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Abstract

Recent face detection methods have achieved high detec-

tion rates in unconstrained environments. However, as they

still generate excessive false positives, any method for re-

ducing false positives is highly desirable. This work aims

to massively reduce false positives of existing face detection

methods whilst maintaining the true detection rate. In addi-

tion, the proposed method also aims to sidestep the detector

retraining task which generally requires enormous effort.

To this end, we propose a two-stage framework which cas-

cades two off-the-shelf face detectors. Not all face detectors

can be cascaded and achieve good performance. Thus, we

study three properties that allow us to determine the best

pair of detectors. These three properties are: (1) corre-

lation of true positives; (2) diversity of false positives and

(3) detector runtime. Experimental results on recent large

benchmark datasets such as FDDB and WIDER FACE sup-

port our findings that the false positives of a face detector

could be potentially reduced by 90% whilst still maintaining

high true positive detection rate. In addition, with a slight

decrease in true positives, we found a pair of face detector

that achieves significantly lower false positives, while being

five times faster than the current state-of-the-art detector.

1. Introduction

Face detection has been studied for decades in the com-

puter vision domain, and it is one of the fundamental prob-

lems for many facial analysis tasks.

The goal of face detection is to obtain a high detection

rate with extremely low false positives. There are two con-

current challenges for developing this: 1) how to detect

more faces in the unconstrained environment to improve

the accuracy; 2) how to reduce false positives to achieve

efficiency. Recent works [15, 18, 30, 4] primarily aim at

developing face detectors in the unconstrained environment

which is closely aligned with the real world applications,

such as video surveillance. In this scenario, faces may have

large variations in shape and appearance, e.g., large head

pose and expression variations, illumination variations, low

resolution, out-of-focus blur, motion blur, and occlusions.

Figure 1: (a) We propose a two-stage cascade framework

which cascades a face detector with a second face detector

as a post-processing classifier to remove the false positives.

Compared with the dense patches produced by the sliding

window approach or the region proposal network, it is still

very efficient for the second detector to process these sparse

patches. (b) We propose three cascade properties that the

second detector must have 1) a high correlation of true pos-

itives (‘+’); 2) a high diversity of false positives (‘-’) with

the first detector and 3) less runtime than the first detector

to achieve an overall fast speed.

Although these state-of-the-art methods achieve high de-

tection rates, they also generate many false positives. As

face detection is the first step in many facial analysis tasks,

the unexpected false positives will affect the accuracy and

speed of the subsequent tasks and the overall system. In a

surveillance video, the majority of video frames are occu-

pied by the background (i.e., non-faces) with much fewer

faces appearing. The imbalanced distribution of non-faces

and faces increases the probability of generating false posi-

tives for a face detector. Therefore, a face detector with low

false positive rate is highly desirable.

Indeed, the trade-off between speed and accuracy always

exists in developing a face detector. For a detector, more

true faces can be detected by accepting more false posi-

tives. The challenge now is how to reduce the false posi-

tives whilst still maintaining the high true positive rates of

the state-of-the-art detectors. As all existing state-of-the-art

face detectors generate false positives, any method aimed at

reducing false positives has significant potential to improve

their performance.
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With the seminal work of Viola and Jones [24], a cas-

cading approach has shown its advantages in achieving both

accuracy and efficiency by quickly rejecting a large number

of easy negatives in the earlier stages and training stronger

classifiers for the hard negatives in the later stages. More re-

cently, the idea of cascade has also been applied to the Con-

volutional Neural Network (CNN) based methods [13, 30]

to save on the high computational expense.

Although a vast number of easy negatives are discarded

in the earlier stages, there still remains a large number of

false positives after the final stage. This is because of the

huge imbalance in the distribution of faces and non-faces

which makes classifiers not sufficiently discriminative to

distinguish these hard negatives. To address this, bootstrap-

ping or hard negative mining is frequently used when train-

ing face detectors. In a nutshell, this method first trains

the detector with an initial training set. Once trained, the

method iteratively adds any false positive detected by the

current detector model into the training set and then retrains

the model.

Most of the state-of-the-art face detectors [15, 18, 30, 4]

utilise this bootstrapping scheme, however, the methods still

generate excessive false positives. Due to the features, clas-

sifiers and training samples, every face detector has its own

theoretical limits. In other words, the classifiers in the final

cascade stage are simply not powerful enough to distinguish

between faces and non-faces. Recent work [29] calls this

problem the Hard Face/non-Face problem.

To address the problem, one needs to use completely dif-

ferent architectures and features due to the discrimination

limits of each detector. This motivates the use of ensem-

ble/fusion methods combining different methods based on

orthogonal features. However, rather than training several

models in parallel, several works [29, 2, 12, 23] propose

cascading a post-processing classifier using quite different

features and classifiers.

Furthermore, the effort to train a new face detection

model is enormous, e.g., large training data and some face

detectors do not provide open source training codes. In this

work, we propose a method that addresses the problem of

reducing false positives of existing face detectors without

spending the tremendous effort of retraining them or de-

veloping an entirely new detector. One possible way is to

cascade two pre-trained/off-the-shelf face detectors. Here,

we consider the face detectors as black boxes characterised

by their face/non-face performance.

In this work, we propose to cascade two pre-trained

face detectors, where the first detector can be considered

as a region-proposal detector and the second one as a post-

processing classifier. In the two-stage framework, the sec-

ond detector is expected to have the ability to detect and

pass through all the faces output from the first detector,

while being able to remove the false positives at the same

time. For this reason, it is crucial to determine the set of

properties that allow us to optimise which two detectors can

be cascaded and in which order they should be cascaded.

Inspired by the fusion approaches in pedestrian and object

detection [25, 6, 10], we study the properties of existing face

detectors.

Some fusion approaches in the domain of pedestrian de-

tection and object detection [25, 6, 10] propose to exploit

the complementary information from multiple existing de-

tectors by combining the results from these detectors. How-

ever, different from these fusion approaches which are pri-

marily aimed at increasing true positives by using the com-

plementary information, we argue that it is still possible to

develop a cascade method to reduce the false positive using

the complementary information. Inspired by this, we pro-

pose to study the cascade properties by analysing the corre-

lation and diversity in the true positives and false positives

respectively as well as the runtime.

We then validate our findings by cascading various re-

cent state-of-the-art face detector methods and evaluate the

efficacy of the proposed properties in selecting pairs of

face detectors. These validations are performed using the

FDDB [5] and WIDER FACE [28] datasets.

Contributions - We list our contributions as follows: 1) To

reduce the false positives of the existing face detectors, we

propose a two-stage cascade framework that cascades two

pre-trained detectors (refer to Fig. 1). 2) We propose three

essential properties that guide us in determining the effi-

cacy of the cascaded detector. These properties are based

on the correlation and diversity of both true and false pos-

itives from the two face detectors as well as the runtime.

3) With the proposed cascade properties, we study twelve

pairs of detectors. The experimental results show our pro-

posed framework is able to remove a large number of false

positives with an insignificant loss of true positive rate. 4)

We found a pair of face detectors that achieves significantly

lower false positive rate with competitive detection rate,

which is five times faster than the current state-of-the-art

detector described in [4].

2. Related Work

Face detection methods can be roughly grouped into

three families: 1) boosting based methods, 2) Deformable

Parts-based Models (DPM) methods and 3) deep learning

based methods. Viola and Jones (VJ) [24] are the first to

propose Haar-like features and use the AdaBoost learning

algorithm to train weak classifiers. They proposed to cas-

cade the face/non-face classifiers which discard the easy

negatives quickly whilst spending more computation on

more face-like samples. Due to the high efficiency, the VJ

made face detection ubiquitous for many real-time appli-

cations. However, it has been shown that in unconstrained

scenarios, the VJ detector is not effective in detecting faces

with large head pose variations and occlusions [7]. Similar

to VJ’s framework, Mathias et al. [18] introduced an inte-
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gral channel features detector with boosting, called Head-

Hunter. HeadHunter is essentially a multi-scale detector

model based on 22 rigid templates. For each scale, there

are 11 templates: 5 templates for frontal faces and 6 for ro-

tated faces. In an entirely different approach, Liao et al. [15]

developed an unconstrained face detector by proposing a

novel feature, called Normalised Pixel Difference (NPD).

A deep quadratic tree is proposed to learn and combine the

features and a single soft-cascade boosting classifier is fur-

ther applied to learn the trees, without resorting to pose-

specific cascade structures or pose labelling. In addition to

the VJ’s framework, there are several face detection meth-

ods [32, 18] based on Deformable Part Models (DPM) to

model potential deformations between facial parts.

Recently, deep learning methods have shown exceptional

performance in object detection [22, 9], so they have been

extended to face detection [30, 4, 1, 20, 21, 14, 13, 27, 19].

Zhang et al. [30] proposed a deep multi-task framework,

called Multi-task CNN (MTCNN), in a three-stage cas-

caded structure. In each stage, face classification, facial

landmarks localisation, and bounding box regression are

trained jointly. The state-of-the-art face detection method

proposed by Hu et al. [4] is able to find tiny faces. Sep-

arate detectors are trained for different resolutions in a

multi-task fashion and therefore it is referred to as ‘hybrid-

resolution’ (HR). This research argues that the context in-

formation is crucial for detecting small faces and therefore,

they associate the receptive fields over the features extracted

from different layers of the network.

Even though the current face detectors can achieve very

high recall, they also generate false positives. Yang et

al. [29] introduced the Hard Face/Non-Face (HFnF) prob-

lem that embodies the challenge of reducing the false pos-

itives generated by the existing face detectors. Solving

this problem is critical as the solution could have a sig-

nificant impact on all the existing face detectors. Previous

works [12, 2] showed that in conjunction with facial land-

marks based features, an SVM classifier [3] can be used as

a post-processing classifier. As discussed in [29], although

the above methods demonstrate their effectiveness in reduc-

ing false positives, they are shown to be insufficient due to

their high dependence on face alignment accuracy. Besides

using the cues of facial landmarks, Li et al. [11] construct

a contour-based classifier to reduce the false positives af-

ter the VJ detector. However, the contour features will not

perform well when faces have large head pose variations or

occlusions; thus, cannot be used to detect faces in the un-

constrained environment.

Similarly, several recent works [31, 17] aim at achieving

both high speed and accuracy by utilising the pre-trained

detectors. Zhou et al. propose to train an Adaptive Feed-

ing (AF) classifier to determine a given image is easy or

hard by a linear SVM. An ”easy” image is then fed into a

fast but less accurate detector, whereas a ”hard” image is by

an accurate but slow detector. Different from the ensemble

methods, both their work and ours do not run the two de-

tectors in parallel, which saves enormous computations and

time. However, their AF classifier is like a ”switch” which

decides one out of the two detectors to process the image,

while our work is a cascade of two detectors. Moreover,

their ”easy” and ”hard” labels do not explicitly explore the

correlation and diversity of true and false positives between

different detectors. Perhaps the most relevant work to ours

is proposed by Marčetić et al. [17], which cascades two de-

tectors: NPD [15] and DPM [32]. In fact, their method is

a special case of our proposed framework. Both theirs and

ours use a two-stage cascade model to reduce false posi-

tives. Unlike their method which only shows the efficacy of

cascading NPD and DPM, in our work, we show that there

are more effective pairs of cascaded face detectors. More

importantly, we propose the cascade properties that can de-

termine the pair of cascaded detectors. These properties al-

low us to sidestep the expensive detector retraining step.

3. Proposed approach

We first discuss our two-stage framework and then we

describe the properties used to find the most effective pairs

of face detectors to cascade.

3.1. Two­stage cascade framework

The two-stage framework is shown in Fig. 1. Two pre-

trained face detectors are represented by rectangular and

elliptical shapes, respectively. Let h1 : Ri
1 7→ Ro

1 and

h2 : Ri
2 7→ Ro

2 be the first and second face detectors, re-

spectively. Ri and Ro are the set of input and output image

regions. In the absence of ambiguity, to simplify the nota-

tion, we will drop the subscript for Ri and Ro. Hence, the

two-stage cascade detector can be denoted as

f(Ri) = h2(h1(R
i)) . (1)

Remarks. The set of input image regions, Ri is first gener-

ated by using a sliding window approach [24, 15, 18, 13, 30]

or the region proposal network [1, 4]. Some face detectors

will also consider multiple resolutions of image regions.

Generally, the sliding window approach or region proposal

network will generate hundreds of proposals (|Ri
1| ≈ 500)

while only output a few of them, e.g., |Ro
1| ≈ 5. Since

it is assumed that the number of regions containing faces

will be much smaller than the number of input regions,

|Ri| >> |Ro|, a face detector can be considered as a set

reduction function that reduces Ri into Ro. From this rela-

tionship we have the following proposition.

Proposition 3.1 The cardinality of the set of input regions

of the second detector is always far smaller than the car-

dinality of the input regions of the first detector, |Ri
2| <<

|Ri
1|.

Proof. To prove this, note that Ri
2 = Ro

1. As we know that
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Figure 2: Detections from four different face detectors on

the FDDB dataset [5]: (a) NPD [15], (b) HeadHunter [18],

(c) MTCNN [30] and (d) HR [4]. Green: true positives, red:

false positives.

|Ri
1| >> |Ro

1|, therefore |Ri
2| << |Ri

1| must be true.

Remarks. The computational complexity of fusion-based

detectors (placed in parallel) increase linearly according to

the number of detectors and the overall running time is con-

strained by the slowest detector. Unlike fusion-based detec-

tors, cascading detectors (i.e., placing them in series) will

not significantly increase the overall running time and com-

putations due to a much smaller number of regions for the

second detector to process. If we use a slower but more

complex face detector as the second detector, it is potential

to achieve a faster overall speed than the slowest detector.

It is also noteworthy to mention that the cascading of two

face detectors will not create a face detector that has better

detection rate than the weaker of the two detectors. This is

due to Proposition 3.1 which essentially limits the ability of

the second detector to detect more faces. In other words, the

second detector will not be able to detect faces not detected

by the first detector. However, when carefully selected, the

cascaded face detector could outperform the first detector

with respect to the low false positive rate without adding

much computational time due to the efficiency introduced

by the cascade structure.

3.2. Diversity and correlation metrics

Given the same image, different face detectors will pro-

duce different detection results, as shown in Fig. 2. This is

caused by the various training samples, features and clas-

sifiers used by the detectors, as shown in Table 1. Even

though every face detector has its own theoretical limits,

the cascade framework is able to utilise the different fea-

tures and classifiers to improve the discrimination.

In the two-stage cascade framework, two questions nat-

urally arise: 1) which pair of detectors should be cascaded;

2) which order should they be cascaded. We need a set of

properties that will guide us to address these questions.

The proposed properties are derived from the distribution

of the true and false positives between the detectors. More

specifically, we define a detected window bb = [x, y, w, h]
as a true positive when its intersection-over-union ratio with

the ground truth window is greater than 0.5 and otherwise,

as false positive.

Given two pre-trained face detectors, named as detector

1 and detector 2, we collect the detection windows Ro
1 =

{bbm1 }N1

m=1 and Ro
2 = {bbn2}

N2

n=1, where N1 and N2 are the

numbers of detections. The set Ro
1 comprises the set of true

(a) The overlapping true positives between two detectors. The large

number of overlapping true positives indicates a high correlation of

true positives between detectors.

(b) The overlapping false positives between two detectors. The small

number of false positives indicates a high diversity of false positives

between detectors.

Figure 3: The distribution of overlapping detections be-

tween some face detectors on the FDDB [5]. We can see

that only a small number of false positives are detected by

both detectors, whereas a majority of true positives overlap.

positives T1 and false positives F1. Thus, Ro
1 = T1 ∪ F1

and Ro
2 = T2 ∪ F2.

To measure the overlap ratio α between two bound-

ing boxes bbm1 and bbn2 , we adopt the commonly used

intersection-over-union (IoU): α =
area(bbm1 ∩bb

n

2 )
area(bbm1 ∪bbn2 )

.When

the overlap ratio α of two bounding boxes is larger than

0.3, we consider them as an overlapping pair. Then we col-

lect the overlapping true positives To and overlapping false

positives Fo respectively:

To = T1 ∩ T2 , Fo = F1 ∩ F2 . (2)

Fig. 3 shows the distribution of the overlapping true

and false positives of the four face detectors on the FDDB

dataset [5]. To quantify the distribution, we define the cor-

relation and the diversity to measure the overlapping and

non-overlapping detections between two detectors. Since

the ability of different detectors to detect faces varies, the

correlation and diversity towards different detectors need to

be considered individually. In this work, we denote the cor-

relation of detector 2 to detector 1 as c2→1, which is the ra-

tio of the number of overlapping detections to the total num-

ber of detections from the detector 1. The diversity d2→1 is

defined as the ratio of the number of non-overlapping detec-

tions to the total number of detections.

As the detections consist of true positives and false posi-

tives, we argue that it is necessary to formulate the correla-
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tion and diversity with true and false positives separately:

cT2→1 =
|To|

|T1|
, cF2→1 =

|Fo|

|F1|
,

dT2→1 = 1−
|To|

|T1|
, dF2→1 = 1−

|Fo|

|F1|
, (3)

where cT2→1 is the ratio of the number of overlapping true

positives to the number of detections of detector 1, and

dT2→1 is the ratio of the number of non-overlapping true pos-

itives to the number of detections of detector 1. cF2→1 and

dF2→1 are used to measure the ratio of overlapping or non-

overlapping false positives in a similar way.

In our proposed two-stage cascade framework, only the

detections agreed by both detectors can pass all the stages.

Therefore, we assume that the final detection result is the

intersection set of detector 1 and detector 2 as stated in

Eq. 2. The high diversity of false positives shows that we

can utilise the conflicting decision on the false positives

from the two detectors to let the different detectors com-

pensate for their own mistakes.

3.3. Cascade Properties

For face detection, both accuracy and efficiency are the

most critical concerns. To choose the best pairs of two de-

tectors to cascade and determine the cascade order, we pro-

pose three cascade properties: 1) correlation of true posi-

tives; 2) diversity of false positives; and 3) detector runtime.

On one hand, in order to improve the accuracy, the detec-

tor in the late stage is expected to have the ability to remove

the false positives as well as maintaining the detection rate

unchanged at the same time. The detection rate is often re-

ferred to recall. To this end, there are two properties are

required to hold when we would like to cascade two detec-

tors. The recall, Rc, and precision, Pc, of the cascade de-

tector are used to evaluate the accuracy with respect to true

positives and false positives respectively. Let us introduce

the following proposition.

Proposition 3.2 In the cascade framework, when the two

properties are maximised: 1) cT2→1 ≈ 1; 2) dF2→1 ≈ 1 , the

performance of the cascaded detector will always be better

than the performance of the first detector. That is, Pc > P1,

and Rc ≈ R1.

Proof. To prove this, let us denote the ground truth as T∗,

then Rc = (|Tc|/|T∗|). As we know from the Eq. 3 that

|Tc| = |To| = |T1| × cT2→1, then the recall becomes Rc =
(|T1| × cT2→1)/|T∗|. Therefore, when the cT2→1 ≈ 1, the

following relationship Rc ≈ R1 must be true. Similary,

since |Fc| = |Fo| = |F1| · (1 − dF2→1)), when dF2→1 ≈ 1,

|Fc| >> |F1. Hence, Pc = |Tc|/(|Tc|+|F1|·(1−dF2→1)) >
P1.

Remarks. In our proposed two-stage cascade framework,

if the second face detector has a high correlation of true

positives to the first detector, cT2→1, the recall, Rc, will

False positives

T
ru

e
 P

o
sitiv

e
 R

a
te

Detector 1
Cascade detector

Figure 4: By cascading a second detector, a large number

of false positives can be removed while the recall is well

maintained. As a result, at a low number of false positives,

the true positive rate can be increased significantly.

tend to be maintained; otherwise the recall will drop sig-

nificantly. Meanwhile, the high diversity of false positives

dF2→1 achieves the goal of reducing false positives, which

results in an increase of precision, Pc. In this way, cascad-

ing the second detector can reduce a large number of false

positives while maintaining the true positives detected by

the first detector. As a result, the precision of the first de-

tector, P1, will be increased to Pc with the recall well main-

tained, Rc ≈ R1. In other words, by visualising it with the

Receiver Operating Characteristic (ROC) curve, we can see

from Fig. 4 that at a specific number of false positives, the

true positive rate can be increased significantly.

On the other hand, to achieve the high efficiency, the run-

ning time is the third property to be considered. As dis-

cussed in Proposition 3.1, vastly fewer image regions are

fed to the second stage, and therefore the expected com-

putational load of the detector in the second stage is much

smaller than the first stage. In terms of the two-stage cas-

cade framework, to achieve overall fastest speed, we pro-

pose to use the faster face detector in the first stage and the

slower detector in the second stage.

4. Experiments

4.1. Datasets

The experiments employed two datasets:

FDDB dataset [5]. The dataset includes images of faces

with a wide range of difficulties such as occlusions, difficult

poses, low resolution and out-of-focus faces. The images

are collected from the Yahoo! news website. It contains

2,845 images with a total of 5,171 faces labelled.

WIDER FACE dataset [28]. The dataset is currently the

largest face detection dataset, which contains 32,203 im-

ages and 393,703 annotated faces based on 61 events from

the Internet. The dataset contains faces with various appear-

ance, poses, and scales. It divides the test protocols into

three levels of difficulties: ’Easy’, ’Medium’ and ’Hard’.

4.2. Implementation Details

Note that our proposed method does not need retrain-

ing. However, we still need to select the best pair of de-

tectors to cascade. In this work, we explore the cascade

framework with four face detectors in Table 1: NPD [15],
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Table 1: Comparisons of face detectors with regard to the

features, classifiers and training sets.

Method Features Backbone
Machinery

Training Set

NPD [15] Normalised pixel
difference

AdaBoost AFLW [8]

HeadHunter [18] Integral channel
features

AdaBoost AFLW [8]+Pascal
Faces [26]

MTCNN [30] Deep CNN fea-
tures

DeepNet CelebA [16]+WIDER
FACE [28]

HR [4] Deep CNN fea-
tures

DeepNet ImageNet pre-
training+WIDER
FACE [28]

HeadHunter [18], MTCNN [30], HR [4]. The first two de-

tectors are tree-based detectors whilst the last two detectors

are based on deep networks. Twelve possible pairs of detec-

tors can be constructed from these four detectors. We do not

evaluate the cascade framework with the VJ [24] as its true

positive rate is half of the other detectors and its correlation

with the other detectors will be very low. We use the FDDB

dataset [5] as a validation set to select which two detectors

can be cascaded and their order according to the cascade

properties in Section 3.3: i.e., high correlation of true pos-

itives, high diversity of false positives and runtime. Once

the best pairs of detectors are determined, we test them on

the WIDER FACE dataset’s validation set [28] as its test set

does not provide ground truth information.

Following the FDDB dataset [5], we compute the

Intersection-over-Union (IoU) as the evaluation metric.

When the IoU is larger than 0.5, the detection is consid-

ered as true positive; otherwise, false positive. For the eval-

uation on FDDB, we plot the Receiver Operating Charac-

teristic (ROC) curves. For the WIDER FACE dataset [28],

we follow their evaluation metric and plot the Precision and

Recall (PR) curves.

4.3. Evaluation on FDDB dataset

Before evaluating the proposed cascade framework, we

calculate the correlation and diversity of true positives and

false positives between detectors to decide the pairs to cas-

cade and their orders. Runtime analysis is then conducted.

4.3.1 The correlation and diversity

From Fig. 3, we can see that only a small number of false

positives are detected by both detectors, whereas a major-

ity of true positives overlap as expected. We calculate the

correlation and diversity metrics defined in Section 3.2 on

these detector pairs. The results on the FDDB [5] dataset

are shown in Table 2 and 3. In Table 2, a high correlation of

true positives cT corresponds to the large number of over-

lapping true positives. It is not surprising to see that most

detectors overlap on the true positives as they are designed

to detect true faces. On the contrary, there is a high diversity

of false positives dF , which is caused by the various train-

ing samples, features and classifiers used by the detectors

(see Table 1).

Table 2: The correlation of true positives cT2→1.

Detector 2

Detector 1 NPD [15] HeadHunter [18] MTCNN [30] HR [4]

NPD [15] 1 0.9683 0.9970 0.9967

HeadHunter [18] 0.9487 1 0.9959 0.9961

MTCNN [30] 0.8755 0.8926 1 0.9900

HR [4] 0.8523 0.8694 0.9640 1

Table 3: The diversity of false positives dF2→1.

Detector 2

Detector 1 NPD [15] HeadHunter [18] MTCNN [30] HR [4]

NPD [15] 0 0.9339 0.8916 0.9645

HeadHunter [18] 0.8236 0 0.7030 0.9170

MTCNN [30] 0.9228 0.9207 0 0.8826

HR [4] 0.9491 0.9554 0.7636 0

It is noteworthy to mention that the order of detectors

is important. Table 2 and Table 3 show that the corre-

lation metric cT2→1 may decrease when the order is re-

versed. This is due to the inability of the second detec-

tor to detect the true positives detected by the first detec-

tor. According to the cascade properties in Section 4.2,

we select 6 out of 12 possible pairs of cascade detectors:

NPD-HeadHunter, NPD-MTCNN, NPD-HR, HeadHunter-

MTCNN, HeadHunter-HR and MTCNN-HR.

4.3.2 Evaluating the two-stage cascade framework

Fig. 5 shows the discrete ROC curves of our proposed 12

different pairs of cascade detectors as mentioned in Sec-

tion 4.2 and the individual face detectors: NPD [15], Head-

Hunter [18], MTCNN [30] and HR [4]. For practical pur-

poses, a good face detector is considered to have not only

a high true positive rate but also a low false positive rate.

Therefore, we plot the True Positive Rate (TPR) at the same

number of false positives in the legend of Fig. 5 and Table 4.

As the FDDB dataset contains 2,845 images, the specific

number of false positives is selected as 284, which corre-

sponds to 1 false positive per image (i.e., a False Positives

Per Image (FPPI) of 0.1).

As shown in Fig. 5, compared with the performance of

the individual NPD detector [15], the TPR (FPPI=0.1) of

NPD can be significantly increased from 80% to 81%, 84%
or 84% by cascading HeadHunter, MTCNN or HR respec-

tively. The reasons are two-fold.

First, due to the high diversity of the false positives be-

tween the two detectors dF2→1, the false positives of NPD

can be reduced from 2, 058 to 200 by cascading Head-

Hunter, MTCNN or HR (i.e., yielding a 10 times reduction

of false positives!).

Second, the high correlation of the true positives cT2→1

ensures the overall true positive rate is well preserved. Both

NPD-MTCNN and NPD-HR have higher TPR (FPPI=0.1)

than NPD-HeadHunter. It is because the cT2→1 of NPD-

MTCNN (0.997) and NPD-HR (0.997) are higher than that

of NPD-HeadHunter (0.96).
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Figure 5: The comparisons between our proposed two-

stage cascade detectors and individual face detectors on the

FDDB dataset [5].

With the large reduction of false positives as well as the

overall TPR maintained, the ROC curve is shifted to the left,

which results in an increase of TPR at the low number of

false positives when compared with the individual detector.

In addition, when comparing NPD-MTCNN with NPD-

HR, NPD-HR can reduce more false positives than NPD-

MTCNN with the same overall TPR. This owes to the

higher diversity of false positives: dF
HR→NPD

(0.965)

which is higher than dF
MTCNN→NPD

(0.8916). It is note-

worthy to mention that NPD-HR can even have a slightly

higher true positive rate than NPD itself. It is because

the HR needs to utilise the context information to classify

faces/non-faces so that we expand the detections before for-

warding to the second stage. As such, the false positives

with localisation error can be corrected by the bounding box

regression scheme of HR. Similarly, HeadHunter-MTCNN

and HeadHunter-HR can improve the HeadHunter with a

higher detection rate at the low number of false positives

because of the high correlation of true positives (0.996) and

high diversity of false positives.

For the cascade detectors using all deep learning detec-

tors, we still increase the performance. For instance, the

MTCNN TPR at FPPI = 0.1 increases from 92% to 93%
when it is cascaded with HR. These results suggest that

when the proposed cascade properties are satisfied, the first

detector TPR can potentially be improved by cascading it

with a stronger second detector.

As discussed, the six above-mentioned pairs of cascade

detectors are chosen and ordered according to the proposed

cascade properties. Beside these pairs, we evaluate another

six pairs of which the order is reversed. Fig. 5 shows that

the performance (with regard to TPR) of a reversed pair is

on par with the corresponding original pairs. For example,

both HR-MTCNN and MTCNN-HR have the same TPR at

FPPI=0.1 (93%). These pairs are on par with the current

state-of-the-art detector, HR [4] (94%).

Since HR is the best detector, it is not possible to improve

its accuracy. Nevertheless, it is still possible to significantly

Table 4: The runtime of detectors evaluated in this work on

the FDDB dataset.

Method
CPU time (SPF∗)

TPR (FPPI#=0.1)
1st stage 2nd stage total time

VJ [24] 0.271 - 0.271 0.462

NPD [15] 0.678 - 0.678 0.801

NPD-HeadHunter 0.678 988 988.678 0.810

NPD-MTCNN 0.678 0.073 0.751 0.841

NPD-HR 0.678 2.678 3.356 0.841

HeadHunter [18] 1961 - 1961 0.834

HeadHunter-NPD 1961 0.404 1961.404 0.819

HeadHunter-MTCNN 1961 0.116 1961.116 0.889

HeadHunter-HR 1961 3.648 1964.648 0.889

MTCNN [30] 0.355 - 0.355 0.919

MTCNN-NPD 0.355 0.220 0.575 0.843

MTCNN-HeadHunter 0.355 456 456.355 0.882

MTCNN-HR 0.355 3.496 3.851 0.930

HR [4] 17.687 - 17.687 0.943

HR-NPD 17.687 0.170 17.857 0.839

HR-HeadHunter 17.687 794 811.687 0.886

HR-MTCNN 17.687 0.076 17.763 0.930
∗SPF–Seconds Per Frame # FPPI–False Positives Per Image

Table 5: Comparison of our proposed framework and the

state-of-the-art face detector.

Method CPU time (SPF∗) TPR (FPPI#=0.1)

HR [4] 17.687 0.943

MTCNN-HR (ours) 3.851 0.930
∗SPF–Seconds Per Frame # FPPI–False Positives Per Image

decrease its running time. This can be observed from the

MTCNN-HR which runs five times faster than HR (in Ta-

ble 5). We will discuss this in details in the next subsection.

4.3.3 Runtime Analysis

In face detection, both detection accuracy and running time

are critical factors. Therefore, we evaluate the runtime in

a video surveillance scenario, where all images are resized

to 640 × 480 VGA images. To make a fair comparison, all

detectors are tested on a E5-1620@3.5 GHz CPU with only

a single thread. In this work, the GPU time is not evaluated

as the detector, NPD [15], is not implemented with GPU.

The minimum face sizes of all the detectors are set to 20×20
pixels. The CPU time in Table 4 is the average time per

image on the FDDB dataset [5].

We first benchmark the runtime of each individual face

detectors in the first column of Table 4. It is worth not-

ing that the MTCNN [30], a CNN based face detector, runs

faster than NPD, on CPU. Unlike the reported time of the

NPD in [15], which is 30 ms per image with a single thread

of CPU, it is 67.81 ms in our experiments. The following

experimental settings may lead to the different speed of the

NPD: 1) our minimum face size (20 × 20) is smaller than

theirs (80× 80) and the test images are different; 2) we use

the unoptimized MATLAB code.

Compared with running individually, when a face detec-

tor is cascaded as the second detector, the runtime of this

second detector is much smaller. It can be seen from the sec-
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(a) Val:easy. (b) Val:medium. (c) Val:hard

Figure 6: Comparisons on the WIDER FACE validation set [28]. The precision and recall curves of different subsets: easy,

medium and hard.

ond and third columns of Table 4 that the runtime of HR [4]

is 17.6 s, whereas when HR [4] is performed as a second

detector in MTCNN-HR, the runtime is only 3.5 s, which

is five times faster. This is because only a small amount

of candidate windows are fed into the second detector. This

means less data to process for the second detector compared

to running it as an individual detector.

With a small price of slight runtime increase, the per-

formance of current face detectors can be significantly im-

proved by cascading with a second detector, as shown in the

last column of Table 4.

According to the proposed properties that the TPR and

FPR are not affected significantly no matter which order is

chosen for cascading a pair of detectors, this leaves the de-

cision to the runtime of the resulting cascade. From our ex-

periments, we found that using the faster detector as the first

detector will not significantly increase the overall runtime.

In Table 5, we compare the best pair of detec-

tors, MTCNN-HR, with the state-of-the-art face detector,

HR [4], with regard to runtime and TPR. It is noteworthy

that the MTCNN-HR achieves five times less runtime than

the HR while maintaining a competitive accuracy, with a

TPR of 93%. The results demonstrate that our proposed

two-stage cascade framework can not only improve the ac-

curacy of current face detector by removing false positives

but also achieve high computational efficiency.

4.4. Evaluation on WIDER FACE dataset

In the WIDER FACE dataset [28] evaluation, we only

test the six pairs of cascade face detectors satisfying the cas-

cade properties. Fig. 6 reports the performance of the pro-

posed cascade detectors and the individual detectors. The

curve labels in the legend are sorted according to the aver-

age precision (AP).

It can be seen from the Fig. 6 that the proposed two-stage

cascade detectors can have larger AP than the individual de-

tectors in these three different subsets. This demonstrates

that our proposed two-stage cascade detectors successfully

reduce a large number of false positives while maintain-

ing the true positive rates. In the comparison of each two-

stage cascade detector and the individual detectors, the per-

formance is consistent with the FDDB dataset [5] which

indicates that the correlation and diversity of the true and

false positives between the face detectors still exist on the

WIDER FACE dataset. This suggests that it is possible to

optimise the pair of face detectors using a dataset.

5. Conclusions

The central goal of this work was to improve the ex-

isting face detectors’ performance by reducing their false

positives whilst maintaining high true positive rate. To this

end, a two-stage cascade framework, cascading two pre-

trained face detectors, was proposed. The cascade frame-

work showed its efficiency and effectiveness as fewer de-

tections are passed onto the second detector and there is no

significant increase in the overall runtime. In this two-stage

framework, the cascade properties were studied by explor-

ing the correlation and diversity between the face detectors.

We further showed that to improve a face detector, the sec-

ond detector must have a high correlation of true positives

and a high diversity of false positives with respect to the first

face detector. Our experiments showed that our proposed

cascade framework improves existing face detectors signif-

icantly by removing a large number of false positives with

minor loss of true positives. The improvement is shown as

an increasing detection rate at low numbers of false posi-

tives. In addition, we showed that the diversity and correla-

tion metrics are consistent between datasets. This suggests,

it is possible to find the best pair of detectors using a pilot

dataset and apply it this to another dataset. In this way, we

can avoid retraining the detectors. In this work, we success-

fully found a pair of face detector that achieves significantly

lower false positives with competitive detection rates, and

five times greater speed than the current state-of-the-art de-

tector described in [4].
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