed with all the technology (e.g. devices) hidden from the users, so the 

experiments done can be more realistic due to the user not being distracted or 

influenced by the presence of such technology.  

 

 

Figure 28 – Intel Edison with battery module. Source: goo.gl/aBfTe4. 
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7 Other System changes 

 

Despite the focus of this dissertation being mainly the reengineering and 

refactoring of the VR-Unit component and associated requirements, there were also 

some changes in other system components, namely, the integration of new sensors and 

actuators, a new way to configure the VR-Units and in the data analysis and visualization 

components the addition of some new features and refactor the presentation of the 

acquired signals and events. 

 

 VR-Unit configuration method 7.1

The system VR-Units need to be configured in order to specify the acquisition 

information, used sensors and required external connections to share the collected data: 

 Headquarter name. 

 Team number. 

 Data Collector IP. 

 Enable local storage of the collected data. 

 Used sensors settings.  

 

In the Android VR-Unit this configuration is done in the aggregator itself due to the 

existence of a graphical interface, or, the configuration can be transmitted from an 

remote Android application, the VR-Remote. 

In the refactored VR-Unit (RPI) and VR-Banway implementations there is no 

graphical interface available to configure the collection parameters in the aggregator 

itself, so, the configuration must be done from an external application. For this, the 

aggregator advertises his service over Bluetooth and, along with the overall processing, 

it waits for the receiving of an JSON file containing the collection configurable 

parameters: 

 Headquarter name. 

 Team number. 



 

50 
 

 Data Collector IP. 

 External services settings to share the collected data. 

 Used sensors settings. 

 NetAPI service settings. 

 Commands to control the acquisition flow. 

 

When the aggregator wants to send the collected data to some of the external 

services, namely the Data Collector, it needs to be connected to the same network, and 

the network connection configuration cannot be done directly in the aggregator as it was 

done in the Android system. Therefore, the configuration user needs to send another file 

over Bluetooth to the aggregator, containing the configuration of the WPA supplicant 

service that is running in the aggregator OS to manage wireless network connections. 

The configuration user is responsible to correctly describe the WPA supplicant 

configuration file in order to establish the connection with the desired network. 

 

 Integrating new sensors and actuators 7.2

As stated before we introduce, with this dissertation, the use of some new sensors 

and actuators, this is possible because of the changes in the communication 

technologies, with the use of BLE we add to the system the possibility to work with some 

new vital signal sensors and by using SBC’s we now have some liberty to explore 

actuators that require electronic connections to work properly.   

 For that purpose, the actual system now works with BITalino for acquiring 

physiological signals, adding the possibility to acquire, besides the traditional ECG, EEG, 

EDA and EMG signals. 

 The BITalino device [46] used in this system is the BLE version, as in Figure 29, 

which allows a lower power consumption in the device and a faster and asynchronous 

communication of the data. Using this physical device, the system, in comparison with 

the old one, is capable of sensing more vital signals besides the heart and the body 

temperature, such as: 

 EEG: The electroencephalography sensor senses the electrical activity of 

the brain. 
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 EDA: The electrodermal activity sensor senses the variation in the electrical 

characteristics of the skin. 

 ECG: The electrocardiography senses the variation of the electrical activity 

generated by the heart. 

 EMG: The electromyography sensor senses the electrical activity of the 

muscles. 

 

 

Figure 29 – BITalino BLE version with ECG sensor attached. 

 

Besides the physiological signals referred, the actual system uses also the Pulse 

Sensor in order to get the heart rate directly, instead of obtaining it through calculations 

from the ECG. Pulse Sensor is a heart rate sensor created to work with multiple SBC’s, 

like Arduino, RPI and others. It was also adapted by Plux (BITalino creators) to work in 

BITalino so it can be used alongside with the use of other physiological signals. 

The use of the Pulse Sensor is suitable when the objective is just get a fast reading 

of the heart rate without the need to stick electrodes in the person's body due to its non-

sticky method, it only uses a LED and a light detector. The LED sends his light to the 

skin surface and the light detector receives the light reflected with a certain intensity, 

though the intensity it is aware if it is a heartbeat or not [47]. 
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Figure 30 – BITalino Led Pulse Sensor. Source: goo.gl/yJCDEX. 

 

As for the actuators, to retrieve some feedback to the sensors user we integrate, in 

the VR-Unit component, the Flora RGB Smart NeoPixel version 2, as shown in Figure 

31, designed to fit in Wearable and IoT scenarios due to its low power consumption, 

reduced size and the configuration simplicity [48]. We decide to correlate the collected 

heart rate with the showed colour in the RGB LED sending feedback to the user about 

his heart rate (heart rate between 50 and 80 shows green light, between 80 and 150 

shows yellow light, below 50 and above 150 shows red light). 

 

 

Figure 31 – Adafruit Flora RGB Smart NeoPixel, size comparison. Source: goo.gl/on9ZVV. 
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 Front-End components changes  7.3

In the VR-Mission Review component, in aesthetic terms there were some 

changes in the web page navigation method and in the layout organization of the 

information to facilitate the platform usage by the firefighters. Also related to the 

information display we had some filter options to the displayed information so it can be 

filtered by several categories, like acquisition headquarter, team and date. Other 

important filter is about the timeline representing the duration of the acquisitions. We 

added the possibility, alongside with the time navigation already implemented as showed 

in Figure 32 on the bottom timeline, to define the time range displayed in the page, 

filtering the information to show only the data acquired in that time range, as showed in 

Figure 32 on the top timeline. This last filter is very important to the end users when the 

acquisition duration is extensive, giving the user the opportunity to select the desired 

time range to analyse the data with more detail in a certain interval of interest. 

 

 

Figure 32 – VR-Mission Review interactive timelines. 

 

Still related to the information filters, we added a simple login system, as shown in 

Figure 33, to access the sensible or confidential information of the sensors users, like the 

collected ECG, making the web page to have different views, one with all the information 

and other with only spatial and environmental information. 
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Figure 33 – VR-Mission Review login system. 

 

The stated changes, mainly the created filters, are very important in this type of 

scenarios and, in general, in all kind of IoT scenarios due to the large quantity of 

collected data and displayed information. The data needs to be processed and the 

information organized in order to facilitate the users to visualize it and take more easy 

and accurate conclusions. 

In the VR-Commander web page, there were not relevant aesthetic changes 

because the interface was already very user friendly and the necessary filters were 

already implemented. However, in this type of scenarios the quick response to an 

emergency is crucial, so we added a major change in the backend workflow of the data 

related to events and alarms triggered by the VR-Units. 

Previously, when an alarm or event was triggered, the generated message in the 

aggregator was communicated via RabbitMQ to the Data Collector, then it was routed 

via REST API to the VR-Data, processed in this component, and only then passed to the 

VR-Commander, via REST API, to be displayed in the main window as an emergency 

alarm. With our backend changes in the communication technologies and workflow, 

when the message arrives to the Data Collector it is directly sent to the VR-Commander 

via RabbitMQ, so the time elapsed between the trigger of the alarm, in the VR-Unit, and 

the corresponding display in the VR-Commander is smaller due to the messaging 

efficiency and the route taken by the message. 
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8 Refactored VR-Unit and VR-Banway evaluation  

 

The main objective of this work was to refactor the existing VR-Unit so our 

evaluation was focused in verifying if any existing features were still functional in the new 

version – either RPI (Refactored VR-Unit) and/or Intel Edison based (VR-Banway). Our 

evaluation consisted in test the three implementations of the VR-Unit (original, RPI 

refactored and Intel Edison based) and assert if, at least, all initial features were still 

functional. 

Aside from the aggregator direct comparison in terms of specifications, we 

evaluate the effectiveness in the collection of physiological and environmental data, 

using the new integrated sensors. 

 

 Aggregator comparison 8.1

With this dissertation, the general project, VR2Market, ends up having three types 

of aggregators, each one for different purposes and scenarios. It cannot be explicitly said 

that one is better than other because all the three possible implementations of the 

aggregator are suitable, depending on the solution and requirements wanted for a 

specific scenario. 

In general, we can compare the three implementations by enumerate the main 

differences between them: 

 The Android solution has a graphic interface in the aggregator itself, but, it 

cannot exchange messages through the NetAPI service due to its lack of 

support for Ad hoc networks. 

 Refactored VR-Unit - the RPI solution do not have a graphic interface to 

configure the collect parameters, it is done through a file sent via Bluetooth. 

The aggregator device can be attached with electrical components through 

the programmable GPIO ports. The board is cheaper than a mobile device 

that supports Android OS. By having Linux OS it is possible to use the 

NetAPI service to exchange messages between the Ad hoc network nodes. 
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 VR-Banway: The Intel Edison solution, also, has no graphic interface so the 

configuration must be done in the same way as in the RPI solution. The 

aggregator device is much smaller than the other devices and have a lower 

power consumption which is more appropriate for an IoT scenario. It also 

has the programmable GPIO ports and has an exclusive microcontroller 

that works regardless of the main processor tasks and schedule of them. 

The NetAPI service is not used because the process cost of the RabbitMQ 

server. 

 

 

Figure 34 – Size comparison between Intel Edison, RPI and Android. 

 

The following table (Table 6) demonstrates, in a more summarized way, the main 

features required for the VRUnit solution and the adequacy of all the three different 

implementations. 
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 Android RPI Intel Edison 

Graphic Interface Yes No No 

Bluetooth LE No Yes Yes 

NetAPI No Yes No 

GPIO No Yes Yes 

Size Big Medium Small 

Power consumption High Low Low 

Processor velocity 
1.4 GHz 

(Nexus 5X) 

1.2 GHz 

(RPI3) 
500 MHz 

Cloud services Yes Yes Yes 

Cost High Low Medium 

Remote 

configuration 
Yes Yes Yes 

Table 6 – Feature comparison between VR-Unit implementations. 

 

 Integration in the VR2Market system 8.2

With the new implementations we guarantee that the past features were also 

running in the new deployments without compromising performance status, plus, the 

addition of the new sensors and system features. 

By changing the aggregator, the interface methods and technologies that support 

the communication and data exchange between the VR-Units and the rest of the system 

must remain functional and follow the already standard methods and technologies, to 

guarantee that, even if the used technologies in the aggregator reengineering are 

different, we ensured to create a middle layer between the aggregator and the system, 

so, the technologies used in the aggregator are transparent. 

To have a proof of concept we have made some acquisitions with both systems 

and compared if the collected data in terms of quality, consistency and sample rate was 

acceptable in comparison to the Android implementation. Some aspects are also related 

with the sensors, like sample rate, spatial aspects and isolation of external interferences, 

but, besides that the data can be analysed and validated. Besides the collected data the 

aggregator performance is also a comparison parameter. We compare the overall 

performance in terms of quantity of data, capacity to share that data to the rest of the 

system, to another external service and to the Cloud. 
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For the acquisition of the physiological and environment signals we make three 

acquisitions, each one with the different implementations of the VR-Unit, around the 

same location, as shown in Figure 35, to have not many variations in the environmental 

conditions and in the physical effort of the subject. 

 

Figure 35 – GPS route of the acquisitions. 

 

 In the ECG signal comparison, we used the Vital Jacket sensor in the Android 

system and the BITalino sensor in the RPI and Intel Edison based, VR-Banway. We can 

see in the Figure 36 part of the ECG signal acquired from the Vital Jacket to the Android 

aggregator, the Vital Jacket works with samples at 500 Hz, and in Figure 37 and Figure 

38 is the ECG signals acquired from the BITalino that works with samples as 1000 Hz, to 

the RPI and Intel Edison implementations correspondingly. We conclude that the 

refactored VR-Unit and VR-Banway implementations can acquire and process this type 

of signals at the defined sample rate. 
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Figure 36 – ECG signal acquired from Vital Jacket to the Android VR-Unit. 

 

 

Figure 37 – ECG signal acquired from BITalino to the RPI VR-Unit. 
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Figure 38 – ECG signal acquired from BITalino to the Intel Edison based VR-Banway. 

 

The environmental variables were acquired from the FREMU. Here the difference 

could be only in the aggregator, because the sensor used was the same in the three 

systems so the only constraint or bottleneck that could interfere in the results was the 

aggregator capacity of receive and process the data fast enough in order to do not lose 

any data communication from the sensor. For this test purposes we focus on the 

environmental temperature signal and we can see in the Figure 39, Figure 40 and Figure 

41 the signals acquired to the Android, RPI VR-Unit and Intel Edison VR-Banway 

correspondingly. 

 

 

Figure 39 – Environmental temperature acquired to Android VR-Unit. 
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Figure 40 – Environmental temperature acquired to RPI VR-Unit. 

 

 

 

Figure 41 – Environmental temperature acquired to Intel Edison VR-Banway. 

 

 Ad Hoc scenarios 8.3

With the use of the NetAPI service, we introduced the bidirectional communication 

and consequently new functionalities such as the synchronization of the RPIs internal 

clocks and the send of a “check team” command to check the activity and response of 

the aggregators in the real scenario field.  

In the implementation of the bridge between the NetAPI service and the Data 

Collector component, the commands are sent by this bridge running application. 

To synchronize the RPIs internal clocks the bridge application requests to the 

NetAPI service for the known nodes in the Ad hoc network, as shown in Figure 42, and 

sends a message to all the known nodes indicating the actual date of the system (Figure 

43 A). When the nodes receive the message, their internal clock is updated to the 

received date and the synchronization is complete (Figure 43 A, B).  
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Figure 42 – Ad hoc network know nodes. 

 

(A) 

 

(B) 

 

(C) 

 

Figure 43 – “Sync clock” command workflow. 

 

As shown in Figure 42, there are two know nodes with IP’s 10.176.64.39 

(pt.aveiro.aveiro1.equipa1.x1 is the corresponding name resolution) and 10.234.155.63 

(pt.aveiro.aveiro1.equipa1.x2 is the corresponding name resolution). In the clocks 

synchronization the collector node sends the message “Sync Clock_Mon Nov 20 

16:06:57 WET 2017” to the two known nodes, as in Figure 43 A). When the nodes 

receive the message from the collector node (10.108.104.246 with the resolution name 

pt.aveiro.aveiro1.collector) their clocks are updated to “Mon Nov 20 16:06:57 WET 2017” 

as shown in the Figure 43 B), C). 

The “check team” functionality represents fully the bidirectional communication due 

to the request and response scenario where the bridge application broadcasts a request 

message to all the known nodes (Figure 44 A), signalling that the aggregators need to 

respond to confirm their welfare and connectivity. When the aggregator nodes receive 

the message they send a response message (Figure 44 B, C), indicating that they are 

reachable in the network (Figure 44 D). 
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(A) 

 

(B) 

 

(C) 

 

(D) 

 

Figure 44 – Check team command workflow. 

 

The know nodes are the same as in the “Sync Clock” command (10.176.64.39 and 

10.234.155.63), the collector node sends the message “Check Team” to the nodes, as in 

Figure 44 A), when received the nodes respond with the messages “248,2017-11-20 

16:06:58.804;109,rpi_x1;150,109;151,1;149, HASH TEST;255,136,I am alive : 

pt.aveiro.aveiro1.equipa1.x1” and “248,2017-11-20 

16:06:58.804;109,rpi_x2;150,109;151,1;149, HASH TEST;255,136,I am alive : 

pt.aveiro.aveiro1.equipa1.x2” respectively, as in Figure 44 B) C), the message structure 

follows the general data messages of the system. With the receiving of the nodes 

response, the collector forwards the message to the DataCollector, as in Figure 44 D) 

(“Message sent to DataCollector : ...”). 
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9 Conclusion and future work 

 

In this dissertation we aimed to refactor the VR2Market system gateway (VR-Unit) 

and migrate it to SBCs in order to have smaller devices with lower power consumption 

without compromising the already functional requirements. The VR-Unit refactoring 

involved incorporating a new service, called NetAPI, for Ad hoc network support and 

integrating new sensors with BLE interface.  

This refactoring also allowed deploying a new version of the gateway, named VR-

Banway, using the Intel Edison compute module – the reengineering of the original VR-

Unit also had impact on the size and processing footprint due to the adoption of more 

flexible brokering solution. This allowed extending the existing usage scenarios of VR-

Unit (the current VR2Market gateway solution) to more wide area of IoT as the addition 

of BLE support and port to Intel Edison allow a smaller footprint either in power 

requirements and overall form factors – when compared with existing RPI solution.  

 

 Future work 9.1

Despite of the work done in this dissertation, we are aware of some functionalities 

that can be exploited in the future for the improvement of the overall system usability.  

A relevant improvement to be done about the bidirectional communication is 

related to the user interface, namely, in the VR-Commander application component, 

where it should be added a button with the functionality to make the “Check Team” 

command. Although the functionality is implemented, through the NetAPI bridge 

component, there are no graphic interface to execute the command, so, in the VR-

Commander this button would add the possibility to execute that command. Beyond the 

stated command, other type of commands and features can be added to the system to 

dialogue with the aggregators. 

In relation to the NetAPI service, to integrate this service in more IoT scenarios the 

dependency with the RabbitMQ broker should be replaced by a lighter one, like 

Mosquitto, used in this project, although it can be already used in many scenarios with 

that refactoring the range of IoT scenarios to be deployed would be wider. 
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To help the end-users in the interactions with our system, namely, in the 

configuration of the refactored RPI VR-Unit and VR-Banway there should be developed 

an application similar to VR-Remote, or even adapt this one, to have an UI to configure 

the acquisition parameters of the VR-Units. 
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Appendices 

A.1   Public Presentations  

 The project developed in this dissertation was presented in a public event, during 

2017, called students@deti in the DETI department of UA. The following poster was 

created to present the project in the event. 

 

Figure 45 – Poster of the VR-Banway system. Presented at students@deti 2017. 


