
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2017

Mariana Alexandra
Aleixo de Barcelos

Desenvolvimentos para uma plataforma de
segurança no ambiente da cadeia de fornecimento
de semicondutores

Towards a security framework for the
semiconductor supply chain environment

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2017

Mariana Alexandra
Aleixo de Barcelos

Desenvolvimentos para uma plataforma de
segurança no ambiente da cadeia de fornecimento
de semicondutores

Towards a security framework for the
semiconductor supply chain environment

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
Electrónica e Telecomunicações

Apoio financeiro da
Fundação para a Ciência e a Tecnologia

o júri / the jury

presidente / president Professor Doutor Armando Humberto Moreira Nolasco Pinto
Professor Associado da Universidade de Aveiro

Professor Doutor Rogério Pais Diońısio
Professor Adjunto da Escola Superior de Tecnologia do Instituto Politécnico

de Castelo Branco

Doutor Jonathan Rodriguez Gonzalez
Professor Associado Convidado da Universidade de Aveiro (orientador)

acknowledgements The work has been performed in the project Power Semiconductor and
Electronics Manufacturing 4.0 (SemI40), under grant agreement No
692466. The project is co-funded by the Fundação para a Ciência e
Tecnologia (ECSEL/0009/2015) and Electronic Component Systems
for European Leadership Joint Undertaking (ECSEL JU).

Palavras-chave Secure communications, SSL/TLS, OAuth 2.0, OpenID Connect,
Semiconductor Supply Chain

Resumo Hoje em dia, a troca de informação entre os parceiros da cadeia de
forne-cimento de semicondutores pode ser alvo de muitas ameaças de
segurança conhecidas e desconhecidas no ambiente interno/externo
dos parceiros. Particularmente, estas vulnerabilidades, no ambiente
da cadeia de fornecimento de semicondutores, podem ser exploradas
por atacantes com um amplo espectro de motivações que vão desde
intenções criminais, visando o ganho financeiro, até à espionagem in-
dustrial e a cyber-sabotagem. Os atacantes podem comprometer a
comunicação de dados entre parceiros na cadeia de fornecimento e,
portanto, podem prejudicar o fornecimento de serviços pelos parceiros,
bem como a continuidade da prestação de serviços. Como resultado,
os parceiros da cadeia de fornecimento de semicondutores poderão
sofrer repercussões nocivas que podem causar perdas significativas de
receita, destruição da sua marca e atrasos no avanço das suas tec-
nologias. Consequentemente, uma plataforma de segurança para o
ambiente da cadeia de fornecimento de semicondutores é de extrema
importância. Assim, a intenção desta tese é fornecer uma base para
uma plataforma de segurança para comunicação segura de dados entre
todos os parceiros da cadeia de fornecimento de semicondutores.

Keywords Secure communications, SSL/TLS, OAuth 2.0, OpenID Connect,
Semiconductor Supply Chain

Abstract Nowadays, data communication across the partners in the semiconduc-
tor supply chain can be the target of many known and unknown security
threats exploiting security vulnerabilities in the internal/external envi-
ronment of the partners. Particularly, these vulnerabilities in the semi-
conductor supply chain environment can be exploited by attackers with
a wide spectrum of motivations ranging from criminal intents aimed
at financial gain to industrial espionage and cyber-sabotage. Attackers
can compromise the data communication between legitimate parties
in the supply chain and thus can jeopardize the delivery of services
across the partners as well as the continuity of the service provision.
As a result, semiconductor supply chain partners will suffer from dam-
aging repercussions which can cause significant revenue loss, destroy
their brand and eventually hinder their advancement. Consequently, a
security framework for the semiconductor supply chain environment is
of utmost importance. Hence, the intent of this thesis is to provide
a foundation for a security framework for secure data communication
across the partners in the semiconductor supply chain.

Contents

Contents i

List of Figures v

Acronyms vii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 1
1.3 Contribution . 2
1.4 Thesis Outline . 3

2 Cybersecurity Issues and Challenges in Semiconductor Supply Chain En-
vironment 5
2.1 Semiconductor Supply Chain . 5
2.2 Cyberattacks in Supply Chain . 7

2.2.1 Spear Phishing . 7
2.2.2 Watering Hole Attacks . 9
2.2.3 Attacks based on “trojanized” Third-party Software 11
2.2.4 Attacks based on Malicious Code and Counterfeit Certificates . . . 11
2.2.5 Attacks based on Tampered Devices 12

3 Security Framework Protocols 13
3.1 Transport Layer Security . 13

3.1.1 SSL/TLS Handshake Protocol . 14
3.1.2 Attacks against SSL/TLS . 17

3.1.2.1 SSL Stripping . 17
3.1.2.2 STARTTLS Command Injection Attack 17
3.1.2.3 BEAST . 18
3.1.2.4 Padding Oracle Attack . 18
3.1.2.5 Lucky Thirteen . 19
3.1.2.6 POODLE . 20
3.1.2.7 Attacks on RC4 . 20

i

3.1.2.8 Compression Attacks . 22

3.1.2.9 Certificate and RSA-Related Attacks 25

3.1.2.10 Certificate Fuzzing Tool 26

3.1.2.11 Man-in-the-Middle (MITM) Attacks 27

3.1.2.12 Virtual Host Confusion 29

3.1.2.13 Computational Denial of Service (DoS) Attacks 29

3.1.2.14 Implementation Issues . 30

3.1.2.15 Usability . 31

3.2 OAuth 2.0 . 32

3.2.1 Implicit Grant . 33

3.2.2 Authorization Code Grant . 34

3.2.3 OAuth Vulnerabilities . 36

3.2.3.1 Misuse of Access Token to Impersonate Resource Owner in
Implicit Flow . 36

3.2.3.2 Clickjacking . 36

3.2.3.3 Stealing User Credentials 36

3.2.3.4 Modifying the Authorization Interface 37

3.2.3.5 Attacks against System Native Browser 37

3.2.3.6 Cross Site Request Forgery Attacks 37

3.2.3.7 HTTP 307 Redirect . 37

3.2.3.8 IdP Mix-Up . 38

3.2.4 OpenID Connect . 39

3.2.4.1 Implicit Flow . 40

3.2.4.2 Authorization Code Flow 42

4 Identity and Access Management 45

4.1 Key Concepts . 45

4.2 Identity Federation . 47

5 Implementation 49

5.1 Security Virtual Lab for TLS-based Communication in Semiconductor Sup-
ply Chain Scenarios . 49

5.1.1 Scenario 1 . 49

5.1.2 Scenario 2 . 53

5.1.3 Technical Information . 55

5.2 OpenID Connect Implementation for a Semiconductor Supply Chain Scenario 57

5.2.1 Scenario . 57

5.2.2 Successful Request . 57

5.2.3 Denied Request . 58

5.2.4 OpenID Connect with IAM . 58

6 Conclusion 63

ii

Bibliography 65

Appendices 75

A Virtual Machines Setup 77
A.1 Requirements . 77
A.2 Step by Step Virtual Machines Installation 77
A.3 How to access Shared Folder . 84

iii

iv

List of Figures

2.1 Semiconductor supply chain information flow. 6
2.2 Semiconductor supply chain information flow. 10

3.1 Sequence Diagram of the SSL/TLS Establishment Procedure. 15
3.2 CBC Mode Decryption. 18
3.3 LZ77 Algorithm Example. (Source: [103]) 22
3.4 A MITM Attack against the SSL/TLS-based Communication between the

Client and the Server. 28
3.5 OAuth 2.0 Implicit Grant. 33
3.6 OAuth 2.0 Authorization Code Grant. 35
3.7 Role Relationship in OpenID Connect. 39
3.8 OpenID Connect Implicit Flow. 41
3.9 OpenID Connect Authorization Code Flow. 42

4.1 Relationship between IAM Components and Key Concepts. (Source: [80]) 46
4.2 Federated Identity Operation. (Source: [91]) 47

5.1 Scenario 1 Configuration. 50
5.2 Monitoring the Client Request to Server’s Web Page. 50
5.3 Wireshark Capture: Web Page Request from Partner A to Partner B. . . . 51
5.4 Wireshark Capture: TLS Handshake. 51
5.5 Partner B’s Web Page with Button to Make GET Requests. 52
5.6 Wireshark Capture: GET Request between Partner A and Partner B. . . . 52
5.7 Server Responds with a New Page. 52
5.8 Scenario 2 Configuration. 53
5.9 Web Page Provided by Partner B. 53
5.10 Web Page from Partner B with Response from Service j. 54
5.11 Wireshark Capture: TLS Handshake between Partner A and Partner B. . . 55
5.12 Wireshark Capture: Accessing Service j. 55
5.13 HTTPS Configuration in Tomcat. 56
5.14 Diagram of a Successful Request to the Service Running on the Server at

the Semiconductor Materials Supplier. 59
5.15 Diagram of an Attempt to Access Service without Permission. 60

v

5.16 OpenID Connect Flow with Keycloak. 61
5.17 Access the Users Protected Resources Stored at the OpenID Provider. . . . 62

A.1 Step 1 and 2: Create VM. 78
A.2 Step 3: Memory Size. 78
A.3 Step 5: Shared Folders. 79
A.4 Step 6: Network Adapter. 79
A.5 Step 9: First Startup. 80
A.6 Step 9: Install - Select Language. 80
A.7 Step 11: Install Guest Additions. 81
A.8 Step 12: Enable 3D Acceleration. 82

vi

Acronyms

BEAST Browser Exploit Against SSL/TLS

BREACH Browser Reconnaissance and Exfiltration via Adaptive Compression of Hyper-
text

CBC Cipher Block Chaining

CRIME Compression Ratio Info-leak Made Easy

CSRF Cross-Site Request Forgery

DoS Denial of Service

FTP File Transfer Protocol

HSTS HTTP Strict Transport Security

IAM Identity and Access Management

ICs Integrated Circuits

ICS industrial control systems

LDAP Lightweight Directory Access Protocol

MAC Message Authentication Code

MITM Man-In-The-Middle

NNTP Network News Transfer Protocol

POODLE Padding Oracle On Downgraded Legacy Encryption

POP3 Post Office Protocol 3

PRGA Pseudo-random Generation Algorithm

RAT Remote Access Tools

RSA Rivest-Shamir-Adleman

vii

SMTP Simple Mail Transfer Protocol

SSL Secure Sockets Layer

TIME Timing Info-leak Made Easy

TLS Transport Layer Security

XMPP Extensible Messaging and Presence Protocol

viii

Chapter 1

Introduction

1.1 Motivation

Nowadays, data communication across the partners in the semiconductor supply chain
can be the target of many known and unknown security threats exploiting many security
breaches in the internal/external environment of the partners due to its heterogeneous and
dynamic nature as well as the fact that non-professional users in security issues usually
operate their information systems. Particularly, these vulnerabilities in the semiconductor
supply chain environment can be exploited by attackers with a wide spectrum of moti-
vations ranging from criminal intents aimed at financial gain to industrial espionage and
cyber-sabotage. Attackers can compromise the data communication between legitimate
parties in the semiconductor supply chain and thus can jeopardize the delivery of services
across the partners as well as the continuity of the service provision. As a result, semi-
conductor supply chain partners will suffer from damaging repercussions, which can cause
significant revenue loss, destroy their brand and eventually hinder their advancement. Con-
sequently, a security framework for secure data communications across the partners in the
semiconductor supply chain environment is of utmost importance.

1.2 Objectives

This thesis aims to provide a foundation for a security framework for secure data com-
munications across the partners in the semiconductor supply chain. Towards this direction,
we firstly provide an overview of the semiconductor supply chain environment along with
the description of the functionality of its main components. Furthermore, we consider
representative examples of various attacks that have been seen in the wild and can cause
potential security issues and challenges in the semiconductor supply chain environment.
The range of the attacks shows how vital is a security framework for secure data commu-
nications for the partners in the supply chain of the semiconductor industry. Moreover,
in the context of this thesis, we aim to study the SSL/TLS protocol which is the de facto
standard for secure Internet communications [25], [37], [12] and the OAuth 2.0 protocol

1

which is the industry-standard protocol for authorization [42], [15]. Both the SSL/TLS
protocol and the OAuth 2.0 protocol are two standard security protocols that can be es-
sential components of a security framework, providing mechanisms to ensure security in
communication between the partners in the semiconductor supply chain that can be the
target of many known and unknown attacks. However, the SSL/TLS protocol and the
OAuth 2.0 protocol are vulnerable against a number of attacks. Thus, we intend to con-
duct a review of contemporary literature in order to understand better these two standard
security protocols and give an overview of the most well-known attacks against them. The
in-depth understanding of these two security protocols will allow us, as a future work to-
wards a security framework for secure data communications, to use them as the basis for
the design and implementation of more sophisticated security mechanisms that can address
the specific security challenges of the semiconductor supply chain in a more efficient and
effective manner. Finally, we target to study the key concepts of the Identity and Access
Management discipline that can be an essential component for the security framework since
it can enable the right individuals to access the right resources at the right time and for
the right reason.

1.3 Contribution

In the context of this thesis, our contribution is the following:

• We gave an overview of the semiconductor supply chain environment along with the
description of the functionality of its main components.

• We provided representative examples of various attacks that have been seen in the
wild and can cause potential security issues and challenges in the semiconductor
supply chain environment.

• We provided detailed description of the SSL/TLS, OAuth 2.0 and OpenID Connect
(i.e., an authentication layer on top of the OAuth 2.0).

• We provided the key concepts of the Identity and Access Management discipline.

• We built a virtual security lab, using Virtual Machines (i.e., VirtualBox), where we
implemented two scenarios over TLS. We captured the exchanged messages with the
network sniffing software Wireshark and then examined them in order to get a better
understanding of how SSL/TLS works.

• We implemented a third scenario on a host machine, where we used the Keycloak
software, an open source identity and access management solution, in order to get
a better understanding the key concepts of the identity and access management
discipline and how OpenID Connect works.

2

1.4 Thesis Outline

Chapter 2 provides the reader with an overview of the semiconductor supply chain
environment accompanied by the description of the functionality of its main components.
Furthermore, Chapter 2 gives representative examples of various attacks that have been
witnessed in the wild and can cause potential security issues and challenges in the semicon-
ductor supply chain environment. In Chapter 3, the description of the SSL/TLS, OAuth
2.0 and OpenID Connect is provided. Moreover, an overview of the most well-known
attacks against SSL/TLS and OAuth 2.0 is also given. In Chapter 4, the key concepts
of the Identity and Access Management discipline are discussed. Chapter 5 contains the
implementation of the scenarios studied in the scope of this thesis. Finally, Chapter 6
summarizes the work done in this thesis.

3

4

Chapter 2

Cybersecurity Issues and Challenges
in Semiconductor Supply Chain
Environment

This Chapter, firstly, provides an overview of the semiconductor supply chain environ-
ment along with the description of the functionality of its main components. Furthermore,
we consider representative examples of various attacks that have been seen in the wild
and can cause potential security issues and challenges in the semiconductor supply chain
environment. Moreover, we provide a categorization of the various attack examples based
on the intrusion method that they use to compromise the target and gain a persistent
foothold in the target’s environment.

2.1 Semiconductor Supply Chain

Nowadays, the mass production of Integrated Circuits (ICs), from wafers of raw silicon
to the completed chips contained in most electronic devices, is one of the most complex pro-
duction processes in existence. In addition, semiconductor manufactures do not only need
to produce a quality product but also to produce it within a specific time-frame required
by the customer [74], [66]. The mass production of ICs can be partitioned into four distinct
phases: fabrication, probing, assembly, and final test. Fabrication is the process of trans-
forming a virgin silicon or gallium arsenide wafer, provided by the semiconductor materials
suppliers, into a wafer with completed ICs. Moreover, fabrication is the most complex por-
tion of the entire process, since it often requires 300 to 700 different steps. Besides, other
factors contributing to fabrication’s complexity are the following: re-entrant flows, leading-
edge-of-technology yet unreliable equipment, sequence- and part-specific setup times, and
competition for capacity with engineering lots. After fabrication, the next step is probing,
where the individual ICs on each wafer are tested for basic functionality. After probing,
wafers go to the inventory, where they wait for the next two phases: assembly and final test
[66]. In the assembly phase, individual ICs are extracted from the wafer and the failed ones

5

are discarded. Afterwards, the functional ICs are packaged wherein connections are made
between the chip and the lead frame. There are several types of packaging, such as plastic
or ceramic, through-hole, surface mount, chip carrier, pin-grid arrays, among others. Then,
the whole circuit is encapsulated for protection and the packaged ICs move to the final
test phase, where they are tested, rated, and ultimately date-stamped for inclusion in the
inventory of distributor. The main objective of the final test phase is to ensure that the
customer will receive a defect-free product operating properly [98], [66]. It is very common
to name the fab phase and probing phase as the “front-end” process, while the assembly
phase and final test phase are named as the “back-end” process [98], [61], [66]. In prin-
ciple, the “front-end” process includes expensive equipment and stringent environmental
conditions. Due to the size of ICs, most operations in the “front-end” process have to be
done in a clean room as a single speck of dust can damage a microcircuit. In addition, the
temperature and humidity also have to be controlled. Moreover, the “front-end” process is
performed in-house and takes from 8 to 10 weeks for completion. On the other hand, the
“back-end” process is generally contracted to an outside vendor and takes from 1 to 4 weeks
for completion [66], [9]. Finally, figure 2.1 shows the information flow among the 7 main
components of the Semiconductor Supply Chain environment: a) suppliers, b) front-end,
c) inventory, d) back-end, e) distributor, f) customers, and g) customers’ customers.

Customers

TestAssembly

Wafer FabProbeInventory

Back-End

Front-End

Semiconductor
Materials Suppliers

Customers
customers

Distributor

Figure 2.1: Semiconductor supply chain information flow.

6

2.2 Cyberattacks in Supply Chain

In this section, we consider representative examples of various attacks that have been
seen in the wild and can cause potential security issues and challenges in the semiconduc-
tor supply chain environment. We categorize these attack examples into 5 main categories
based on the intrusion method that they use to compromise the target and gain a per-
sistent foothold in the target’s environment. The 5 main categories that we identified
are the following: a) spear phishing attacks, b) watering hole attacks, c) attacks based
on “trojanized” third-party software, d) attacks based on malicious code and counterfeit
certificates, and e) attacks based on tampered devices.

2.2.1 Spear Phishing

Phishing is a kind of social-engineering attack where adversaries use spoofed emails to
trick people into sharing sensitive information or installing malware on their computers.
Indeed, victims perceive these spoofed emails as being associated with a trusted brand.
In other words, phishing attacks target the people using the systems instead of targeting
directly the systems that people use. Thus, phishing attacks are able to circumvent the ma-
jority of an organization’s or individual’s security measures. Moreover, it is worthwhile to
mention that phishing has spread beyond email to include VOIP, SMS, instant messaging,
social networking sites, and even massively multiplayer games. Moreover, cyber-criminals
have shifted from sending mass-emails, hoping to trick anyone, to more sophisticated but
also more selective “spear-phishing” attacks that use relevant contextual information to
trick specific groups of people. In principle, “spear-phishing” attacks are more danger-
ous than typical phishing attacks [45], [14]. Here are a few examples of “spear-phishing”
attacks from the wild.

Icefog

In 2011, Kaspersky Lab started to investigate a threat actor called ‘Icefog’ that attacked
many different groups, such as government institutions, military contractors, telecom op-
erators, satellite operators, among others, through their supply chain. This campaign
targeted organizations mostly in South Korea and Japan, but it was suspected that it also
targeted the United States and Europe [39], [62]. The intrusion method of this attack
was phishing e-mails with a malicious attachment or a link to an infected web page. The
attacker could compromise the victim’s machine either by tricking the victim to install the
attached malware or by tricking the victim to visit the malicious web page [68]. After-
wards, the attacker could steal files from the victim’s machine, run commands to locate
and steal specific information from the victim’s machine, and also communicate with local
database servers in order to steal information from them. In addition, Icefog was capable
of uploading special tools to extend the capabilities of the installed malware, such as tools
for stealing cached browser passwords in the infected machine. In 2012, a Mac OS version
of Icefog (Macfog) was created [40], but Kaspersky suspected that it was a beta-testing

7

phase to be used in targeted victims later. Finally, it is worth mentioning the hit and run
nature of Icefog, since the Icefog attackers appeared to know very well what they need
from the victims and thus, once the information was obtained, the victim was abandoned
[62].

Target

At the end of 2013, Target suffered a cyber-attack that exposed approximately 40
million debit and credit card accounts [56] and 70 million e-mail addresses, phone numbers
and other personal information [18]. The hackers started their attack by sending phishing
e-mails, including malware, to employees of a third-party vendor, but it was not known if
only one vendor was targeted. In addition, it was suspected that the malware in question
was Citadel, a password-stealing bot that was a derivative of the ZeuS banking trojan
and allowed the attackers to access Target’s network by using stolen credentials. It was
estimated that the phishing campaign had started at least two months before the main
attack carried out [57]. Brian Krebs was the first to break the news about this attack on
his security blog [55] followed by Target’s Statement, released a day after [97].

Home Depot

In April 2014, just four months after the Target attack, Home Depot was the victim
of a data breach. However, they only started investigations on September 2nd, 2014 and
released a statement on September 8th, 2014 [43]. It was found that the attackers, similar
to the attackers of Target attack, used third party vendor’s credentials to access Home
Depot’s network. After being inside the retailer’s network, the attackers exploited a known
vulnerability in Windows XP called “zero-days” in order to escape detection [43], [90].
Finally, this attack resulted in the theft of 53 million e-mail addresses and 56 million credit
card accounts.

German Steel Mill

In late 2014 (no specific date was provided), Germany’s Federal Office for Information
Security (BSI) released a report communicating that a German steel mill had been attacked.
The attackers’ point of entry was the plant’s business network and the infiltration was made
possible with a spear phishing attack [60]. The phishing emails could have had a malicious
attachment or a link to a website from where malware could be downloaded. Once the
malware was installed, the attackers were able to take control of the production software.
SANS Institute provided the BSI’s report, translated to English, where it is mentioned
that the attack resulted in an incident where the furnace could not be shut down properly,
and as a result, it led to a “massive damage” to the German steel mill [60], [51].

8

Dragonfly - 1st tactic

A cyber-espionage group, known as Dragonfly or Energetic Bear, began a campaign
in late 2010 [75] with the intention of targeting the energy sector and industrial control
systems (ICS) through their supply chain. In other words, the Dragonfly group attacked
the suppliers of the target instead of attacking the target directly.

The Dragonfly group applied at least three different infection tactics against victims in
the energy sector. The first one was an email spear-phishing campaign and is examined
in this section. The other two tactics (i.e., second and third) are described in the next
sections 2.2.2 and 2.2.3. However, the Dragonfly group used two main pieces of malware
in its attacks. Both are Remote Access Tools (RAT) type malware enabling the attackers
to access and control the compromised computers.

The favoured malware tool of the Dragonfly group was Backdoor.Oldrea, which was
also known as Havex or the Energetic Bear RAT. Symantec reported that Oldrea was used
in around 95% of infections. This malware acted as a back door for the attackers onto the
victim’s computer, enabling them to extract information and install further malware. In
particular, Oldrea, gathered system information such as operating system, computer and
user name, country, language, Internet adapter configuration information, available drives,
default browser, running processes, desktop file list, My Documents, Internet history, pro-
gram files, and root of available drives. In addition, Oldrea collected data from Outlook
(address book) and ICS related software configuration files [95]. All this data was collected
and written to a temporary file in an encrypted form before it was POSTed to the remote
C&C (command-and-control) server controlled by the Dragonfly attackers.

Moreover, the second main malware tool used by the Dragonfly group was Trojan.Karagany.
It was a back door programmed in C/C++ and used mainly for reconnaissance operations.
Specifically, it was designed to download and install additional files and exfiltrate data.
Moreover, it had plugin capability and its payload was approximately 72 KBs in size. Fi-
nally, Trojan.Karagany contained a small embedded DLL file, which monitored WSASend
and send APIs for capturing “Basic Authentication” credentials [95].

According to the first approach (i.e., email spear-phishing campaign), selected exec-
utives and senior employees in target companies received emails with a malicious PDF
attachment. Symantec states that the infected emails had two possible subject lines: “The
account” and “Settlement of delivery problem”. In addition, all the emails were from a
single Gmail address. The email spear-phishing campaign was conducted from February
2013 to June 2013 [95].

2.2.2 Watering Hole Attacks

To attack an organization, cyber criminals “trojanize” a legitimate website often visited
by the target company’s employees. RSA Advanced Threat Intelligence Team correlated
this behaviour with the one of a lion waiting for its prey at a watering hole, hence the
name. RSA was the first to use the term “watering hole”, in late July 2012 [102]. Here
are a few examples of watering hole attacks from the wild.

9

VOHO

According to [102], “VOHO” campaign targeted Financial Services or Technology Ser-
vices in Massachusetts and Washington, DC. This campaign worked by inserting JavaScript
element in the legitimate website that would redirect the victim (i.e., website visitor) un-
knowingly to an exploit website. Then, the exploit website would check if the user was
running a Windows machine and Internet Explorer browser, and then it would install a
version of gh0st RAT. “gh0st RAT” was a Remote Access Trojan that allowed attackers to
control the infected endpoints, log keystrokes, provide live feeds of webcam and microphone
as well as download and upload files.

Dragonfly - 2nd tactic

As described before in “Dragonfly - 1st tactic” section, the Dragonfly group has used
at least three infection tactics against targets in the energy sector. After the earliest tactic
(i.e., email spear-phishing campaign) that was described in “Dragonfly - 1st tactic” section,
the Dragonfly attackers shifted their focus to watering hole attacks. It was noticed that
this shift happened in June 2013 [95]. The Dragonfly attackers compromised a number of
energy-related websites and injected an iframe into each of them. Then, this iframe would
redirect users to another legitimate, but also compromised, website hosting the Lightsout
exploit kit, as shown in figure 2.2. This in turn would exploit either Java or Internet
Explorer to download Oldrea or Karagny on the target’s machine.

Watering hole

Compromised
website

infect
User

Figure 2.2: Semiconductor supply chain information flow.

Besides, in September 2013, the Dragonfly group started using a new version of this
exploit kit, known as the Hello exploit kit. The main web page for this kit contained

10

JavaScript that was able to identify installed browser plugins. Then, the victim was redi-
rected to a URL which in turn determined the best exploit to use according to the collected
information [95].

Shylock

In November 2013, BAE Systems Applied Intelligence announced that a series of le-
gitimate websites had been infected with the Shylock malware [5]. The cyber-criminals
infected a legitimate website by inserting a JavaScript file that initially identified when the
browser was used and then this JavaScript file was responsible to show a message, in the
browser’s style, prompting the user to download the malware that, however, was presented
as innocent software. BAE Systems [6] gave the following message example: “Additional
plugins are required to display all the media on this page”, with a button saying “Install
Missing Plugins...”. In case that the user decided to proceed and install the “missing
plugins”, the Shylock malware was installed on his/her machine.

2.2.3 Attacks based on “trojanized” Third-party Software

This section includes a real-life example of attacks based on “trojanized” software of
ICS equipment providers.

Dragonfly - 3rd tactic

The third tactic of the Dragonfly group was the infection of a number of legitimate
software packages. In particular, three different ICS equipment providers were targeted and
the Dragonfly attackers inserted malware into the software bundles that these providers had
made available online for download from their websites [95]. The first provider discovered
that it was compromised shortly after infection (time not specified), but the malware had
already been downloaded 250 times. The second provider had infected software available
for download for at least six weeks and the third provider had infected software available
online for ten days, approximately [96].

2.2.4 Attacks based on Malicious Code and Counterfeit Certifi-
cates

This section includes a real-life example of attacks based on malicious code and coun-
terfeit certificates in industrial environment.

Stuxnet

The German Steel Mill attack described earlier is not the first attack that caused phys-
ical damage of equipment. The first one was the Stuxnet attack [51] that was designed
to target SCADA systems and was responsible for attacking an Iranian nuclear facility.

11

Stuxnet exploited four zero-days vulnerabilities, compromised two digital certificates, in-
jected code into ICS and hid the code from the operator [32]. After implementing the code
(process that probably took a long time), the attackers had to steal digital certificates,
in order to avoid detection [32]. Stuxnet compromised the system via USB [59], [58] and
infected every Windows PC it could find. However, in terms of controllers, it was much
pickier. It targeted only controllers from one specific manufacturer (Siemens) [59].

2.2.5 Attacks based on Tampered Devices

This section includes a real-life example of attacks based on tampered devices in busi-
ness environment.

Michaels Stores

In May 2011, Michaels Stores reported an attack that allowed criminals to steal credit
and debit cards and the associated PIN codes. To steal this information, attackers tam-
pered at least 70 point of sale (POS) terminals [53]. In a blog entry from Krebs on Security
[54], Krebs explained that there are few ways to tamper with POS terminals. One way
is to have pre-compromised terminals ready to be installed at the cash register. In addi-
tion, fake POS terminals can also be used to record data from swipe cards and PIN entry.
For precaution, Michaels Stores replaced 7,200 PIN pads and trained employees to check
regularly if the equipment had been compromised.

12

Chapter 3

Security Framework Protocols

In this Chapter, we provide the description of the SSL/TLS, OAuth 2.0 and OpenID
Connect. Moreover, an overview of the most well-known attacks against SSL/TLS and
OAuth 2.0 is also given.

3.1 Transport Layer Security

The Transport Layer Security (TLS) protocol is used to establish a connection between
two parties in a secure way. TLS can be considered as version 3.1 of SSL, as it is based
on SSL 3.0 Protocol [25]. The main objective of this protocol is to provide privacy and
data integrity between two communicating entities over the Internet. TLS consists of two
layers: the TLS Record Protocol and the TLS Handshake Protocol.

The TLS Record Protocol is at the lowest level and provides connection security that
has two basic properties: a) the connection is private and b) the connection is reliable.
To achieve the first property (i.e., private connection), symmetric cryptography is used for
data encryption, where the keys are generated uniquely for each connection and are based
on a secret, negotiated by the TLS Handshake Protocol. On the other hand, to achieve
the second property (i.e., reliable connection), the message transport includes a message
integrity check using a keyed MAC [25].

On top of the TLS Record Protocol, the TLS Handshake Protocol runs to allow the
two communication entities to authenticate each other and to negotiate a cipher and cryp-
tographic keys before the application protocol transmits/receives its first byte of data. In
particular, the TLS Handshake Protocol provides connection security with the following
three basic properties. Firstly, the communicating entities can authenticate each other by
using asymmetric cryptography (e.g., RSA). Secondly, the negotiation of a shared secret
is secure so that the secret will remain unavailable to an attacker (i.e., eavesdropper), and
for any authenticated connection the secret cannot be revealed to the attacker; Finally,
the negotiation is reliable so that an attacker will not be able to modify the negotiation
without being detected by the communicating entities [25].

13

3.1.1 SSL/TLS Handshake Protocol

The purpose of the TLS handshake protocol is to select a cipher spec and generate a
master secret. These are the primary cryptographic parameters for a secure session. It is
also possible to authenticate the parties if they have trusted certificates. There are three
authentication modes: authentication from both parties, authentication from server and
complete anonymity [25].

The SSL/TLS handshake protocol consists of message exchange between client and
server. These messages allow client and server authentication and negotiation of crypto-
graphic keys, encryption and MAC algorithms. Figure 3.1 shows the sequence diagram of
the SSL/TLS establishment procedure:

1. The client initiates a session by sending the Client Hello message to the server.
This message contains the following parameters:

• Version: The highest version of the SSL/TLS protocol that the client can sup-
port during this session.

• Random structure: A client-generated random structure that consists of a 32-
bit timestamp and 28 bytes generated by a secure random number generator.
These values are used as nonces during the key exchange in order to prevent
replay attacks.

• SessionID: A variable-length session identifier. A zero value indicates that the
client prefers to establish a new connection on a new session. On the other
hand, a nonzero value indicates that the client prefers to update the parameters
of an existing connection or to create a new connection on the current session.

• CipherSuite: A list of the cryptographic options supported by the client, in
decreasing order of preference. Each cipher suite (i.e. element of the list)
defines a key exchange method, a bulk encryption algorithm (including secret
key length), a MAC algorithm and a PRF. Dierks in [25] provides details about
the supported cipher suites.

• Compression Method: A list of the compression methods supported by the
client, sorted by client’s preference.

2. The server will send the Server Hello message in response to the Client Hello
message. This message includes the same parameters as the Client Hello message.
Particularly, it contains the following parameters:

• Version: The lower of the versions of the SSL/TLS protocol suggested by the
client in the Client Hello message and the highest supported by the server.

• Random structure: A random structure generated by the server. This structure
must be generated independently from the client-generated random structure.

14

Client Server

1. Client_Hello

2. Server_Hello

4. Server_KeyExchange

5. Certificate_Request

6. Server_Done

7. Check_Server_Validity

8. Client_Certificate

9. Client_KeyExchange

3. Server_Certificate

10. Client_CertificateVerify

11. Client_ChangeCipherSpecs

12. Client_Finished

13. Verification

14. Server_ChangeCipherSpecs

15. Server_Finished

16. Verification

17. Request

Ti
m

e

Figure 3.1: Sequence Diagram of the SSL/TLS Establishment Procedure.

• SessionID: The identity of the session corresponding to this connection. If the
value of the session identifier in the Client Hello message is nonzero, the
server will look in its session cache for a match. If a match is identified and the
server prefers to establish the new connection using the specified session state,
then the server will respond with the same value as was provided by the client.
Otherwise, the server will respond with the value for a new session.

• CipherSuit: The single cipher suite selected by the server from the list of the
cipher suites provided by the client.

15

• Compression Method: The single compression method selected by the server
from the list of the compression methods provided by the client.

3. The server sends the Server Certificate message including the server’s Public Key
Certificate (PKC). This message is required for any agreed-on key exchange method
apart from the anonymous Diffie-Helman key exchange method.

4. The server sends the Server KeyExchange message. This message is sent only
when the Server Certificate message (if sent) does not contain enough data (i.e.
cryptographic data) to allow the client to exchange a pre-master secret.

5. The server sends the Client CertificateRequest message to request the PKC of
the client. Consequently, the connection can be authenticated mutually.

6. The server sends the Server Done message to indicate the end of the Server Hello
and the associated messages. Then, the server is waiting for the client’s response.

7. Upon receiving the Server Done message, the client should verify that the server
provided a valid PKC and also check that the parameters of the Server Hello
message are acceptable.

8. If all checks are satisfactory, the client sends the Client Certificate message in-
cluding its PKC.

9. The client sends the Client KeyExchange message. With this message, the pre-
master secret is set. The content of this message depends on the agreed-on key
exchange method.

10. The client sends the Client CertificateVerify message to provide explicit verifi-
cation of its PKC. This message is only sent following any client’s certificate that has
signing capability.

11. The client sends the Client ChangeCipherSpecs message to indicate that the
following messages sent by the client will be encrypted using the agreed-on security
parameters.

12. The client sends the Client Finished message to verify that the key exchange and
authentication processes were completed successfully.

13. Upon receiving the Client Finished message, the server must verify that the mes-
sage’s content is correct (i.e. verify the integrity of the handshake process). If the
verification process fails, the connection is rejected.

14. Otherwise, the server sends the Server ChangeCipherSpecs message to indicate
that the following messages sent by the server will be encrypted using the agreed-on
security parameters.

16

15. The server sends the Server Finished message to verify that the key exchange and
authentication processes were completed successfully.

16. Upon receiving the Server Finished message, the client must verify that the mes-
sage’s content is correct (i.e. verify the integrity of the handshake process). If the
verification process fails, the connection is rejected.

17. At this point, the handshake is complete and the client and the server can start
exchanging application-layer data. Thus, the client sends its Request message to
the server.

3.1.2 Attacks against SSL/TLS

During the past few years, we have witnessed several serious attacks on SSL/TLS
protocol, including attacks on its most commonly used ciphers and modes of operation.
In February 2015, the Internet Engineering Task Force (IETF) published a document
summarizing known attacks on TLS and (DTLS)! ((DTLS)!) [88]. In addition, in May,
IETF published recommendations to counter the attacks [87]. Most of these attacks are
described below.

3.1.2.1 SSL Stripping

SSL Stripping is a form of the more generic “downgrade attack” that works by removing
the SSL/TLS data from the request message. Thus, a website secured with HTTPS is
downgraded to HTTP. Moxie Marlinspike developed the SSL Strip tool [71], [70] that sends
the client request to the server after removing the SSL/TLS request messages, making the
server think the client does not support TLS and establishing an insecure connection. A
MITM attacker can achieve SSL Stripping by redirecting client requests to insecure ports
and, this way the data are not encrypted. This is an exploitation of the vulnerability of
having multiple ports open for the same application. It is worthwhile to mention that this
attack works on websites that make use of both HTTP and HTTPS. Therefore, in order to
defend against this attack, it is recommended to use only HTTPS and not HTTP. Thus,
a solution to mitigate this attack is the use of HTTP Strict Transport Security (HSTS)
header that commands browser to connect only through HTTPS and never HTTP.

3.1.2.2 STARTTLS Command Injection Attack

STARTTLS is an application-level command that allows upgrading a clear text con-
nection to use TLS [44]. POP3, SMTP, FTP, XMPP, LDAP and NNTP are examples of
application layer protocols that use STARTTLS [99]. The request to upgrade the connec-
tion is not protected, meaning STARTTLS is vulnerable to downgrade attacks. A MITM
attacker can remove the STARTTLS indication from the request and the connection pro-
ceeds unprotected. A HSTS-based solution is necessary to mitigate this attack.

17

3.1.2.3 BEAST

The Browser Exploit Against SSL/TLS (BEAST) is a client-side (browser) attack that
affects SSL 3.0 and TLS 1.0. This attack exploits a vulnerability in the implementation
of the Cipher Block Chaining (CBC) mode which is related to the predictability of the
Initialization Vector (IV) [88]. Specifically, this vulnerability allows the attacker to perform
chosen plaintext attack and decrypt data exchanged between two parties [26]. To launch
this attack the attacker has to implement a Man-In-The-Middle (MITM) in order to inject
packets into the SSL/TLS traffic [29].

In particular, in this attack, the attacker can test if the plaintext block P1 is equal to G
(i.e., a blind guess of P1), by observing 2 consecutive ciphertext blocks C0 and C1, where
C1 = E(key, C0 ⊕ P1), due to how CBC mode works. Then, the attacker selects the next
plaintext block P2 to be equal to: P2 = C0 ⊕ C1 ⊕ G, and forces the victim (i.e., client)
to send it to the server. Thus, the victim sends the corresponding ciphertext C2 which
is equal to: C2 = E(key, C1P2) = E(key, C1 ⊕ C0 ⊕ C1 ⊕ G) = E(key, C0 ⊕ G). Now, if
C1 == C2 then G = P1. The BEAST attack can be mitigated by using TLS v1.1 or TLS
v1.2.

3.1.2.4 Padding Oracle Attack

All versions of SSL/TLS have a MAC-Pad-encrypt design. This design was proved
insecure, because it allowed padding oracle attacks [100]. In 2002 Vaudenay [100] presented
an attack on CBC encryption for a specific method of padding the message. Since then,
many articles prove that the attack is possible for different types of padding methods [77],
[10]. Vaudenay’s padding method was CBC-PAD. This method adds as many bytes as
needed to the message and each byte has the value of the length of the padding. In other
words, if the padding needed is 1 byte, the message will be padded with the byte 0× 01, if
two bytes are needed, the padding would be 0× 0202, and so on. For the attack to work,
it is needed an oracle O that decrypts a chosen ciphertext returning VALID if the message
is properly padded, and INVALID otherwise.

IV

Chiphertext

Block
Decryption

Plaintext

key

Chiphertext

Block
Decryption

Plaintext

key

Chiphertext

Block
Decryption

Plaintext

key...

Figure 3.2: CBC Mode Decryption.

18

Figure 3.2 represents the CBC-mode decryption. If we consider that our message has
just two blocks C = (IV, C1) of 8 bytes each, the plaintext message P1 will have one
block. Any changes in the IV will induce changes in the plaintext and it will be possible
to get information about it. Vaudenay’s attack starts by changing bytes in the IV until
O(C) = VALID. This means that the message P

′
1 is correctly padded and ends with 01

with probability of 1/28, or 0202 with probability of 1/216, or 030303 with probability of
1/224, etc. Considering these probabilities, it is expected that the padding to be 01 and
the last byte from P1 is V I ⊕ 01. However, to verify that the padding is 01 and not any
of the other options (e.g.0202, 030303, etc.), we XOR the second last byte with 01. If the
padding was, for example, 0202, after the XOR it would be 0302 and O(C) = INVALID.
After knowing the last byte of P1, we can change the last byte of IV so that P1 ends with
02 and try to find the correct IV until O(C) = VALID. Continuing this method, we can
find all bytes of P1 [10], [100].

Black and Urtubia [10] proposed an improvement to Vaudenay’s attack. First, they try
to find the padding length. Instead of trying to change IV to make the plaintext end with
padding 01, they change the IV from the first byte. If this byte does not belong to the
padding bytes, O(C) will not return an error. After this, they change the second IV byte,
etc., until O(C) = INVALID. This means they have reached the padding bytes. From now,
the attack continues as before, the IV is changed so the padding numbers increment by
one (if the padding was 0× 030303, they change them to 0× 040404) and proceed to alter
IV until the oracle returns a valid answer.

3.1.2.5 Lucky Thirteen

After the discovery of padding attacks, the TLS protocol suffered some modifications.
The padding error and the Message Authentication Code (MAC) validation error started
being the same so the attacker could not understand which one had happened. However,
it was still easy to figure out what error occurred, since the time needed to validate the
padding bytes and evaluate MAC were very different. For this reason, now it is necessary
to compute the MAC even if the padding is incorrect and consider the message as not
padded. The RFC documents state that “This leaves a small timing channel, since MAC
performance depends to some extent on the size of the data fragment, but it is not believed
to be large enough to be exploitable, due to the large block size of existing MACs and the
small size of the timing signal.” In 2013, AlFardan and Paterson [3] proved that this
statement was wrong.

This attack is possible due to how the MAC validation works. If a message has 55
or less bytes it can be encoded into a single block of 64 bytes, resulting in 2 compression
function evaluations for the inner hash operation, and 2 more for the outer hash operation.
Meaning that, for a 64-byte block, it is needed 4 compression function evaluations. If the
message length is between 56 and 119 bytes, it takes 3 + 2 compression function evaluation.
This attack takes advantage of the extra evaluation to differentiate the computation times
of these two cases.

To perform a MAC operation in a message, only the Payload is considered, meaning

19

that the MAC tag and padding bytes are removed. Before the Payload, 13 bytes are
concatenated a sequence number of 8 bytes and a 5-byte field consisting of a 2-byte version
field, 1-byte type field and a 2-byte length field (HDR). Assuming the MAC algorithm is
HMAC-SHA-1, the calculated MAC tag has a length of 20 bytes. There can be three types
of messages for a 64-byte plaintext message:

• The message has one byte of padding. This will result in a 64− 20− 1 = 43 bytes of
plaintext. Thus, the MAC verification is on a 13 + 43 = 56 byte message.

• The message has valid padding of two or more bytes. Meaning that the MAC vali-
dation is done on a 55 or less byte message.

• The message has invalid padding, which means that MAC will be performed on a 57
byte message.

As said before, 56 or more bytes messages take longer to perform MAC validation. The
attacker can exploit this timing difference to discover the last two bytes of the message.

Assuming the last plaintext block is P = P ∗ ⊕∆ we can send all combinations of the
last two bytes of ∆ to the server and study the time it takes to receive the error message (it
is expected that the MAC validation fails). The faster response will be when the last two
bytes form a valid padding. The messages are all sent over a multi-session attack, because
the TLS session is destroyed after the first ciphertext is sent. This attack is mitigated if
the CBC encryption is disabled, or by using encrypt-then-MAC instead of the TLS default
of MAC-then-encrypt.

3.1.2.6 POODLE

The Padding Oracle On Downgraded Legacy Encryption (POODLE) attack is a padding
oracle attack that does not rely on timing information, but still works on TLS v1.1 and
TLS v1.2 as long as the SSL v3.0 downgrade is possible. The POODLE attack takes ad-
vantage of two factors. The first one is related to the fact that some servers/clients still
support SSL 3.0 for interoperability and compatibility with legacy systems, and the second
factor is the Block Padding-related vulnerability of SSL 3.0. In case that a client initiates
the handshake phase and sends the list of the supported SSL/TLS versions to the server,
a MITM attacker can impersonate the server until the client agrees to downgrade the con-
nection to the vulnerable SSL 3.0. Then, when the connection between the client and the
server is established to the vulnerable SSL 3.0 version, the attacker can benefit from the
Block Padding-related vulnerability of SSL 3.0. According to RCF 7457 [88], there are no
known mitigations for this attack. However, one can avoid it if SSL v3.0 is completely
disabled. Finally, based on the Trustworthy Internet Movement website [79], 98.6% of the
sites surveyed in December 2017 are not vulnerable to POODLE attack.

3.1.2.7 Attacks on RC4

The RC4 stream cipher is a variable-key size stream cipher that was designed in 1987 by
Ron Rivest for RSA Data Security, Inc. [86]. For 7 years, this cipher was secret, accessible

20

only after signing a non-disclosure agreement. In 1994, the source code was made public
anonymously. Since then, it has been dissected on Usenet, distributed at conference, and
taught in cryptography courses. It is worth noting that in 2002 Mantin and Shamir [49]
proved the non-random behaviour of this algorithm.

As explained in [86], the RC4 stream cipher has two stages. The first one is the Key
Scheduling Algorithm used to initialise the permutation in an array called S-box (internal
state). Its entries are a permutation of the numbers 0 through 255, and the permutation
is a function of the variable-length key. To disarrange the S-box for the first time, the
Algorithm 1 is used.

Input: key K of l bytes
Output: Initialization of the internal state S0

j = 0;
for i = 0 : 255 do

j = (j + S[i] + K[i mod l]) mod 256;
swap S[i] and S[j];

end
S0 = (i, j, S);
return S0

Algorithm 1: Key Scheduling.

Where S[i] is the i-th byte of the S-box and K[i] is the i-th byte of another 256-byte
array with the key (repeating the key as necessary to fill the entire array).

To generate a random byte (keystream K) that will be bitwise XOR-ed with the plain-
text, the Pseudo-random Generation Algorithm (PRGA) specified in Algorithm 2 is used.

Input: internal state Sr

Output: keystream byte Zr+1

Output: internal state Sr+1

parse (i, j, S)← Sr;
i = (i + 1) mod 256;
j = (j + S[i]) mod 256;
swap S[i] and S[j];
Zr+1 ← S[S[i] + S[j]];
Sr+1 ← (i, j, S);
return (Zr+1, Sr+1)

Algorithm 2: Pseudo-random Generation.

In 2002, Mantin and Shamir [49] found a significant statistical weakness of RC4. How-
ever, the authors still considered the cipher to be safe, if the first 2 output words were
discarded (or the first 256 words, preferably). They found out that the second output
word of RC4 had a strong bias, since it has twice the probability to be zero (1/128 instead
of 1/256 for n=8). In 2011, Maitra et al. [67] discovered that, after all, there were biases
in the first 3 to 255 bytes of the RC4 keystream towards zero.

In February 2015, IETF released a memo called Prohibiting RC4 Cipher Suites [78].
As the name suggests, they required RC4 to be removed from the cipher suites allowed

21

in the TLS negotiation. Indeed, it was suggested that if the only cipher suite offered is
RC4, then the handshake has to be terminated. Finally, in January 2017, the Trustworthy
Internet Movement SSL Pulse [79] survey stated that only 17 of almost 140.000 surveyed
websites support RC4 cipher suites.

3.1.2.8 Compression Attacks

In 2002, Kelsey [50] published a paper about how lossless compression algorithms reveal
information about the plaintext being transmitted. However, this issue resurfaced in 2012
when Duong and Rizzo presented their CRIME attack at Ekoparty Security Conference
[30]. Compression attacks take advantage of the algorithms that HTTP uses to compress
data. GZIP is the most common used over the web protocols and it is based on the
DEFLATE algorithm [24], that uses a combination of the LZ77 and Huffman coding [48].

LZ77 algorithm [104] compresses data by replacing repeated occurrences with a ref-
erence to a single copy of uncompressed data that appears earlier in the stream. The
reference is a pair of numbers that represents distance and length. This algorithm has a
limited window to compress data, meaning that if the repetition is out of the window, it is
kept as is with no reference to earlier appearance. In Figure 3.3, an example of the LZ77
algorithm, retrieved from [103], presents how the compression works: repeated strings are
replaced with a reference.

Figure 3.3: LZ77 Algorithm Example. (Source: [103])

In the following sections, we present three attacks that abuse compression in order to
decrypt ciphertext. To avoid these attacks, SSL/TLS compression should be disabled.

CRIME

The Compression Ratio Info-leak Made Easy (CRIME) attack was created by Duong
and Rizzo, the authors of the BEAST attack. This attack allows the attacker to steal
cookies and hijack sessions by exploiting the data compression feature of the SSL/TLS
protocol. Particularly, this attack benefits from the way duplicate strings are eliminated
in order to obtain session tokens by brute forcing them [27], [28]. Hence, the amount of
redundancy in data affects the amount of compression. It leads to the fact that more
redundant data will show more compression and thus smaller length of the HTTP request.
Therefore, when the length of a crafted request is smaller than the length of another crafted
request, the attacker knows he/she guessed a secret byte correctly.

22

A request message contains a controlled URL, public headers and unknown secret cook-
ies, from which the attacker knows only the name. Compression puts together all these
parts and it becomes a problem.

Let’s assume the attacker is trying to identify the secret cookie from the following
message.

POST /target HTTP/1.1
Host: example.com
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:14.0)
Gecko/20100101 Firefox/14.0.1
Cookie: secretcookie=du5h3o5ja1fis830lrlsm7yji892vm4p

The attacker can resend the message with a different URL.

POST /target HTTP/1.1
Host: example.com?secretcookie=a
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:14.0)
Gecko/20100101 Firefox/14.0.1
Cookie: secretcookie=du5h3o5ja1fis830lrlsm7yji892vm4p

At this point, the attacker can use a network sniffer to verify message length. The
atacker can then send other values for the secretcookie: b, c, d, etc. When the message
length gets smaller, it means that a bigger sequence of characters has been duplicated.

POST /target HTTP/1.1
Host: example.com?secretcookie=d
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:14.0)
Gecko/20100101 Firefox/14.0.1
Cookie: secretcookie=du5h3o5ja1fis830lrlsm7yji892vm4p

For wrong guesses, the LZ77 algorithm will compress the duplicated secretcookie=
string. However, for a correct guess, the recurring string will be secretcookie=d. Thus,
the resulting request will be smaller and the attacker will realize that he/she has retrieved
the first character of the secret cookie. The same process is repeated by considering the
value of the secret cookie as secretcookie=d and the second value is to be retrieved.
Similarly, the same process is repeated until the entire secret cookie value is revealed. The
CRIME attack is possible in all versions of SSL/TLS and it can be mitigated by disabling
SSL/TLS compression [84].

TIME

Despite the high impact of the CRIME attack on the world of security, this attack
has two major practical drawbacks. Firstly, it targets only HTTP requests while most
of the current web does not compress HTTP requests. Actually, the few protocols that
supported HTTP requests compression have stopped their support by thus rendering this
attack irrelevant [7]. Secondly, the attack model of the CRIME attack limits the attack
to mostly Man-in-the-Middle (MITM) cases. This is because the attacker should not only

23

control the plaintext but also be able to eavesdrop the ciphertext [7]. These two limitations
are addressed by the Timing Info-leak Made Easy (TIME) attack [7] that targets the web
responses instead of the web requests. By changing the target of the attack, the attack
surface increases, since most of the current web makes use of HTTP response compression in
order to save bandwidth and latency. In addition, the TIME attack uses timing information
differential analysis to infer on the compressed payload’s size and thus, its attack model
can be simplified. Therefore, according to TIME’s attack model, the attacker only needs
to control the plaintext [7]. The TIME attack can be mitigated by disabling SSL/TLS
compression [88].

BREACH

The Browser Reconnaissance and Exfiltration via Adaptive Compression of Hypertext
(BREACH) attack was announced in 2013 [38]. This attack shows that TLS-protected
traffic remains vulnerable to realistic compression side-channel attacks. It is achieved by
attacking HTTP responses instead of HTTP requests. Even if TLS-level compression is
disabled, it is very common the use of GZIP at the HTTP level. Moreover, numerous web
applications include secrets, such as Cross-Site Request Forgery (CSRF) tokens, and user
input, such as URL parameters, in the same HTTP response, and thus (very likely) in the
same compression context. Consequently, we can say that the BREACH attack can be
performed similar to the CRIME attack, but without relying on TLS-level compression.
The BREACH attack proceeds byte-by-byte. Initially, the attacker forces the victim to
send a small number of requests to guess the first byte of the target secret. Then, the
attacker measures the size of the resulting HTTP responses and based on that information,
the oracle determines the correct value for the first character of the secret [38]. Although,
Gluck et al. in [38] mention that they are unaware of a clean, effective, and practical
solution to the problem, they suggest the following tactics for mitigating the BREACH
attack:

• Length hiding. Since the attack relies on measuring the length of the ciphertext, a
natural mitigation approach is to hide this information from the attacker. It can be
simply achieved by adding a random amount of garbage data to each response. This
approach requires the attacker to issue more requests and measure the sizes of more
responses, but it is not enough to make the attack infeasible. Actually, the attacker
can learn fast the truth length of the ciphertext, by repeatedly sending requests and
averaging the sizes of the corresponding responses.

• Separating secrets from user input. If these two types of information (i.e., user
input, secrets) are not compressed together, this attack can be avoided. However,
depending on the nature of the application and its implementation, this may be very
tedious and highly impractical. Disabling HTTP-level compression. This solution
obviously eradicates the attack. However, this solution leads to a rather drastic
impact on performance.

24

• Masking secrets. Tom Berson [38] created a method so that the targeted secret
will not remain the same between requests. Particularly, his method allows to mask
a secret S by creating a one-time pad P and embedding P ||(P ⊕ S) instead of S, in
the page. This method ensures that the secret will not be compressible.

• Request Rate-Limiting and Monitoring. Although the attack does not need an
impossible amount of requests, it does need more requests in a short amount of time
than a human user could perform. Thus, by monitoring the volume of traffic per
user, the attack can at least be slowed down significantly.

• More Aggressive CSRF Protection. One way to thwart the attack is to require
a valid CSRF token for all requests that reflect user input, since the attack will make
many wrong guesses before retrieving the correct token.

3.1.2.9 Certificate and RSA-Related Attacks

Over the years, there have been multiple practical attacks on TLS when it is used with
RSA certificates [20]. Some of the most well-known RSA certificate-related attacks against
TLS are presented below.

Bleichenbacher Attack

Bleichenbacher [11] took advantage of Davida’s findings [20] and the fixed structure of
RSA to create an attack that would decrypt the PreMasterSecret. This master secret is all
what an attacker needs to derive all the particular session keys [52], meaning that the TLS
session is no longer secure. For this attack to be viable, it is necessary the access to an
oracle that, for each ciphertext, returns an identifiable error if the plaintext is not PKCS
conforming (i.e., PKCS#1).

This is an adaptive chosen-ciphertext attack, because the attacker chooses the cipher-
text that he/she sends to the oracle and the next ciphertext depends on the answer from the
oracle. The attacker gains information on the plaintext gradually. A detailed description
is provided in [11]. Bleichenbacher states that 220 chosen ciphertexts should be sufficient
to derive the message sent. However, this number depends on the implementation details
and thus the number of the chosen ciphertexts can vary. Version 1.0 of TLS mitigates this
attack by instructing security architects not to give out information about the structure of
plaintext [52].

Klima Attack

In 2003, Klima [52] presented an extension of Bleichenbacher’s attack on PKCS#1.
To prevent Bleichenbacher’s attack, the server does not reply to a not PKCS conform-
ing message with an error. Instead, the server generates a new PreMasterSecret. The
communication will break down after the client’s Finished message. However, the attacker
does not know if the error is due to wrong PreMasterSecret or incorrect message format.

25

Another countermeasure for Bleichenbacher’s attack is to verify the correctness of a version
number. Version 1.0 of TLS tells security architects to validate version number, but does
not tell them how. Thus, Klima realized that some implementations would issue a specific
error message and that it “opened up a Pandora’s box”. This error message created a new
side channel attack as a Bad-Version Oracle.

In version 1.1 of TLS [81], the PreMasterSecret version number has to be equal to
the one offered by the client, not the version negotiated for the connection, in order to
prevent rollback attacks. Clients have to check the version number to be sure it is correct.
However, servers can check if they want. If the version number is incorrect, the server
has to randomize the PreMasterSecret instead of generating an error. By telling security
architects specifically not to generate an error, both the Bleichenbacher’s attack and the
Klima’s attacks are mitigated.

Brumley

In 2003, Brumley and Boneh challenged the assumption that common implementations
of RSA (using Chinese Remainder and Montgomery reductions) were not vulnerable to
timing attacks [13]. The attack was aimed at OpenSSL since it was the most commonly
used in web servers. However, despite the fact that OpenSSL had a defence mechanism
against timing attack, it was turned off by default.

RSA’s ciphertext decryption is in the form of m = cd mod N , where c is the ciphertext, d
is the private decryption exponent and N = pq is the RSA modulus. Brumley and Boneh’s
timing attack allows the discovery of the factors of N . After knowing p and q, the attacker
can compute the decryption key by computing exponent d = e−1 mod (p− 1)(q − 1). The
attack targets q, the smaller factor. After q is known, the RSA modulus is factored and
the server’s private key is revealed.

To initialize the attack, one chooses a guess for q and then time the decryption of all
possible combinations of the top 2 or 3 bits. When a graph is plotted, it shows two peaks,
one for q and one for p. The first peak is related to the smaller value of the two, which
is the q. The authors tested the attack and stated that a typical attack takes about 2
hours to complete. After these timing findings, several crypto libraries, such as OpenSSL
included, started to implement blinding by default [13].

3.1.2.10 Certificate Fuzzing Tool

When implementing TLS, one of the steps is certificate validation. The main diffi-
culty of this step is to test the correctness of the certificate validation logic in SSL/TLS
implementations. It is quite difficult to create enough test inputs and interpret the re-
sult of testing. Brubaker et al. [12] realized this difficulty and created a Fuzzing Tool to
systematically test SSL/TLS implementations regarding certificate validation logic. They
found that the tool is able to uncover numerous vulnerabilities in popular TLS implemen-
tations related to certificate validation. One of their findings was that some browsers,
when confronted with an expired and self-signed certificate, would report to the user that

26

the certificate was expired, but would not mention the fact that it was also invalid. Users
usually ignore this report and click through the warning [1].

3.1.2.11 Man-in-the-Middle (MITM) Attacks

It is possible to compromise a SSL/TLS-based communication if an attacker positions
himself in the middle of the communication channel between the client and the server.
The attack is performed by creating two SSL/TLS-based connections: one with the client;
and one with the server. This way, the attacker can rely messages exchanged between
the client and the server without any of them being aware of the attacker’s presence. To
achieve this type of attacks, the attacker can exploit forged SSL/TLS certificates that can
be illegitimately generated by the attacker himself or obtained by compromising trusted
CAs [47], [19]. Afterwards, these certificates are used by the attacker to impersonate as
the server to the client. The attack to DigiNotar [4] is an example of compromising trusted
CAs in the real world.

Figure 3.4 shows the sequence diagram of this attack. It demonstrates the interactions
between the attacker and the client along with the communication between the attacker
and the server in the case of a potential MITM attack against the SSL/TLS-based com-
munication. In this case, the attacker intends to impersonate the server by using a forged
certificate and the client is the victim. Thus, the following steps take place:

1. The attacker positions himself into the communication channel between the client
and the server, and intercepts the Client Hello message (message 1) that the client
sends to establish a new SSL/TLS connection with the server.

2. The attacker responds to the Client Hello message using a forged certificate (messages
4, 6, 8, and 11).

3. If the client verifies the forged certificate (message 12), then the client establishes
the SSL/TLS connection with the attacker (messages 13, 15, 17, 19, 21, 22, 26,
29, and 30).

4. In parallel to the previous steps, the attacker establishes a separate SSL/TLS con-
nection with the server, impersonating the client (messages 2, 3, 5, 7, 9, 10, 14,
16, 18, 20, 23, 24, 25, 27, and 28).

5. At this point, the attacker has established two separate SSL/TLS-based connections:
a) one with the client and b) one with the server. Now, the attacker is able to
decrypt, re-encrypt and forward all exchanged messages between the client and the
server (messages 31, 32).

There are two possible ways to mitigate this kind of attack. One solution is that the
CAs should protect their critical infrastructures not only with cryptographic security mech-
anisms but also with intrusion detection mechanisms [72]. In addition, another solution is
the use of secondary channels, such as Tor, so that the client will get additional copies of

27

Figure 3.4: A MITM Attack against the SSL/TLS-based Communication between the
Client and the Server.

28

the server’s certificate. Assuming the attacker has no control over the secondary channels,
any inconsistency in the certificates will indicate a possible MITM attack [19].

3.1.2.12 Virtual Host Confusion

In [22] and [23] Delignat-Lavaud and Bhargavan describe a new class of vulnerabilities
in TLS when used in a cloud environment. The virtual host confusion attack is an attack
where an attacker can take advantage of SSL 3.0 fallback and improper handling of session
caches on the server side in order to establish a malicious connection to a virtual host other
than the one initially intended and approved by the server [22]. In particular, the virtual
host confusion attacks are very serious in performance critical environments where sharing
of SSL 3.0 session caches is very common. Delignat-Lavaud and Bhargavan noted that
this vulnerability has been present in Akamai servers for almost 15 years without getting
noticed [23].

3.1.2.13 Computational Denial of Service (DoS) Attacks

SSL/TLS-based communication is vulnerable to computational Denial of Service (DoS)
attacks [25], [72], [16], [69]. This type of attack exploits the fact that the SSL/TLS proto-
col handshake process is computationally expensive, and that this process is more resource
intensive to the server’s side compared to the client’s side. Specifically, the SSL/TLS
handshake requires 10-15 times more processing power on the server than on the client
[16], [76]. Thus, an attacker can pretend to be a legitimate client and launch a computa-
tional DoS attack against the server by initiating many SSL/TLS handshakes so that the
server will be forced to do a lot of computations. This additional workload depletes the
server’s CPU resources leading the server to be unavailable to the legitimate clients (i.e.
denial of service). Indeed, there are two variations of computational DoS attacks: a) the
computational DoS attacks based on multiple connections, and b) the computational DoS
attacks based on Renegotiation [72].

In the first variation of computational DoS attacks, multiple attacking entities send
fake data to the target server that supports the SSL/TLS protocol as they try to establish
a number of junk SSL/TLS connections with that server. This generates extra workload to
the server that exhausts its resources, because the target server believes these connections
are legitimate SSL/TLS handshake attempts [63], [65].

On the other hand, in the second variation of computational DoS attacks, a single mali-
cious host launches an attack against the targeting server. Specifically, when the SSL/TLS
Renegotiation feature is enabled on the server, an attacker using only one malicious host
can send multiple Renegotiation requests that will exhaust the server’s resources, due to
the fact that each Renegotiation request initiates a new SSL/TLS handshake which re-
quires at least 10 times more processing power for the server than the client [76]. Hence,
this kind of attack causes denial of service on the server’s SSL/TLS interface [76].

Hence, the SSL/TLS-based communication between the client and the server can be
vulnerable to both the computational DoS attacks based on multiple connections and

29

based on Renegotiation. However, there are countermeasures to prevent or minimize the
effectiveness of these attacks against the SSL/TLS-based communication between the client
and the server. First of all, the server can mitigate these attacks by limiting the incoming
rate of new SSL/TLS connections and renegotiations [76]. Another mitigation technique
can be the use of a SSL Accelerator, which is a hardware accelerator, typically a separate
card that plugs into a PCI slot that offloads processing of the computationally expensive
SSL/TLS handshake on the server’s side [76], [36]. Finally, client puzzles can be used to
mitigate these two types of attacks, since solving client puzzles increases the workload on
the client’s side [21], [8].

3.1.2.14 Implementation Issues

Although the Transport Layer Security protocol is well documented and properly speci-
fied, it does not mean that implementation errors affecting the level of the provided security
are avoided. Indeed, several implementation errors were discovered in the past. For exam-
ple, some implementations were not validating the server’s identity [88]. This validation
amounts to matching the protocol-level server name with the certificate’s Subject Alterna-
tive Name field. However, this same information is often also found in the Common Name
part of the Distinguished Name, and thus, some validators retrieve it from there incorrectly
instead of the Subject Alternative Name [88]. Another implementation issues noticed by
the RFC 7457 [88] is that the certificate chain is not validated at all, or the validation of
the certificate chain is performed incorrectly. Some other examples of TLS vulnerabilities
due to implementation issues are the following:

Python-Bugzilla

In 2013, it was found that the Python library that is responsible for the interaction
with Bugzilla was not performing server’s certificate validation when communicating over
HTTPS [101]. Not validating Bugzilla’s server certificate leaves the connection vulnerable
to MITM attacks.

Heartbleed

OpenSSL introduced a coding mistake when implementing the TLS/DTLS extension
Heartbeat. This allowed an exploit known as Heartbleed. The Heartbeat extension was
motivated by the need for session management in Datagram TLS (DTLS) [31]. Heartbeat
allows each party of a TLS connection to verify whether its peer is still present. Peers
indicate support for the Heartbeat extension during the initial TLS handshake. Following
negotiation, each peer sends a HeartbeatRequest message to verify connectivity. This
message consists of a 1-byte type field, a 2-byte payload length field, a payload, and at
least 16 bytes of random padding. Upon receiving the request, the receiver responds with a
similar HeartbeatResponse message in which it echoes back the HeartbeatRequest payload
and its own random padding. OpenSSL implemented this extension in a way that the

30

receiver trusts the request length field for the payload and if the request has a length
larger than the payload, the response will reveal private information[31].

3.1.2.15 Usability

When a browser detects security issues regarding the certificate (e.g., expired certificate
or self-signed certificate), it allows the user to choose whether they want to proceed to the
website or not. Usability studies have shown that a large number of users ignore the
warnings provided by the browsers about certificates [85], [94], [2], [33]. Hence, these users
are vulnerable to interception attacks using self-signed certificates [47]. The main problem
with this warning is that it always shows the same message and has the same presentation.
As a result, the average user will get used to it and start to ignore it. To prevent this,
more informative UI design is required so that the message shown to the user will stop
being generic and provide some information about the warning reasons: expired certificate,
unknown Root CA, etc.

31

3.2 OAuth 2.0

Nowadays, the need for secure authentication and authorization across companies has
been significantly important, and according to [15], the most widely adopted protocol in
this domain is OAuth. Indeed, OAuth is currently deployed by many major companies,
such as Facebook, Google and Microsoft. Initially, OAuth was designed to provide a secure
authorization mechanism for websites, as it defines a process for end-users to authorize
third-party websites to access their private resources hosted on a Service Provider (SP) on
their own behalf. Nonetheless, ever since OAuth was successfully adopted by the industry,
major identity providers (e.g., Facebook, Google, and Microsoft) have used it for user
authentication as well [15]. Namely, the OAuth protocol enables a user to prove his/her
identity to a relying party (i.e., website) by utilizing his/her existing session with the SP
[15], [93], [92]. Furthermore, the developers’ community has re-targeted OAuth to mobile
platforms, in addition to the traditional web platform, and thus, OAuth has become today a
de-facto authentication and authorization protocol for mobile apps [15]. The latest version
of OAuth protocol is the OAuth 2.0 protocol [42] that has obsoleted the OAuth 1.0 protocol
described in [41]. According to [42], the OAuth 2.0 protocol defines four different roles:

a. Resource Owner (i.e., User): an entity capable of granting access to its protected
resources,

b. Resource Server: the server hosting the Resource Owner’s protected resources,

c. Client (i.e., Relying Party (RP)): an application requesting access to the protected
resources on behalf of the Resource Owner, and

d. Authorization Server: the server that issues access tokens to the Client after success-
fully authenticating the User and obtaining authorization.

According to the OAuth 2.0 protocol [42], the Client requests access to the Resource
Owner’s protected resources and is issued a different set of credentials than those of the
Resource Owner. Specifically, the Client is issued an access token (i.e., credentials) by the
Authorization Server with the approval (i.e., authorization) of the Resource Owner. The
access token is used by the Client to access the Resource Owner’s protected resources. The
authorization of the Resource Owner is expressed in the form of an authorization grant
that the Client uses to request the access token from the Authorization Server. OAuth
2.0 provides four different methods so that the Client can obtain the access token. These
methods are referred to as grant types and the OAuth 2.0 documentation defines the
following [42]: a) authorization code, b) implicit, c) resource owner password credentials,
and d) client credentials. However, as it is mentioned in [15], only two types out of the
four have been widely used in practice for native applications (i.e., desktop applications,
mobile apps). These grant types are the implicit grant type and the authorization code
grant type. Finally, it is worthwhile to mention that both the implicit grant type and
the authorization code grant type are redirection-based flow, which means that the Client

32

should be capable of interacting with the Resource Owner’s user agent (e.g., web browser)
and capable of receiving incoming requests, via redirection, from the Authorization Server.

3.2.1 Implicit Grant

The implicit grant is the shortest flow that OAuth 2.0 provides. This type is used to
obtain access tokens and is optimized for public clients known to operate a particular redi-
rection URI. These clients are typically implemented in a browser using scripting language
(e.g., JavaScript). Due to the fact that the implicit grant type is a redirection-based flow,
the client must be capable of interacting with the Resource owner’s user agent (e.g., web
browser) and capable of receiving incoming requests, via redirection, from the Authoriza-
tion Server [42], [34]. As illustrated in Figure 3.5, the flow for the implicit grant consists
of the following steps:

User User Agent Client
Authorization

Server (AS)

User User Age nt Re ly in g p arty Iden tity Pro vider

Log in
1. POST /start

2. Response (redirect to AS)

response_type=token, client_id,
redirect_uri, state

3. GET /authzEndPoint

4. Response

6. Response (Redirect to Client)

fragment: access_token, state

5. POST /authzEndPoint

username, password

7. GET /redirect_uri

8. Response

9. POST /token
access_token, state

User authenticates

response_type=token, client_id,
redirect_uri, state

Figure 3.5: OAuth 2.0 Implicit Grant.

Step 1. The User clicks on the login button that triggers a request from the user agent (e.g.
browser) to the Client (Message 1).

Step 2. The Client redirects the user agent to the Authorization Server (Message 2). The
message carries the parameter response type with the value ‘token’ to express the
desire to use implicit grant, the client’s identifier (client id), the requested scope, a
value state and the redirection URI (redirect uri) to which the Authorization Server

33

will send the user agent back once access is granted (or denied) in Message 7. The user
agent requests the authentication web page (Message 3) provided by the authorization
endpoint through the GET response containing the log in form (Message 4).

Step 3. The User provides his/her username and password. The user agent sends this infor-
mation to the authorization endpoint (Message 5).

Step 4. Provided that the credentials are correct and the User grants the Client’s access
request, the Authorization Server sends the access token (access token) to the user
agent, as well as the value state, provided earlier in Message 2 (Message 6). This
response message redirects the user agent back to the Client using the redirection URI
provided earlier in Message 2. The access token and state values are sent appended
to the request uri as a fragment1. The user agent makes a GET request for the
web page in redirect uri. The contents of the fragment are not sent in this request
(Message 7).

Step 5. The Client responds to the GET request with the contents of the web page (Message
8). With this, the Client also sends a JavaScript code that will be used to retrieve
the values sent in Message 6.

Step 6. The user agent executes the JavaScript code to retrieve the access token and state
values and sends them to the Client (Message 9). The Client validates the state value
that should be the same as the one received in message 2.

Step 7. The access token can now be used to get the user’s protected resources.

3.2.2 Authorization Code Grant

The authorization code grant type is used to obtain both access tokens and refresh
tokens and is optimized for confidential clients. Similar to the implicit grant type, it is
also a redirection-based flow and thus, the Client must be capable of interacting with
the Resource Owner’s user agent (e.g., web browser) and capable of receiving incoming
requests, via redirection, from the Authorization Server [42], [34]. As illustrated in Figure
3.6, the flow for the authorization code grant type consists of the following steps:

Step 1. The User clicks on the login button that triggers a request from the user agent (e.g.
browser) to the Client (Message 1).

Step 2. The Client redirects the user agent to the Authorization Server (Message 2). The
message carries the parameter response type with the value ‘code’ to express the
desire to use the authorization code grant, the client’s identifier (client id), requested
scope, local state and a redirection URI (redirect uri) to which the Authorization
Server will send the user agent back once access is granted (or denied) in Message

1A fragment of a URI is the part sent after the ‘#’ symbol.

34

User User Agent Client
Authorization

Server (AS)

User
User Age nt Re ly in g p arty Iden tity Pro vider

Log in
1. POST /start

2. Response (redirect to AS)

response_type=code, client_id,
redirect_uri, state

3. GET /authzEndPoint
response_type=code, client_id,

redirect_uri, state4. Response

6. Response (Redirect to Client)
code, state

5. POST /authzEndPoint
username, password

7. GET /redirect_uri

9. Response

8. POST /tokenEndPoint

code, client_id, redirect_uri, client_secret

access_token

User authenticates

code, state

Figure 3.6: OAuth 2.0 Authorization Code Grant.

7. The user agent requests the authentication web page (Message 3) provided by
the authorization endpoint through the GET response containing the log in form
(Message 4).

Step 3. The User provides his/her username and password. The user agent sends this infor-
mation to the authorization endpoint (Message 5).

Step 4. Provided that the credentials are correct and the User grants the Client’s access
request, the Authorization Server sends an authorization code and the value state to
the user agent (Message 6). This response message redirects the user agent back to
the Client using the redirection URI provided earlier in Message 2. The redirection
URI includes the authorization code and the local state provided by the Client earlier
(Message 7).

Step 5. The Client requests an access token from the Authorization Server by including
the authorization code along with the client id, client secret and the redirect uri
(Message 8).

Step 6. The Authorization Server checks the validity of the values sent by the Client and
authenticates it. In particular, it checks if the code that was issued to the Client
was identified by client id, and that it has not been redeemed before. Also, the
Authorization Server checks if the client secret is correct for the client id. The value

35

for redirect uri is also checked. If all these are valid, the Authorization Server issues
an access token and sends it to the Client (Message 9).

3.2.3 OAuth Vulnerabilities

In this section, we consider representative examples of known vulnerabilities of the
OAuth 2.0 protocol, according to [42] and [34].

3.2.3.1 Misuse of Access Token to Impersonate Resource Owner in Implicit
Flow

The implicit flow does not authenticate the Client with the Authorization Server, and
since the OAuth 2.0 specification does not associate a specific access token to the requesting
Client, there is no way to know if the authorization was given to the Client sending the
access token to request for the user’s protected information.

If an attacker obtains the access token of a legitimate user in some way (e.g., phishing),
the attacker is able to impersonate the user by sending the access token to a legitimate
Client. The service provider will not know that the access token was issued to the attacker’s
malicious Client. This attack exposes the user’s protected resources and may allow the
attacker to perform operations at the legitimate Client as if the attacker is the user [42].

3.2.3.2 Clickjacking

Clickjacking [42] involves tricking the user to grant access to an attacker without the
user’s knowledge. The attacker achieves this by registering a legitimate Client and then
builds a malicious site where it loads the authorization web page of the Authorization
Server in a transparent iframe overlaid on top of a set of fake buttons, which are carefully
constructed to be placed directly under important buttons on the authorization page. Thus,
when the user clicks a misleading visible button, he/she is actually clicking an invisible
button on the authorization page (e.g., “Authorize” button). Clickjacking is a serious
attack and “can cause severe damages, including compromising a user’s private webcam,
email or other private data, and web surfing anonymity”, according to Huang et al. [46].

3.2.3.3 Stealing User Credentials

When a mobile Client (i.e., mobile app) uses embedded web browser the user is exposed,
because the app has full control of the embedded browser and thus it is allowed to inject
JavaScript and steals the user credentials [89].

For example, a malicious mobile app can communicate directly with the embedded
browser, and thus, an attack is possible by JavaScript injection that sends the user cre-
dentials (i.e., user name and password) to the hosting malicious app as soon as the user
clicks on the submit button.

36

3.2.3.4 Modifying the Authorization Interface

This attack [89] results from the same problem as the one before: the usage of embedded
browser and the fact that the Client can communicate with it seamlessly. However, instead
of stealing user credentials, this attack tries to deceive the user by showing a different list
of authorizations. Thus, when the user tries to login to a malicious website with third
party service provider, the Client modifies the authorization page to show different items.
It can show basic info and email address, for example, instead of a list of information that
the Client is actually requiring. If or when the user grants access to the Client, the user is
granting access to the entire list, not shown on the page.

3.2.3.5 Attacks against System Native Browser

One way to abuse the mobile native browser is to exploit the intent manager [89]. The
intent manager lets the user choose what application to launch when there are more than
one to perform the specific task. A malicious app can register similar intent filters as the
legitimate app, and when the user authenticates, the user is prompted to choose the app
to launch. If the user selects the malicious app, the access token is sent to the attacker. At
this moment, the malicious app can impersonate the legitimate application on the resource
server.

3.2.3.6 Cross Site Request Forgery Attacks

A Cross-Site Request Forgery (CSRF) attack takes place when a malicious website
initiates a request to a target website (e.g., by means of a HTML tag). If the
user browsing is authenticated to the target website, this tag will make the browser send
cookies containing the user’s tokens. When the malicious website sends a request to the
target website, the legitimate website reacts as if the user sent the request.

To avoid this attack, the OAuth 2.0 specification recommends that the website incor-
porates a non-guessable state parameter and verifies if the request state is the same as
the authenticated user. In [64], it was observed that not all Clients check this parameter.
Some even omit the state or set it to a fixed value. These Clients are vulnerable to CSRF
attacks.

3.2.3.7 HTTP 307 Redirect

In [34], Fett et al. performed an extensive analysis of the OAuth 2.0 standard and
discovered two more vulnerabilities. The first one is related to the redirect code used when
redirecting the user back to the Client’s URI.

This attack is launched as follows: when a user is attempting to log in at a malicious
client, then he/she is redirected to the Authorization Server to insert the user’s credentials.
The credentials are sent to the Authorization Server in a POST request. The Authorization
Server checks for the correctness of the credentials and redirects the user’s browser to the
Client’s redirection endpoint in the response to the POST request. As the 307 status code

37

is used for this redirection, the user’s browser will send a POST request to the Client that
contains all form data from the previous request, including the user credentials. To prevent
this attack, the Authorization Server should always use the 303 status code, as it is the
only that is unambiguously defined to drop the body of an HTTP POST request [35].

3.2.3.8 IdP Mix-Up

In this attack, the attacker confuses a Client about which Authorization Server the
user chose at the beginning of the login/authorization process in order to obtain an access
token which can be used to impersonate the user or access user data [34].

In this attack, the attacker manipulates the first request of the user so that the Client
considers that the user want to use an Authorization Server controlled by the attacker,
while the user wants to use a legitimate Authorization Server. Thus, the Client sends the
authorization code or the access token issued by the legitimate Authorization Server to the
attacker. Consequently, the attacker can use this information to login at the Client under
the user’s identity, managed by the legitimate Authorization Server, or access the user’s
protected resources.

To prevent this attack, the authors of “A Comprehensive Formal Security Analysis of
OAuth 2.0” [34] propose that the Client should provide a different redirection endpoint
for each Authorization Server. When the user is redirected back to the Client, the Client
knows if the URI used is the one expected

38

3.2.4 OpenID Connect

OpenID Connect (OIDC) [94] was established as a standard in 2015 and it was de-
veloped to create an identity layer on top of OAuth 2.0 [4]. OIDC adds authentication
to the authorization provided by OAuth 2.0, since OAuth 2.0 was not created to provide
authentication and its use for authentication causes severe security flaws [95], [96]. The
identity layer on top of OAuth is abstracted into a parameter called ID Token. The core
parties involved in the OpenID Connect protocol as well as their relationship, as shown in
Figure 3.7, are the following:

• End-user: wants to access services at the Client (i.e., Relying Party). The end-user
is represented by his/her user agent. The end-user grants access to the OpenID
Provider to provide user information to the Relying Party;

• User agent (UA): is typically a browser;

• OpenID Provider (OP): stores the end-user information and is capable of authenti-
cating the end-user;

• Client (Relying Party (RP)): provides services to the end-user that require authen-
tication.

Delegates authentication,
requests tokens and claims

Issues tokens and claims

Authenticates,
grants access

Accesses services

End-User

Relying
Party

OpenID
Provider

Figure 3.7: Role Relationship in OpenID Connect.

There are four endpoints defined in the OpenID Connect Core specification [94], three
of them used for the flows and one for Relying Party registry:

• Authorization Endpoint: is used to perform the authentication of the end-user. In
particular, it is done by sending the user agent to the Authorization Endpoint of the
Authorization Server for authentication and authorization, using request parameters
defined by OAuth 2 and additional parameters and parameter values defined by
OpenID Connect [83].

39

• Token Endpoint: is where the RP communicates to obtain the tokens (id token used
to authenticate the end-user and access token for access to the user’s protected re-
sources). Depending on the chosen OAuth 2.0 flow, the access token may or may not
be sent to RP [83].

• UserInfo Endpoint: is where the RP retrieves the user’s protected resources by send-
ing the access token. These resources are information such as e-mail, address, gender,
etc. [83].

• Registration Endpoint: is actually the first endpoint used. It is where the Client
registers with the OpenID Provider in order to use the OpenID Connect services for
authentication. When registering, the Client gives a redirection URI to OP. The OP
responds with a Client ID and a Client secret that Client must store to use them
in the authentication flows. The registration process from the Client to the OpenID
Provider is usually done once manually or automatically with an OpenID Connect
extension called Dynamic Client Registration [82].

OpenID Connect provides three authentication flows: Authorization Code Flow, Im-
plicit Flow and Hybrid Flow. The flows determine how the Relying Party receives the ID
token and access token. Next, we describe the two most used flows.

3.2.4.1 Implicit Flow

In the implicit flow, all tokens are retrieved from the authorization endpoint and it does
not perform authentication of the Relying Party (RP) in the OpenID Provider. The OIDC
documentation [83] states that this flow is used mostly by RPs implemented in browsers,
using a scripting language. As illustrated in Figure 3.8, the implicit flow consists of the
following steps [83].

Step 1. The flow begins when the User clicks on the login button that triggers a request from
the user agent (e.g. browser) to the RP (Message 1).

Step 2. The RP redirects the user agent to the OpenID Provider chosen by the user (Message
2 and Message 3). This message carries the following parameters: response type with
the value “id token” or “id token token” (since the protected resources are obtained
with id token, the response type = “token” is not accepted in OpenID Connect);
redirect uri to be used in Messages 6 and 7; client id, the RP identifier; scope with
at least the value ‘openid ’; nonce, to mitigate replay attacks; and a recommended
parameter state. Contrary to OAuth 2.0, the scope value is mandatory. In addition,
the user agent requests the authentication web page (Message 3) provided by the
OpenID Provider through the GET response containing the log in form (Message 4).
However, the OpenID Provider must validate the request before answering (Message
4). For example, the scope parameter has to be in the request and it has to contain
the value ‘openid ’.

40

User User Agent Relying party
OpenID
Provider

User User Agent Relying party Identity Provider

Log in
1. POST /start

2. Response (redirect to OP)

response_type=id_token*, redirect_uri, nonce,
client_id, scope, state

3. GET /authzEndPoint
response_type=id_token*, redirect_uri,

nonce, client_id, scope, state

4. Response

6. Response (Redirect to RP)

5. POST /authzEndPoint
username, password

7. GET /redirect_uri

id_token, <access_token>**, state

User authenticates

Validate
id_token

id_token, <access_token>**, state

* response_type equals to id_token or id_token token
** access_token is only returned if response_type=id_token token

Validate
Authentication request

Validate
Authentication response

Figure 3.8: OpenID Connect Implicit Flow.

Step 3. The User provides his/her username and password. The user agent sends this infor-
mation to the authorization endpoint (Message 5).

Step 4. If the user’s credentials are correct and the User grants the RP’s access request, the
OpenID Provider redirects the user agent (Message 6) to the redirect uri with the
parameters: id token; access token, if response type was “id token token”; token type,
usually ‘bearer’, but it could be any value negotiated between the OpenID Provider
and RP; and state. The latter is only present if sent in Message 3. These param-
eters are sent in the fragment component of the redirect uri (Message 7). The RP
validates the message received and all the parameters received from Message 7. If
the parameter state was sent in Message 3, it should also be present in this message,
with the same value. All unrecognised parameters have to be ignored. In addition,
the parameter id token is validated. If access token was requested, it should also be
validated.

Step 5. If the access token was requested too, and the id token is valid, then, the RP can
request the user’s protected resources. To get the resources, the RP sends a GET
request to resource endpoint with the access token parameter.

41

3.2.4.2 Authorization Code Flow

In this section, we describe the Authorization Code Flow. In this flow, all tokens are
retrieved from the Token Endpoint. Before being able to receive them, the Relying Party
needs a code that later is exchanged for the tokens. This flow is appropriate for Relying
Parties that can maintain a secret between them and the OpenID Provider. In other words,
they can keep a secret from the user agent (e.g., browser).

As illustrated in Figure 3.9, the authorization code flow consists of the following steps
[83]:

User User Agent Relying party
OpenID
Provider

User User Age nt Re ly in g p arty
Iden tity Pro vider

Log in
1. POST /start

2. Response (redirect to OP)
response type=code, redirect_uri,

client_id, scope, state 3. GET /authEndPoint
response type=code, redirect_uri,

client_id, scope, state

4. Response

6. Response (Redirect to RP)
code, state

5. POST /authEndpoint
username, password

7. GET /redirect_uri

9. Response

8. POST /tokenEndpoint
grant_type=authorization_code,

code, redirect_uri, client_id

access_token, id_token

User authenticates

code, state

Validate
id_token and access token

Validate
Authentication Response

Validate
Authentication Request

Figure 3.9: OpenID Connect Authorization Code Flow.

Step 1. The flow begins when the User clicks on the login button that triggers a request from
the user agent (e.g. browser) to the RP (Message 1).

Step 2. The RP redirects the user agent to the OpenID Provider chosen by the user (Message
2 and Message 3). This message carries the following parameters: response type

42

with the value ‘code’; redirect uri to be used in messages 6 and 7; client id, the
RP identifier, scope with at least the value ‘openid ’; and a recommended parameter
state. Contrary to OAuth 2.0, the scope value is mandatory. In addition, the user
agent requests the authentication web page (Message 3) provided by the OpenID
Provider through the GET response containing the log in form (Message 4). However,
the OpenID Provider must validate the request before answering (Message 4). For
example, scope parameter has to be in the request and it has to contain the value
‘openid’.

Step 3. The user provides his/her username and password. The user agent sends this infor-
mation to the authorization endpoint (Message 5).

Step 4. If the user’s credentials are correct and the User grants the RP’s access request,
the OpenID Provider sends an authorization code and the state to the user agent
(Message 6). The latter is only present if it was sent in Message 3. This response
message (Message 6) redirects the user agent back to the RP using the redirection
URI with the parameters code and state (Message 7). These parameters are sent
as query parameters to the redirect uri. RP validates the message received. If the
parameter state was sent in Message 3, it should also be present in this message,
with the same value. Parameter code has to be present as well. All unrecognised
parameters have to be ignored.

Step 5. The RP requests an id token and an access token by sending a message to the OpenID
Provider token endpoint with parameters: grant type equals to ‘authorization code’;
authorization code, received from OpenID Provider; redirect uri ; and the client id
(Message 8).

Step 6. The OpenID Provider checks the validity of the values sent by the RP. If all values
are valid, then the OpenID Provider responds with the id token and access token
(Message 9).

Step 7. Upon receiving the Message 9, the RP validates the id token and access token. If
they are valid, then the RP can request the User’s protected resources.

43

44

Chapter 4

Identity and Access Management

In this Chapter, the key concepts of the Identity and Access Management discipline are
discussed. Identity and Access Management (IAM) is the process of managing who has
access to what information. It is a cross-functional activity including the creation of distinct
identities for individuals and systems, as well as the association of system and application-
level accounts to these identities. In addition, IAM is a complex process consisting of
various policies, procedures, activities, and technologies that require the coordination of
many groups inside an enterprise, such as human resources and IT [17], [80]. Essentially,
IAM strives to address three important issues [80]:

• Who has access to what information? IAM enables not only the management of
digital identities, but also the management of the access to resources, applications,
and information that these identities require.

• Is the access appropriate for the job being performed? IAM allows to control if the
access is correct and defined appropriately in order to support a specific job function.
Besides, IAM allows to control if the access to a particular resource conflicts with
other access rights.

• Is the access and activity monitored, logged, and reported appropriately? Apart
from benefiting the user through efficiency gains, IAM processes should be designed
in a way supporting regulatory compliance.

4.1 Key Concepts

The key concepts of IAM are the following [80]:

• Identity: is the element or combination of elements used to uniquely describe a
person or machine. It can be what you know (e.g., password); what you have (e.g., an
ID card, security token); who you are (e.g., fingerprint pattern); or any combination
of these elements.

45

• Access: is the information about the rights that the identity was granted. The
access rights can be granted to allow users to perform transactional function at
various levels.

• Entitlements: are the collection of access rights to perform transactional function.

Identity and Access Management

Identity Access

Provision EnforceAdminister

 Request
 Validate
 Approve
 Propagate
 Communicate

 Authenticate
 Authorize
 Log Activity

 Monitor
 Manage passwords
 Audit and reconcile
 Administer policies
 Strategize
 Manage systems

Information Systems and Data

C
o

m
p

o
n

en
ts

P
ro

ce
sse

s
A

ctivitie
s

Figure 4.1: Relationship between IAM Components and Key Concepts. (Source: [80])

At this point, it is worthwhile to highlight that identities are not only related to human
users. They can be also related to service accounts, machines, and other non-human entities
that must be managed. For identities to become part of the organization and the access
management system, they need to pass through the following stages [80]:

• Provisioning: it refers to an identity’s creation, change, termination, validation,
approval, propagation, and communication. Besides, provisioning should be governed
by a company-specific and universally applied policy statement that is written and
maintained by the IT department of the organization with input from other business
units.

• Identity Management: it includes the following:

a. the establishment of an IAM strategy,

b. administration of IAM policy statement changes,

c. establishment of identity and password parameters,

d. management of manual or automated IAM systems and processes, and

46

e. periodic monitoring, auditing, reconciliation, and reporting of IAM systems.

• Enforcement: it includes the authentication, authorization and logging of identities
as they are used within the organization’s IT system. The enforcement of access rights
mainly occurs through automated processes or mechanisms.

4.2 Identity Federation

Identity federation is an extension of identity management to multiple security domains.
These domains can be internal business units, external business units, and other third-
party applications and services [91]. The main objective is to provide the sharing of
digital identities so that a user will be able to get authenticated one time and then access
applications, services or resources across multiple domains. However, the cooperating
organizations should form a federation based on agreed standards and mutual levels of
trust so that they can securely share digital identities.

Federated identity management refers to the agreements, standards, and technologies
that allow the portability of identities, identity attributes, and entitlements across multiple
organizations and applications as well as support numerous users. In particular, when
multiple organizations implement interoperable federated identity schemes, an employee in
one organization can use a single sign-on to access services across the federation with trust
relationships associated with the identity [91].

User

Identity Provider
(source domain)

Administrator

Service Provider
(destination domain)

4

1

3

2

Figure 4.2: Federated Identity Operation. (Source: [91])

Besides, federated identity management is a standardized means of representing at-
tributes. Digital identities include attributes other than simply an identifier and authenti-
cation information. For instance, attributes may include account numbers, organizational

47

roles, file ownership, etc. Moreover, an additional key function of federated identity man-
agement is identity mapping. Thus, the federated identity management protocols map
identities and attributes of a user in one domain to the requirements of another domain
[91]. Figure 4.2 shows a generic federated identity management architecture.

The Identity Provider obtains attribute information from the users (Step 1) and ad-
ministrators (Step 2). On the other hand, the Service Provider obtains and employs data
maintained and provided by the Identity Provider (Step 3) in order to support authoriza-
tion decisions (Step 4) and to gather audit information. The Service Provider can be in the
same domain as the user and the Identity Provider. However, the power of this approach is
for federated identity management, in which the Service Provider is in a different domain.

48

Chapter 5

Implementation

This Chapter contains the implementation of three scenarios in the context of the
semiconductor supply chain environment so that we can get a better understanding of: a)
how TLS works, b) the key concepts of the identity and access management discipline,
and c) how OpenID Connect (OIDC) works. OIDC runs on top of TLS and thus, TLS is
the underlying layer of OIDC. Therefore, we study the TLS scenarios before studying an
OIDC scenario.

5.1 Security Virtual Lab for TLS-based Communica-

tion in Semiconductor Supply Chain Scenarios

We provide the description of two scenarios, supporting TLS-based communication, in
the context of the semiconductor supply chain environment. We captured the exchanged
messages with Wireshark, a network sniffing software, and then examined them to get a
good understanding of how TLS works. Section 5.1.1 describes our first scenario (i.e., Sce-
nario 1) including TLS-based communication between Client and a Server. Furthermore,
Section 5.1.2 we present our second scenario (i.e., Scenario 2) that extends Scenario 1 by
adding a Server-to-Server TLS-based communication. Besides, in Section 5.1.3 describes
the technical information about the scenarios. In particular, we provide description of the
software we used and the configuration design decisions we took. Finally, it is worthwhile
to mention that a step-by-step guide on how to setup our Virtual Machines is provided in
Appendix A.

5.1.1 Scenario 1

The objective of Scenario 1 is to simulate the communication between two partners in
the Supply Chain over TLS. In particular, this scenario considers the TLS-based commu-
nication between a PC (i.e., Client) of an employee of Partner A and a Server located at
the premises of Partner B. Figure 5.1 shows the architecture of Scenario 1.

49

Scenario 1

GET

Response

Partner A Partner B

(192.168.56.103) (192.168.56.101)

Figure 5.1: Scenario 1 Configuration.

Server of Partner B provides a Service i for the Client (i.e., user) of Partner A. This
service returns a web page to the user (i.e., employee of Partner A) over TLS v1.2 protocol.
However, nothing can prevent a user from typing the URL without “https://”. To mitigate
that, if the Client sends an HTTP request for the web page, the Server changes it to HTTPS
and the communication proceeds. Figure 5.2 shows this behaviour. The communication
starts as HTTP (Messages 6 and 8) but continues as HTTPS (Message 13).

Figure 5.2: Monitoring the Client Request to Server’s Web Page.

Figure 5.2 shows the entire communication between the Client and the Server. The
next figures are excerpts of this communication. They were separated in order to highlight
specific parts of the communication.

Firstly, a user enters a HTTP URL in the browser, which causes a TCP handshake to
port 8080 (messages 2 and 4) and a Client acknowledge (message 5). At this point, the
Client asks for the existence of the URL (message 6). The Server responds with a HTTP
code 302 (message 8), meaning that the URL exists and, in the Location field, the Server
informs the Client that it should use the protected URL (Please see the location attribute

50

from message 8 highlighted with a red rectangle in figure 5.3).

Figure 5.3: Wireshark Capture: Web Page Request from Partner A to Partner B.

In addition, figure 5.4 shows a new TCP handshake taking place to the correct secure
port 8443 (messages 10, 11 and 12). From message 12 to message 22 including acknowledge
messages, we have a TLS handshake to secure the transport of the Client request and the
response from Server. Message 15 has a Server Hello, as well as the Server’s Certificate,
Server Key Exchange and Server Hello Done.

Message 23, highlighted with a red rectangle, is the request coming from the Client to
the Server and, in message 25, highlighted in yellow, the Server responds with the contents
of the web page shown in figure 5.5. This web page contains a button that the user in the
Client machine can click to make a secure GET request to the Server over TLS.

Figure 5.4: Wireshark Capture: TLS Handshake.

After the user has access to the Partner B’s web page, it is possible to make a GET
request over TLS. If that happens, two Application Data messages are exchanged between
the Partners and two Acknowledge packets. However, in this example, the web page was
loaded for a period of time before the user clicked on the button. Because of that, there is

51

Figure 5.5: Partner B’s Web Page with Button to Make GET Requests.

a new handshake. This handshake is not complete, since the user is in the same session as
before. The server does not send its certificate again (message 6 is only a Server Hello).

Figure 5.6: Wireshark Capture: GET Request between Partner A and Partner B.

In message 13 the GET request is sent from the Client of Partner A to the Server of
Partner B. The latter responds with a new web page in message 15, as it is shown in figure
5.7.

Figure 5.7: Server Responds with a New Page.

52

5.1.2 Scenario 2

In this scenario, there are three Supply Chain partners (i.e., Partner A, Partner B,
and Partner C). In particular, an employee of Partner A, via his/her PC (i.e., Client), gets
access to Service j running on a Server of Partner C through a Service i running on a Server
located at the premises of Partner B. For demonstration purposes, we have considered that
the functionality of Service j is to prepend a string to the string sent by the user, through
the Server of Partner B (i.e., Service i), and then to send back to the Server of Partner B
(i.e., Service i). On the other hand, we have considered that the functionality of Service i
is to: a) relay the request received from the user to the Server of Partner C, and b) prepend
another string to the received string from the Server of Partner C and to send the result
back to the user. Figure 5.8 shows the architecture of this scenario.

Scenario 2

GET

Response

Partner A Partner B

(192.168.56.103) (192.168.56.101)

Partner C

POST

Response

(192.168.56.102)

Figure 5.8: Scenario 2 Configuration.

The Server of Partner B provides a web page to the user (i.e., employee of Partner A).
This web page accepts text type input (“Choose custom data”) and has a button (“Access
Service i”). When the user clicks on the button, a GET request is sent to the Server of
Partner B. The content of the text type input box is sent along with the request.

Figure 5.9: Web Page Provided by Partner B.

The web service (i.e., Service i) running on the Server of Partner B is written in Java
and is responsible to make the POST request to Service j running on the Server of Partner
C. The text type input that was inserted initially by the user is transmitted along with
the POST request to Service j on the Server C.

53

According to the defined functionality of Service i and Service j for demonstration
purposes, as it is mentioned above, Service j prepends a string to the user input and sends
it back to Service i running on the Server of Partner B, and then Service i prepends another
string to the input from Service j. Finally, Service i sends the result back to the Client of
Partner A.

The response that the user of Partner A receives is shown in Figure 5.10. In this Figure,
we notice that the green rectangle includes the message sent from the Server of Partner B
(i.e., Service i) to the Server of Partner C (i.e., Service j). The content of this message
is the user chosen input: “Dummy message”. Besides, inside the blue rectangle, we can
see the message that the Server of Partner C (i.e., Service j) prepended. Finally, the red
rectangle includes the string prepended by the Server of Partner B (i.e., Service i) to the
output of Partner C.

Figure 5.10: Web Page from Partner B with Response from Service j.

This scenario has Server-to-Server communication over TLS v1.2 and, since we are
using local servers, the Key Store of the Server of Partner C has to be added to the Trust
Store of the Server of Partner B.

The Wireshark capture of this scenario starts with TLS v1.2 handshake between the
Client of Partner A and the Server of Partner B, as shown in Figure 5.11, highlighted
by a red rectangle. Message 6 contains the Server Hello, as well as the Server Certificate
belonging to the Server of Partner B.

Figure 5.12 is the Wireshark capture after the user in Partner A clicks on the button to
make a request to the Server of Partner B (i.e., Service i). Message 46 is the GET request
to the Server of Partner B, containing the string from the text type input in the web page.
Message 51 is the start of the TLS handshake between the Server of Partner B and the
Server of Partner C. The certificate of Partner C’s Server is sent in Message 53.

Messages 64 and 65, inside the blue rectangle, are the POST request from the Server
of Partner B to the Server of Partner C. Afterwards, the Server of Partner C (i.e., Service
j) prepends a string (for demonstration purposes) to the input received from the Server of
Partner B and sends the response back to the Server of Partner B in Message 67 (yellow

54

Figure 5.11: Wireshark Capture: TLS Handshake between Partner A and Partner B.

Figure 5.12: Wireshark Capture: Accessing Service j.

rectangle). Finally, message 69, inside the lime rectangle, is the response, over TLS v1.2,
back to the user of the GET request he/she made via his/her PC (i.e., Client).

5.1.3 Technical Information

The two scenarios were implemented to study TLS-based communications. Scenario
1 involves a Client-Server communication and Scenario 2 extends Scenario 1 by adding
a Server-to-Server TLS-based communication. To simulate each communicating party in

55

Scenario 1 and Scenario 2, Virtual machines (VM) were used. This is because VMs provide
a cost-effective way to have multiple operating systems running on the same host machine.
Specifically, we used the Oracle VM VirtualBox to create and manage guest VMs, running
Linux Ubuntu 64-bit, on our host machine (Windows 10 64-bit, Intel R©CoreTMi7-4610M
CPU, 16,0 GB of RAM).

Linux was used instead of Windows, not only because it is a free and open-source
operating system, but also because the size that the VMs occupied on the host machine
was much smaller when they run Linux. An installation of Linux on a VM requires 10 GB
of disk space, while an installation of Windows requires, at minimum, 20 GB of disk space
for the 64-bit version [73].

Moreover, in both scenarios, our Servers were programmed in Java and the containers
were Apache Tomcat 8 configured for TLS v1.2, as shown in Figure 5.13.

Figure 5.13: HTTPS Configuration in Tomcat.

Each server has a Key Store containing three certificates: a) a self-signed Root certifi-
cate; b) an Intermediate certificate, signed by the Root; and c) a certificate signed by the
Intermediate.

At this point, we have to mention that given the fact that the servers run on localhost, it
was impossible to have a certificate signed by a trusted authority. This fact raised security
issues into the Server-to-Server TLS-based communication, since a self-signed certificate
could not be trusted. To address this situation, the Key Store from the Server receiving
requests was added to the Trust Store of the Server sending requests. Without this step,
the TLS handshake would not be performed.

Regarding the Clients, in both scenarios, they access the functionalities provided by
the servers via a browser. As a browser, we used Firefox, due to the fact that it was
installed by default in the VMs. Last but not least, Wireshark was used to monitor the
communication between the communicating parties in both scenarios.

56

5.2 OpenID Connect Implementation for a Semicon-

ductor Supply Chain Scenario

This section describes the OpenID Connect implementation for a semiconductor supply
chain scenario in order to get a better understand of the key concepts of the identity
and access management discipline as well as of how OpenID Connect (OIDC) works. In
this scenario, an employee (i.e., user) at the Manufacturing Plant requests, through an
application (i.e., Vanilla app), specific data from a service running on a Server at the
Semiconductor Materials Supplier’s premises. It is intended that this communication has
security mechanisms that allow the sensitive information to be accessed in a secure way.
Organizational aspects have also been considered, such as who is allowed to access what
services or information. This is done by Keycloak, an Identity and Access Management
platform, which gives roles to users and defines what that specific role can access and when.
Also, Keycloak provides the implementation of OIDC in this scenario.

In section 5.2.1, the scenario is described and explained in detail. Specifically, we
provide the description and explanation of two cases of the scenario: a) the case of a
successful request, in section 5.2.2, and b) the case of a denied request, in section 5.2.3.
Additionally, in section 5.2.4, we give the detailed description of the message flow of OIDC
in the semiconductor supply chain when Keycloak is used. It is worthwhile to mention that
the standard message flow of OIDC changed, as it was expected, due to the involvement
of Keycloak, the Identity and Access Management platform that we considered for this
scenario.

5.2.1 Scenario

Particularly, in this scenario, the user at the Manufacturing Plant connects to Vanilla,
the web application provided by the Server at the Semiconductor Materials Supplier. We
built Vanilla on a WildFly server by Red Hat. Assuming that it is the first time the user
is accessing the application, then he/she has to get authenticated. When the user clicks
on the Log In button on the Vanilla application, he/she is redirected to a Keycloak web
page where he/she can get authenticated through Google. The authentication is done with
OIDC and the user is redirected back to Vanilla. Then, Vanilla provides a different page
to the authenticated user, where he/she can request specific data (e.g., wafer test data) by
clicking on the button to access the Service running on the Server at the Semiconductor
Materials Supplier.

5.2.2 Successful Request

Figure 5.14 shows the steps of the process for a successful access to the Service running
on the Server at the Semiconductor Materials Supplier. It starts with the user connecting
to Vanilla (Step 1). Vanilla application has two web pages, one is accessed when the user
is not logged in index.jsp and the second one is for a logged in user profile.jsp.

57

In the index.jsp web page (Step 1), there are two buttons. One button is to log in
(“LOGIN” button) and one to make a request to Service without being authenticated
(“Request Service Without Permission” button). We assume the user clicked on the Login
button, and then he/she is redirected to the Keycloak login page (Step 2), where the user
has three options: a) to create an account, b) to log in with a Keycloak account or c) to
login with a Google account. For the purpose of this scenario, the user logs in with his/her
Google account by clicking the red button labelled Google at the bottom of the web page.
Afterwards, the user is redirected to the Google login page (Step 3), where he/she can use
his/her Google credentials to authenticate.

After authentication, the user is redirected to Vanilla application (Step 4). The web
page that the user sees now has a button to log out of the application, a button to call
the Service, and a box with information about the user and session (i.e., access token, id
token, and principal). By clicking on the log out button the user will be redirected to the
web page of Step1.

On the other hand, if the user clicks on the “Call Service” button, a request is sent to
the Service running on the Server at the Semiconductor Materials Supplier with the user’s
access token provided by Keycloak (Step 5). For testing purposes, if the access token is
valid, then the Service returns a string to the user. After receiving the string, the web page
is reloaded and the message from the Service is shown: “Request is served!” (Step 6).

5.2.3 Denied Request

Figure 5.15 shows the steps of the process for an unsuccessful access to the Service
running on the Server at the Semiconductor Materials Supplier. For testing purposes, we
consider that the user clicks on the “Request Service Without Permission” button in the
log in page (Step 1). This will send the request to the Service without an access token
(Step 2) and the request will be denied.

5.2.4 OpenID Connect with IAM

Figure 5.16 shows the flow of this scenario, where OpenID Connect is used along with
an Identity and Access Management platform, such as Keycloak. As illustrated in Figure
5.16, this flow consists of the following steps:

Step 1. The flow starts when the user clicks on the login button on Vanilla’s initial webpage
(Message 1).

Step 2. Vanilla redirects the user agent to Keycloak, where the user has to choose the OpenID
Provider in order to get authenticated (Message 2).

Step 3. The user clicks on the “Google” button and triggers a request from the user agent
to Keycloak (Message 3).

58

Figure 5.14: Diagram of a Successful Request to the Service Running on the Server at the
Semiconductor Materials Supplier.

Step 4. Keycloak redirects the user agent to the OpenID Provider (i.e., Google) (Message 4).
This message carries the following parameters: response type with the value ‘code’;
redirect uri, client id, scope with at least the value ‘openid ’; and a recommended
parameter state. In addition, the user agent requests the authentication web page
(Message 4) provided by the OpenID Provider through the GET response containing
the log in form (Message 5).

Step 5. The User provides his/her username and password. The user agent sends this infor-
mation to the authorization endpoint (Message 6).

59

Figure 5.15: Diagram of an Attempt to Access Service without Permission.

Step 6. If the user’s credentials are correct, the OpenID Provider sends an authorization code
and the state to the user agent (Message 7). This response message (Message 7) redi-
rects the user agent back to Keycloak using the redirection URI with the parameters
code and state (Message 8). These parameters are sent as query parameters to the
redirect uri. Keycloak validates the message received. If the parameter state was
sent in Message 4, it should also be present in this message, with the same value.
The parameter code has to be present as well. All unrecognised parameters have to
be ignored.

Step 7. Keycloak requests an id token and an access token by sending a message to the
OpenID Provider token endpoint with parameters: grant type equals to ‘autho-
rization code’; authorization code, received from OpenID Provider; redirect uri ; the
client secret and client id (Message 9).

Step 8. The OpenID Provider checks the validity of the values sent by Keycloak. If all values
are valid, then the OpenID Provider responds with the id token and access token
(Message 10).

60

User

User User Agent

Log in

User authenticates

User Agent
Browser

User Agent

Wildfly
Vanilla

User Agent

Id Federation
Keycloak

User Agent

OpenID Provider
Google

User Agent

Service
Provider

Log in with Google

5. Response

username, password
6. POST /authzEndPoint

1. GET /Profile.jsp

2. Response (redirect to IdF)

4. Response (redirect to OP)

response_type=code, redirect_uri, client_id, scope, state

7. Response (Redirect to IdF)
code, state

Validate
id_token

Create
keycloak_access_token

12. GET /Service

Validate
keycloak_access_token

13. Response

3. POST /start

Validate
Authentication Response

10. Response

9. POST /tokenEndPoint

grant_type=authorization_code,
code, redirect_uri, client_secret,

client_id

access_token, id_token

keycloak_access_token

11. GET /Vanilla_redirect_uri

keycloak_access_token

8. GET /redirect_uri
code, state

Figure 5.16: OpenID Connect Flow with Keycloak.

Step 9. Upon receiving the Message 10, Keycloak validates the id token and creates its own
access token (i.e., keycloak access token). Then, Keycloak redirects user agent to
Vanilla (Message 11). This message carries the keycloak access token.

Step 10. Then, Vanilla can access the Service by sending to the Service Provider a request
including the keycloak access token (Message 12). The Service Provider validates the
token and responds back to Vanilla (Message 13).

Finally, in case that, after Step 10, Vanilla needs to access the user’s protected resources
stored at the OpenID Provider, the following steps, as shown in Figure 5.17, are required:

61

Vanilla sends the parameter keycloak access token to Keycloak to request Google’s ac-
cess token (Message 14). In the response, Keycloak sends Google’s access token to Vanilla
(Message 15). Afterwards, Vanilla requests the user’s protected resources from the OpenID
Provider’s resource endpoint by sending Google’s access token (Message 16) and receives
back the protected resources.

User

User User Agent

User Agent
Browser

User Agent

Wildfly
Vanilla

User Agent

Id Federation
Keycloak

User Agent

OpenID Provider
Google

User Agent

Service
Provider

16. GET /userInfoEndpoint

17. Response
protected resource

access_token

14. GET .../google/token

keycloak_access_token

15. Response
access_token

Figure 5.17: Access the Users Protected Resources Stored at the OpenID Provider.

62

Chapter 6

Conclusion

The work carried out during this thesis had the following main objective: To provide
a foundation for a security framework for secure data communications across the partners
in the semiconductor supply chain. Thus, firstly, we provided an overview of the semi-
conductor supply chain environment along with the description of the functionality of its
main components. Furthermore, we gave a number of representative examples of vari-
ous attacks that have been witnessed in the wild and can cause potential security issues
and challenges in the semiconductor supply chain environment. Moreover, we studied the
SSL/TLS, OAuth 2.0 and OpenID Connect and we provided their description. In addition,
we provided an overview of the most well-known attacks against SSL/TLS and OAuth 2.0.
The in-depth understanding of these two security protocols will allow us, as a future work
towards a security framework for secure data communications, to use them as the basis
for the design and implementation of more sophisticated security mechanisms that can ad-
dress the specific security challenges of the semiconductor supply chain in a more efficient
and effective manner. Besides, we studied and discussed the key concepts of the Identity
and Access Management discipline. Finally, we implemented three scenarios related to
semiconductor supply chain operations. In particular, we built a virtual security lab, using
Virtual Machines (i.e., VirtualBox), where we implemented two scenarios over TLS. After-
wards, we captured the exchanged messages with the network sniffing software Wireshark
and then examined them in order to get a better understanding of how SSL/TLS works.
Last but not least, we implemented a third scenario on a host machine, where we used
the Keycloak software, an open source identity and access management solution, in order
to get a better understanding of the key concepts of the identity and access management
discipline and how OpenID Connect works.

63

64

Bibliography

[1] Devdatta Akhawe, Bernhard Amann, Matthias Vallentin, and Sommer Robin. Here’s
my cert, so trust me, maybe? Understanding TLS errors on the web. WWW 2013 -
Proceedings of the 22nd International Conference on World Wide Web, pages 59–69,
2013.

[2] Devdatta Akhawe and Adrienne Porter Felt. Alice in Warningland: A Large-Scale
Field Study of Browser Security Warning Effectiveness. In USENIX security sympo-
sium, volume 13, 2013.

[3] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking the TLS
and DTLS record protocols. Proceedings - IEEE Symposium on Security and Privacy,
pages 526–540, 2013.

[4] Inc. ASCO Data Security International. Diginotar reports security inci-
dent. Available at https://www.vasco.com/about-vasco/press/2011/news_

diginotar_reports_security_incident.html. [Accessed: 9-Jan-2017].

[5] BAE Systems. Shylock Malware - a core piece of technology that is enabling wider,
large scale digital criminality, 2013.

[6] BAE Systems Applied Intelligence. Shylock. Banking malware. Evolution or revolu-
tion? Technical report, BAE Systems, 2014.

[7] Tal Be’ery, Amichai Shulman, Tal Be’ery, and Amichai Shulman. A perfect crime?
only time will tell. Black Hat Europe, 2013, 2013.

[8] Hakem Beitollahi and Geert Deconinck. Analyzing well-known countermea-
sures against distributed denial of service attacks. Computer Communications,
35(11):1312–1332, 2012.

[9] Bharat Bhargava, Rohit Ranchal, and Lotfi Ben Othmane. Secure Information Shar-
ing in Digital Supply Chains. In Advance Computing Conference (IACC), 2013 IEEE
3rd International, pages 1636–1640, 2013.

[10] John Black and Hector Urtubia. Side-Channel Attacks on Symmetric Encryption
Schemes: The Case for Authenticated Encryption. In Proceedings of the 11th

65

https://www.vasco.com/about-vasco/press/2011/news_diginotar_reports_security_incident.html
https://www.vasco.com/about-vasco/press/2011/news_diginotar_reports_security_incident.html

{USENIX} Security Symposium, San Francisco, CA, USA, August 5-9, 2002, pages
327–338, 2002.

[11] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the
RSA encryption standard PKCS #1. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), 1462:1–12, 1998.

[12] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz Khurshid, and Vitaly
Shmatikov. Using frankencerts for automated adversarial testing of certificate val-
idation in SSL/TLS implementations. Proceedings - IEEE Symposium on Security
and Privacy, pages 114–129, 2014.

[13] David Brumley and Dan Boneh. Remote timing attacks are practical. Computer
Networks, 48(5):701–716, 2005.

[14] Junaid Ahsenali Chaudhry, Shafique Ahmad Chaudhry, and Robert G Rittenhouse.
Phishing attacks and defenses. International Journal of Security and Its Applications,
10(1):247 – 256, 2016.

[15] Eric Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert Kotcher, and Patrick Tague.
OAuth Demystified for Mobile Application Developers. Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security (CCS), pages 892–
903, 2014.

[16] T H Choice. THC - SSL - DoS, 2011. Available at https://www.thc.org/

thc-ssl-dos/. [Accessed: 21-Dec-2016].

[17] Frederick Chong. Identity and Access Management, 2004.

[18] Joel Christie. Target ignored high-tech security sirens warning them of a data hack
operation BEFORE cyber criminals in Russia made off with 40 million stolen credit
cards, 2014.

[19] Italo Dacosta, Mustaque Ahamad, and Patrick Traynor. Trust no one else: Detecting
MITM attacks against SSL/TLS without third-parties. In European Symposium on
Research in Computer Security, pages 199–216. Springer, 2012.

[20] George I Davida. Chosen signature cryptanalysis of the RSA (MIT) public key cryp-
tosystem. Department of Electrical and Computer Science, College of Engineering
and Applied Science, University of Wisc., 1982.

[21] Drew Dean and Adam Stubblefield. Using Client Puzzles to Protect TLS. In USENIX
Security Symposium, volume 42, 2001.

[22] Antoine Delignat-Lavaud and Karthikeyan Bhargavan. Virtual Host Confusion:
Weaknesses and Exploits. Black Hat 2014 Report, 2014, 2014.

66

https://www.thc.org/thc-ssl-dos/
https://www.thc.org/thc-ssl-dos/

[23] Antoine Delignat-lavaud and Karthikeyan Bhargavan. Network-based Origin Confu-
sion Attacks against HTTPS Virtual Hosting. Proceedings of the 24th International
Conference on World Wide Web, pages 227–237, 2015.

[24] Peter Deutsch. DEFLATE compressed data format specification version 1.3. Tech-
nical report, 1996.

[25] Tim Dierks. The Transport Layer Security (TLS) Protocol Version 1.2, 2008.

[26] Thai Duong. BEAST. \url{https://vnhacker.blogspot.pt/2011/09/beast.html},
2011.

[27] Thai Duong and Juliano Rizzo. Crime en la ekoparty. Available at: https:

//ekoparty.blogspot.pt/2012/09/crime-en-la-ekoparty.html. [Accessed: 22-
Dec-2016].

[28] Thai Duong and Juliano Rizzo. Presentation: Crime en la ekoparty. Available at
https://www.youtube.com/watch?v=JRwPlOER6b4. [Accessed: 22-Dec-2016].

[29] Thai Duong and Juliano Rizzo. Here Come The xor Ninjas (BEAST). Ekoparty,
pages 1–10, 2011.

[30] Thai Duong and Juliano Rizzo. The CRIME attack. In Presentation at ekoparty
Security Conference, 2012.

[31] Zakir Durumeric, James Kasten, David Adrian, J. Alex Halderman, Michael Bailey,
Frank Li, Nicolas Weaver, Johanna Amann, Jethro Beekman, Mathias Payer, and
Vern Paxson. The Matter of Heartbleed. Proceedings of the 2014 Conference on
Internet Measurement Conference, pages 475–488, 2014.

[32] Nicolas Falliere, Liam O Murchu, and Eric Chien. W32.Stuxnet Dossier. 4(February),
2011.

[33] Adrienne Porter Felt, Robert W Reeder, Hazim Almuhimedi, and Sunny Consolvo.
Experimenting at scale with google chrome’s SSL warning. In Proceedings of the 32nd
annual ACM conference on Human factors in computing systems, pages 2667–2670.
ACM, 2014.

[34] Daniel Fett, Ralf Küsters, and Guido Schmitz. A Comprehensive Formal Security
Analysis of OAuth 2.0. Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 1204–1215, 2016.

[35] R Fielding and J Reschke. Hypertext Transfer Protocol (HTTP/1.1): Semantics and
Content. pages 1–101, 2014.

[36] FranRosch. SSL Renegotiation Is Good. DDoS Attacks Are Bad, 2011.

67

https://ekoparty.blogspot.pt/2012/09/crime-en-la-ekoparty.html
https://ekoparty.blogspot.pt/2012/09/crime-en-la-ekoparty.html
https://www.youtube.com/watch?v=JRwPlOER6b4

[37] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and
Vitaly Shmatikov. The most dangerous code in the world: validating SSL certificates
in non-browser software. Proceedings of the 2012 ACM conference on Computer and
communications security - CCS ’12, page 38, 2012.

[38] Yoel Gluck, Neal Harris, and Angelo Prado. Breach: reviving the crime attack.
Unpublished manuscript, 2013.

[39] GReAT. The Icefog APT: A Tale of Cloak and Three Daggers,
2013. Available at https://securelist.com/blog/research/57331/

the-icefog-apt-a-tale-of-cloak-and-three-daggers/ [Accessed: 19-Oct-
2016].

[40] GReAT. The Icefog APT: A tale of cloak and three daggers. Technical re-
port, KasPersky Lab, 2013. Available at https://kasperskycontenthub.com/

wp-content/uploads/sites/43/vlpdfs/icefog.pdf [Accessed: 19-Oct-2016].

[41] E Hammer-Lahav. The OAuth 1.0 Protocol. Internet Engineering Task Force IETF,
54:1–39, 2010.

[42] Dick Hardt. The OAuth 2.0 Authorization Framework [RFC 6749]. RFC 6749, pages
1–76, 2012.

[43] Brett Hawkings. Case Study: The Home Depot Data Breach, 2015.

[44] Paul Hoffman. RFC 3207: SMTP Service Extension for Secure SMTP over Transport
Layer Security. URL: http://ietf. org/rfc/rfc3207. txt, 2002.

[45] Jason Hong. The State of Phishing Attacks. Communications of the ACM, 55(1):74
– 81, 2012.

[46] Lin-shung Huang, Alex Moshchuk, Helen J Wang, Stuart Schechter, and Collin Jack-
son. Clickjacking : Attacks and Defenses. USENIX Security Symposium, pages 413
– 428, 2012.

[47] Lin Shung Huang, Alex Rice, Erling Ellingsen, and Collin Jackson. Analyzing forged
SSL certificates in the wild. Proceedings - IEEE Symposium on Security and Privacy,
pages 83–97, 2014.

[48] David A Huffman and Others. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[49] A Shamir I. Mantin. A practical Attack on Broadcast RC4. pages 152–164, 2002.

[50] John Kelsey. Compression and Information Leakage of Plaintext. 2365, pages 263–
276, 2002.

68

https://securelist.com/blog/research/57331/the-icefog-apt-a-tale-of-cloak-and-three-daggers/
https://securelist.com/blog/research/57331/the-icefog-apt-a-tale-of-cloak-and-three-daggers/
https://kasperskycontenthub.com/wp-content/uploads/sites/43/vlpdfs/icefog.pdf
https://kasperskycontenthub.com/wp-content/uploads/sites/43/vlpdfs/icefog.pdf

[51] Kim Zetter. A cyberattack has caused confirmed physical damage for
the second time ever, 2017. Available at https://www.wired.com/2015/01/

german-steel-mill-hack-destruction/. [Accessed: 20-Oct-2016].

[52] V Klima, O Pokorny, and Tomáš Rosa. Attacking RSA-based sessions in SSL/TLS.
Cryptographic Hardware and Embedded Systems Ches 2003, Proceedings, 2779:426–
440, 2003.

[53] Brian Krebs. Breach at Michaels Stores Extends Nation-
wide, 2011. Available at http://krebsonsecurity.com/2011/05/

breach-at-michaels-stores-extends-nationwide/. [Accessed: 07-Nov-2016].

[54] Brian Krebs. Point-of-Sale Skimmers: Robbed at the Regis-
ter, 2011. Available at http://krebsonsecurity.com/2011/05/

point-of-sale-skimmers-robbed-at-the-register/. [Accessed: 07-Nov-2016].

[55] Brian Krebs. Sources: Target Investigating Data Breach,
2013. Available at https://krebsonsecurity.com/2013/12/

sources-target-investigating-data-breach/. [Accessed: 03-Oct-2016].

[56] Brian Krebs. Target Hackers Broke in Via HVAC Com-
pany, 2014. Available at http://krebsonsecurity.com/2014/02/

target-hackers-broke-in-via-hvac-company/. [Accessed: 13-Oct-2016].

[57] Brian Krebs. Email Attack on Vendor Set Up Breach at Tar-
get, 2017. Available at https://krebsonsecurity.com/2014/02/

email-attack-on-vendor-set-up-breach-at-target. [Accessed: 17-Jul-2017].

[58] Ralph Langner. Stuxnet: Dissecting a Cyberwarfare Weapon. IEEE Security &
Privacy, 9(June):49–51, 2011.

[59] Ralph Langner. To Kill a Centrifuge - A Technical Analysis of What Stuxnet’s
Creators Tried to Achieve. (November), 2013.

[60] Robert M Lee, Michael J Assante, and Tim Conway. German Steel Mill Cyber
Attack, 2014.

[61] Y H Lee, S Chung, B Lee, and K H Kang. Supply chain model for the semiconductor
industry in consideration of manufacturing characteristics. Production Planning &
Control, 17(5), 2006.

[62] Mike Lennon. Cyber Espionage Campaign Targeting Supply Chain Through Preci-
sion ’Hit and Run’ Attacks, 2013.

[63] Jonathan Lewis. DDoS Attacks on SSL: Something Old, Something
New, 2012. Available at https://www.arbornetworks.com/blog/asert/

ddos-attacks-on-ssl-something-old-something-new/.

69

https://www.wired.com/2015/01/german-steel-mill-hack-destruction/
https://www.wired.com/2015/01/german-steel-mill-hack-destruction/
http://krebsonsecurity.com/2011/05/breach-at-michaels-stores-extends-nationwide/
http://krebsonsecurity.com/2011/05/breach-at-michaels-stores-extends-nationwide/
http://krebsonsecurity.com/2011/05/point-of-sale-skimmers-robbed-at-the-register/
http://krebsonsecurity.com/2011/05/point-of-sale-skimmers-robbed-at-the-register/
https://krebsonsecurity.com/2013/12/sources-target-investigating-data-breach/
https://krebsonsecurity.com/2013/12/sources-target-investigating-data-breach/
http://krebsonsecurity.com/2014/02/target-hackers-broke-in-via-hvac-company/
http://krebsonsecurity.com/2014/02/target-hackers-broke-in-via-hvac-company/
https://krebsonsecurity.com/2014/02/email-attack-on-vendor-set-up-breach-at-target
https://krebsonsecurity.com/2014/02/email-attack-on-vendor-set-up-breach-at-target
https://www.arbornetworks.com/blog/asert/ddos-attacks-on-ssl-something-old-something-new/
https://www.arbornetworks.com/blog/asert/ddos-attacks-on-ssl-something-old-something-new/

[64] Wanpeng Li and Chris J Mitchell. Security issues in OAuth 2.0 SSO implementations.
In International Conference on Information Security, pages 529–541. Springer, 2014.

[65] Evariste Logota, Georgios Mantas, Jonathan Rodriguez, and Hugo Marques. Analysis
of the Impact of Denial of Service Attacks on Centralized Control in Smart Cities.
In International Wireless Internet Conference, pages 91–96. Springer, 2014.

[66] Jonathan J Lowe and Scott J Mason. Integrated Semiconductor Supply Chain Pro-
duction Planning. IEEE Transactions on Semiconductor Manufacturing, 29(2):116–
126, 2016.

[67] Subhamoy Maitra, Goutam Paul, and Sourav Sen Gupta. Attack on broadcast RC4
revisited. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 6733 LNCS:199–217,
2011.

[68] Georgios Mantas, Nikos Komninos, J Rodriuez, Evariste Logota, and Hugo Marques.
Security for 5G communications. 2015.

[69] Georgios Mantas, Natalia Stakhanova, Hugo Gonzalez, Hossein Hadian Jazi, and
Ali A Ghorbani. Application-layer denial of service attacks: taxonomy and survey.
Int. J. Information and Computer Security, 734(2):216–239, 2015.

[70] Moxie Marlinspike. Moxie website. Available at https://moxie.org/software/

sslstrip/ . [Accessed: 20-Dec-2016].

[71] Moxie Marlinspike. New tricks for defeating SSL in practice. BlackHat DC, February,
2009.

[72] Christopher Meyer and Jörg Schwenk. Lessons Learned From Previous SSL/TLS
Attacks-A Brief Chronology Of Attacks And Weaknesses. IACR Cryptology ePrint
Archive, 2013:49, 2013.

[73] Microsoft. Windows 10 Specifications & Systems Requirements — Microsoft.

[74] Scott Mönch, Lars and Fowler, John W and Mason. Production planning and con-
trol for semiconductor wafer fabrication facilities: modeling, analysis, and systems,
volume 52. Springer Science & Business Media, 2012.

[75] N Nelson. The Impact of Dragonfly Malware on Industrial Control Systems. Technical
report, 2016.

[76] J A Orchilles. SSL/TLS Renegotiation Denial of Service, 2011.

[77] Kenneth G Paterson and Arnold Yau. Padding oracle attacks on the ISO CBC mode
encryption standard. Topics in Cryptology–CT-RSA 2004, pages 305–323, 2004.

70

https://moxie.org/software/sslstrip/
https://moxie.org/software/sslstrip/

[78] Andrey Popov. Prohibiting RC4 cipher suites. Computer Science, 2355:152–164,
2015.

[79] Inc. Qualys. Trustworthy Internet ssl pulse. Available at https://www.

trustworthyinternet.org/ssl-pulse/. [Accessed: 18-Mar-2017].

[80] S Rai, F Bresz, T Renshaw, J Rozek, and T White. Global Technology Audit Guide:
Identity and Access Management. The Institute of Internal Auditors. Retrieved
from https://chapters.theiia.org/montreal/ChapterDocuments/GTAG%209%20-
%20Identity%20and%20Access%20Management.pdf. Accessed, 2, 2007.

[81] Eric Rescorla and Christopher Allen. The Transport Layer Security (TLS) Protocol
— Version 1.1, 2006.

[82] N Sakimura, J Bradley, and M Jones. OpenID connect dynamic client registration 1.0
incorporating errata set 1. URL http://openid.net/specs/openid-connect-registration-
1 0.html, 2014.

[83] Nat Sakimura, J Bradley, M Jones, B de Medeiros, and C Mortimore. OpenID
Connect Core 1.0 incorporating errata set 1. The OpenID Foundation, specification,
2014.

[84] Pratik Guha Sarkar and Shawn Fitzgerald. Attacks on ssl a comprehensive study of
beast, crime, time, breach, lucky 13 & rc4 biases. Internet: https://www. isecpart-
ners. com/media/106031/ssl attacks survey. pdf [June, 2014], pages 1–23, 2013.

[85] Stuart E Schechter, Rachna Dhamija, Andy Ozment, and Ian Fischer. The emperor’s
new security indicators. In Security and Privacy, 2007. SP’07. IEEE Symposium on,
pages 51–65. IEEE, 2007.

[86] Bruce Schneier. Applied cryptography: protocols, algorithms, and source code in C.
john wiley & sons, 2007.

[87] Y. Sheffer, R. Holz, and P. Saint-Andre. Recommendations for Secure Use of Trans-
port Layer Security (TLS) and Datagram Transport Layer Security (DTLS). pages
1–27, 2015.

[88] Y. Sheffer, R. Holz, and P. Saint-Andre. Summarizing Known Attacks on Transport
Layer Security (TLS) and Datagram TLS (DTLS). Technical report, 2015.

[89] Mohamed Shehab and Fadi Mohsen. Towards enhancing the security of OAuth imple-
mentations in smart phones. Proceedings - 2014 IEEE 3rd International Conference
on Mobile Services, MS 2014, pages 39–46, 2014.

[90] Ms. Smith. Home Depot IT: Get hacked, blame Win-
dows, switch execs to MacBooks, 2014. Available at http:

//www.csoonline.com/article/2845620/microsoft-subnet/

71

https://www.trustworthyinternet.org/ssl-pulse/
https://www.trustworthyinternet.org/ssl-pulse/
http://www.csoonline.com/article/2845620/microsoft-subnet/home-depot-it-get-hacked-blame-windows-switch-execs-to-macbooks.html
http://www.csoonline.com/article/2845620/microsoft-subnet/home-depot-it-get-hacked-blame-windows-switch-execs-to-macbooks.html
http://www.csoonline.com/article/2845620/microsoft-subnet/home-depot-it-get-hacked-blame-windows-switch-execs-to-macbooks.html

home-depot-it-get-hacked-blame-windows-switch-execs-to-macbooks.html.
[Accessed: 17-Oct-2016].

[91] William Stallings and Mohit P Tahiliani. Cryptography and Network Security: Prin-
ciples and Practice, 6th Edition, volume 6. Pearson London, 2014.

[92] Victor Sucasas, Georgios Mantas, Ayman Radwan, and Jonathan Rodriguez. A
lightweight Privacy-preserving OAuth2-based protocol for smart city mobile apps.
2016 IEEE Globecom Workshops, GC Wkshps 2016 - Proceedings, 2016.

[93] Victor Sucasas, Georgios Mantas, Ayman Radwan, and Jonathan Rodriguez. An
OAuth2-based protocol with strong user privacy preservation for smart city mobile
e-Health apps. 2016 IEEE International Conference on Communications, ICC 2016,
(333020), 2016.

[94] Joshua Sunshine, Serge Egelman, Hazim Almuhimedi, Neha Atri, and Lorrie Faith
Cranor. Crying Wolf: An Empirical Study of SSL Warning Effectiveness. In USENIX
security symposium, pages 399–416, 2009.

[95] Dragonfly Symantec. Cyberespionage attacks against en-
ergy suppliers, version 1.21. Mountain View, California,
2014. Available at http://www.symantec.com/connect/blogs/

dragonfly-western-energy-companies-under-sabotage-threat. [Accessed:
17-Oct-2016].

[96] Symantec Security Reponse. Security Response Dragonfly : Western Energy Com-
panies Under Sabotage Threat. Symantec, 2014.

[97] Target. Target Confirms Unauthorized Access to Payment Card Data in U.S. Stores,
2017.

[98] Reha Uzsoy, Chung-Yee Lee, Martin-Vega, and Louis A. A review of production plan-
ning and scheduling models in the semiconductor industry part I: system characteris-
tics, performance evaluation and production planning. IIE transactions, 24(4):47–60,
1992.

[99] Keerthi Vasan K. and Arun Raj Kumar P. Taxonomy of SSL/TLS Attacks. Inter-
national Journal of Computer Network and Information Security, 8(2):15–24, 2016.

[100] Serge Vaudenay. Security Flaws Induced by CBC Padding Applications to SSL,
IPSEC, WTLS... Advances in Cryptology EUROCRYPT 2002, 2332(1):534–545,
2002.

[101] Florian Weimer and Jan Lieskovsky. CVE-2013-2191 Python-bugzilla does not verify
Bugzilla server certificate, 2013.

[102] Will Gragido. Lions at the Watering Hole The VOHO Affair, 2012.

72

http://www.csoonline.com/article/2845620/microsoft-subnet/home-depot-it-get-hacked-blame-windows-switch-execs-to-macbooks.html
http://www.csoonline.com/article/2845620/microsoft-subnet/home-depot-it-get-hacked-blame-windows-switch-execs-to-macbooks.html
http://www.symantec.com/connect/blogs/dragonfly-western-energy-companies-under-sabotage-threat
http://www.symantec.com/connect/blogs/dragonfly-western-energy-companies-under-sabotage-threat

[103] RN Williams. An extremely fast Ziv-Lempel data compression algorithm. [1991]
Proceedings. Data Compression Conference, pages 362–371, 1991.

[104] Jacob Ziv and Abraham Lempel. A Universal Algorithm for Sequential Data Com-
pression. IEEE Transactions on Information Theory, 23(3):337–343, 1977.

73

74

Appendices

75

76

Appendix A

Virtual Machines Setup

This appendix shows how to setup the Virtual Machines (VMs) used in the document.

A.1 Requirements

Before the installation of the VMs, you will need some files. The VirtualBox Manager
is to be installed in the host machine, but files like Apache Tomcat are going to be needed
inside the VMs. You will find tips on how to use a Shared Folder between host and guest
machine in Section “How to access Shared Folder”.

• Oracle VM VirtualBox Manager: https://www.virtualbox.org/wiki/Downloads

• Linux Ubuntu: https://www.ubuntu.com/download/desktop

• Apache Tomcat 8: http://tomcat.apache.org/download-80.cgi

A.2 Step by Step Virtual Machines Installation

This step-by-step tutorial was made when creating a VM called Alice. On the instruc-
tions, there are placeholders for the VM name, but the pictures are related to Alice.

1. Launch Oracle VM VirtualBox Manager and select New to create a new VM.

2. Insert the VM name, type Linux and Version Ubuntu 64-bit if your host is a 64-bit
version. Click Next.

3. In the memory size step it should at least 1024 MB. Select more if the host machine
allows it. Keep in mind that there will be three VMs running simultaneously. Click
Next.

4. Hard disk: Leave “Create a virtual hard disk now” selected and click Create.

77

Figure A.1: Step 1 and 2: Create VM.

4.1. Leave “VDI (VirtualBox Disk Image)” selected and click Next.

4.2. Leave “Dynamically allocated” selected and click Next.

4.3. 10.00 GB are enough for this setup. Click Create.

Figure A.2: Step 3: Memory Size.

5. Go to the Settings of the newly created VM Shared Folders and add a new Shared
Folder. Figure A.3 has highlighted the “add” button in the top right.

5.1. Select the folder path from the host machine and the name on the guest machine
(the Virtual Machine). Auto-mount should be selected. Click OK and stay on
the Settings window.

78

Figure A.3: Step 5: Shared Folders.

6. In the VM Settings, go to Network. On the first adapter leave the NAT adapter since
it will be needed to install Ubuntu. Later on, we will change this and the machine
will not have Internet access.

6.1. Go to the tab Adapter 2 and check the “Enable Network Adapter” checkbox.
This allows the VM to communicate with other VMs and the Host machine.

6.2. On the attached to, select Host-only Adapter and the name should be automat-
ically selected. Click OK.

Figure A.4: Step 6: Network Adapter.

7. In the Settings window, go to Display and check the “Enable 3D Acceleration”.
Without this, the VM will be very slow. Click OK.

8. Start the Virtual Machine on the green arrow on the VirtualBox Manager when the
VM is selected or right click the VM and select Start.

79

Figure A.5: Step 9: First Startup.

9. On the Select start-up disk, select the ISO file with the Ubuntu downloaded in the
requirements step. Click Start and wait.

9.1. When the window “Install” appears, select the language on the left and click
Install.

9.2. Select the checkbox “Download updates while installing Ubuntu”. Click Con-
tinue.

9.3. Leave the option “Erase disk and install Ubuntu”. Click Install Now. A pop-up
will appear. Click on “continue”.

9.4. Where are you? Type the VM’s location and click Continue.

9.5. Select the host machine’s keyboard layout and click Continue.

Figure A.6: Step 9: Install - Select Language.

80

10. Who are you? Select the computer name and password. Here are the values for
Alice:

• Your name: Alice

• Your computer’s name: alice-VirtualBox

• Pick a username: alice

• Choose a password: alice123

10.1. Select your preferences in log in and click Continue.

10.2. Wait for the window informing that the installation is complete. Click Restart
Now.

10.3. Press Enter when the screen says Please remove the installation medium, then
press ENTER.

Figure A.7: Step 11: Install Guest Additions.

11. Select Devices Insert Guest Additions CD image

11.1. Wait for the pop-up window. Click Run and type the VM’s password. Click
Authenticate.

11.2. Wait for the message Press return to close this window in the Terminal and
press Enter.

11.3. Restart the VM.

12. Open the Terminal

12.1. Type /usr/lib/nux/unity support test p

81

Figure A.8: Step 12: Enable 3D Acceleration.

12.2. If the list printed on the Terminal has two red “no”, type
sudo apt-get install linux-headers-$(uname -r) build-essential on
the Terminal.

12.3. Then, type sudo bash -c ’echo vboxvideo >> /etc/modules’ .

12.4. When you type again the command in step 12.1, Unity 3D supported should
appear with a green ‘yes’.

If the VM is a Client and only needs access to a browser, this installation is sufficient.
However, you should change the Network Adapter 1 to Internal Network.

If the VM is supposed to be a server, please continue.

13. Install Java.

13.1. sudo apt-get update

13.2. sudo apt-get install default-jdk . Type ‘y’ without apostrophes when
asked.

14. Install Tomcat.

14.1. By now, you should have downloaded the binary tar.gz from the Tomcat Down-
load page (http://tomcat.apache.org/download-80.cgi)

14.2. Create tomcat folder with the command mkdir /opt/tomcat

14.3. Go to the folder where you have the tar.gz and type
sudo tar xzvf apache-tomcat-8.5.14.tar.gz C /opt/tomcat . Keep in mind
your file might have a different name.

14.4. If the unzip command created an archive folder, for example, if the bin folder is
in /opt/tomcat/apache-tomcat-8.5.15/bin do the following:

14.4.1. sudo mv /opt/tomcat/apache-tomcat-8.5.15/* /opt/tomcat

82

14.4.2. sudo rm r /opt/tomcat/apache-tomcat-8.5.15

14.5. If cd /opt/tomcat/bin results in bash: cd: bin/: permission denied do:

14.5.1. sudo chmod R 775 /opt/tomcat

14.6. Go to /opt/tomcat/bin folder and type sudo ./startup.sh . Wait until full

Tomcat startup (monitor log in /opt/tomcat/logs/catalina.out) and open a
browser to localhost:8080 to validate that Tomcat was installed correctly.

14.7. (Optional) Install vim: sudo apt-get install vim to edit server.xml file.

14.8. Edit server.xml file to configure TLSv1.2.

14.8.1. sudo vim /opt/tomcat/conf/server.xml

14.8.2. In the file, find the lines you see in box 1, and substitute for the contents
of box 2. Note that you have to replace the property keyStoreFile with the
correct path to the key store file.

14.8.3. Place the WAR file with your webserver in the folder /opt/tomcat/webapps

14.8.4. Restart tomcat: sudo ./shutdown.sh , wait and then type:

sudo ./startup.sh in the folder /opt/tomcat/bin

BOX 1:
<!--

<Connector port="8443"

protocol="org.apache.coyote.http11.Http11AprProtocol"

maxThreads="150" SSLEnabled="true" >
<UpgradeProtocol className="org.apache.coyote.http2.Http2Protocol" />
<SSLHostConfig>
<Certificate certificateKeyFile="conf/localhost-rsa-key.pem"

certificateFile="conf/localhost-rsa-cert.pem"

certificateChainFile="conf/localhost-rsa-chain.pem"

type="RSA" />
</SSLHostConfig>

</Connector>
-->

BOX 2:
<Connector port="8443" protocol="org.apache.coyote.http11.Http11Protocol"

maxThreads="150" SSLEnabled="true" scheme="https" secure="true"

clientAuth="false" sslProtocol="TLSv1.2"

keystorePass="tomcatpwd"

keystoreFile="home/alice/Documents/keystore2.p12" />

83

A.3 How to access Shared Folder

If you set up a shared folder between the host and the guest machine, you can use it to
exchange files easily. The shared folder in the example is called VM material in the host
machine.

To access its files you should type sudo su to become super user.
Then, type cd /media/sf VM material to get inside the shared folder. Note that

VM Material is the shared folder name in Windows. Now you can copy any file you need
to the guest machine (using the command cp). When you are finished type exit to quit
super user mode.

84

	Contents
	List of Figures
	Acronyms
	Introduction
	Motivation
	Objectives
	Contribution
	Thesis Outline

	Cybersecurity Issues and Challenges in Semiconductor Supply Chain Environment
	Semiconductor Supply Chain
	Cyberattacks in Supply Chain
	Spear Phishing
	Watering Hole Attacks
	Attacks based on ``trojanized'' Third-party Software
	Attacks based on Malicious Code and Counterfeit Certificates
	Attacks based on Tampered Devices

	Security Framework Protocols
	Transport Layer Security
	SSL/TLS Handshake Protocol
	Attacks against SSL/TLS
	SSL Stripping
	STARTTLS Command Injection Attack
	BEAST
	Padding Oracle Attack
	Lucky Thirteen
	POODLE
	Attacks on RC4
	Compression Attacks
	Certificate and RSA-Related Attacks
	Certificate Fuzzing Tool
	Man-in-the-Middle (MITM) Attacks
	Virtual Host Confusion
	Computational Denial of Service (DoS) Attacks
	Implementation Issues
	Usability

	OAuth 2.0
	Implicit Grant
	Authorization Code Grant
	OAuth Vulnerabilities
	Misuse of Access Token to Impersonate Resource Owner in Implicit Flow
	Clickjacking
	Stealing User Credentials
	Modifying the Authorization Interface
	Attacks against System Native Browser
	Cross Site Request Forgery Attacks
	HTTP 307 Redirect
	IdP Mix-Up

	OpenID Connect
	Implicit Flow
	Authorization Code Flow

	Identity and Access Management
	Key Concepts
	Identity Federation

	Implementation
	Security Virtual Lab for TLS-based Communication in Semiconductor Supply Chain Scenarios
	Scenario 1
	Scenario 2
	Technical Information

	OpenID Connect Implementation for a Semiconductor Supply Chain Scenario
	Scenario
	Successful Request
	Denied Request
	OpenID Connect with IAM

	Conclusion
	Bibliography
	Appendices
	Virtual Machines Setup
	Requirements
	Step by Step Virtual Machines Installation
	How to access Shared Folder

