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Abstract
An exactly solved bosonic tunneling model is studied along a line of the coupling parameter
space, which includes a quantum phase boundary line. The entire energy spectrum is computed
analytically, and found to exhibit multiple energy-level crossings in a region of the coupling
parameter space. Several key properties of the model are discussed, which exhibit a clear
dependence on whether the particle number is even or odd. Principal among these is a number-
parity effect in the quantum dynamics.

Keywords: quantum tunneling, particle number parity, energy-level crossing

1. Introduction

The symmetric two-site Bose–Hubbard model has been stu-
died widely for some time [1–6]. The Hamiltonian reads

 = - - +( ) ( ) ( )† †k
N N

J
b b b b

8 2
, 11 2

2
1 2 2 1

where

d= = =[ ] [ ] [ ]† † †b b b b b b, , , , 0,i j ij i j i j

for i, j=1, 2. Above  denotes the identity operator, and
= †N b bj j j. Setting N=N1+N2, it can be verified that

=[ ]H N, 0. The model has a simple interpretation through
two terms describing particle interactions with coupling k, and
a tunneling process between two wells with interaction
strength J. Without loss of generality we take J�0. Though
it is simple, the Hamiltonian has been successfully used as a
model for experimentally realized tunneling phenomena [7].

Several studies have identified a quantum phase transition
in the attractive regime k<0, using a variety of approaches

including semiclassical methods [8, 9], mean-field approx-
imation [10], entanglement [11–13], fidelity [12, 13], frag-
mentation [14, 15], NMR simulations [16], and exact results
using Bethe ansatz methods [12, 17]. One way to characterize
the two phases is through the energy gap between the ground
state and the first excited state. Setting k=0 in (1) it is not
difficult to check that the ground-state energy is−JN/2, and the
gap to the first excited state is J. At the other extreme when
J=0 and k<0, the ground state is two-fold degenerate, so
the gap is zero. The transition between these extremes is
abrupt. Setting l = ( ) ( )kN J2 the transition takes place at
λ=−1 [12].

In recent times a generalized version of (1) has been
studied which includes a second-order tunneling process
[18–20]. The extended Hamiltonian is

= - - +

-
W

+

( ) ( )

(( ) ( ) ) ( )

† †

† †

H
k

N N
J

b b b b

b b b b

8 2

2
, 2

1 2
2

1 2 2 1

1
2

2
2

2
2

1
2

where the coefficient Ω is the coupling for second-order
tunneling. The inclusion of such a term can be justified on
physical grounds, but it is often neglected because the cou-
pling Ω is much weaker than k and J [21, 22]. Nonetheless,
the model has been employed [18] to account for the exper-
imental observation of second-order tunneling in the low-
particle number limit [23]. Note that equation (2) does not
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include an interaction term of the form N1N2, as is found in
[18]. Because the total particle number N is conserved, such
an interaction term can be replaced with

= - -( )N N N N N
1

4

1

4
1 2

2
1 2

2

leading to a renormalization of the coupling k and uniform
energy shift within each subspace of fixed N. This is sufficient
for the analysis conducted below, whereby the calculations
are performed within subspaces of fixed value for N.

From the mathematical perspective, (2) offers a richer
structure than (1). Analyses of bifurcations of fixed points in
the classical limit show there are three expected phases, which
will be referred to as Josephson, self-trapping, and phase-
locking [19, 20]. The phase-locking phase was studied closely
via a classical analysis in [20], where it was highlighted that
in this phase two fixed points arise with zero population
imbalance and tunable relative phases (different to 0 or π) as
the parameter Ω is varied. In this study, it was also found that
for the quantum Hamiltonian there occurred multiple energy-
level crossings corresponding to this phase, particularly
between the ground state and first excited state. Such cross-
ings are a new feature not found in the studies of the
Hamiltonian (1)2. There is, however, some evidence to sug-
gest that they may be a generic property of systems with non-
linear tunneling processes. In particular, this behavior has
been observed in models with second-order tunneling
between internal degrees of freedom [25–27].

The main objective of this work is to investigate the
boundary between the phase-locking and self-trapping phases.
Energy-level crossings are also found to occur on this bound-
ary, and they can be precisely identified. The energy levels can
be computed analytically. The character of the set of energy
levels is dependent on whether the particle number is even or
odd. We will study some of the consequences of this finding,
which may have implications for few-body bosonic systems.

The results complement those for few-body fermion systems,
that have attracted recent attention [28, 29]. A significant
finding, that goes beyond the results of [18, 20], is a clear sign
that the quantum dynamics of the system can display behaviors
which are strongly influenced by the number-parity.

In section 2 we begin by establishing that the phase-lock-
ing and self-trapping phases exhibit a duality. The boundary
between them is a self-dual line with an enhanced symmetry. In
section 3 we recall Bethe ansatz equations (BAE) for the model,
which are easily solved on the self-dual line. This solution is
used in section 4 to examine the nature of the ground-state
energy gap, and in section 5 a supersymmetric structure within
the model is unveiled. Number-parity effects in the computation
of dynamical expectation values are investigated in section 6,
and concluding remarks are given in section 7.

2. Duality

Set γ=Ω N/J, and recall l = ( ) ( )kN J2 . The boundary
lines between the three phases, which are identified through
bifurcation analysis, are [20]

• self-trapping/Josephson: γ+λ=−1 for λ�−1/2;
• phase-locking/self-trapping: γ=λ for λ�−1/2;
• Josephson/phase-locking: γ=−1/2 for λ�−1/2.

The three boundaries meet at the triple point (λ, γ)=(−1/2,
−1/2). A representation of the phase diagram is given in
figure 1.

To reveal the duality between the phase-locking and self-
trapping phases, introduce the su(2) realization

= = = -+ - ( ) ( )† †S b b S b b S N N, , 2 3z
1 2 2 1 1 2

satisfying the relations

=  =  + -[ ] [ ] ( )S S S S S S, , , 2 , 4z z

for which the Casimir invariant C=2(S z)2+S+S−+
S−S+ has eigenvalue Λ=N(N+2)/2 . In terms of this
realization, the Hamiltonian is expressed as

= - -
W

++ -( ) (( ) ( ) ) ( )H
k

S JS S S
2 2

. 5z x2 2 2

This Hamiltonian will now be transformed by a composition
of three unitary operators:

-
-

= -

  
  

◦ ◦

T S S S S S S
R S S S S S S

U T R T

: , , ,
: , , ,

,

x z y y z x

x y y x z z

1

where S x=(S++S−)/2, Sy=(S+−S−)/(2i) . Note that
T and R are rotations of π/2 about the y- and z-axes respec-
tively, such that U4=id. It is found that

= W - - - + W +

+ - W

+ -( ) ( )( ) ( )(( ) ( ) )

( )

U H k S JS k S S

k C

1

4
6

1

8
2

1

8
2 ,

z x2 2 2

and U2(H)=H. It is easily checked that, up to the inclusion
of an N-dependent term, U maps Hamiltonians between the

Figure 1. Coupling parameter space diagram indicating the three
quantum phases identified by bifurcation analysis.

2 The conclusion that equation (1) does not have energy-level crossings
follows from a mapping of the spectrum into that of a one-body Schrödinger
problem. See e.g. [24].

2
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phase-locking and self-trapping phases, while Hamiltonians
in the Josephson phase are mapped back to the Josephson
phase under the action of U. This shows that there is a one-to-
one correspondence between the energy spectra in phase-
locking and self-trapping phases. Hamiltonians on the line
γ=λ, or equivalently Ω=k/2, are invariant under the
action of U. Along this line, which includes the boundary
between the phase-locking and self-trapping phases, analytic
expressions for the entire energy spectrum can be obtained, as
we describe below.

3. Exact solution

The Bethe ansatz solution derived in [20] gives the energy
eigenvalues and eigenvectors as

å åå



= - -
W

Yñ= + ñ

= = ¹

=

∣ ( )∣† †

E
kN J

u u u

b u b

8 2 2
,

0 .

j

N

j
j

N

k j

N

j k

j

N

j

2

1 1

1
1 2

Here, the parameters {uj : j=1, K, N} satisfy the BAE

- - - + W - ¢

= W + - 

( ( ) ( ) ( ) ) ( )

( ( ) ) ( ) ( )

J u k N u N u Q u

u ku Q u

1 1 2 1

1 , 6

j j j j

j j j

2 3

4 2

where

= -
=

( ) ( ) ( )Q x x u . 7
j

N

j
1

Note that the form (6) is different to the BAE presented in
[20], which reads

å
- - - + W -

- W +
=

-¹
( )

( ) ( ) ( )
( )

8
J u k N u N u

ku u u u

1 1 2 1

1

2
.

j j j

j j k j

N

k j

2 3

2 4

Equations (6) and (8) are equivalent whenever there are no
root multiplicities in (7). The more general form (6), which
accommodates root multiplicities, will be required for the
analysis below.

Hereafter set Ω=k/2, which is the self-dual line iden-
tified in the previous section. For this constraint the BAE (6)
are solved with the choice =u 1j

2 for all j=1, K, N. There
are N+1 solutions where q of the roots are chosen to take
the value −1, while the remaining N−q are chosen to take
the value 1. This gives a complete set of (normalized)
eigenstates

ñ=
-

+ - ñ

= ¼

-

( )

∣
!( )!

( ) ( ) ∣† † † †

9

N q
q N q

b b b b

q N

,
1

2
0 ,

0, 1, , ,

N

N q q
1 2 1 2

with the corresponding energies

= - + - + - ( )( ) ( ) ( ( ) ) 10E N q
J

q N
k

q N q N N,
2

2
8

8 2 .2

While the structure of the states and spectrum through
(9), (10) is very simple, we can see that the system is non-
trivial from the following analysis. Fixing J in (10), by setting

= ¢( ) ( )E N q E N q, , , we see that all energy levels corresp-

onding to labels ¢ Î ¼ ⎢⎣ ⎥⎦{ }q q, 0, 1, , N

2
will cross at values

=
+ ¢ -

( )k
J

q q N
. 11

Moreover, energy levels corresponding to q and ¢ = +q q 1
cross when

=
+ -

( )k
J

q N2 1
, 12

which decreases as q increases. This then implies that for all
k>J/(1−N), the label q=0 corresponds to the ground
state, noting that for these values of k there are no further
energy-level crossings for this state. By a similar argument,

for all < - -⎢⎣ ⎥⎦( )k J N2 1 ,N

2
the label = ⎢⎣ ⎥⎦q N

2
corre-

sponds to the ground state. For labels = ¼ -⎢⎣ ⎥⎦q 1, 2, , 1N

2
,

the ground state occurs when

+ -
< <

- -
( )J

q N
k

J

q N2 1 2 1
. 13

This is easily seen using standard calculus techniques. In
other words, all the ground state energy-level crossings occur

from the lowest value = - -⎢⎣ ⎥⎦( )k J N2 1N

2
up to

k=J/(1−N).
The level crossings predicted by our analysis are depicted

in figure 2. It can be seen that when k=0 the energies are
equally spaced, e.g. see figure 2(a). This is because the
eigenstates in this limit are simply discrete momentum
eigenstates. For negative k, as ∣ ∣k increases, a sequence of
ground-state level crossings occur. Also for sufficiently large
∣ ∣k the energies form a system of bands. When N is odd the
number of energy levels is even, and the energy-level bands
occur in pairs ñ∣N q, and - ñ∣N N q, , each with separation J
(N−2q). When N is even, however, the number of levels is
odd, and there is a single unpaired state, e.g. see figure 2(c).
This points towards a prospect for number-parity effects,
which will be explored below.

We also remark that from (9), it is straightforward to
calculate certain correlation functions. For example, for each
q=0, 1, K, N

á - ñ= + -

á + ñ= -

á + ñ= - - -

( ) ( )

( ) ( ) ( )

† †

† †

N N N q N q

b b b b N q

b b b b
N N

q N q

2 ,

2 ,

2 2
3 .

1 2
2

1 2 2 1

1
2

2
2

2
2

1
2

2

3.1. Continuum approximation

One straightforward approach to analyze the system is to
introduce the variable l=q/N, 0�l�1, and treat this as
varying continuously. This approximation is expected to be a
valid in the limit of large N. To leading order in N (10)

3
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becomes

l l» - - + -( ( ))E
JN

l l l
4

4 2 8 1 .

For λ�−1/2 the minimum value of energy occurs at l=0,
while for λ�−1/2, the minimum occurs at

l
= + ( )l

1

2

1

4
. 14

We note that (14) is consistent with (12) in the large N limit.
The following expressions are then found for the ground-state
energy and correlations:

















l l

l
l

l

l

l
l

l

l
l

l

l
l

»
- + -

+ -
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»

-
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á + ñ
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-
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The fact that the value of l as given by (14) is a function of λ
is a reflection of the level crossings. It also has the effect of
treating the system as being gapless when λ�−1/2. While
this is correct in some sense, the above treatment does not
capture the full physical properties of the model.

4. Ground-state energy gap

Define the ground-state energy gap Δ to be the difference
between the first excited state energy and the ground-state
energy. From previous discussion, we know that for fixed J

and = ¼ -⎢⎣ ⎥⎦q 1, 2, , 1N

2
, the energy level ñ∣N q, is the

ground state for values of k given by (13). In the following,
we only consider this range of k and q values, so that ñ∣N q, is
the ground state. In this case, it is straightforward to show that
E(N, q+1)=E(N, q−1) occurs when

= =
-

( )k k
J

q N2
. 15P

The difference in the energy corresponding to kP and the
ground state is found to be J/(N−2q). Also, the difference
in energy between the ground state ñ∣N q, and the state

- ñ∣N N q, is J(N−2q) which is greater than J/(N−2q) for
the given values of q. It follows that peaks in the gap must
occur at the values kP given in (15), corresponding to the
crossing of - ñ∣N q, 1 and + ñ∣N q, 1 .

Figure 3 plots Δ as a function of k for N=4, 10, 100,
and by contrast, figure 4 gives the same plot for odd values
N=5, 11, 101. For the odd case, the maximum value of the
gap is J for negative values of k, and for the even case the gap
is unbounded as  -¥k . It is given by Δ=−J−k
whenever k�−J. Furthermore, these figures illustrate that
the gap converges to a ‘sawtooth’ function, however the cases
of even N and odd N do not converge to the same function.
Indeed, the relationship is one in which the locations of the
zeros and peaks of the sawtooth functions are interchanged. In
both instances the convergence is pointwise, which can be
proved rigorously. In neither case, however, is the conv-
ergence uniform with respect to the ¥∣∣ ∣∣. norm. This is an
explicit example of a number parity effect. Note finally that
the property that the gap as a function of k consists of pie-
cewise straight lines is a property of the self-dual line, it does
not hold in general. See [20] for example plots of the gap
away from the self-dual line.

4.1. Continuum approximation

Figure 5 plots Δ as a function of λ for N=5, 11, 101. It
indicates that the gap vanishes in the limit  ¥N , consistent
with the analysis of section 3.1, but the convergence is not
uniform. The gapless regime, which occurs for k<−1/2,
arises independently of N being even or odd. In other words,
in the continuum approximation, the number parity effect
is lost.

Figure 2. Energy levels as a function of k for J=1, Ω=k/2 and N=6. The figures depict different orders of magnitude for the interval
of k.

4
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For other aspects of the system, however, the number parity
effect still has a significant influence. We investigate some further
consequences of number parity in the remaining sections.

5. Supersymmetry

When N is even, k=J, and recalling we have fixed Ω=
k/2, we observe multiple two-fold degeneracies (note the

energy-level crossings at k= 1 in figure 2(b)) and a single
non-degenerate state, the ground state. Consequently, in
this case the Hamiltonian possesses supersymmetry (in the
sense of supersymmetric quantum mechanics [30, 31]). In
particular, the Hamiltonian can be expressed in terms of an
anticommutator of supercharges which square to zero. To
formalize the result, note that the crossing of energy levels
associated with states ñ∣N q, and ¢ñ∣N q, occurs when (11)

Figure 3. Ground-state energy gap Δ as a function of k with J=1, and Ω=k/2. (a) N=4, (b) N=10, (c) N=100.

Figure 4. Ground-state energy gap Δ as a function of k with J=1, and Ω=k/2. (a) N=5, (b) N=11, (c) N=101.

Figure 5. Ground-state energy gap Δ as a function of λ with J=1, and Ω=k/2. (a) N=5, (b) N=11, (c) N=101.

5
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holds. Set ¢ = + -q N q1 and define

å

å

= ¢ ñá ¢

= ¢ ¢ñá

=

=

∣ ∣

∣ ∣†

Q qq N q N q

Q qq N q N q

, , ,

, , .

q

N

q

N

1

2

1

2

It is easily verified that

= =( ) ( )†Q Q 0. 162 2

Define the Hamiltonian

 = + -⎜ ⎟⎛
⎝

⎞
⎠ ( )† †J Q Q QQ C

1

4
, 17

where C is the su(2) Casimir element. Recall that the
eigenvalue of C is Λ=N(N+2)/2. It is easy to check
using only (16) that if Fñ∣ is an eigenstate of (17) with
eigenvalue E then Fñ∣Q and Fñ∣†Q are either eigenvectors
with the same eigenvalue, or null vectors. Explicitly

from (17)

 å

å

å

= - + ¢ ñá + ¢ñá ¢

= - + ñá + ¢ - +
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⎞
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Setting k=J in (10) gives the spectrum of (17), as con-
firmed by (18).

However, there is no supersymmetry point in the cou-
pling parameter space when N is odd. One example where this
particular parity property has a striking manifestation is in the
study of quantum dynamics.

Figure 6. Expectation value of the fractional atomic imbalance I as a function of t for J=1 and Ω=k/2. On the left, N=10, on the right,
N=11. From top to bottom k=±49/50, ±1, ±51/50.

Figure 7. Expectation value of the fractional atomic imbalance I as a function of t for J=1 and Ω=k/2. On the left, N=10, on the right,
N=11. From top to bottom k=±12/25,±1/2,±13/25.
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6. Quantum dynamics

Let

Fñ = ñ∣
!

( ) ∣†

N
b

1
0 ,N

1

which represents an initial state such that all particles are in
the same site. Define the expectation value of the fractional
atomic imbalance to be

= áF - - Fñ- ∣ ( )( ) ( )∣I N iHt N N iHtexp exp ,1
1 2

where t denotes time. It can be shown using

á Fñ =
-

∣ !
!( )!

N q
N

q N q
,

2N

that a simple expression for I is obtained:

= -( )( ( )) ( )I Jt ktcos cos . 19N 1

At the supersymmetric point k=J when N is even, it is
apparent that 0�I�1. For odd N at the same value of
coupling parameters it is apparent that −1�I�1. Thus the
even N case exhibits a type of self-trapping behavior, while
the odd N does not. While the phenomenon of self-trapping is
well-known [1, 3], such a parity influence on self-trapping
does not appear to have been previously identified.

Since the expression (19) is an even function of k, exactly
the same dynamical behavior occurs for k=−J. For even N
this corresponds to the smallest value of k such that the
ground-state energy gap is zero. In contrast, for odd N the
smallest value of k for which the ground-state energy gap is
zero is k=−J/2. Illustrative examples of the expectation
values for the fractional atomic imbalance at these parameter
values are provided in figures 6 and 7 for N=10 and
N=11. It is clear that the number-parity significantly influ-
ences the character of the dynamical behavior. This remains
true for different parameter vales, although the effects are not
so pronounced. An example is given in figure 8, with para-
meter values in the vicinity of k=−1/N for J=1.

7. Conclusion

We have studied an extension of the familiar two-site Bose–
Hubbard model that includes a second-order tunneling term.
This model is known to exhibit three phases determined by
fixed-point bifurcations, and in the present work a detailed
analysis has been undertaken along a line of the coupling
parameter space that includes the boundary between phase-
locking and self-trapping phases. All energy levels on this
line can be computed analytically, and from this result it was
identified that significant number-parity effects are present. In
particular, the influence of number-parity on the ground-state
energy gap, and the dynamics of the fractional atomic
imbalance, were investigated. Our results are applicable in the
case of finite value for the coupling J. Complementary results
for the limit as J 0 are provided in [18]. We expect that
these analytic results will provide useful consistency checks
on non-analytic techniques, in the limit of approaching the
self-dual line, in future studies.

Mathematically, the model considered here is equivalent
to the Lipkin–Meshkov–Glick (LMG) model of nuclear
physics, which can be seen through the spin representation
(5). Identification with the generalized LMG model was also
adopted in [25–27]. The LMG model been studied through an
exact Bethe ansatz solution [32], although the exact solution
has a different form to that of [20]. In [32] the analysis was
conducted using a choice of coupling parameters such that the
region of level crossing is treated as a gapless region in the
limit of large particle number. Our results indicate that there
may be new insights to be gained for the LMG model, and
generalizations, by choosing a different form of coupling
parameters. Such an approach has recently been applied to the
attractive one-dimensional Bose gas [33]. There, a distinction
is made between the zero density thermodynamic limit and
the weakly interacting thermodynamic limit, which are
obtained by different scaling of parameters as the system size
increases.

Figure 8. Expectation value of the fractional atomic imbalance I as a function of t for J=1 and Ω=k/2. On the left, N=10, on the right,
N=11. From top to bottom k=±1/20,±1/10,±1/9.
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