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Abstract 17 

Wave breaking and transformation on coral reef flats is an important process protecting 18 

tropical coastlines and regulating the energy regimes of coral reefs. However, the high 19 

hydraulic roughness, shallow water, and steep bathymetries of coral reefs may confound 20 

common surf zone assumptions, such as a depth-limited and saturated surf zone with a 21 

constant wave height to water depth ratio (γ). Here, we examine wave transformation across 22 

a coral reef flat, during three separate swell events, on both a time-averaged and a wave-by-23 

wave basis. We use the relationship between significant wave height and water depth (γs) to 24 

examine the change in surf saturation across the reef flat and compare the measured wave 25 

height decay to results of modelled wave energy dissipation in the surf zone.  Our results 26 

show that γs was not cross-reef constant and varied according to location on the reef flat and 27 

local water depth. On average, γs was greatest at the outer reef flat, near the reef crest, and 28 

progressively reduced towards the inner reef flat, near the reef lagoon. This was most 29 

pronounced in shallow water with large γs values (γs > 0.85) at the outer reef flat and small γs 30 

values (γs < 0.1) at the inner reef flat. This indicates that there is an increase in wave energy 31 

dissipation in shallow water, most likely due to increased breaker and bed frictional 32 

dissipation. The measured wave energy dissipation across the entire reef flat could, on 33 

average, be modelled accurately; however, this required location specific calibration of the 34 

free parameters, the wave friction factor (fw) and γ, and further suggests that there is no 35 

value for either parameter that is universally applicable to coral reef flats. Despite model 36 

calibration inaccuracies were still observed, primarily at the outer reef flat. These 37 

inaccuracies reflected the observed cross-reef variation of γ on the reef flat and potentially 38 

the limitations of random wave breaker dissipation models in complex surf zones. Our 39 

results have implications for the use of wave energy dissipation models in predicting 40 

breaker dissipation and subsequent benthic community change on coral reef flats, and 41 
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suggest that careful consideration of the free parameters in such models (such as fw and γ) is 42 

required. 43 

Introduction 44 

Coastal protection and the regulation of hydrodynamic energy is one of the most important 45 

ecosystem services provided by coral reef systems (e.g. Hoegh-Guldberg et al., 2007). Wave 46 

breaking and transformation on coral reef flats, and the resultant wave induced flows, are 47 

the dominant physical forcing mechanisms on most coral reefs (Monismith, 2007). The 48 

shallow water environment and very high frictional roughness values of reef flats contribute 49 

to the efficient removal of wave energy over relatively short distances (Lowe et al., 2005; 50 

Monismith et al., 2015). As a result of this process, back-reef environments immediately in 51 

lee of coral reef flats are typically low-energy environments with limited potential for 52 

sediment transport under average conditions (Harris et al., 2015; Pomeroy et al., 2012).  53 

Wave energy dissipation in the surf zone of coral reefs is similar to beach environments in 54 

that it has mostly been observed to saturate (Gourlay, 1994; Nelson, 1994), with a constant 55 

ratio of wave height (H) to water depth (h) over time: 56 

� = γℎ	            (Eq. 1) 57 

where � is the wave height to water depth ratio . For saturated surf zones the common 58 

values used for γ are: 0.78 for monochromatic waves, which was first derived from solitary 59 

wave theory and observed in laboratory studies (Longuet-Higgins, 1974; McCowan, 1891); 60 

and, 0.42 for root-mean square wave height (Hrms) which was observed in surf zones of 61 

beaches (e.g. Sallenger and Holman, 1985; Thornton and Guza, 1982). However, these 62 

values were derived from a limited range of conditions and beach types, and a wide range of 63 

γ has been observed in more complex beach environments including observations of non-64 
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constant γ in the cross-shore in unsaturated surf (Nelson, 1987; Power et al., 2010; 65 

Raubenheimer et al., 1996; Ruessink et al., 2003).  66 

Coral reefs have been the subject of even fewer surf-zone studies compared to siliciclastic 67 

beaches and typically have much more complex bathymetries (Demirbilek and Nwogu, 68 

2007). As a result γ may be poorly defined for coral reefs, despite γ being the primary 69 

parameter that defines wave breaking in many wave energy dissipation models (e.g. 70 

Baldock et al., 1998; Battjes and Janssen, 1978; Thornton and Guza, 1983). These models 71 

and concepts have been applied to coral reefs to infer changes in coral reef geomorphology 72 

and ecology (Gove et al., 2015), and to determine the coastal protection service provided by 73 

coral reefs (Harris et al., 2018; Saunders et al., 2014; Storlazzi et al., 2015). They have also 74 

been used to link hydraulic roughness observations to benthic ecological assemblages and to 75 

determine the influence of waves on ecological zonation of coral reefs (Monismith et al., 76 

2015; Rogers et al., 2016; Storlazzi et al., 2005; Williams et al., 2013). Most of these 77 

analyses are reliant on an accurate description of breaker wave energy dissipation on coral 78 

reef flats despite the limited data in such systems when compared to siliciclastic beaches. 79 

This study will therefore focus on wave transformation and the variationn of surf zone 80 

saturation and depth limited waves across the reef flat and determine what influence this 81 

may have on the accuracy on breaker dissipation models. 82 

The most common value of γ observed on coral reef flats is between γ = 0.4 – 0.6, which has 83 

been observed in both laboratory and field studies (Table S1). However, this value is mostly 84 

applicable only to the near-horizontal reef flats and may not be relevant for the steep fore-85 

reef slopes of coral reefs (Massel and Gourlay, 2000; Nelson, 1994). When the full cross-86 

reef profile is examined (including the fore-reef slope and the reef crest) a wide range of γ 87 

values have been observed (0.1 < γ < 1.2) (Figure 1 and Table S1). This may be due to one 88 
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or a combination of: 1) the many different definitions of γ that have been reported; 2) the 89 

numerous methods used to determine γ; and/or, 3) the location of observation on the reef flat 90 

(Figure 1 and Table S1). Cross-reef variability in γ has been previously observed with γ 91 

values between 0.7 – 1.2 for the fore-reef slope and reef crest, and 0.2 – 0.7 for the reef flat 92 

(Figure 1 and Table S1).  93 

The observed variability of γ values across the surf zones of coral reefs has led to concerns 94 

regarding the accuracy of commonly used wave energy dissipation models that use a 95 

constant value of γ to determine the proportion of broken waves, for a given period, in the 96 

surf zone (Demirbilek and Nwogu, 2007). In an attempt to mitigate this, Hearn (1999) 97 

incorporated the observed cross-reef variability of γ into models of wave energy dissipation 98 

and defined regions of high γ (at the reef crest, γ = 0.8) and low γ (on the reef flat, γ = 0.5). 99 

These values are similar to the average results found in previous literature, when examining 100 

γ values with respect to the location on the reef flat (Figure 1). However, most wave energy 101 

dissipation models, including the most common models that have been used on coral reefs, 102 

use a constant γ parameter to define wave breaker dissipation (e.g. Harris et al., 2018; Lowe 103 

et al., 2005; Pomeroy et al., 2012). In these scenarios, wave energy dissipation models have 104 

primarily been calibrated to describe the total dissipation of energy across the coral reef flats 105 

and, while accurately explaining wave energy dissipation in general terms, they may 106 

overlook some specific wave processes and conditions that differ between the outer reef 107 

(near or at break point) and the inner reef flats (inner surf zone) (Massel and Gourlay, 2000). 108 

Furthermore, the common approach of using time-averaged measurement and modelling of 109 

coral reef surf zone processes may mask significant detail in the true variation of wave 110 

heights in the inner surf zone. Previous studies have found that individual waves in surf 111 

zones of intermediate beaches are not necessarily influenced by water depth to the same 112 

extent as time-averaged wave conditions (e.g. Power et al., 2010; Power et al., 2015). To 113 
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date there has been no detailed wave-by-wave analysis of measured wave transformation in 114 

a coral reef surf zone. Therefore, this study will: 1) examine the variability and prevalence 115 

of surf zone saturation and depth limited waves by analysing wave decay (via change cross-116 

reef in γ) across a coral reef flat on time-averaged and wave-by-wave bases; and, 2) assess 117 

the accuracy of a common wave energy dissipation model on a reef flat using spatially 118 

variable γ in the surf zone. 119 

One Tree Reef 120 

One Tree Reef (OTR) is a lagoonal mid-shelf reef in the Capricorn Bunker Group of the 121 

Southern Great Barrier Reef (GBR) (Figure 2). OTR receives moderate wave energy with 122 

Hopley (1982) reporting a 1.15 m offshore significant wave height (Hso) on average for the 123 

southern GBR (reanalysis of the offshore wave record is shown in Figure S1). Waves are 124 

predominately from the southeast and do not change significantly throughout the year 125 

although OTR may be exposed to cyclone events during the summer months (November – 126 

March). The reef flats of OTR are emergent during low tide with no interaction between the 127 

pelagic and lagoonal environments during this time. Tides are meso-tidal with a maximum 128 

tidal range of 3.5 m which result in water depths of 2.1 m over the reef flat (Harris et al., 129 

2014). This study deployed pressure transducers on the southern reef flat (P1-6, Figure 1c), 130 

which is dominated by turf and crustose coralline algae, and has minimal live coral cover 131 

(Thornborough and Davies, 2011). Coral boulders are randomly dispersed on the reef flat, 132 

with a greater accumulation of smaller coral rubble at the lagoonward end of the reef flat 133 

(P5-6) (see photos in Supplementary Material Appendix 3). The reef flat is near horizontal 134 

or with a mild slope (tanβ) at near the reef crest (P1, tanβ = 0.01), near horizontal at the mid 135 

reef flat (P2-3, tanβ ≈ 0.002), mildly negatively sloped near the lagoon (P4-5, tanβ = -0.01), 136 
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and is horizontal on the live coral windrows that have formed on the back-reef sand apron 137 

(tanβ ≈ 0, Figure 1d). 138 

Methods  139 

Analysis of previous literature 140 

We reviewed all the previously published values of γ – to our knowledge – to examine the 141 

variation and average values of γ on coral reef flats. The definition of γ reported, the 142 

observation location on the reef flat, and the method used to determine γ were assessed 143 

(Table S1 and Supplementary Material). The maximum observed γ and the γ used in 144 

calibrated wave models are summarized in Figure 1. These two definitions of γ were 145 

selected since maximum observed values of γ in the literature have informed the values used 146 

for γ in wave energy dissipation models (e.g. Gourlay, 1994; Gourlay, 1996; Lowe et al., 147 

2005; Massel and Gourlay, 2000; Nelson, 1994) . We categorised values as being derived 148 

from one of two main zones on the cross-reef profile: (1) the reef crest or outer surf zone, 149 

and (2) the reef flat or inner surf zone (Figure 1 and 2). The average values observed in each 150 

zone and in calibrated wave models are shown in Figure 1 and reported in Table S1. Table 151 

S1 in the supplementary material shows the full list of publications used in the analysis.  152 

Offshore wave record 153 

The long-term offshore wave climate (Hso and Tp) for OTR was defined, for the first time, 154 

using the Centre for Australian Weather and Climate Research (CAWCR) Wave Hindcast 155 

(1979-2013), which provides hourly wave predictions at 4 arc minute resolution around the 156 

Australian coastline (Durrant et al., 2014; Durrant et al., 2013) (Figure S1). The wave 157 

hindcast dataset was developed using the WAVEWATCH III spectral wave model (Tolman, 158 

2014) with Climate Forecast System (CFS) atmospheric forcing (Saha et al., 2010).  To 159 
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provide offshore wave conditions at OTR (coordinates 23°30' S, 152°12' E) during the three 160 

field sampling periods in 2012, 2014 and 2016, a comparable WAVEWATCH III spectral 161 

wave model and CFS forcing was used, the Nearshore Coastal Ocean Wave (NCOW) model 162 

(Kinsela et al., 2014), providing wave predictions in the GBR region at 0.25° resolution 163 

(Figure 1).  164 

To ensure consistency between the long-term CAWCR Wave Hindcast dataset and the 165 

offshore wave model run for the field sampling periods (NCOW), wave height predictions 166 

for the 2012 calendar year were compared to recorded waves at a Waverider Buoy station 167 

located in 80 m water depth offshore of Byron Bay (500 km SSE from OTR). Both the 168 

CAWCR Wave Hindcast and NCOW model performed well against waverider buoy 169 

measurements until Hso > 5 m which is larger than the range of offshore wave heights 170 

examined in this study (Figures S3, S4 in Supplementary Material). Extreme storm peak 171 

wave heights were under-predicted by both the hindcast dataset and the wave model (Figure 172 

S4). This may be attributed to the resolution of the atmospheric forcing data, which limits 173 

the capacity to accurately resolve steep coastal wind gradients associated with the land-sea 174 

interface (e.g. Kinsela et al., 2014; Sharp et al., 2015). This resolution effect diminishes with 175 

increased distance from the coastline, and is not expected to be significant at OTR, which is 176 

located 90 km from the Queensland coastline. The comparison shows that at the Byron Bay 177 

location, the wave hindcast dataset and wave model provide comparable predictions for 178 

significant wave heights up to 5 m (Figure S4). The probability distribution of the offshore 179 

wave heights were compared to the Weibull, Gumbel, and Lognormal distributions using the 180 

Wave Analysis for Fatigue and Oceanography MATLAB® toolbox (Brodtkorb et al., 2000). 181 

The lognormal distribution produced the most accurate description of the offshore wave 182 

heights and the mean long-term significant wave height and wave period were computed 183 

from this distribution. 184 
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Field measurement  185 

Waves were measured during non-storm conditions on the reef flat of OTR on 13-14 186 

December 2012 and 15-16 March 2016 and during a storm event generated by a low to 187 

moderate energy cyclone on 30-31 January 2014 (Tropical Cyclone (TC) Dylan, storm 188 

conditions). In total almost 120,000 individual waves were measured and analysed. Waves 189 

were measured using pressure transducers (PTs, INW Aquistar PT2X) which were deployed 190 

on the southern reef flat in a cross-reef transect. PTs logged continuously at a sampling 191 

frequency of 8 or 10 Hz, depending on the maximum frequency of the PT. Five PTs were 192 

deployed in December 2012 (P1 and 3-6 from reef crest to lagoon) and four in January 2014 193 

and March 2016 (P2-5) (Figure 2c). Repeat deployments were conducted at sites P2, 4, 5, 194 

and 6 for the three measurement periods.  Data were divided into 15-minute records and 195 

records that were not fully submerged for the full 15 minutes were removed. 196 

Data processing and wave statistics 197 

The pressure records from the PTs were low-pass filtered to remove instrument noise, high-198 

pass filtered to separate infragravity effects and then split into 15-minute runs to remove the 199 

tidal influence in the record (e.g. Hughes and Moseley, 2007). Pressure attenuation with 200 

depth was corrected using methods outlined in Tucker and Pitt (2001). Wave height (H) and 201 

wave period (T) were calculated using zero down-crossing analysis, with significant wave 202 

height (Hs) calculated for each 15-minute run. Using these data, γs, and wave height to water 203 

depth for individual waves (γw), were calculated using Hs/ℎ� and H/hw respectively, where ℎ� 204 

is the mean water depth across the 15-minute run and hw is the average water depth for an 205 

individual wave. γs was selected as the time-averaged value of γ due to the widespread use of 206 

this term (since Hs is the most common measurement of wave height) when assessing surf 207 

zone saturation in field settings (e.g. Power et al., 2010; Raubenheimer et al., 1996). 208 
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Wave energy dissipation model 209 

We applied the Alsina and Baldock (2007) and Janssen and Battjes (2007) (hereafter 210 

AB07/JB07) random wave breaker dissipation model in combination with frictional 211 

dissipation equations (Jonsson, 1966; Swart, 1974) to the southern reef flat of One Tree 212 

Reef, using a similar approach to that of Lowe et al. (2005) for coral reefs. The AB07/JB07 213 

follows the approach of Battjes and Janssen (1978) and determines the mean (time-214 

averaged) decay of wave height and energy by applying an energy flux balance across the 215 

surf zone. The AB07/JB07 models (that are identical but developed independently) include 216 

updated estimates of dissipation in the inner surf zone to remove shoreline singularities of 217 

earlier models (Baldock et al., 1998) and correct some of the errors observed by Janssen 218 

(2006) and Ruessink et al. (2003) in the inner surf zone. The model can be summarized by: 219 

�	
�
�� = −�� − ��	              (Eq. 2) 220 

where ECg is the wave energy flux, Db is the wave energy dissipation due to breaking (both 221 

initial breaking at the breakpoint and ongoing breaking due to bore processes), and Df  is the 222 

wave energy dissipation due to bed friction. The wave energy flux is defined as the wave 223 

energy multiplied by the wave group velocity: 224 

� = 	 �� ������
�            (Eq. 3) 225 

�� = 	� �
� �1 +

�� 
�!" �� # $%&'           (Eq. 4) 226 

where Hrms root-mean-square wave height, Cg is the group velocity normal to the reef crest, 227 

C is the wave phase velocity, ρ is the water density, k is the wave number, g is gravitational 228 

acceleration, and θ is the incident wave angle. Wave number was determined by solving the 229 

dispersion relation for shallow water using the Newton – Raphson iteration method. Since 230 
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no directional wave information was available in this study, and the model was applied after 231 

wave breaking in the inner surf zone, we assume cosθ = 1. This is not strongly limiting since 232 

most of the wave refraction will have likely already occurred prior to the wave 233 

measurements on the reef flat. 234 

The most common formulation of Db is to approximate energy dissipation as propagating 235 

water bores, first proposed by Lamb (1932), which is then multiplied by the number of 236 

broken waves over the total number of waves per unit of the cross-shore distance . The 237 

fraction of broken waves is determined by assuming a Rayleigh distribution of waves at 238 

each location in the surf zone. This approach includes all processes that lead to energy 239 

dissipation such as, boundary shear, friction between the wave roller and wave surface, and 240 

turbulence due to breaking. In the AB07/JB07 model, Db is given by: 241 

�� =	 (√*�+
�,�-./01

 21 + 3
(√* �

-4
-./0

( + (
�

-4
-./0

# exp �− -4
-./0

�# − erf	� -4
-./0

#:       (Eq. 5) 242 

where f is the dominant frequency of the wave spectrum, Hb breaker wave height (Hb = γh), 243 

erf is the error function (implemented in MATLAB® here). The loss of wave energy due to 244 

bed friction may be large in coral reef environments (Lowe et al., 2005; Monismith et al., 245 

2015) so an additional factor that determines frictional energy loss is required (Df). The 246 

Swart (1974) frictional dissipation equation was used incorporating the wave friction factor 247 

(fw, Jonsson 1966): 248 

�� =	 �(* ;<=>
(           (Eq. 6) 249 

where U is the near bed orbital velocity determined from linear wave theory.  250 

The two free parameters in the full model are γ (used to define Hb) and fw.  fw  was varied 251 

spatially during model calibration between the locations of wave measurement, similar to 252 
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Lowe et al. (2005) and Péquignet et al. (2011), resulting in four different zones of roughness 253 

on the reef flat. We also calibrated the wave model with a spatially constant fw value since 254 

this method has been used previously on coral reefs (e.g. Harris et al., 2018; Monismith et 255 

al., 2013; Pomeroy et al., 2012). Calibration of both parameters was performed by applying 256 

the Generalised Likelihood Uncertainty Estimation (GLUE,  Beven and Binley (1992)) 257 

method for 100,000 model runs, see Simmons et al. (2015) for an example of applying the 258 

GLUE method for coastal models. The best fitting value of γ was 0.57 and the values for fw 259 

are shown in Table 1 for the model with spatially varying fw. For the wave energy 260 

dissipation model with a constant fw, γ = 0.48 and fw = 0.2. 261 

Results  262 

Reef flat and offshore wave conditions 263 

The long-term offshore wave data indicate that the mean significant offshore wave height 264 

(��?�����) and offshore wave period (@A���) for the southern GBR are ��?�����  = 1.5 m and @A��� = 6.7 s, 265 

which are larger than values reported by Hopley (1982) (Figure S1). The offshore wave 266 

height from the NCOW wave model is shown in Figure 3; the average Hs for the 2012, 267 

2014, and 2016 during the measurement periods were 2.6 m, 4.9m, and 1.21 respectively. 268 

The conditions during 2012 and 2016 are considered non-storm conditions since Hs < 3 m 269 

and 2014 considered storm conditions since Hs > 3 m (as defined by Lord and Kulmar 270 

(2001)).  271 

Waves on the reef flats did not vary with changes in the offshore wave conditions (Figure 272 

3).  The time-averaged wave heights on the reef flat during all deployments were depth 273 

limited and could mostly be described by local water depth where Hs = 0.31ℎ� (��E  = 0.31, R2 274 

= 0.96, n = 114726, Figure 4a). However, when examined for each 15-minute run, γs varied 275 

considerably (Figure 4c). γs values had greater variance in shallow water conditions with a 276 
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maximum value of 0.9 and minimum of 0.05 when ℎ� ≈ 0.1	(Figure 4c).  These differences 277 

were dependent on the measurement location on the reef flat. For measurements closer to 278 

the reef crest at the outer reef flat (P1-4) γs increased as depth decreased resulting in large γs 279 

values in shallow water conditions (ℎ� < 1 m) (Figure 5a). Measurements that were furthest 280 

from the reef crest at the inner reef flat (P5-6) showed the opposite trend with γs decreasing 281 

as depth decreased (Figure 5a). The γs values at the outer and inner reef flats for changing 282 

depth could be explained by Eq. 7 (R2 = 0.66, n=495) and Eq. 8 (R2 = 0.66, n=232) 283 

respectively which were derived from exponential regression for ℎ� 	≥ 0.1 where:��,?IJK� =284 

0.61MN�	(−4.87ℎ�) + 0.33        (Eq. 7) 285 

��,!""K� = −0.87MN�	(−0.07ℎ�) + 1.06        (Eq. 8) 286 

Eq. 7 and 8 are shown in Figure 5a. The values of γs in greater water depths tended towards 287 

the mean of γs = 0.31 at both the outer and inner reef flat (Figure 4c and 5a). The γs values in 288 

general decreased as waves propagated across the reef flat and at greater depths (Figure 5a 289 

and b). The wave shape and wave deformation also changes during propagation over the 290 

reef flat particularly during shallow water conditions (Figure 6 and 7 and Figure S7 in the 291 

Supplementary Material).  292 

Wave-by-wave analysis 293 

Large variation in wave height to water depth ratios was also observed on a wave-by-wave 294 

basis (Figure 8). The distribution of γw showed larger values of up to γw = 3, over three times 295 

greater than that of the maximum observed values in the time-averaged analysis of γs = 0.9 296 

(Figure 8). The trends in γs and γw values with changing water depths were similar whereby 297 

γw increased on the outer reef flat (P1-4) and decreased on the inner reef flat (P5-6) as water 298 

depth decreased (Figure 8c and d). As such, a greater proportion of individual waves were 299 
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dissipated at the outer reef flat under shallow water conditions resulting in smaller waves 300 

near the lagoon (Figure 8c and d). Maximum γw values (γw_max) also changed with water 301 

depth: all recorded waves for the inner reef flat were below a maximum γw of 0.5. 302 

γw_max = 0.5 also adequately explained most of the waves for the outer reef flat when h > 1 m 303 

(Figure 8d). A value of 0.8 was more appropriate when h < 1 m for the outer reef flats, 304 

although γw_max could also be much higher when h < 0.5 m (Figure 8). The maximum value 305 

of γw changed throughout the tidal cycle with no one value adequately explaining the limit of 306 

wave height to water depth for all water depths and locations (Figure 8). 307 

 Discussion  308 

Wave transformation on coral reef flats 309 

Wave conditions on the reef flat were saturated and independent of offshore incident wave 310 

height even under cyclone generated swell conditions (Figure 3). Consequently, the 311 

significant wave height, averaged for the combined period of all deployments, could be 312 

accurately predicted using local water depth (Hs = 0.31ℎ�) (Figure 4a). This is consistent with 313 

previous studies that have noted strong correlations between wave heights and water depths 314 

on coral reef flats (e.g. Gourlay, 1994; Hardy and Young, 1996; Monismith et al., 2013; 315 

Nelson, 1994). Despite the correlation between wave height and water depth observed here 316 

(Figure 4a), γs was not cross-reef constant and showed considerable variation depending on 317 

the location of measurement on the reef flat (Figure 4c and 5a). This clearly shows that there 318 

is no single value for γs that is applicable for an entire tidal cycle nor for all locations on the 319 

coral reef flat. The γs values, when averaged for each location from the three measurement 320 

periods, were greater on the outer reef flat and decreased as waves propagated across the 321 

reef flats towards the lagoon (Figure 5b). The average γs values for each location were 0.2 – 322 

0.5 (Figure 5b) and are similar to previous observations of reef flat waves (Hardy et al., 323 
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1990, Table S1) particularly at the inner reef flat where the maximum wave-by-wave γ 324 

(γw_max) is 0.5 (Figure 8b and d), i.e., the same value observed by Nelson (1994), Gourlay 325 

(1994) and many subsequent studies (Figure 1 and Table S1).  326 

However, the average γs values from the entire measurement period mask significant detail 327 

in the variation of γs with changing depth that has not been observed in previous studies 328 

(Figure 4c and 5a). At the inner reef flat, on near horizontal or mild negative slopes, γs = 0.5 329 

and therefore Hs = 0.5h effectively defined the upper limit of wave heights and therefore 330 

showed that waves were saturated. The outer reef flat maximum wave heights could also be 331 

predicted by Hs = 0.5h when h > 1 – 1.5 m. However, during shallow water at the outer reef 332 

flat when h approached zero, Hs did not decrease at the same rate, leading to high values of 333 

γs. A similar increase in γs was observed by Raubenheimer et al. (1996) and Baldock et al. 334 

(1998) in the shallow nearshore zones of steep beaches due to increased breaker dissipation 335 

as “shore breaks”. This may also explain the increase in γs during shallower water near the 336 

reef crest and the break-down of wave height predictions based on assumptions of depth-337 

limited waves heights (e.g. Equation 1).  The disparity between the high γs values on the 338 

outer reef flat (γs > 0.8) and the low γs values on the inner reef flat (γs < 0.1) in shallow water 339 

indicated that most of the wave energy was dissipated on the outer reef flat and reef crest 340 

(Figure 8d). This may be due to both increased breaker dissipation but also greater frictional 341 

dissipation at the outer reef flat leading smaller than expected waves in the inner reef flat 342 

when assuming depth limited wave heights. The much higher calibrated values of fw in the 343 

wave energy dissipation model at the outer reef flat when compared to the inner reef flat 344 

may support this conclusions (Table 1). The high fw values would also suggest that the outer 345 

reef flat has higher structural complexity and, while higher coral cover was observed on the 346 

reef flats in this location, in absence of any direct quantitative measurement it is not possible 347 

to define the benthic ecological assemblages that led to the high fw values. The low γs values 348 
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at the inner reef flat during shallow water is most likely also due to the slight increase in 349 

local water depth due to the mild negative slope in this region that does not correspond with 350 

an increase in H. Despite the inaccuracy of depth limited assumptions during shallow water 351 

at both the inner and outer reef flat, the surf zone was still characterized by saturated 352 

conditions as local wave heights were not influenced by changes in offshore wave 353 

conditions.  354 

In order to assess the effects of the observed changes in γs on wave energy dissipation 355 

models, we applied the modified AB07/JB07 wave energy dissipation model described 356 

above to the data recorded in 2012 (Figure 9a and b). The deployment record from 2012 was 357 

selected since it covers most of the full width of the reef flat from P1-P6 (without P2 due to 358 

equipment failure). We find that the model shows good overall agreement with regards to 359 

the average rate of wave energy dissipation across the reef flat (Figure 9) suggesting that 360 

small γs values at the inner reef flat are indeed due to the enhanced breaker dissipation in 361 

shallow water at the outer reef flat. However, there were significant differences between the 362 

measured and modelled wave heights for outer and inner reef flat (Figure 9c). The model 363 

tended to under predict wave height in shallow water and over predict wave height in deeper 364 

water at the outer reef flat (Figure 9c). For the inner reef flat, wave heights were generally 365 

over-predicted. Despite these inaccuracies in the model, most discrepancies for the inner 366 

reef flat region could be corrected by spatially varying the values of reef roughness (fw) 367 

across the reef flat; an approach that is not available for models that use a spatially constant 368 

fw (Table 1, Figure 9 and Supplementary Material). In contrast, allowing for spatially 369 

varying roughness coefficients only marginally improved the accuracy of breaker 370 

dissipation at the outer reef flat, particularly during shallow water (Figure 9b and 371 

Supplementary Material). This indicates that, while random wave energy dissipation models 372 
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can be successfully tuned to calculate wave energy dissipation on the reef flat, they may 373 

inaccurately represent breaker dissipation near the reef crest.  374 

The errors observed in the models are most likely linked to the observed cross-reef and 375 

depth variable values of γ observed in this study (Figure 5) and may highlight the difficulties 376 

in applying wave energy dissipation models to coral reef environments with steep or 377 

complex bathymetries (Salmon and Holthuijsen, 2015). We also note that the choice of 378 

spatially varying or constant fw within the wave model resulted in different values of γ and fw 379 

being assigned during model calibration. This is not unexpected but it indicates that γ and fw 380 

produced from model calibrations are dependent on the mechanics of the wave energy 381 

dissipation model selected and potentially on each other. Due to the many varied approaches 382 

taken to determine γ and fw in the literature, including a wide range of fw values applied to the 383 

same coral reef (e.g. fw = 0.3-7, Gove et al. (2015), Monismith et al. (2015), Rogers et al. 384 

(2016)) it is clear that there is not yet a consistent method for determining the free 385 

parameters in wave energy dissipation models of γ and fw (or equivalent roughness 386 

coefficient), nor are there universal values that can be assigned to coral reefs (Rosman and 387 

Hench, 2011). 388 

In order to further explain the variability in γs, a number of additional wave parameters were 389 

examined similar to the approach taken by Ruessink et al. (2003) (Supplementary Material). 390 

We found a correlation was between wave deformation and γs (for γs < 0.6) with the least 391 

square linear regression fit given by:	392 

   �� = −0.2UM< + 0.53	     for γs < 0.6                   (Eq. 9) 393 

where def is the time-averaged wave deformation, which is the ratio of the time between the  394 

zero up-crossing and wave crest (a) and the time between the wave crest and zero down-395 

crossing (b) obtained from the pressure time series (def = a/b)  (Cowell, 1982) (Figure 6 and 396 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

18 
 

Figure S6 in Supplementary Material). This result suggests that the larger γs values are due 397 

to waves with higher deformation values that Cowell (1982) defined as ‘hyper crested’ 398 

waves and that more closely resembled surf zone bores (Figure 7). Conversely, as waves 399 

propagate into the inner reef flat they reduce in deformation potentially indicating the 400 

reforming of wave shape or that the rate of energy dissipation due to breaking decreases 401 

through a reduction in bore strength (Figure 6 and 7). However, Eq. 9 was still unable to 402 

describe the maximum values of γs (e.g. γs > 0.6) in the outer reef flat during shallow water. 403 

As such, there are most likely additional mechanisms driving the largest values of γs such as 404 

the rate of energy dissipation in the surf zone when compared to rate of change in water 405 

depth and offshore wave steepness that is beyond the current data set of this study (Battjes 406 

and Stive, 1985; Raubenheimer et al., 1996). 407 

The form of γs presented in Eq. 13 can only be calculated through wave-by-wave 408 

measurements, which are shown here to provide insights into the controls of wave decay for 409 

individual waves during propagation across reef flats. Depth was the primary control in 410 

defining the maximum height of individual waves, despite the considerable variation in 411 

wave height. This has not always been observed in previous studies, for example 412 

unsaturated surf has been observed for individual waves on siliciclastic beaches (Power et 413 

al., 2010). However, in a similar trend to those observed in the time-averaged results, the 414 

wave-by-wave maximum wave height to water depth ratio (γw_max) was not cross-reef 415 

constant under shallow water conditions. Greater wave decay across the surf zone was 416 

observed during shallow water with much larger waves observed in the outer reef flat when 417 

compared to the inner reef flat. A limiting γw value of γw_max = 0.5 explained most of the 418 

wave record for the inner reef flat, particularly at higher tidal stages (Figure 8). When h > 1 419 

– 1.5 m, γw_max = 0.5 adequately described wave conditions on the outer reef flat (Figure 8). 420 

However, under shallow water a limiting γw_max value of 1.5 explained most of the waves 421 
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with some instances of γw_max ≈ 3 also observed under shallow water (Figure 8 and Figure S7 422 

in Supplementary Material).  This indicates that there can be individual waves three times 423 

larger than what is suggested by time-averaged results. Waves such as this are likely to be 424 

important non-linear mechanisms of change in coral reefs, and have the potential to dislodge 425 

of coral colonies from reef substrate, however, the effects of these individual waves have 426 

not been examined in detail to date. 427 

Conclusions 428 

The results here show that surf zones are saturated on the southern reef flat of One Tree 429 

Reef but not necessarily depth limited. This result is consistent with most reef flats based on 430 

our literature review. Wave height to water depth ratios were shown to vary most during 431 

shallow water; increasing on the outer reef flat (γs > 0.85) and decreasing on the inner reef 432 

flat (γs < 0.1). In contrast, wave height to water depth ratios were consistent across the entire 433 

reef flat (γs = 0.31, γw_max = 0.5) under greater water depths and were close to previously 434 

reported values. The difference in γs between the inner and outer reef flats was also observed 435 

in the wave-by-wave analysis and is indicative of increased wave energy dissipation under 436 

shallow water due to wave breaking and bed friction. The effects of cross-reef and depth 437 

variable γ on a random wave energy dissipation model was also examined. The model 438 

results were accurate, but showed errors that were most likely due to the cross-reef 439 

variability of γ observed in the wave data. This led to inaccurate descriptions of wave 440 

conditions, primarily for the outer reef flat. Our results highlight the challenges when using 441 

wave energy dissipation models in environments with steep and complex bathymetry such 442 

as coral reefs we show the importance of accurate model calibration with site-specific field 443 

data in such systems. 444 

  445 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

20 
 

Acknowledgements 446 

DH is funded by Institutional Strategy of the University of Bremen, funded by the German 447 

Excellence Initiative (ABPZuK-03/2014) as part of MARUM and by ZMT, the Center for 448 

Tropical Marine Ecology, University of Bremen. DH was also funded by a Leibniz ZMT 449 

core budget funding (70005) and a new staff grant at The University of Queensland. AVC is 450 

funded by ARC Future Fellowship (FT100100215). One Tree Island is a field station run by 451 

the University of Sydney. Online documentation for pressure record filtering and wave 452 

model development by Urs Neumeier and Falk Feddersen is also acknowledged. We would 453 

like to thank the three reviewers who helped improve this manuscript during the review 454 

process. 455 

  456 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

21 
 

References 457 

Alsina, J.M., Baldock, T.E., 2007. Improved representation of breaking wave energy 458 

dissipation in parametric wave transformation models. Coastal Engineering 54, 765-769. 459 

Baldock, T.E., Holmes, P., Bunker, S., Van Weert, P., 1998. Cross-shore hydrodynamics 460 

within an unsaturated surf zone. Coastal Engineering 34, 173-196. 461 

Battjes, J., Janssen, J., 1978. Energy loss and set-up due to breaking of random waves. 462 

Proceedings of 14th International Conference on Coastal Engineering 1. 463 

Battjes, J., Stive, M., 1985. Calibration and verification of a dissipation model for random 464 

breaking waves, Coastal Engineering 1984, pp. 649-660. 465 

Beaman, R., 2010. Project 3DGBR: A high-resolution depth model for the Great Barrier 466 

Reef and Coral Sea. Marine and Tropical Sciences Research Facility (MTSRF) Project 467 

2.5i.1a Final Report, MTSRF, Cairns, Australia, p. pp. 13. 468 

Beven, K., Binley, A., 1992. The future of distributed models: model calibration and 469 

uncertainty prediction. Hydrological Processes 6, 279-298. 470 

Brodtkorb, P.A., Johannesson, P., Lindgren, G., Rychlik, I., Ryden, J., Sjö, E., 2000. 471 

WAFO-a Matlab toolbox for analysis of random waves and loads, The Tenth International 472 

Offshore and Polar Engineering Conference. International Society of Offshore and Polar 473 

Engineers. 474 

Cowell, P.J., 1982. Breaker stages and surf structure on beaches. University of Sydney. 475 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

22 
 

Demirbilek, Z., Nwogu, O.G., 2007. Boussinesq modeling of wave propagation and runup 476 

over fringing coral reefs, model evaluation report. DTIC Document. 477 

Durrant, T.H., Greenslade, D., Hemer, M., Trenham, C., 2014. A Global Wave Hindcast 478 

Focussed on the Central and South Pacific. CAWCR Technical Report No. 070, p. 34 pp. 479 

Durrant, T.H., Hemer, M., Trenham, C., Greenslade, D., 2013. CAWCR Wave Hindcast 480 

1979-2010. v7. CSIRO. Data Collection. 10.4225/08/523168703DCC5. 481 

Gourlay, M.R., 1994. Wave transformation on a coral reef. Coastal Engineering 23, 17-42. 482 

Gourlay, M.R., 1996. Wave set-up on coral reefs. 2. set-up on reefs with various profiles. 483 

Coastal Engineering 28, 17-55. 484 

Gove, J.M., Williams, G.J., McManus, M.A., Clark, S.J., Ehses, J.S., Wedding, L.M., 2015. 485 

Coral reef benthic regimes exhibit non-linear threshold responses to natural physical drivers. 486 

Marine Ecology Progress Series 522, 33-48. 487 

Hardy, T., Young, I., Nelson, R., Gourlay, M., 1990. Wave attenuation on an offshore coral 488 

reef. Coastal Engineering Proceedings 1. 489 

Hardy, T.A., Young, I.R., 1996. Field study of wave attenuation on an offshore coral reef. J. 490 

Geophys. Res. 101, 14311-14326. 491 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

23 
 

Harris, D.L., Rovere, A., Casella, E., Power, H., Canavesio, R., Collin, A., Pomeroy, A., 492 

Webster, J.M., Parravicini, V., 2018. Coral reef structural complexity provides important 493 

coastal protection from waves under rising sea levels. Science Advances 4. 494 

Harris, D.L., Vila-Concejo, A., Webster, J.M., 2014. Geomorphology and sediment 495 

transport on a submerged back-reef sand apron: One Tree Reef, Great Barrier Reef. 496 

Geomorphology 222, 132-142. 497 

Harris, D.L., Vila-Concejo, A., Webster, J.M., Power, H.E., 2015. Spatial variations in wave 498 

transformation and sediment entrainment on a coral reef sand apron. Marine Geology 363, 499 

220-229. 500 

Hearn, C.J., 1999. Wave-breaking hydrodynamics within coral reef systems and the effect 501 

of changing relative sea level. Journal of Geophysical Research: Oceans 104, 30007-30019. 502 

Hoegh-Guldberg, O., Mumby, P.J., Hooten, A.J., Steneck, R.S., Greenfield, P., Gomez, E., 503 

Harvell, C.D., Sale, P.F., Edwards, A.J., Caldeira, K., Knowlton, N., Eakin, C.M., Iglesias-504 

Prieto, R., Muthiga, N., Bradbury, R.H., Dubi, A., Hatziolos, M.E., 2007. Coral Reefs 505 

Under Rapid Climate Change and Ocean Acidification. Science 318, 1737-1742. 506 

Hopley, D., 1982. Geomorphology of the Great Barrier Reef: Quaternary development of 507 

coral reefs. John Wiley and Sons, New York. 508 

Hughes, M.G., Moseley, A.S., 2007. Hydrokinematic regions within the swash zone. 509 

Continental Shelf Research 27, 2000-2013. 510 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

24 
 

Janssen, T.T., 2006. Nonlinear surface waves over topography. TU Delft, Delft University 511 

of Technology. 512 

Janssen, T.T., Battjes, J.A., 2007. A note on wave energy dissipation over steep beaches. 513 

Coastal Engineering 54, 711-716. 514 

Jonsson, I.G., 1966. Wave boundary layers and friction factors, Proceedings of the 10th 515 

International Coastal Engineering Conference, Tokyo, Japan, pp. 109-148. 516 

Kinsela, M., Taylor, D., Treloar, D., Dent, J., Garber, S., Mortlock, T., Goodwin, I., 2014. 517 

NSW coastal ocean wave model: Investigating spatial and temporal variability in coastal 518 

wave climates, 23rd New South Wales Coastal Conference, Ulladulla. 519 

Lamb, H., 1932. Hydrodynamics. Cambridge University Press, Cambridge. 520 

Longuet-Higgins, M.S., 1974. On the Mass, Momentum, Energy and Circulation of a 521 

Solitary Wave. Proceedings of the Royal Society of London A: Mathematical, Physical and 522 

Engineering Sciences 337, 1-13. 523 

Lord, D., Kulmar, M., 2001. The 1974 Storms Revisited: 25 Years Experience in Ocean 524 

Wave Measurement Along the South East Australian Coast, Coastal Engineering 525 

Conference. ASCE American Society of Civil Engineers, pp. 559-572. 526 

Lowe, R.J., Falter, J.L., Bandet, M.D., Pawlak, G., Atkinson, M.J., Monismith, S.G., Koseff, 527 

J.R., 2005. Spectral wave dissipation over a barrier reef. Journal of Geophysical Research: 528 

Oceans 110, C04001. 529 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

25 
 

Massel, S.R., Gourlay, M.R., 2000. On the modelling of wave breaking and set-up on coral 530 

reefs. Coastal Engineering 39, 1-27. 531 

McCowan, J., 1891. VII. On the solitary wave. Philosophical Magazine Series 5 32, 45-58. 532 

Monismith, S.G., 2007. Hydrodynamics of Coral Reefs. Annual Review of Fluid Mechanics 533 

39, 37-55. 534 

Monismith, S.G., Herdman, L.M.M., Ahmerkamp, S., Hench, J.L., 2013. Wave 535 

Transformation and Wave-Driven Flow across a Steep Coral Reef. Journal of Physical 536 

Oceanography 43, 1356-1379. 537 

Monismith, S.G., Rogers, J.S., Koweek, D., Dunbar, R.B., 2015. Frictional wave dissipation 538 

on a remarkably rough reef. Geophysical Research Letters 42, 2015GL063804. 539 

Nelson, R.C., 1987. Design wave heights on very mild slopes - an experimental study. 540 

Australian Journal of Civil Engineering 29. 541 

Nelson, R.C., 1994. Depth limited design wave heights in very flat regions. Coastal 542 

Engineering 23, 43-59. 543 

Péquignet, A.-C., Becker, J.M., Merrifield, M.A., Boc, S.J., 2011. The dissipation of wind 544 

wave energy across a fringing reef at Ipan, Guam. Coral Reefs 30, 71-82. 545 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

26 
 

Pomeroy, A., Lowe, R., Symonds, G., Van Dongeren, A., Moore, C., 2012. The dynamics of 546 

infragravity wave transformation over a fringing reef. Journal of Geophysical Research: 547 

Oceans 117, C11022. 548 

Power, H.E., Hughes, M.G., Aagaard, T., Baldock, T.E., 2010. Nearshore wave height 549 

variation in unsaturated surf. Journal of Geophysical Research: Oceans 115, C08030. 550 

Power, H.E., Hughes, M.G., Baldock, T.E., 2015. A novel method for tracking individual 551 

waves in the surf zone. Coastal Engineering 98, 26-30. 552 

Raubenheimer, B., Guza, R.T., Elgar, S., 1996. Wave transformation across the inner surf 553 

zone. Journal of Geophysical Research: Oceans 101, 25589-25597. 554 

Rogers, J.S., Monismith, S.G., Koweek, D.A., Dunbar, R.B., 2016. Wave dynamics of a 555 

Pacific Atoll with high frictional effects. Journal of Geophysical Research: Oceans 121, 556 

350-367. 557 

Rosman, J.H., Hench, J.L., 2011. A framework for understanding drag parameterizations for 558 

coral reefs. J. Geophys. Res.: Oceans 116, n/a-n/a. 559 

Ruessink, B.G., Walstra, D.J.R., Southgate, H.N., 2003. Calibration and verification of a 560 

parametric wave model on barred beaches. Coastal Engineering 48, 139-149. 561 

Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., 562 

Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, 563 

Y.-T., Chuang, H.-Y., Juang, H.-M.H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Van 564 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

27 
 

Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., Van Den 565 

Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-566 

K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z., Liu, Q., 567 

Chen, Y., Han, Y., Cucurull, L., Reynolds, R.W., Rutledge, G., Goldberg, M., 2010. The 568 

NCEP Climate Forecast System Reanalysis. Bulletin of the American Meteorological 569 

Society 91, 1015-1057. 570 

Sallenger, A.H., Holman, R.A., 1985. Wave energy saturation on a natural beach of variable 571 

slope. Journal of Geophysical Research: Oceans 90, 11939-11944. 572 

Salmon, J., Holthuijsen, L., 2015. Modeling depth-induced wave breaking over complex 573 

coastal bathymetries. Coastal Engineering 105, 21-35. 574 

Saunders, M.I., Leon, J.X., Callaghan, D.P., Roelfsema, C.M., Hamylton, S., Brown, C.J., 575 

Baldock, T., Golshani, A., Phinn, S.R., Lovelock, C.E., Hoegh-Guldberg, O., Woodroffe, 576 

C.D., Mumby, P.J., 2014. Interdependency of tropical marine ecosystems in response to 577 

climate change. Nature Clim. Change 4, 724-729. 578 

Sharp, E., Dodds, P., Barrett, M., Spataru, C., 2015. Evaluating the accuracy of CFSR 579 

reanalysis hourly wind speed forecasts for the UK, using in situ measurements and 580 

geographical information. Renewable Energy 77, 527-538. 581 

Simmons, J.A., Marshall, L.A., Turner, I.L., Splinter, K.D., Cox, R.J., Harley, M.D., 582 

Hanslow, D.J., Kinsela, M.A., 2015. A more rigorous approach to calibrating and assessing 583 

the uncertainty of coastal numerical models, Australasian Coasts & Ports Conference 2015: 584 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

28 
 

22nd Australasian Coastal and Ocean Engineering Conference and the 15th Australasian 585 

Port and Harbour Conference. Engineers Australia and IPENZ, p. 821. 586 

Storlazzi, C.D., Brown, E.K., Field, M.E., Rodgers, K., Jokiel, P.L., 2005. A model for 587 

wave control on coral breakage and species distribution in the Hawaiian Islands. Coral 588 

Reefs 24, 43-55. 589 

Storlazzi, C.D., Elias, E.P.L., Berkowitz, P., 2015. Many Atolls May be Uninhabitable 590 

Within Decades Due to Climate Change. Scientific Reports 5, 14546. 591 

Swart, D.H., 1974. Offshore sediment transport and equilibrium beach profiles. Delft 592 

Hydraulics Laboratory Publication No. 131. 593 

Thornborough, K.J., Davies, P.J., 2011. Reef Flats, in: Hopley, D. (Ed.), Encyclopedia of 594 

Modern Coral Reefs: Structure, Form and Process. Springer, Dordrecht, New York. 595 

Thornton, E.B., Guza, R.T., 1982. Energy saturation and phase speeds measured on a 596 

natural beach. Journal of Geophysical Research: Oceans 87, 9499-9508. 597 

Thornton, E.B., Guza, R.T., 1983. Transformation of wave height distribution. Journal of 598 

Geophysical Research: Oceans 88, 5925-5938. 599 

Tolman, H.L., 2014. User manual and system documentation of WAVEWATCH III R 600 

version 4.07. NOAA/NWS/NCEP/MMAB Tech. Note 222. 601 

Tucker, M.J., Pitt, E.G., 2001. Waves in ocean engineering. Elsevier, Amsterdam. 602 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

29 
 

Williams, G.J., Smith, J.E., Conklin, E.J., Gove, J.M., Sala, E., Sandin, S.A., 2013. Benthic 603 

communities at two remote Pacific coral reefs: effects of reef habitat, depth, and wave 604 

energy gradients on spatial patterns. PeerJ 1, e81. 605 

 606 

 607 

  608 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

30 
 

Figure Captions 609 

Figure 1. Average wave height to water depth ratios (γ) reported in previous literature based 610 

on location of measurement on coral reefs and those derived from wave model calibration. 611 

The reported values for both the maximum observed γ and the γ used in calibrated wave 612 

models are shown here. The number of observations is shown inside the bars. Errors bars 613 

represent one standard deviation. Full data are shown in full in Table S1 and S2 in the 614 

supplementary material. 615 

Figure 2. Location of field site and deployment of pressure transducers (PTs). (A) Location 616 

of One Tree Reef (in green) off the southeast coast of Queensland (QLD), Australia; (B) 617 

WorldView-2 satellite image combined digital elevation model from Harris et al. (2014) and 618 

Beaman (2010) with the location of pressure transducer (PT) deployments shown in the red 619 

box; (C) cross-reef schematic of PT deployment locations with mean sea level (MSL) 620 

shown in blue; and, (D) aerial view of PT locations on the reef flat with red line showing 621 

location of transect in (C). 622 

Figure 3. (A) Offshore wave height (Ho, from NCOW (Kinsela et al. 2014)) during each of 623 

the measurement periods compared to the recorded reef flat significant wave height (Hs) ; 624 

(B) significant wave height to water depth ratios (γs) for all measurement locations during 625 

each of the measurement periods compared to Ho. Note the non-continuous nature of the x-626 

axis. 627 

Figure 4. Wave characteristics compared to water depth at each location for the three 628 

measurement periods where faded colours are averages for the 15-minute data records for 629 

all measurement locations and dark colours are averages for depth bins of 0.2 m: (A) 630 

significant wave height with the mean ratio of significant wave height (Hs) to water depth 631 
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(ℎ�, γs= Hs/ℎ�  = 0.31) shown by the black line; (B) zero down-crossing wave period (T); and, 632 

(C) γs. The dashed line in (C) corresponds to the slope of the line of best fit in (A). 633 

Figure 5. (A) Ratio of significant wave height to water depth (γs) compared to water depth 634 

at each location. Faded colours are averages for 15-minute data records and dark colours are 635 

averages for depth bins of 0.2 m. Error bars show standard deviation for the binned data. 636 

The equations for the magenta and green lines are Eq. 7 and 8 respectively. (B) Average γs 637 

from all measurements for P1-P6 and the reef flat topography. Shaded area shows the 638 

standard deviation. 639 

Figure 6. The relationship between γs and wave deformation (def) for the outer (P1-4, in 640 

magenta) and inner reef flat (P5-6, in green). The linear regression for γs < 0.6 is shown by 641 

the black line (Eq. 9). The circle markers are the values excluded from the linear regression. 642 

Figure 7. Example time series of the water surface (η) from the pressure record during the 643 

2014 deployment from P2-5. Note the different scales on the y-axis.  644 

Figure 8. Wave by wave analysis for the 2012 (blue), 2014 (red), and 2016 (black) 645 

measurement periods (A and B). Wave by wave analysis for the six measurement locations 646 

(P1-6) on the reef flat recorded during all three measurement periods (C and D). (A) 647 

Individual wave heights (H) compared to the still water level for individual waves (hw) (see 648 

panel (B) for legend for dashed lines); (B) The ratio of H to hw (γw) compared to hw. Faded 649 

colours are averages for 15-minute data records and dark colours are averages for depth bins 650 

of 0.2 m. Error bars show standard deviation for the binned data (see panel (A) for legend 651 

for points); (C) Individual wave heights (H) compared to the mean water depth of the wave 652 

(hw) (see panel (D) for legend for points and panel (B) for legend for dashed lines); and (D) 653 

the ratio of H to hw (γw) compared to hw (see panel (B) for legend for dashed lines). 654 
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Figure 9. (A) Average cross-reef modelled and measured root-mean-square wave height 655 

(Hrms); (B) Comparison of measured and modelled waves for the entire deployment record 656 

of 2012 with a spatially varying wave friction factor (fw) shown in Table 1 (see panel (C) for 657 

legend); and, (C) a constant fw value. The inner reef flat is in green and outer reef flat in 658 

magenta. The values used for γ and fw are shown in panels (B) and (C).  659 

Table Captions 660 

Table 1. The calibrated wave friction factor (fw) used in the wave energy dissipation model 661 

(Equation 2) for the regions between the five measurement location in 2012 (Equation 2) 662 

 663 

  664 
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Figures 665 

 666 

Figure 1. Average wave height to water depth ratios (γ) reported in previous literature based 667 

on location of measurement on coral reefs and those derived from wave model calibration. 668 

The reported values for both the maximum observed γ and the γ used in calibrated wave 669 

models are shown here. The number of observations is shown inside the bars. Errors bars 670 

represent one standard deviation. Full data are shown in full in Table S1 and S2 in the 671 

supplementary material. 672 
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 673 

Figure 2. Location of field site and deployment of pressure transducers (PTs). (A) Location 674 

of One Tree Reef (in green) off the southeast coast of Queensland (QLD), Australia; (B) 675 

WorldView-2 satellite image combined digital elevation model from Harris et al. (2014) and 676 

Beaman (2010) with the location of pressure transducer (PT) deployments shown in the red 677 

box; (C) cross-reef schematic of PT deployment locations with mean sea level (MSL) 678 

shown in blue; and, (D) aerial view of PT locations on the reef flat with red line showing 679 

location of transect in (C). 680 

 681 

 682 

 683 
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Table 1. The calibrated wave friction factor (fw) used in the wave energy dissipation model 684 

for the regions between the five measurement location in 2012. 685 

 fw 

P1-3 0.29 

P3-4 0.18 

P4-5 0.05 

P5-6 0.11 

 686 

 687 
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 688 

Figure 3. (A) Offshore wave height (Ho, from NCOW (Kinsela et al. 2014)) during each of 689 

the measurement periods compared to the recorded reef flat significant wave height (Hs) ; 690 

(B) significant wave height to water depth ratios (γs) for all measurement locations during 691 

each of the measurement periods compared to Ho. Note the non-continuous nature of the x-692 

axis. 693 
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 694 

Figure 4. Wave characteristics compared to water depth at each location for the three 695 

measurement periods where faded colours are averages for the 15-minute data records for 696 

all measurement locations and dark colours are averages for depth bins of 0.2 m: (A) 697 

significant wave height with the mean ratio of significant wave height (Hs) to water depth 698 

(ℎ�, γs= Hs/ℎ�  = 0.31) shown by the black line; (B) zero down-crossing wave period (T); and, 699 

(C) γs. The dashed line in (C) corresponds to the slope of the line of best fit in (A). 700 
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 701 

Figure 5. (A) Ratio of significant wave height to water depth (γs) compared to water depth 702 

at each location. Faded colours are averages for 15-minute data records and dark colours are 703 

averages for depth bins of 0.2 m. Error bars show standard deviation for the binned data. 704 

The equations for the magenta and green lines are Eq. 7 and 8 respectively. (B) Average γs 705 

from all measurements for P1-P6 and the reef flat topography. Shaded area shows the 706 

standard deviation. 707 
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 708 

Figure 6. The relationship between γs and wave deformation (def) for the outer (P1-4, in 709 

magenta) and inner reef flat (P5-6, in green). The linear regression for γs < 0.6 is shown by 710 

the black line (Eq. 9). The circle markers are the values excluded from the linear regression. 711 

 712 

 713 

 714 
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 715 

Figure 7. Example time series of the water surface (η) from the pressure record during the 716 

2014 deployment from P2-5. Note the different scales on the y-axis.  717 

 718 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

41 
 

 719 

Figure 8. Wave by wave analysis for the 2012 (blue), 2014 (red), and 2016 (black) 720 

measurement periods (A and B). Wave by wave analysis for the six measurement locations 721 

(P1-6) on the reef flat recorded during all three measurement periods (C and D). (A) 722 

Individual wave heights (H) compared to the still water level for individual waves (hw) (see 723 

panel (B) for legend for dashed lines); (B) The ratio of H to hw (γw) compared to hw. Faded 724 

colours are averages for 15-minute data records and dark colours are averages for depth bins 725 

of 0.2 m. Error bars show standard deviation for the binned data (see panel (A) for legend 726 

for points); (C) Individual wave heights (H) compared to the mean water depth of the wave 727 

(hw) (see panel (D) for legend for points and panel (B) for legend for dashed lines); and (D) 728 

the ratio of H to hw (γw) compared to hw (see panel (B) for legend for dashed lines). 729 

 730 
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 731 

Figure 9. (A) Average cross-reef modelled and measured root-mean-square wave height 732 

(Hrms); (B) Comparison of measured and modelled waves for the entire deployment record 733 

of 2012 with a spatially varying wave friction factor (fw) shown in Table 1 (see panel (C) for 734 

legend); and, (C) a constant fw value. The inner reef flat is in green and outer reef flat in 735 

magenta. The values used for γ and fw are shown in panels (B) and (C).  736 
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Saturated surf zone waves were measured and compared to a common wave energy 
dissipation model 
 
Surf zone saturation and depth limited wave conditions were observed to vary 
depending on water depth and location on coral reef flats 
 
Errors were observed in the dissipation model correlated with variation in wave 
height to water depth ratios in the surf zone 
 
Some errors were corrected by spatially varying bed frictional dissipation on the reef 
flat 
 

Model calibration from surf zone data is required to accurately describe wave 

height decay on coral reef flats 
 
 
 

 


