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Abstract

This article extends the literature on copulas with discrete or continuous

marginals to the case where some of the marginals are a mixture of discrete

and continuous components. We do so by carefully defining the likelihood as

the density of the observations with respect to a mixed measure. The treat-

ment is quite general, although we focus focus on mixtures of Gaussian and

Archimedean copulas. The inference is Bayesian with the estimation carried

out by Markov chain Monte Carlo. We illustrate the methodology and algo-

rithms by applying them to estimate a multivariate income dynamics model.

Keywords: Bayesian analysis; Markov chain Monte Carlo; Mixtures of copulas;

Multivariate income dynamics.

1 Introduction

Copulas are a versatile and useful tool for modeling multivariate distributions. See,

for example, Fan and Patton (2014), Patton (2009), Durante and Sempi (2015) and
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Trivedi and Zimmer (2007). Modeling non-continuous marginal random variables

is a challenging task due to computational problems, interpretation difficulties and

various other pitfalls and paradoxes; see Smith and Khaled (2012), for example.The

main source of the computational issues arises from the difficulty of directly eval-

uating the likelihood. For example, when modeling a vector of m discrete random

variables, evaluating the likelihood at one point generally requires computing 2m

terms. The literature on modeling non-continuous random marginal problems has

mostly focused on cases where all the marginals are discrete, and less extensively,

on cases where some marginals are discrete and some are continuous. See, for exam-

ple, Genest and Neslehová (2007), Smith and Khaled (2012), De Leon and Chough

(2013), Panagiotelis et al. (2012) and Zilko and Kurowicka (2016). Furthermore, a

lot of the literature has focused on approaches restricted to certain classes to copu-

las. For example, this is the case for Gaussian copulas (see, for example, Shen and

Weissfeld, 2006; Hoff, 2007; Song et al., 2009; de Leon and Wu, 2011; He et al., 2012;

Jiryaie et al., 2016) or pair-copula constructions (Stöber et al., 2015). Relatively

little attention has been paid to the case where some variables are a mixture of dis-

crete and continuous components. In contrast, our approach, presents methodology

for an arbitrary copula and can be applied quite generally as long as it is possi-

ble to compute certain marginal and conditional copulas either in closed-form or

numerically.

Our article extends the Bayesian methodology used for estimating continuous

marginals to the case where each marginal can be a mixture of an absolutely con-

tinuous random variable and a discrete random variable. In particular, we are in-

terested in applying the new methodology to copulas that are mixtures of Gaussian

and Archimedean copulas. To illustrate the methodology and sampling algorithm

we apply them to estimate a multivariate income dynamics model. We use the cop-

ula framework here to model the dependence structure of random variables that are

mixtures of discrete and continuous components, and apply the model to empirical
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economic data. We note that there are many other real world economic applications

that involve such mixtures of random variables as marginals, and Section 5 briefly

discussed them.

Our proposed methodology extends that introduced in Pitt et al. (2006) and

Smith and Khaled (2012). Smith and Khaled (2012) allow the joint modeling of

distributions of random vectors such that each component can be either discrete or

continuous. However, neither paper covers the case where some random variables can

be a mixture of an absolutely continuous random variable and a discrete random vari-

able. In a financial econometrics application, Brechmann et al. (2014) consider the

case where the marginal distributions are mixtures of continuous distributions and

point masses at zero. Our paper builds on, and generalizes, Brechmann et al. (2014)

by deriving the likelihood equations in a much more general setting that allows for the

margins to be arbitrarily classified into three groups: absolutely continuous, discrete

and mixtures of absolutely continuous and discrete random variables. Furthermore,

there is no restriction on the number or location of the point masses present in each

margin. This can occur in many economic data, for instance in cases where earnings

are top-coded and have individuals with zero earnings. Equally, our setting covers

the case of dependent interval-censored data.

The paper is organized as follows. Section 2 outlines the copula model and de-

fines the likelihood as a density with respect to a mixed measure. Section 3 presents

the simulation algorithms used for inference. Section 4 applies the methods and

algorithms to model multivariate income dynamics. This section describes the data

and presents the estimation results. Section 5 concludes. The paper has two ap-

pendices. Appendix A defines the difference notation which is useful for expressing

the likelihood of our model in closed-form. Appendix B presents and proves the re-

sults required to define the likelihood as a density with respect to a mixed measure.

The paper also has an online supplement whose sections are denoted as Sections S1,

Eq. S1, etc. Section S1 describes the Gaussian and Archimedean copulas used in the

3

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



article, as well as the Markov chain Monte Carlo (MCMC) sampling scheme. Sec-

tion S2 introduces a new three dimensional example to further illustrate the methods

in the paper. Section S3 gives a proof of Lemma 3 which is discussed in Appendix B.

Section S4 presents some additional empirical results.

2 Defining the Likelihood of a general copula

This section discusses the proposed model and shows how to write the likelihood of an

i.i.d. sample from it. Each random vector is modeled using a marginal distribution-

copula decomposition and each marginal is allowed to be a mixture of an absolutely

continuous component and a discrete component. The MCMC sampling scheme in

the next section is based on this definition of the likelihood.

Let X = (X1, . . . , Xm) be an Rm-valued random vector. If, for example, Xj is

categorical, then its support would be a finite subset of R and thus without loss

of generality, we can work with Rm. Let M = {1, . . . ,m} be the index set, and

2M its power-set (or the set of all of its subsets). Let the random variable Xj

have cumulative distribution function (CDF) Fj for j = 1, . . . ,m. By the Lebesgue

decomposition theorem (Shorack, 2000, Chapter 7, Theorem 1.1), and assuming

there are no continuous singularities (see Durante and Sempi, 2015, for a detailed

discussion), the distribution of each Xj can be written as a mixture of an absolutely

continuous random variable and a discrete random variable. This means that Fj

is allowed to have jumps at a countable number of points. In order to exploit this

result, we would like to be able to decide at each point of Rm, which indices have

jumps in their corresponding CDFs.

We need a mapping C : Rm → 2M that, for each x ∈ Rm, picks out the subset of

the indices of x where Fj is continuous at xj for each j ∈ C(x).

C : Rm −→ 2M with x −→ C(x).
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Similarly, we define the set D(x) = M − C(x) (the complement of C(x) in M,

that is the set of indices j for which Fj presents jumps at xj). This means that for

all x ∈ Rm, {C(x),D(x)} partitions the index set so that C(x) ∩ D(x) = ∅ and

C(x) ∪ D(x) =M.

As a first example, consider X = (X1, X2), where X1 ∼ N (0, 1) and X2 is a

mixture of an exponential distribution with parameter λ and a point mass at 0 with

probability p, i.e., X2 ∼ pδ0 + (1− p)E(λ)). Then, C(x1, 0) = {1} for all x1 ∈ R and

C(x1, x2) = {1, 2} for all x1 ∈ R, x2 > 0. Similarly, D(x1, 0) = {2} for all x1 ∈ R

and D(x1, x2) = ∅.

As a second example, let X = (X1, X2), where X1 is Bernoulli and X2 ∼ N (0, 1).

Then C(x) = {2} for all x ∈ {0, 1} ×R. Similarly D(x) = {1} for all x.

Let U = (U1, . . . , Um) be a vector of uniform random variables whose distri-

bution is given by some copula C. We assume that F−1j is the quantile function

corresponding to Fj; since Fj is not invertible when Xj is not absolutely continuous,

this corresponds to picking one possible generalized inverse function.

The variables U are selected to satisfy the following criteria. If, at coordinate xj,

j ∈ C(x), then uj = Fj(xj), resulting in a deterministic one-to-one relationship when

conditioning on either Uj or Xj. Otherwise, j ∈ D(x), and we require xj = F−1j (uj),

resulting in an infinity of Uj corresponding to one Xj and spanning the interval

(Fj(X
−
j ), Fj(Xj)). This interval corresponds to gaps in the range of Fj. If C(x) =M

for every x, then C will be the copula of X. Otherwise, the copula structure will

still create dependence between the non-continuous marginal variables but will not

be unique in general. Mathematically, the above description leads to the joint density

f(x,u) := c(u)
∏

j∈C(x)

I(uj = Fj(xj))
∏

j′∈D(x)

I(Fj′(x
−
j′) 6 uj′ < Fj′(xj′)), (1)

where c is the density corresponding to C and I is an indicator variable. See

Lemma 4, part (i), of Appendix B for a derivation of Eq. (1) and the corresponding

measure. Notice that in Eq. (1), products over the indices j and j′ correspond to
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different partitions for each x.

With a small abuse of notation, we call U the vector of latent variables, even

though Uj is a deterministic function of Xj if Fj is invertible.

To derive the likelihood function, that is the marginal density ofX, from the joint

density f(x,u), we introduce some notation. Let a, b be two vectors in Rk such that

a 6 b componentwise and let g be an arbitrary function from R
k into R. We denote

by 4b
ag(.) the sum of 2k terms that are obtained by repeatedly subtracting g(., aj, .)

from g(., bj, .) for each j = 1, . . . , k. Appendix A contains more details on using this

notation.

For each x ∈ Rm, denote by b = (F1(x1), . . . , Fm(xm)) the vector of upper bounds

and similarly denote by a = (F1(x
−
1 ), . . . , Fm(x−m)) the vector of lower bounds. For

each j ∈ C(x), b(j) = a(j), otherwise we have the strict inequality b(j) > a(j).

Denote the partitions of a and b by aC(x), aD(x), bC(x) and bD(x). For some sets

A,B ⊂ M, denote by cA and cA|B, the marginal copula density over the indices of

A, the conditional copula density where the variables in A are conditioned on the

variables with index set B. It is possible to do the same for the copulas CA and

CA|B.

If (X,U) has the joint density given by Eq. (1), then the marginal density of X

is

f(x) = cC(x)(bC(x))
∏

j∈C(x)

fj(xj)4
bD(x)
aD(x)

CD(x)|C(x)(·|bC(x)), (2)

which corresponds to writing the formula for the density of X as the product of the

(marginal) density of continuous components at x

f(xC(x)) = cC(x)(bC(x))
∏

j∈C(x)

fj(xj),

and the (conditional) density of the non-continuous components conditional on the

continuous ones

f(xD(x)|xC(x)) = 4bD(x)
aD(x)

CD(x)|C(x)(·|bC(x)).
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See Lemma 4, part (ii), of Appendix B for a derivation of Eq. (2) and the corre-

sponding measure.

We now give a bivariate example to illustrate how the formulas can be used. This

example is continued in later sections. See also Section S2 for a trivariate illustrative

example.

Example 1 (running illustrative example). Let X1 have a density that is a mixture

of a point mass at zero and a normal distribution f1(x1) ∼ πδx1(0) + (1 − π)φ(x1),

where φ(·) is the density of a standard normal. This implies that the cumulative

distribution function of X1 is

F1(x1) = (1− π)Φ(x1) + πI(x1 > 0),

and thus there is a discontinuity in F1 at the point 0. Let X2 be a binary random

variable with Pr{X2 = 0} = γ.

Let C(·) and c(·) be the Clayton copula and its density, with parameter θ = 1, so

that

C(u1, u2) =

(
1

u1
+

1

u2
− 1

)−1
, c(u1, u2) =

2

u21u
2
2

(
1

u1
+

1

u2
− 1

)−3
.

The conditional copula is given by

C2|1(u2|u1) =
1

u21

(
1

u1
+

1

u2
− 1

)−2
,

which has the conditional quantile function C−1(τ |u1) =
√
τu1

1+
√
τ(u1−1) and the condi-

tional density c2|1(u2|u1) = c(u1, u2) (because the marginal of u1 is uniform).

The following details are necessary to construct the example.

C(x) = {2} for x1 6= 0, for all x2 and C(x) = {1, 2} for x1 = 0, for all x2

Joint density of x and u (Eq. (1) )

There are two cases. Case 1: x1 6= 0
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f(x1, x2, u1, u2) = c(u1, u2)I(u1 = F1(x1))I(F2(x2−) 6 u2 < F2(x2))

Case 2: x1 = 0

f(x1, x2, u1, u2) = c(u1, u2)I(F1(0−) 6 u1 < F1(0))I(F2(x2−) 6 u2 < F2(x2))

Likelihood at one point (Eq. (2) )

If x1 6= 0, then

f(x1, x2) = f(x1)4F2(x2)
F2(x2−) C2|1(·|F (x1))

= f1(x1){C2|1(F2(x2)|F1(x1))− C2|1(F2(x2−)|F1(x1))}

because c(u1) = 1 as the one-dimensional margins of a copula are all uniform. If

x1 = 0, then

f(0, x2) = 4F1(0)
F1(0−)4

F2(x2)
F2(x2−) C(·)

= 4F1(0)
F1(0−){C(·, F2(x2))− C(·, F2(x2−))}

= C(F1(0), F2(x2))− C(F1(0), F2(x2−))− C(F1(0−), F2(x2)) + C(F1(0−), F2(x2−)).

The difficult part of implementing a simulation algorithm based on Eq. (1) and

Eq. (2) is that the size of the vectors xC(x) and xD(x) changes with x. A secondary

difficulty is that the second term is a sum of 2|D(x)| terms for each x, where |D(x)|

is the cardinality of the set D(x).

3 Estimation and Algorithms

3.1 Conditional distribution of the latent variables

In any simulation scheme (such as MCMC or simulated EM) where the latent vari-

ables U are used to carry out inference, it is necessary to know the distribution of

U |X. This distribution is singular due to the deterministic relationship over C(x)

for each x ∈ Rm. For this reason, it is useful to work only with UD(x)|X. A second
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issue is the need to work with different sized vectors UD(x) for each x in our sample

(say x1, . . . ,xn), so we will be working with n distributions over different spaces.

Recursively using Bayes formula and similar integration arguments to the ones de-

scribed during the derivation of the X density, we obtain the density for UD(x)|X

as

f(uD(x)|x) =
cD(x)|C(x)(uD(x)|bC(x))

∏
j∈D(x) I(aj 6 uj < bj)

4bD(x)
aD(x)

CD(x)|C(x)(·|bC(x))
, (3)

where the denominator is a constant of integration. As seen from the above condi-

tional density, one of the complexities that arise is that the distribution UD(x)|X = x

depends on the whole vector x and not just on xD(x). See Lemma 4, part (iii), of

Appendix B for a derivation of Eq. (3) and the corresponding measure.

We can now proceed in two ways. We can either draw each Uj in UD(x) separately

conditionally on everything else. This is reminiscent of a single move Gibbs sampler.

Alternatively, it turns out that in spite of the difficulties, the above distribution can

also be sampled recursively without having to compute any of the above normalizing

constants. By writing D(x) as {j1, . . . , j|D(x)|}, we can use the following scheme.

• Uj1|X

• Uj2|Uj1 ,X

• ...

• Uj|D(x)||Uj1 , . . . , Uj|D(x)|−1
,X

We now note that the order of the indices j1, ..., j|D(x)| is irrelevant for the sampling

scheme. Although it might appear that the sampling procedure depends on the

ordering of these indices, the acceptance or rejection of such samples also depends

on the ordering and the next subsection shows that such a procedure will always

result in a correct MCMC draw from the conditional distribution UD(x)|X.

The above sampling scheme requires knowing the marginal distribution of UJ |X

for J ⊂ D(x) and the conditional decomposition Uj|UK,X, where ({j},K) is a
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partition of J (meaning {j} = J \K, the complement of K in J ). This distribution

can be derived as

f(uJ |x) =
c(bC(x))

∏
j∈C(x) f(xj)

f(x)
c(uJ |bC(x))

×
[
4bJ c

aJ cCUJ c |UJ ,UC(x)
(·|uJ , bC(x))

]∏
j∈J

I(aj 6 uj < bj)

with J c = D(x)\J and

f(uj|uK,x) = c(uj|uK, bC(x))I(aj 6 uj < bj)

×
4bJ c

aJ cCUJ c |UJ ,UC(·|uJ , bC(x))
4bKc

aKcCUKc |UK,UC(·|uK, bC(x))
,

where Kc = J c ∪ {j}.

We continue to illustrate how to apply the conditional formulas for the latent

variables by considering Example 1.

Example 1 (continued). If x1 6= 0, then

f(u2|x) =
c2|1(u2|F1(x1))I(F2(x2−) 6 u2 < F2(x2))

C2|1(F2(x2)|F1(x1))− C2|1(F2(x2−)|F1(x1))
;

u1 is deterministically equal to F1(x1), so we only need to sample u2.

If x1 = 0, then

f(u1, u2|x) =
c(u1, u2)I(F1(0−) 6 u1 < F1(0))I(F2(x2−) 6 u2 < F2(x2))

C(F1(0), F2(x2))− C(F1(0), F2(x2−))− C(F1(0−), F2(x2)) + C(F1(0−), F2(x2−))

3.2 Metropolis-Hastings sampling

It is clear from the formulas for f(uj|uK,x) that they are quite intricate. They cor-

respond to a product of a simple term c(uj|uK, bC(x))I(aj 6 uj < bj) (a truncated

conditional copula density) and a complicated term that depends on ratios of nor-

malizing constants for f(uJ |x) and f(uK|x). One of the most useful aspects of the

Metropolis-Hastings (MH) algorithm is that it does not require knowledge of nor-
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malizing constants. The trick here is that those normalizing constants are obtained

recursively. Assume that we sample

• Uj1 from c(uj1)I(aj1 6 uj1 < bj1)

• Uj2 from c(uj2|uj1)I(aj2 6 uj2 < bj2)

• ...

• Uj|D(x)| from c(uj|D(x)||uj1 , . . . , uj|D(x)|−1
)I(aj|D(x)| 6 uj|D(x)| < bj|D(x)|);

i.e., if we use as proposal a truncated form of the copula marginal density over D(x),

then computing the MH accept/reject ratio results in the computationally simple

formula

α(xi) =

|D(x)|∏
k=1

C(Fjk(xi,jk)|uNi,j1 , . . . , u
N
i,jk−1

, bC(xi),i)− C(Fjk(x−i,jk)|uNi,j1 , . . . , u
N
i,jk−1

, bC(xi),i)

C(Fjk(xi,jk)|uOi,j1 , . . . , u
O
i,jk−1

, bC(xi),i)− C(Fjk(x−i,jk)|uOi,j1 , . . . , u
O
i,jk−1

, bC(xi),i)
,

where i represents the observation index. The complexity of this formula is much

smaller than 2|D(x)|.

We now illustrate the Metropolis-Hastings acceptance probabilities by again con-

sidering Example 1.

Example 1 (continued). If x1 6= 0, then the ratio is α(x2) = 1 and if x1 = 0 (first

draw uN1 from a uniform on (F1(0
−), F1(0)) and compare to the previous draw uO1 )

α(0, x2) =
C2|1(F2(x2)|uN1 )− C2|1(F2(x

−
2 )|uN1 )

C2|1(F2(x2)|uO1 )− C2|1(F2(x
−
2 )|uO1 )

.

We note that here the ordering does not matter, as we could have computed the other

ratio (if we draw instead first uN2 from a uniform on (F2(x
−
2 ), F2(x2))

α(0, x2) =
C1|2(F1(0)|uN2 )− C1|2(F1(0

−)|uN2 )

C1|2(F1(0)|uO2 )− C1|2(F1(0−)|uO2 )
.

Even though the ratios are different, both procedures will result in a draw from

f(u1, u2|x).
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3.3 Mixtures of Archimedean and Gaussian copulas

This section applies the previous results to the family of mixtures of Archimedean

and Gaussian copulas. Working with mixtures of copulas provides a simple and

yet rich and flexible modeling framework because mixtures of copulas are copulas

themselves,

We are particularly interested in having a mixture of three components, two

Archimedean copulas, the Clayton copula (CCl), the Gumbel copula (CGu) and a

Gaussian copula (CG) component, with corresponding densities cCl, cGu and cG. We

later apply this mixture to model the dependence between individual income distri-

butions over 13 years. The density of this 3-component mixture of copulas is

cmix (u; Γ, θCl, θGu, w1, w2) = w1cG (u; Γ) + w2cCl (u; θCl) + w3cGu (u; θGu) , (4)

where w1, w2, and w3 = 1 − w1 − w2 are the mixture weights, and Γ, θCl, and θGu

are respectively the dependence parameters of the Gaussian, Clayton, and Gumbel

copulas. Such a mixture of copula models has the additional flexibility of being able

to capture lower and upper tail dependence. We will use a Bayesian approach to

estimate the copula parameters and for simplicity, and without loss of generality, we

follow Joe (2014) and use empirical CDF’s to model the marginal distributions.

Let the parameter wk denote the probability that the i-th observation comes from

the k-th component in the mixture. Let di = (di1, di2, di3)
′

be the vector of latent

indicator variables such that dik = 1 when the i-th observation comes from the k-th

component in the mixture. These indicator variables identify the component of the

copula model defined in Eq. (4) to which the observation yi belongs. Then,

Pr (dik = 1|w) = wk, (5)

with wk > 0 and
∑3

k=1wk = 1.

Given the information on the n independent sample observations y = (y1, ...,yn)
′
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and yi = (yi1, ..., yiT ), and by using Bayes rule, the joint posterior density is obtained

as

p (w,d,Γ, θCl, θGu|y) ∝ p (y|w,d,Γ, θCl, θGu) p (d|w,Γ, θCl, θGu) p (w) p (Γ) p (θCl) p (θGu)

(6)

with

p (y|w,d,Γ, θCl, θGu) =
n∏
i=1

[cG (u; Γ)]di1 [cCl (u; θCl)]
di2 [cGu (u; θGu)]

di3 ,

and

p (d|w,Γ, θCl, θGu) = p (d|w) =
n∏
i=1

K∏
k=1

wdikk =
K∏
k=1

wnk
k , (7)

where nk =
∑n

i=1 I (dik = 1) and I (dik = 1) is an indicator variable which is equal 1

if observation i belongs to the k-th component of the copula mixture model, and is

0 otherwise. We use a Dirichlet prior for w, p (w) = Dirichlet (φ), which is defined

as

p (w) ∝ wφ1−11 ...wφ3−13 . (8)

The Dirichlet distribution is a common choice in Bayesian mixture modeling since

it is a conjugate of the multinomial distribution (Diebold and Robert, 1994) . We

use the gamma density G(α, β) as the prior distribution for θCl and θGu. The hyper-

parameters in the prior probability density functions (PDFs) are chosen so that the

priors are uninformative. We use a Metropolis within Gibbs sampling algorithm to

draw observations from the joint posterior PDF defined in Eq. (6) and use the re-

sulting MCMC draws to estimate the quantities required for inference. The relevant

conditional posterior PDFs are now specified.

The conditional posterior probability that the ith observation comes from the

kth component in the copula mixture model is

p (dik|w,Γ, θCl, θGu,y) =
pik

pi1 + ...+ pi3
, (9)
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where pi1 = w1cG (u; Γ), pi2 = w2cCl (u; θCl), and pi3 = w3cGu (u; θGu) for k = 1, 2, 3.

The conditional posterior PDF for the mixture weights w is the Dirichlet PDF

p(w|d,Γ, θCl, θGu,y) = D(φ+ n), (10)

where n = (n1, ..., nk)
′ and φ = (φ1, ..., φK)′. The conditional posterior PDF for the

Gaussian copula parameter matrix Γ is

p (Γ|y,d, θCl, θGu,w) =
∏

i∈di1=1

cG (u; Γ) p (Γ) . (11)

The conditional posterior PDF for the Clayton copula parameter θCl is

p (θCl|y,d,Γ, θGu,w) =
∏

i∈di1=2

cCl (u; θCl) p (θCl) . (12)

The conditional posterior PDF for the Gumbel copula parameter θGu is

p (θGu|y,d,Γ, θCl,w) =
∏

i∈di1=3

cGu (u; θGu) p (θGu) . (13)

Generating the conditional posterior density for θCl and θGu is not straightforward

since the conditional posterior densities for both θCl and θGu are not in a recognizable

form. We use a random walk Metropolis algorithm to draw from the conditional

posterior densities of both θCl and θGu. The generation of the Gaussian copula

matrix parameter Γ is more complicated and is explained in the next section.

The full MCMC sampling scheme is,

1. Set the starting values for w(0), Γ(0), θ
(0)
Cl , and θ

(0)
Gu

2. Generate (w(t+1)|d(t),Γ(t), θ
(t)
Cl , θ

(t)
Gu,y) from Eq. (10)

3. Generate
(

Γ(t+1)|y,d(t+1), θ
(t)
Cl , θ

(t)
Gu,w

(t+1)
)

from Eq. (11)

4. Generate
(
θ
(t+1)
Cl |y,d(t+1),Γ(t+1), θ

(t)
Gu,w

(t+1)
)

from Eq. (12)
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5. Generate
(
θ
(t+1)
Gu |y,d(t+1),Γ(t+1), θ

(t+1)
Cl ,w(t+1)

)
from Eq. (13)

6. Set t = t+ 1 and return to step 2.

Appendix S1 gives further details of the sampling scheme. In particular, it de-

scribes how to write the Gaussian, Gumbel and Clayton copulas and their densities

and how to sample from them. It also details how to sample the correlation param-

eters of the Gaussian copula and summarizes how the one-margin at a time latent

variable simulation works.

4 Application to Individual Income Dynamics

Longitudinal or panel datasets, such as the Panel Study of Income Dynamics (PSID),

the British Household Panel Survey (BHPS), and the Household Income and Labour

Dynamics Survey in Australia (HILDA) are increasingly used for assessing income

inequality, mobility, and poverty over time. The income data from these surveys for

different years are correlated due to the nature of panel studies. For such correlated

samples, the standard approach of fitting univariate models to income distributions

for different years may give rise to misleading results. The univariate approach

treats the income distribution over different years as independent and ignores the

dependence structure between incomes for different years. It does not take into

account that those who earned a high income in one year are more likely to earn

a high income in subsequent years and vice versa. A common way to address this

problem is to use a multivariate income distribution model that takes into account

the dependence between incomes for different years.

The presence of dependence in a sample of incomes from panel datasets has rarely

been addressed in the past. Only recently, Vinh et al. (2010) proposed using bivari-

ate copulas to model income distributions for two different years, using maximum

likelihood estimation. However, in their applications, they do not take into account

the point mass at zero income. Our methodology is more general than Vinh et al.
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(2010). We estimate a panel of incomes from 2001 to 2013 using a finite mixture of

Gaussian, Clayton, and Gumbel copulas while taking into account the point mass

occurring at zero incomes. Once the parameters for the multivariate income distri-

bution have been estimated, values for various measures of inequality, mobility, and

poverty can be obtained. Our methodology is Bayesian which enables us to estimate

the posterior densities of the parameters of the copula models and the inequality,

mobility, and poverty measures. In this example, we consider the Shorrocks (1978b)

and Foster (2009) indices for illustration purposes. Other inequality, mobility, and

poverty indices can be estimated similarly. See for example Bonhomme and Robin

(2009) for a recent study on income mobility dynamics.

This paper uses unit record data from the Household, Income, and Labour Dy-

namics in Australia (HILDA) survey. The HILDA project was initiated and is funded

by the Australian Government Department of Social Services (DSS) and is managed

by the Melbourne Institute of Applied Economic and Social Research (Melbourne

Institute). The findings and views reported in this paper, however, are those of the

author and should not be attributed to either DSS or the Melbourne Institute.

Although a number of income related variables are available, we use the imputed

income series WSCEI in this example. This variable contains the average individual

weekly wage and salary incomes from all paid employment over the period considered.

It is reported before taxation and governmental transfers. The income data were also

adjusted to account for the effects of inflation using the Consumer Price Index data

obtained from the Australian Bureau of Statistics, which is based in 2010 dollars.

From these data, a dependence sample was constructed by establishing whether a

particular individual had recorded an income in all the years. Individuals who only

recorded incomes in some of the years being considered were removed. In addition,

we also focus our attention on individuals who are in the labor force (both employed

and unemployed). We found that 1745 individuals recorded an income for all 13

years. Table 1 summarizes the distributions of real individual disposable income in
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Australia for the years 2001 - 2013 and shows that all income distributions exhibit

positive skewness and fat long right tails typical of income distributions. If the

ordering of the distributions is judged on the basis of the means or the medians,

the population becomes better off as it moves from 2001 to 2013, except between

the period 2006 and 2007. These effects are also confirmed by Figures S1 to S3 in

Appendix S4

4.1 Foster’s (2009) Chronic Poverty Measures

The measurement of chronic income poverty is important because it focuses on those

whose lack of income stops them from obtaining the “minimum necessities of life”

for much of their life course. Let z ∈ R+ be the poverty line. It is the level of

income/wages which is just sufficient for someone to be able to afford the minimum

necessities of life. For every i = 1, ..., n and t = 1, ..., T , the row vector yi =

(yi1, ..., yiT ) contains individual i’s incomes across time and the column vector y∗t =

(y1t, ..., ynt)
′

contains the income distribution at period t.

The measurement of chronic poverty is split into two steps: an “identification”

step and an aggregation step. The identification function ρ (yi; z) indicates that

individual i is in chronic poverty when ρ (yi; z) = 1, while ρ (yi; z) = 0 otherwise.

Foster (2009) proposed an identification method that counts the number of periods

of poverty experienced by a particular individual, yit < z, and then expressed it as a

fraction di of the T periods. The identification function ρτ (yi; z) = 1 if di ≥ τ and

ρτ (yi; z) = 0 if di < τ .

The aggregation step combines the information on the chronically poor people to

obtain an overall level of chronic poverty in a given society. We use the extension

of univariate Foster, Greer and Thorbecke (FGT) poverty indices of Foster et al.

(1984). These are given by

FGTα (z) =
1

n

n∑
i=1

gαi ,
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where gαi = 0 if yi > z and gαi (z) =
(
z−yi
z

)α
if yi ≤ z, and α measures inequality

aversion. The FGT measure when α = 0 is called the headcount ratio, when α = 1 it

is called the poverty gap index and when α = 2 it is called the poverty severity index.

Foster (2009) proposed duration adjusted FGT poverty indices: duration adjusted

headcount ratio and duration adjusted poverty gap. Following Foster (2009), we

define the normalized gap matrix as Gα (z) := [gαit (z)], where gαit (z) = 0 if yit > z and

gαit (z) =
(
z−yit
z

)α
if yit ≤ z. Then, identification is incorporated into the censored

matrix Gα (z, τ) = [gαit (z, τ)], where gαit (z, τ) = gαit (z) ρτ (yi; z). The entries for

the non-chronically poor are censored to zero, while the entries for the chronically

poor are left unchanged. When α = 0, the measure becomes the duration adjusted

headcount ratio and is the mean of G0 (z, τ); when α = 1, the measure becomes the

duration adjusted poverty gap, and is given by the mean of G1 (z, τ).

4.2 Shorrocks (1978a) Income Mobility Measures

The measurement of income mobility focuses on how individuals’ income changes over

time. Many mobility measures have been developed and applied to empirical data to

describe income dynamics; see Shorrocks (1978b), Shorrocks (1978a), Formby et al.

(2004), Dardanoni (1993), Fields and Ok (1996), Maasoumi and Zandvakili (1986),

and references therein. However, statistical inference on income mobility has been

largely neglected in the literature. Only recently, some researchers have developed

statistical inference procedures for the measurement of income mobility (Biewen,

2002; Maasoumi and Trede, 2001; Formby et al., 2004). Here, we show that our

approach can be used to obtain the posterior densities of mobility measures which

can then be used for making inference on income mobility.

Shorrocks (1978b) proposed a measure of income mobility that is based on tran-

sition matrices. Following Formby et al. (2004), we consider the joint distribution of

two income variables y1 and y2 with a continuous CDF F (y1, y2). This distribution

captures all the transitions between y1 and y2. In this application, we consider the
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mobility between two points in time. The movement between y1 and y2 is described

by a transition matrix. To form the the transition matrix from F (y1, y2), we need

to determine the number of, and boundaries between, income classes. Suppose there

are m classes in each of the income variables and the boundaries of these classes are

0 < τ y11 < ... < τ y1m−1 < ∞ and 0 < τ y21 < ... < τ y2m−1 < ∞. The resulting transition

matrix is denoted P = [pij]. Each element pij is a conditional probability that an

individual moves to class j of income y2 given that they are initially in class i with

income y1. It is defined as

pij :=
Pr
(
τ y1i−1 ≤ y1 < τ y1i and τ y2j−1 ≤ y2 < τ y2j

)
Pr
(
τ y1i−1 ≤ y1 < τ y1i

) ,

where Pr
(
τ y1i−1 ≤ y1 < τ y1i

)
is the probability that an individual falls into income class

i of y1.

A mobility measure M (P ) can be defined as a function of the transition matrix

P . We say that a society with transition matrix P1 is more mobile than one with

transition matrix P2, according to mobility measure M (P ), if and only if M (P1) >

M (P2). We consider a mobility measure developed by Shorrocks (1978b) and defined

as

M1 (P ) :=
m−

∑m
i=1 pii

m− 1
;

M1 measures the average probability across all classes that an individual will leave

his initial class in the next period.

4.3 Empirical Analysis

This section discusses the results from the analysis of the real individual wages

data after estimating the proposed multivariate income distribution model using

a Bayesian approach. The univariate income distribution is usually modeled us-

ing Dagum or Singh-Maddala distributions (Kleiber, 1996). In this example, the

marginal income distribution is modeled using the empirical distribution function,

20

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



for simplicity. It is straightforward to extend the MCMC sampling scheme in Sec-

tion 3 to estimate both marginal and joint parameters as in Pitt et al. (2006) and

Smith and Khaled (2012).

First, we present the model selection results and the estimated parameters of

the copula models. To select the best copula model, we use the DIC3 criterion of

Celeux et al. (2006) and the cross-validated log predictive score (LPDS) (Good, 1952;

Geisser, 1980). The DIC3 criterion is defined as

DIC3 := −4Eθ (log p (y|θ) |y) + 2 log p̂ (y) ,

where p̂ (y) =
∏n

i=1 p̂ (yi). We next define the B-fold cross-validated LPDS. Suppose

that the dataset D is split into roughly B equal parts D1, ...,DB. Then, the B−fold

cross validated LPDS is defined as

LPDS (p̂) :=
B∑
j=1

∑
yj∈Dj

log p̂ (yj|D \ Dj) .

In our work we take B = 5. Table 2 shows that the best model, according to both

criteria, is the mixture of Gaussian, Clayton, and Gumbel copulas. We estimate the

best model with an initial burnin period of 10000 iterates and a Monte Carlo sample

of 10000 iterates. Next, we use the iterates from the best model to estimate transition

probabilities from 0 to positive wages and from positive wages to zero, Spearman’s

correlation coefficient, and the mobility and poverty measures, by averaging over the

posterior distribution of the parameters.

Table 3 shows some of the estimated parameters and corresponding 95% credible

intervals for the chosen copula mixture model. The parameters and their 95% credible

intervals are quite tight, indicating that the parameters are well estimated. It is

clear that there are significant differences in the estimated parameters by taking

into account the point mass at zero wages compared to the parameters estimated by

not taking into account this point mass. The estimated mixture weight parameters
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show that the Gaussian copula has the highest weight, followed by the Clayton and

Gumbel copulas. As the weight of the Clayton copula is higher than of the Gumbel

copula, it implies that there are more people with lower tail dependence than upper

tail dependence. This may coincide with a relatively higher degree of income mobility

amongst high income earners.

Table 2: Model Selection of the copula to model 13 years of income distribution with
point mass at zero incomes

Model DIC3 LPDS-CV
Clayton −1.21× 104 6.03× 103

Gumbel −1.75× 104 4.95× 103

Gaussian −2.13× 104 4.29× 104

Mixture (Gaussian, Clayton) −2.86× 104 5.63× 104

Mixture (Gaussian, Gumbel) −2.83× 104 5.54× 104

Mixture (Clayton, Gumbel) −1.68× 104 3.31× 104

Mixture (Gaussian, Clayton, Gumbel) −2.89× 104? 5.68× 104?

Table 3: Some of the estimated parameters of the mixture of the Gaussian, Gumbel
and Clayton copulas to model 13 years of income distributions. The 95% credible
intervals are in brackets

Parameters Copula (Point Mass) Copula (No Point Mass)

θCl 0.15
(0.12,0.18)

0.33
(0.29,0.37)

θGu 1.94
(1.84,2.06)

2.33
(2.23,2.45)

w1 0.66
(0.64,0.69)

0.62
(0.60,0.65)

w2 0.21
(0.19,0.24)

0.23
(0.21,0.26)

Tables S1 and S2 in Appendix S4 present the estimates of the transition proba-

bilities from 0 to positive wages and from positive to 0 wages. The estimates of the

transition probabilities seem to be close to their sample (non-parametric) counter-

parts. The estimates of transition probabilities from 0 to positive wages are similar

(0.39-0.49) in the period from 2001-2006. Similarly, the estimates are similar in the

period 2008-2013 (0.34-0.38). However, there are higher estimates for the period

2006-2007 and 2007-2008 (0.83 and 0.87, respectively). Similar results are observed

for the transition probabilities from positive to zero wages. The estimates of the

transition probabilities are roughly the same between the periods 2001-2006 and
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2008-2013. There are higher estimates for the period 2006-2007 and 2007-2008. This

phenomenon may indicate that there is very high income mobility between 2006-

2007 and 2007-2008. Note that the model that does not take into account the point

masses at zero cannot give us the estimates of the transition probabilities.

Tables 4 and 5 show the estimate of Spearman’s rho dependence and Shorrocks

(1978b) mobility measure. We can see from these two measures that there are very

high values of the mobility measure and very low values of Spearman’s rho depen-

dence measure between 2006-2007 and 2007-2008. This confirms our previous analy-

sis that in the period 2006-2008 there is very high mobility between income earners.

Table 6 shows the estimates of Foster’s chronic poverty measures: duration adjusted

headcount ratio and duration adjusted poverty gap. The two measures indicate that

chronic poverty is significantly lower in the 2007-2013 period compared to the 2001-

2006 period. The standard of living in Australia is higher in the period 2007-2013

compared to the period 2001-2006. Furthermore, we can see that the estimates of

Spearman’s rho dependence, mobility, and chronic measures are different between

the estimates that take into account the point masses and the estimates that do

not take into account the point masses at zero wages. Figure 1 shows the posterior

densities of duration adjusted headcount ratio for the years 2007-2013 for the two

estimates. The figure shows that the posterior densities almost do not overlap, in-

dicating that the two estimates are significantly different. Therefore, whenever the

point masses are present, it is strongly recommended to incorporate them into the

model to guard against biased estimates.
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Table 4: Estimates of the Spearman rho dependence measure of the mixture of the
Gaussian, Gumbel and Clayton copulas and 95% credible intervals (in brackets)

Period Copula (Point Mass) Copula (No Point Mass)

2001-2002 0.703
(0.684,0.722)

0.740
(0.723,0.757)

2002-2003 0.719
(0.700,0.737)

0.743
(0.726,0.759)

2003-2004 0.721
(0.702,0.739)

0.743
(0.727,0.759)

2004-2005 0.723
(0.7040,0.741)

0.747
(0.730,0.763)

2005-2006 0.727
(0.708,0.745)

0.750
(0.733,0.766)

2006-2007 0.020
(−0.028,0.068)

0.030
(−0.020,0.086)

2007-2008 0.025
(−0.023,0.073)

0.037
(−0.013,0.093)

2008-2009 0.725
(0.706,0.744)

0.7500
(0.733,0.766)

2009-2010 0.735
(0.716,0.753)

0.758
(0.741,0.775)

2010-2011 0.740
(0.720,0.758)

0.764
(0.747,0.781)

2011-2012 0.737
(0.718,0.755)

0.762
(0.745,0.778)

2012-2013 0.733
(0.714,0.752)

0.759
(0.742,0.776)

Table 5: Estimates of Shorrocks (1978a) Mobility Measure (m = 5) of the mixture
of the Gaussian, Gumbel and Clayton copulas

Period Non-Parametric Copula (Point Mass) Copula (No Point Mass)

2001-2002 0.414
(0.367,0.466)

0.569
(0.549,0.588)

0.518
(0.501,0.534)

2002-2003 0.411
(0.361,0.461)

0.526
(0.508,0.543)

0.499
(0.484,0.516)

2003-2004 0.366
(0.324,0.409)

0.500
(0.483,0.516)

0.479
(0.463,0.495)

2004-2005 0.380
(0.341,0.418)

0.489
(0.473,0.506)

0.465
(0.450,0.480)

2005-2006 0.392
(0.352,0.427)

0.484
(0.468,0.5000)

0.459
(0.444,0.475)

2006-2007 0.996
(0.974,1.019)

0.969
(0.957,0.980)

0.918
(0.878,0.938)

2007-2008 0.987
(0.959,1.015)

0.933
(0.921,0.945)

0.885
(0.843,0.906)

2008-2009 0.411
(0.384,0.441)

0.510
(0.493,0.526)

0.480
(0.465,0.495)

2009-2010 0.380
(0.350,0.409)

0.500
(0.482,0.516)

0.465
(0.449,0.481)

2010-2011 0.381
(0.351,0.411)

0.481
(0.463,0.500)

0.440
(0.424,0.456)

2011-2012 0.380
(0.353,0.405)

0.492
(0.475,0.510)

0.453
(0.437,0.469)

2012-2013 0.365
(0.339,0.395)

0.517
(0.499,0.536)

0.475
(0.458,0.493)
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Figure 1: Estimated headcount posterior densities based on including (left density-
blue line) and not including point masses (right density-orange line) at 0 (2007-2013)

5 Conclusion and discussion

The paper shows how to define and derive the density of the observations of a general

copula model when some of the marginals are discrete, some are continuous and

some are a mixture of discrete and continuous components. This is done by carefully

defining the likelihood as the density of the observations with respect to a mixed

measure and allows us to define the likelihood for general copula models and hence

carry out likelihood based inference. Our work extends in a very general way the

current literature on likelihood based inference which focuses on copulas where each

marginal is either discrete or continuous. The inference in the paper is Bayesian and

we show how to construct an efficient MCMC scheme to estimate functionals of the

posterior distribution. Although our discussion and examples focus on Gaussian and

Archimedean copulas, our treatment is quite general and can be applied as long as it

is possible to compute certain marginal and conditional copulas either in closed-form
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or numerically.

We believe that our article can be extended in the following directions. First,

using our definition of the likelihood can also enable maximum likelihood type infer-

ence using, for example, simulated EM or simulated maximum likelihood. Second,

our approach can be applied to copulas based on pair-copula constructions (e.g. Aas

et al., 2009) or vine copulas (e.g. Bedford and Cooke, 2002) because our methods

apply to arbitrary copulas with the only requirement that it is possible to write

down several conditional marginal copulas and copula densities and being able to

compute those either analytically or numerically. See Smith and Khaled (2012) for

an application of their approach to vine copulas.

Third, by using pseudo marginal methods (e.g. Andrieu et al., 2010), our method-

ology can also be extended to the case where the likelihood of the copula can only be

estimated unbiasedly, rather than evaluated. We leave all such extensions to future

work.

Our article illustrates the methodology and algorithms by applying them to esti-

mate a multivariate income dynamics model. Examples of further possible applica-

tions arise from any setup where one or more of the following variables are present:

wages (where there is a point mass at the minimum wage) individual sales figures,

where there is a point mass at 0 (many individuals deciding not to purchase) and a

smooth distribution above that point (corresponding to a continuum of price figures).

Another interesting potential application is to extend the general truncated/censored

variable models in econometrics to a copula framework, e.g., for multivariate tobit

and sample selection models.
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Appendix A Difference operator notation

Since the difference operator notation can be easily confusing, it is useful to adopt

the convention below. The notation has two components:

1. Whenever the 4 operators are applied to a function, an indexing is used to

make the domain of the function clear.
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2. A dot marks the position of the variables that are being differenced.

Here are some examples to illustrate the use of that notation.

• Consider a function g(x) where x is a scalar. Then 4b
agx(·) defines

4b
agx(·) := g(b)− g(a)

• Consider a function g(x, y) where both x and y are scalars. By 4b
agx,y(·, z) we

mean that the differencing is only applied to x while the second argument is

fixed at y = z, that is

4b
agx,y(·, z) := g(b, z)− g(a, z)

• Consider a function g(x) where x is two-dimensional. By 4b
agx(·), we mean

4b
agx(·) = 4b1

a1
4b2
a2
gx(·)

= 4b1
a1

(gx1,x2(·, b2)− gx1,x2(·, a2))

= g(b1, b2)− g(b1, a2)− g(a1, b2) + g(a1, a2)

• Consider a function g(x,y). If the differencing is applied to y and not x, and

if y is two-dimensional, then 4b
agx,y(x, ·) means

4b
agx,y(x, ·) := 4b1

a1
4b2
a2
gx,y(x, ·)

= 4b1
a1

(gx,y1,y2(x, ·, b2)− gx,y1,y2(x, ·, b2))

= g(x, b1, b2)− g(x, a1, b2)− g(x, a2, b1) + g(x, a1, a2)
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Appendix B Deriving the likelihood and the con-

ditional density

This appendix deals with densities defined with respect to mixed measures. Such

densities are formally defined by Radon-Nikodym derivatives. In particular, we ob-

tain the joint density Eq. (1) of X and U and the corresponding mixed measure.

We then show how to obtain the closed-form formulas for the densities Eq. (2) and

Eq. (3), and their corresponding mixed measures, from the density Eq. (1).

We need the following three elementary lemmas to obtain the results. They are

likely to be known in the literature, but we include their proofs for completeness.

Lemma 1. Let F (x,y) be the distribution function of an absolutely continuous ran-

dom vector (X ′,Y ′)′ where x ∈ Rk and y ∈ Rp. Then,

∂kF (x,y)

∂x1 · · · ∂xk
= F (y|x)f(x),

where F (y|x) and f(x) are respectively the distribution function of Y conditional

on X = x and the density of X. Similarly, in an obvious notation,

∂pF (x,y)

∂y1 · · · ∂yp
= F (x|y)f(y).

Proof. The identity comes from

∂p

∂y1 · · · ∂yp
F (y|x) = f(y|x) =

f(y,x)

f(x)
=

∂p+kF (x,y)
∂y1···∂yp∂x1···∂xk

f(x)
=

∂p

∂y1 · · · ∂yp

(
∂kF (x,y)
∂x1···∂xk
f(x)

)
.

The next lemma is an immediate consequence of the previous lemma.

Lemma 2. Let f(x,y) be the density of an absolutely continuous random vector
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(X ′,Y ′)′ where x ∈ Rk and y ∈ Rp then

∫ b1

a1

· · ·
∫ bk

ak

f(x,y)dx1 . . . dxk = 4b1
a1
· · · 4bk

ak
FY |X(y|.)fX(.)

where F (y|x) and f(x) are respectively the conditional distribution function of Y

on X = x and the density of X.

Proof. Write the density function

f(x,y) =
∂p+kF (x,y)

∂y1 · · · ∂yp∂x1 · · · ∂xk

=
∂k

∂x1 · · · ∂xk

(
∂pF (x,y)

∂y1 · · · ∂yp

)
=

∂k

∂x1 · · · ∂xk
(F (x|y)f(y))

where the last line follows from the previous lemma. The desired result follows by

an application of the fundamental theorem of calculus.

Lemma 3. Suppose that U is uniformly distributed on [0, 1].

(i) Suppose that X is a univariate random variable with CDF F (x) that has an

inverse and a density f(x). Then, duδF−1(u)(dx) = δF (x)(du)f(x)dx, where

du, dx are Lebesgue measures.

(ii) Suppose that X is a discrete univariate random variable with support on the

discrete set I = {x}. Then, duδ{F (x−)≤u<F (x)}(dx) = I{u : F (x−) ≤ u <

F (x)}duδI(dx)

The proofs of parts (i) and (ii) are in Section S3.

Suppose that the indicesMC correspond to the continuous random variables, the

indices MD to the discrete random variables and the indices MJ to a mixture of

discrete and continuous random variables. We define the joint density of X and U
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as

f(x,u) := c(u)
∏
j∈MC

I(uj = Fj(xj))
∏
j∈MD

I(Fj(x
−
j ) ≤ uj < Fj(xj))×

∏
j∈MJ

(
I(uj = Fj(xj)) + I(Fj(x

−
j ) ≤ uj < Fj(xj))

)
(14)

with respect to the measure

du
∏
j∈MC

δF−1
j (uj)

(dxj)
∏
j∈MD

δFj(x
−
j )≤uj<Fj(xj)

(dxj)×

∏
j∈MJ

(
I(uj = Fj(xj))dxj + I(Fj(x

−
j ) ≤ uj < Fj(xj))δFj(x

−
j )≤uj<Fj(xj)

(dxj)
)

(15)

Lemma 4. (i) Eq. (1) gives the joint density of X and U at a given value X = x

and U = u.

(ii) Eq. (2) is the marginal density of X at X = x.

(iii) Eq. (3) is the conditional density of UD(x) given X = x.

Proof. Part (i) follows directly from Eq. (14) and Eq. (15). Part (ii) follows by

integrating out u using Lemma 2. Part (iii) follows from Lemma 3.
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