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ABSTRACT
When assessing the impact of extreme events, it is often not just a single component, but the combined
behavior of several components which is important. Statistical modeling using multivariate generalized
Pareto (GP) distributions constitutes the multivariate analogue of univariate peaks over thresholds model-
ing, which is widely used in finance and engineering. We develop general methods for construction of mul-
tivariate GP distributions and use them to create a variety of new statistical models. A censored likelihood
procedure is proposed to make inference on these models, together with a threshold selection procedure,
goodness-of-fit diagnostics, and a computationally tractable strategy for model selection. The models are
fitted to returns of stock prices of four UK-based banks and to rainfall data in the context of landslide risk
estimation. Supplementary materials and codes are available online.

1. Introduction

Univariate peaks over thresholds modelling with the general-
ized Pareto (GP) distribution is extensively used in hydrology to
quantify risks of extreme floods, rainfalls, and waves (Katz, Par-
lange, and Naveau 2002; Hawkes et al. 2002). It is the standard
way to estimate Value at Risk in financial engineering (McNeil,
Frey, and Embrechts 2015), and has been useful in a wide range
of other areas, including wind engineering, loads on structures,
strength ofmaterials, and traffic safety (Ragan andManuel 2008;
Anderson, de Maré, and Rootzén 2013; Gordon et al. 2013).

However often it is the flooding of not just one butmanydikes
which determines the damage caused by a big flood, and a flood
in turn may be caused by rainfall in not just one but in several
catchments. Financial risks typically are not determined by the
behavior of one financial instrument, but by many instruments
which together form a financial portfolio. Similarly, in the other
areas listed above it is often multivariate rather than univariate
modeling which is required.

There is a growing body of probabilistic literature devoted to
multivariate GP distributions (Rootzén and Tajvidi 2006; Falk
and Guillou 2008; Ferreira and de Haan 2014; Rootzén, Segers,
and Wadsworth 2018b, 2018a). To our knowledge, however,
there are only a few papers that use these as a statistical model
(Thibaud and Opitz 2015; Huser, Davison, and Genton 2016; de
Fondeville andDavison 2017), and these only use a single family
of GP distributions.

In this article, we advance the practical usefulness of mul-
tivariate peaks over threshold modeling by developing general
construction methods of multivariate GP distributions and by
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using them to create a variety of new GP distributions. To facil-
itate practical use, we suggest computationally tractable strate-
gies for model selection, demonstrate model fitting via censored
likelihood, and provide techniques for threshold selection and
model validation.

We illustrate the new methods by using them to derive mul-
tivariate risk estimates for returns of stock prices of four UK-
based banks (Section 5), and show that these can be more useful
for portfolio risk management than currently available one-
dimensional estimates. Environmental risks often involve phys-
ical constraints not taken into account by available methods.We
estimate landslide risks using models which handle such con-
straints, thereby providing more realistic estimates (Section 6).

The new parametric multivariate GP models are given in
Sections 3 and 7, and the model selection, fitting, and validation
methods are developed in Section 4. An important feature is that
we can estimate marginal and dependence parameters simulta-
neously, so that confidence intervals include the full estimation
uncertainty. We also give some background needed for the use
of the models (Section 2).

The “point process method” (Coles and Tawn 1991) provides
an alternative approach for modelling threshold exceedances.
However, the multivariate GP distribution has practical and
conceptual advantages, in so much as it is a proper multivariate
distribution. It also separates modelling of the times of thresh-
old exceedances and the distribution of the threshold excesses
in a useful way.

We limit ourselves to the situation, where all components
show full asymptotic dependence. Technically, with this we
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mean that the margins of the multivariate GP distribution do
not put any mass on their lower endpoints. The contrary case,
which requires detecting subgroups of variables which show full
asymptotic dependence, constitutes a challenging area for future
research, especially when the number of variables is large.

The inference method that we propose is based on likeli-
hoods for data points that are censored from below, so as to
avoid bias resulting from inclusion of observations that are not
high enough to warrant the use of the multivariate GP distribu-
tion. The formulas of the censored likelihoods for the parametric
models that we propose are given in the online supplementary
material. In that supplement, which includes all R codes, we also
report on bivariate tail dependence coefficients, further numer-
ical experiments illustrating the models and the model choice
procedure, and we give further details on the case studies.

2. Background

This section provides a brief overview of basic properties of
multivariate GP distributions, as needed for understanding and
practical use. Let Y be a random vector in Rd with distribution
function F . A common assumption on Y is that it is in the so-
calledmax-domain of attraction of amultivariatemax-stable dis-
tribution,G. This means that ifY 1, . . . ,Y n are independent and
identically distributed copies ofY , then one can find sequences
an ∈ (0,∞)d and bn ∈ Rd such that

P[{max
1≤i≤n

Y i − bn}/an ≤ x] → G(x), (2.1)

withG having nondegenerate margins. In (2.1) and throughout,
operations involving vectors are to be interpreted component-
wise. If convergence (2.1) holds, then

max
{
Y − bn
an

, η

}
| Y �≤ bn

d→ X, as n → ∞, (2.2)

whereX follows amultivariateGPdistribution (Rootzén, Segers,
andWadsworth 2018b), and where η is the vector of lower end-
points of the GP distribution, to be given below.We letH denote
the distribution function of X , andH1, . . . ,Hd its marginal dis-
tributions. Typically themarginsHj are not univariateGP, due to
the difference between the conditioning events {Yj > bn, j} and
{Y �≤ bn} in the one-dimensional andd-dimensional limits. Still,
themarginal distributions conditioned to be positive are GP dis-
tributions. That is, writing a+ = max(a, 0), we have

H+
j (x) := P[Xj > x | Xj > 0] = (1 + γ jx/σ j)

−1/γ j
+ , (2.3)

where σ j and γ j are marginal scale and shape parameters. The
unconditional marginsHj have lower endpoints η j = −σ j/γ j if
γ j > 0 and η j = −∞ otherwise. The link between H and G is
H(x) = {logG(min(x, 0)) − logG(x)}/{logG(0)}, and we say
that H and G are associated.

Following common practice in the statistical modelling of
extremes, H may be used as a model for data which arise as
multivariate excesses of high thresholds. Hence, if u ∈ Rd is
a threshold vector that is “sufficiently high” in each margin,
then we approximate Y − u | Y �≤ u by a member X of the
class of multivariate GP distributions, with σ, γ , the marginal
exceedance probabilitiesP(Yj > uj), and the dependence struc-
ture to be estimated. In practice, the truncation by the vector

η in (2.2) is only relevant when dealing with mass on lower-
dimensional subspaces, and is outside the scope of the present
article. Observe that there is no difficulty in directly considering
large values ofY itself, that is, the conditional distribution ofY
given thatY � u, by changing the support to {x : x � u}; this is
equivalent to replacing x by x − u in density (3.5) below.

By straightforward computation, the distribution function of
componentwisemaxima of a Poisson number ofGP variables for
x ≥ 0 equals exp{−t(1 − H(x))}, which is the max-stable dis-
tributionGt , andwhere t is themean of the Poisson distribution.
Hence, a peak over thresholds analysis, combined with estima-
tion of the occurrence rate of events, also provides an estimate
of the joint distribution of, say, yearly maxima.

The following are further useful properties of GP distribu-
tions; for details and proofs we refer to Rootzén, Segers, and
Wadsworth (2018a, 2018b).

Threshold stability: GP distributions are threshold stable,
meaning that if X ∼ H follows a GP distribution and if w ≥ 0,
with H(w) < 1 and σ + γw > 0, then

X − w | X �≤ w is GP with parameters σ + γw and γ .

Hence if the thresholds are increased, then the distribution of
conditional excesses is still GP, with a new set of scale param-
eters, but retaining the same vector of shape parameters. The
practical relevance of this stability is that the model form does
not change at higher levels, which is useful for extrapolating fur-
ther into the tail.

A special role is played by the levelsw = wt := σ(tγ − 1)/γ :
these have the stability property that for any set A ⊂ {x ∈ Rd :
x � 0} it holds that, for t ≥ 1,

P[X ∈ wt + tγA] = P[X ∈ A]/t, (2.4)

where wt + tγA = {wt + tγx : x ∈ A}. This follows from equa-
tion (3.1) along with the representation of X0 to be given in
equation (3.2). The jth component of wt , σ j(tγ j − 1)/γ j , is the
1 − 1/t quantile of H+

j . Equation (2.4) provides one possible
tool for checking if a multivariate GP distribution is appropri-
ate; see Section 4.3.

Lower dimensional conditional margins: Lower dimensional
margins of GP distributions are typically not GP. Instead X J |
X J �≤ 0J does follow a GP distribution, for X J = (x j : j ∈ J)
and J ⊂ {1, . . . , d}. Combinedwith the threshold stability prop-
erty above, we also have that if wJ ∈ R|J| is such that wJ ≥ 0,
HJ (wJ ) < 1 and σJ + γ JwJ > 0 then X J − wJ | X J �≤ wJ fol-
lows a GP distribution.

Sum-stability under shape constraints: If X follows a
multivariate GP distribution, with scale parameter σ and
shape parameter γ = γ 1, then for weights a j > 0 such that∑d

j=1 a jXj > 0 with positive probability, we have

d∑
j=1

a jXj

∣∣∣∣∣∣
d∑
j=1

a jXj > 0 ∼ GP

⎛⎝ d∑
j=1

a jσ j, γ

⎞⎠ . (2.5)

Thus weighted sums of components of a multivariate GP dis-
tribution with equal shape parameters, conditioned to be pos-
itive, follow a univariate GP distribution with the same shape
parameter and with scale parameter equal to the weighted sum
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of the marginal scale parameters. This in particular may be use-
ful for financial modeling. Equation (2.5) holds regardless of the
particularGP dependence structure. However, the probability of
the conditioning event, {∑d

j=1 a jXj > 0}, will differ for different
dependence structures.

3. Model Construction

We use three constructions to develop general parametric
classes of GP densities, labeled hT , hU , and hR. For the first two,
one first constructs a standard form density for a variable X0
with σ = 1, γ = 0, and then obtains a density on the observed
scale through the standard transformation

X d= σ
eγX0 − 1

γ
, (3.1)

with the distributionX supported on {x ∈ Rd : x �≤ 0}. For γ j =
0, the corresponding component of the right-hand side of equa-
tion (3.1) is simply σ jX0, j. The third class of densities, hR, is
constructed directly on the observed scale. Each of the con-
structions starts with choosing a suitable probability distribu-
tion, T ,U , or R, the “generator” of the class, which is combined
with a common random intensity, or strength, to yield the GP
model. More details, alternative constructions, and intuition for
the three forms are given in Rootzén, Segers, and Wadsworth
(2018b, 2018a).

We note that several articles have previously used random
vectors to generate dependence structures for extremes, e.g.,
Segers (2012), Thibaud and Opitz (2015) and Aulbach, Falk,
and Zott (2015), whilst the literature on max-stable modelling
for spatial extremes also relies heavily on this device (de Haan
1984; Schlather 2002;Davison, Padoan, andRibatet 2012).How-
ever, it is only recently that these constructions have led to sim-
ple density formulas for GP distributions (Rootzén, Segers, and
Wadsworth 2018a), which we exploit to build several newmod-
els. Explicit forms for a number of useful GP densities are given
in Section 7; here, we discuss their construction further.

Standard form densities.
We first focus on how to construct suitable densities for the

random vectorX0, which, through equation (3.1), lead to densi-
ties for the multivariate GP distribution with marginal parame-
ters σ and γ . Let E be a unit exponential random variable and let
T be a d-dimensional random vector, independent of E. Define
max(T ) = max1≤ j≤d Tj. Then, the random vector

X0 = E + T − max(T ) (3.2)

is a GP vector with support included in the set {x ∈ Rd : x � 0}
and with σ = 1 and γ = 0 (interpreted as the limit for γ j →
0 for all j). Moreover, every such GP vector can be expressed
in this way (Ferreira and de Haan 2014; Rootzén, Segers, and
Wadsworth 2018b). The probability of the jth component being
positive is P[X0, j > 0] = E[eTj−max(T )], which, in terms of the
original data vector Y , corresponds to the probability P[Yj >

uj | Y � u], i.e., the probability that the jth component exceeds
its corresponding threshold given that one of the d components
does.

Suppose T has a density fT on (−∞,∞)d . By Theorem 5.1
of Rootzén, Segers, andWadsworth (2018b), the density ofX0 is

given by

hT (x; 1, 0) = 1{max(x) > 0}
emax(x)

∫ ∞

0
fT (x + log t ) t−1 dt.

(3.3)
One way to construct models therefore is to assume distribu-
tions for T which provide flexible forms for hT , and for which
ideally the integral in (3.3) can be evaluated analytically.

One further construction of GP random vectors is given
in Rootzén, Segers, and Wadsworth (2018b). If U is a
d-dimensional random vector with density fU and such that
E[eUj ] < ∞ for all j = 1, . . . , d, then the following function
also defines the density of a GP distribution:

hU (x; 1, 0) = 1{max(x) > 0}
E[emax(U )]

∫ ∞

0
fU (x + log t ) dt. (3.4)

The marginal exceedance probabilities are now P[X0, j > 0] =
E[eUj ]/E[emax(U )]. Formulas (3.3) and (3.4) can be obtained
from one another via a change of measure.

Where fT and fU take the same form, then the similarity in
integrals between (3.3) and (3.4) means that if one can be eval-
uated, then typically so can the other; several instances of this
are given in the models presented in Section 7. What is some-
times more challenging is calculation of the normalization con-
stantE[emax(U )] = ∫∞

0 P[max(U ) > log t] dt in (3.4). Nonethe-
less, the model in (3.4) has the particular advantage over that
of (3.3) that it behaves better across various dimensions: if the
density of the GP vector X is hU and if J ⊂ {1, . . . , d}, then the
density of the GP subvector X J | X J � 0J is simply hU J . This
property is advantageous when moving to the spatial setting,
since the model retains the same form when numbers of sites
change, which is useful for spatial prediction.

Densities after transformation to the observed scale.
The densities above are in the standardized form σ = 1, γ =

0. Using (3.1), we obtain general densities which are approxima-
tions to the conditional density of Y − u given that Y � u, for
the original dataY :

h(x; σ, γ ) = h
(

1
γ
log(1 + γx/σ); 1, 0

) d∏
j=1

1
σ j + γ jx j

. (3.5)

In (3.5), hmay be either hT or hU .
Densities constructed on observed scale.
The models (3.5) are built on a standardized scale, and then

transformed to the observed, or “real” scale. Alternatively, mod-
els can be constructed directly on the real scale, which gives
the possibility of respecting structures, say additive structures,
in a way which is not possible with the other two models; this
approach will be used to model ordered data in Section 6. One
way of presenting this is to define the random vector R in terms
ofU in (3.4) through the componentwise transformation

Rj =
{
(σ j/γ j) exp(γ jUj), γ j �= 0,
σ jUj, γ j = 0, (3.6)

and develop suitable models for R. This gives the GP density

hR(x; σ, γ ) = 1 {max(x) > 0}
E[emax(U )]

∫ ∞

0
t
∑d

j=1 γ j

× fR
((
g(t; x j, σ j, γ j)

)d
j=1

)
dt, (3.7)
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where fR denotes the density of R and where

g(t; x j, σ j, γ j) =
{
tγ j
(
x j + σ j/γ j

)
, γ j �= 0,

x j + σ j log t, γ j = 0.

The d components of U are found by inverting equation (3.6).
For σ = 1 and γ = 0, the densities (3.4) and (3.7) are the same.

In light of the abundance of possibilities, we note the follow-
ing, which may help the user to select a suitable model: Compu-
tation, and particularly simulation, is simplest for the hT den-
sities, and these models are continuous at γ j = 0, for each j.
However, spatial prediction and lower dimensional margins are
unnatural for this model class. Instead, prediction, spatial mod-
eling, and lower dimensional margins work well for the hU den-
sities, and this model class is also continuous at γ j = 0. Finally,
for the hR class, prediction, spatial modeling, and lower dimen-
sional margins are also natural, and the class additionally per-
mits more physically realistic modeling. However, it is not con-
tinuous at γ j = 0.

4. Likelihood-Based Inference

Working within a likelihood-based framework for inference
allowsmany benefits. First, comparison of nestedmodels can be
done using likelihood ratio tests. This is important as the num-
ber of parameters can quickly grow large if margins and depen-
dence are fitted simultaneously, allowing us to test for simplifica-
tions in a principledmanner. Second, incorporation of covariate
effects is straightforward in principle. For univariate peaks over
thresholds, such ideas were introduced by Davison and Smith
(1990), but nonstationarity in dependence structure estimation
has received comparatively little attention. Third, such likeli-
hoods could also be exploited for a Bayesian approach to infer-
ence if desired.

4.1 Censored Likelihood

Thedensity (3.5) is the basic ingredient in a likelihood.However,
we will use (3.5) as a contribution only when all components of
the observed translated vectorY − u are “large,” in the sense of
exceeding a threshold v, with v ≤ 0. Where some components
ofY − u fall below v, the contribution is censored in those com-
ponents. The reasoning for this is twofold:

1. For γ j > 0, the lower endpoint of the multivariate GP
distribution is−σ j/γ j. Censored likelihood avoids small
values of a component affecting the fit too strongly.

2. Without censoring, bias in the estimation of parameters
controlling the dependence can be larger than that for
censored estimation, see Huser, Davison, and Genton
(2016).

Censored likelihood for inference on extreme value models
was first used by Smith, Tawn, and Coles (1997) and Ledford
andTawn (1997), and is now a standard approach to enablemore
robust inference. LetC ⊂ D = {1, . . . , d} contain the indices for
which components ofY − u fall below the corresponding com-
ponent of v, i.e., Yj − uj ≤ v j for j ∈ C, and Yj − uj > v j for
j ∈ D \C, with at least one suchYj > uj . For each realization of

Y , we use the likelihood contribution

hC(yD\C − uD\C, vC; σ, γ ) =
∫

×
j∈C

(−∞,uj+v j]
h(y − u; σ, γ ) dyC,

(4.1)
with yC = (y j) j∈C, which is equal to (3.5) with x = y − u ifC is
empty, that is, if all components y j > uj + v j . The supplemen-
tary material contains forms of censored likelihood contribu-
tions for the models presented in Section 7. For n independent
observations y1, . . . , yn of Y | Y �≤ u, the censored likelihood
function to be optimized is

L(θ, σ, γ ) =
n∏
i=1

hCi (yi,D\Ci − uD\Ci, vCi; θ, σ, γ ), (4.2)

where Ci denotes the censoring subset for yi, which may be
empty, and θ represents parameters related to the model that we
assumed for the generator.

4.2 Model Choice

When fitting multivariate GP distributions to data on the
observed scale we have a large variety of potential models and
parameterizations. For nonnested models, Akaike’s information
criterion (AIC= −2× log-likelihood + 2× number of parame-
ters) can be used to select a model with a good balance between
parsimony and goodness-of-fit.When looking at nestedmodels,
for example, to test for simplifications in parameterization, we
can use likelihood ratio tests. Because of the many possibilities
for model fitting, we propose the following model-fitting strat-
egy to reduce the computational burden, which we will employ
in Section 5.

(i) Standardize the data to common exponential margins,
Y E , using the rank transformation (i.e., the probabil-
ity integral transform using the empirical distribution
function);

(ii) select a multivariate threshold, denoted u on the scale of
the observations, and uE on the exponential scale, using
the method of Section 4.3;

(iii) fit the most complicated standard form model within
each class (i.e., maximum number of possible parame-
ters) to the standardized dataY E − uE | Y E �≤ uE ;

(iv) select as the standard form model class the one which
produces the best fit to the standardized data, in the sense
of smallest AIC;

(v) use likelihood ratio tests to test for simplification ofmod-
els within the selected standard form class, and select a
final standard form model;

(vi) fit the GP margins simultaneously with this standard
form model, toY − u | Y �≤ u by maximizing (4.2);

(vii) Use likelihood ratio tests to find simplifications in the
marginal parameterization.

Although this strategy is not guaranteed to result in a final
GPmodel that is globally optimal, in the sense of minimizing an
information criterion such asAIC, it should still result in a sensi-
ble model while avoiding enumeration and fitting of an unfeasi-
bly large number of possibilities. The goodness of fit of the final
model can be checked via diagnostic plots and tests (hereafter
“diagnostics”).



TECHNOMETRICS 5

4.3 Threshold Selection andModel Diagnostics

An important issue that pervades extreme value statistics—in
all dimensions—is the selection of a threshold above which
the limit model provides an adequate approximation of the
distribution of threshold exceedances. Here, this amounts to
“how can we select a vector u such that Y − u | Y �≤ u is well-
approximated by a GP distribution?”. There are two consider-
ations to take into account: Yj − uj | Yj > uj should be well-
approximated by a univariate GP distribution, for j = 1, . . . , d,
and the dependence structure of Y − u | Y �≤ u should be
well-approximated by that of a multivariate GP distribution.
Marginal threshold selection has a large body of literature
devoted to it; see Scarrott and MacDonald (2012) and Caeiro
and Gomes (2016) for recent reviews. Threshold selection for
dependence models is a much less well-studied problem. Con-
tributions include Lee, Fan, and Sisson (2015) who consid-
ered threshold selection via Bayesian measures of surprise, and
Wadsworth (2016) who examined how tomake better use of so-
called parameter stability plots, offering a method that can be
employed on any parameter, pertaining to themargins or depen-
dence structure. Recently, Wan and Davis (2017) proposed a
method based on assessing independence between radial and
angular distributions.

Here, we propose exploiting the stability property of mul-
tivariate GP distributions, and use the measure of asymptotic
dependence

χ1:d(q) := P[F1(Y1) > q, . . . , Fd(Yd ) > q]
1 − q

,

where Yj ∼ Fj and the related quantity for the limiting GP
distribution

χH (q) := P[H1(X1) > q, . . . ,Hd(Xd ) > q]
1 − q

, q ∈ (0, 1)

to guide threshold selection for the dependence structure. For a
suitable choice ofA, property (2.4) implies thatχH (q) is constant
for sufficiently large q such that Hj(Xj) > q implies Xj > 0 for
j ∈ {1, . . . , d}.

If Y ∼ F and Y − u | Y � u ∼ H , then on the region
q > max j Fj(uj), we have χ1:d(q) = χH (q′) with q′ = {q −
F(u)}/{1 − F(u)}. A consequence of this is that χ1:d(q) should
be constant on the region Y > u, if u represents a sufficiently
high dependence threshold. The empirical version χ̂1:d(q) of
χ1:d(q) is defined by

χ̂1:d(q) :=
∑n

i=1 1
{
F̂1(Y1) > q, . . . , F̂d(Yd ) > q

}
n(1 − q)

, q ∈ [0, 1),

(4.3)
where F̂1, . . . , F̂d represent the empirical distribution func-
tions. If we use (4.3) to identify q∗ = inf{0 < q̃ < 1 : χ1:d(q) ≡
χ ∀ q > q̃}, then u = (F−1

1 (q∗), . . . , F−1
d (q∗)) should provide

an adequate threshold for the dependence structure. Once suit-
able thresholds have been identified formargins, um, and depen-
dence, ud, then a threshold vector which is suitable for the entire
multivariate model is u = max(um, ud).

Having identified a multivariate GP model and a threshold
above which to fit it, a key concern is to establish whether the
goodness-of-fit is adequate. For the dependence structure, one

diagnostic comes from comparing χ̂1:d(q) for q → 1 to its the-
oretical limit χ1:d , which for models hT in (3.3) has the form
χ1:d = E[min1≤ j≤d{eTj−max(T )/E(eTj−max(T ))}],whilst for mod-
els hU in (3.4)we getχ1:d = E[min1≤ j≤d{eUj/E(eUj )}].The form
of χ1:d for hR models follows through equation (3.6). In some
cases, these expressions may be obtained analytically, but they
can always be evaluated by simulation (Rootzén, Segers, and
Wadsworth 2018b).

A further diagnostic uses that P[Xj > 0] = E[eTj−max(T )] =
E[eUj ]/E[emax(U )]. Thus, one compares P[Yj > uj]/P[Y �≤ u]
with the relevant model-based probability. These are the same
for each margin, when the uj are equal marginal quantiles.

Equation (2.4) suggests a model-free diagnostic of whether a
multivariate GP model may be appropriate. To exploit this, one
defines a set of interest A, and compares the number of points
ofY − u | Y �≤ u that lie in A to t times the number of points of
(Y − u − wt )/tγ | Y �≤ u lying inA for various choices of t > 1.
According to (2.4), the ratio of these numbers should be approxi-
mately equal to 1. Note that settingA = {x : x > 0} is equivalent
to computing χH with H1, . . . ,Hd replaced by H+

1 , . . . ,H+
d .

Finally, in the event that the margins can be modeled with
identical shape parameters, one can test property (2.5) by exam-
ining the adequacy of the implied univariate GP distribution
from a multivariate fit.

5. UK Bank Returns

We examine weekly negative raw returns on the prices of the
stocks from four large UK banks: HSBC (H), Lloyds (L), RBS
(R), and Barclays (B). Data were downloaded from Yahoo
Finance. Letting Zj,t , j ∈ {H, L,R,B}, denote the closing stock
price (adjusted for stock splits and dividends) in week t for
bank j, the data we examine are the negative returns Yj,t =
1 − Zj,t/Zj,t−1, so that large positive values of Yj,t correspond
to large relative losses for that stock. The observation period is
10/29/2007–10/17/2016, with n = 470 datapoints. The data are
unfiltered, that is, heteroscedasticity has not been removed. This
is because we are not trying to predict at specific time points, but
rather understand the global extremal dependence.

Figure 1 displays pairwise plots of the negative returns. There
is evidence of strong extremal dependence from these plots, as
the largest value of YL,YR,YB occurs simultaneously, with posi-
tive association among other large values. The largest value ofYH
occurs at a different time, but again there is positive association
between other large values. As is common in practice the value
of χ̂HLRB(q) generally decreases as q increases (see Figure 6 in
the supplementarymaterial), but is plausibly stable and constant
from slightly above q = 0.8. Consequently, we proceed with fit-
ting a GP distribution. Ultimately, we wish to fit a parametric
GP model to the raw threshold excesses {Y t − u : Y t �≤ u}. In
view of the large variety of potential models and parameteriza-
tions, we use themodel selection strategy detailed in Section 4.2.
Throughout, we use censored likelihood with v = 0.

Based on the plot of χ̂HLRB(q), we select the 0.83 marginal
quantile as the threshold in each margin; there are 149 obser-
vations with at least one exceedance. We fit the models with
densities (7.1), (7.2), (7.3), (7.4), and (7.5) to the standardized
data. For the final model, the matrix � had diagonal elements
fixed at 1, with off-diagonal correlations estimated; this entails
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Figure . Pairwise scatterplots of thenegativeweekly returns of the stock prices of fourUKbanks: HSBC (H), Lloyds (L), RBS (R), andBarclays (B), from // to //.

some dependence restrictions, see the supplement for further
details. The smallest AIC is given by model (7.1), i.e., where
fT (see Section 7) is the density of independent Gumbel ran-
dom variables. We therefore select this class and proceed with
item (4.2) of the procedure in Section 4.2 to test for simplifica-
tions within this class. In Table 1, model M1 is the most com-
plex model with all dependence parameters. Model M2 imposes
the restriction β1 = β2 = β3 = β4 = 0, whileM3 imposes α1 =
α2 = α3 = α4 = α, andM4 imposes both.We observe that both
possible sequences of likelihood ratio tests between nestedmod-
els lead toM4when adopting a 5% significance level. Thismodel
only contains a single parameter, which is a useful simplification.

Finally, we fit a full GP distribution using Model M4 and test
the hypothesis of a common shape parameter. Marginal param-
eter stability plots suggest that the 0.83 quantile is adequate,
which is also supported by diagnostics from the fitted model
(supplementary material, Figure 7). At a 5% significance level,
a likelihood ratio test for the hypothesis of γH = γL = γR = γB
provides no evidence to reject the null hypothesis, so a common
shape parameter is adopted. The parameter estimates are dis-
played in Table 2.

To scrutinize the fit of the model, we examine marginal,
dependence, and joint diagnostics. Quantile–quantile (QQ)
plots for each of the univariate GP distributions implied for
Yt, j − uj | Yt, j > uj are displayed in the supplementarymaterial

Table . Negative UK bank returns: parameterizations of (.) for standardized data.

Model Parameters Number
Maximized

log-likelihood

M α1, α2, α3, α4, β1, β2, β3  −917.0
M α1, α2, α3, α4  −918.2
M α, β1, β2, β3  −920.8
M α  −921.0

(Figure 7) indicating reasonable fits in each case. Estimates of
the pairwise χi j(q), i �= j ∈ {H, L,R,B}, are plotted in Figure 2,
with the corresponding fitted value and threshold indicated;
tripletwise plots and the plot of χ̂HLRB(q) show similarly good
agreement. Since the model has a single dependence parameter,
all pairs are exchangeable and have the same fitted value of χ for
any fixed dimension.

As the shape parametermay be taken as common acrossmar-
gins, we examine the sum-stability property given in (2.5). We
fit a univariate GP distribution to∑

j∈{H,L,R,B}
(Yt, j − uj)

∣∣∣ ∑
j∈{H,L,R,B}

(Yt, j − uj) > 0, (5.1)

with scale parameter estimate (standard error) obtained as 0.10
(0.021), and shape parameter estimate 0.45 (0.17). QQ plots
suggest that the fit is good; see the supplementary material (Fig-
ure 8). For comparison,

∑
j∈{H,L,R,B} σ̂ j = 0.13 with standard

error 0.014 obtained using the delta method, while the max-
imized univariate GP log-likelihood is 63.5, and that for the
parameters obtained via themultivariate fit is 62.2, showing that
the theory holds well.

Weighted sums of raw stock returns correspond to port-
folio performance. We use the final fitted model to compute
two commonly-used risk measures, Value at Risk (VaR) and
Expected Shortfall (ES), for a time horizon of one week. If the
conditional distribution of

∑
j a j(Yt, j − uj) given the event

Table . Negative UK bank returns: maximum likelihood estimates (MLE) and stan-
dard errors (SE) of parameters from the final model for the original data.

α σH σL σR σB γ

MLE . . . . . .
SE . . . . . .
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Figure . Negative UK bank returns: estimates of pairwise χi j (q) with fitted pairwise χi j (horizontal line), for HSBC (H), Lloyds (L), RBS (R), and Barclays (B). Clockwise
from top left: χHL , χHR , χHB , χRB , χLB , χLR . The vertical line is the threshold used. Approximate 95% pointwise confidence intervals are obtained by bootstrapping from
{Y t : t = 1, . . . , n}.∑

j a j(Yt, j − uj) > 0 is GP(
∑

j a jσ j, γ ), then

VaR(p) =
∑
j

a ju j +
∑

j a jσ j

γ

{(
φ

p

)γ

− 1
}

, (5.2)

where 0 < p < φ = P[
∑

j a j(Yt, j − uj) > 0], so that (5.2) is
the unconditional 1 − p quantile of

∑
j a jYt, j. We estimate the

probability φ by maximum likelihood using the assumption∑
t 1{∑ j a j(Yt, j − uj) > 0} ∼ Bin(n, φ), and in the univariate

model, φ is orthogonal to the parameters of the conditional
excess distribution. In the multivariate model

P

⎡⎣∑
j

a j(Yt, j − uj) > 0

⎤⎦
= P

⎡⎣∑
j

a j(Yt, j − uj) > 0 | Y t �≤ u

⎤⎦P[Y t �≤ u] = p(θ) φ̃,

where p(θ) is an expression involving the parameters of themul-
tivariate GP model, and φ̃ is the proportion of points for which
Y t �≤ u. The expression p(θ) is not tractable here, thus we con-
tinue to estimate φ as the binomial maximum likelihood esti-
mate, and as a working assumption treat it as orthogonal to the
other parameters. However, an estimate of p(θ) can be obtained
by simulation using the estimated θ; the utility of this will be
demonstrated in Figure 4.

The expected shortfall is defined as the expected loss given
that a particular VaR threshold has been exceeded. Under the

GP model, and provided γ < 1, it is given by

ES(p) = E

⎡⎣∑
j

a jYt, j |
∑
j

a jYt, j > VaR(p)

⎤⎦
= VaR(p) +

∑
j a jσ j + γ [VaR(p) −∑ j a ju j]

1 − γ
.

Asymptotic theory suggests that a univariate GP model fit
directly to

∑
j a j(Yt, j − uj) or the implied GP(

∑
j a jσ j, γ )

model obtained from the multivariate fit could be used. An
advantage of using the GP(

∑
j a jσ j, γ )model derived from the

multivariate fit is reduced uncertainty, combinedwith consistent
estimates across different portfolio combinations.

Figures 3 displays VaR curves and confidence intervals for
two different weight combinations and for both the univari-
ate and multivariate fits, together with empirical counterparts,
whilst Figure 9 in the supplementary material shows the corre-
sponding ES curves. For VaR, the univariate fit is closer in the
body and the multivariate fit is closer to the data in the tails.
The reduction in uncertainty is clear and potentially quite use-
ful for smaller p. For ES (supplementary material, Figure 9) the
univariate fit estimates smaller values than themultivariate fit in
each case and seems to reflect the observed data better. However,
the empirical ES values fall within the 95% confidence intervals
obtained from themultivariatemodel, suggesting that themodel
is still consistent with the data. Note that the univariate fit is tai-
lored specifically to the data

∑
j a jYt, j and as such, we would

always expect the point estimates fromFigure 3 to look better for
the univariate fit. On the other hand, when interest lies in differ-
ent functions of the extremes of Yt, j, the multivariate approach
is able to deliver self-consistent inference.
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Figure . VaR estimates and pointwise % delta-method confidence intervals for portfolio losses based on the weights given as percentages invested in HSBC, Lloyds,
RBS and Barclays as in the figure title. Estimates based on the multivariate GP fit are on the left of a pair; estimates based on the univariate fit are on the right.

Figure 4 illustrates how themultivariatemodel providesmore
consistent estimates of VaR across different portfolio combina-
tions compared to the use ofmultiple univariatemodels. To pro-
duce the figures, we suppose that

∑
j a j = 100 represents the

total amount available to invest. The value aH = 10 is fixed, with
otherweights varying, butwith each a j ≥ 1. Two estimatesmak-
ing use of the multivariate model are provided: one for which a
model-based estimate of p(θ) from (5) is used (with estimation
based on 100,000 draws from the fitted model), and one where
the empirical binomial estimate of φ is used, as in Figure 3 and
the supplementary material (Figure 9). Both sets of multivariate
estimates suggest much more consistent behavior across port-
folio combinations than the use of univariate fits. In particular,
behavior is very smooth once a model-based estimate for p(θ)

is included.

6. Landslides

Rainfall can cause groundwater pressure build-upwhich, if very
high, can trigger a landslide. The cause can be short periods with
extreme rain intensities, or longer periods of up to three days
of more moderate, but still high rain intensities. Guzzetti et al.
(2007) consolidated many previous studies and propose thresh-
old functions which link duration in hours,D, with total rainfall
in millimeters, P, such that rainfall below these thresholds are
unlikely to cause landslides. For highland climates in Europe,
this function is

P = 7.56 × D0.52. (6.1)

Thus, a one-day rainfall below 39.5mm, a two-day rainfall below
56.6 mm, or a three-day rainfall below 69.9 mm are all unlikely
to cause a landslide.

We use a long time series of daily precipitation amounts
P1, . . . ,PN collected by the Abisko Scientific Research Station
in northern Sweden in the period 1/1/1913–12/ 31/2014, to esti-
mate a lower bound for the probability of the occurrence of rain-
fall events which may lead to landslides. The total cost of land-
slides in Sweden is around SEK 200 million/year. There have
been several landslides in the Abisko area in the past century,
for instance in October 1959, August 1998, and July 2004 (Rapp
and Strömquist 1976; Jonasson and Nyberg 1999; Beylich and
Sandberg 2005). The rainfall episodes causing the landslides are
clearly visible in the data, with 24.5 mm of rain on October 5,
1959, 21.0 mm of rain on August 24, 1998, and 61.9 mm of
rain on July 21, 2004. The 2004 rain amount is well above the
1-day risk threshold, whereas the 1959 and 1998 rain amounts
are below the 1-day threshold. The explanation may be that
the durations of the latter two rain events were shorter than 24
hours, and that the threshold in (6.1) was still exceeded.

We wish to construct a dataset Y 1, . . . ,Y n ∈ R3, for n <

N, whose components represent daily, two-day, and three-day
extreme rainfall amounts respectively, to account for longer
periods of moderate rainfall. Based on a mean residual life plot
and parameter stability plots (not shown here) for the daily rain-
fall amounts P1, . . . ,PN , we choose the threshold u = 12, which
corresponds roughly to the 99% quantile. Figure 5 shows the
cumulative three-day precipitation amounts Pi + Pi+1 + Pi+2 for
i ∈ {1, . . . ,N − 2}. The threshold u is used to extract clusters of
data containing extreme episodes; the dataY 1, . . . ,Y n are con-
structed as follows:

1. Let i correspond to the first sum Pi + Pi+1 + Pi+2
which exceeds the threshold u and set P(1) =
max(Pi,Pi+1,Pi+2).

2. Let the first clusterC(1) consist of P(1) plus the five values
preceding it and the five values following it.

Figure . Maximum likelihood estimates of VaR(.) for
∑

j a jYt, j with aH = 10 and aB = 90 − aL − aR representing a portfolio of stocks of HSBC, Lloyds, RBS and
Barclays. Left: from multivariate model including simulation to estimate p(θ) from (); center: from multivariate model using the binomial estimate of φ; right: from
univariate model fit to each combination separately. Note the different color scales on each panel.
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Figure . Precipitation data in Abisko: cumulative three-day precipitation amounts
Pi + Pi+1 + Pi+2 for i ∈ {1, . . . ,N − 2}with threshold u = 12 in red.

3. Let Y11 be the largest value in C(1), Y12 the largest sum
of two consecutive non-zero values in C(1), and Y13 the
largest sum of three consecutive non-zero values inC(1).

4. Find the second cluster C(2) and compute Y 2 =
(Y21,Y22,Y23) in the same way, starting with the first
observation afterC(1).

Continuing this way, we obtain a dataset Y 1, . . . ,Y n, with
d = 3 and n = 580.

Annual maxima of a similar dataset were analyzed in Rudvik
(2012), with the conclusion that there was no time trend. We
fitted a univariate GP distribution with a fixed shape parameter
γ but a loglinear trend for the scale parameter to the marginal
components (Y i)

n
i=1, and also did not find any significant trend;

see the supplementarymaterial. The estimated shape parameters
obtained fromfitting univariateGPdistributions to themarginal
threshold excesses are close to zero (the hypothesis γ = 0 is not
rejected at a 5% level) and the confidence intervals for the scale
parameters overlap (Table 3). Note that a common σ and γ only
implies that the marginal distributions are equal conditional on
exceeding the threshold; it does not imply that the unconditional
probabilities P[Yj > uj] are equal.

In the following analysis, we set σ = σ1 and γ = γ 1, and we
fit the structured models from Section 7.3, both with γ = 0 and
with γ > 0, using censored likelihood with v = 0. To ensure
identifiability we set λ1 = 1 for both models. We choose u = u1
with u = 24 since parameter estimates stabilize for thresholds
around this value, and continue with the 142 data points whose
third components exceed u = 24.

The estimates of σ are somewhat higher than in the marginal
analysis and again the hypothesis γ = 0 was not rejected
(Table 4). The higher estimate of σ is intuitively reasonable since

Table . Precipitation data in Abisko: estimates of the parameters of marginal GP
models for thresholds u = 12, u = 13.5, and u = 14, respectively; standard errors
in parentheses.

Y i1 Y i2 Y i3

γ̂ − . (.) − . (.) − . (.)
σ̂ . (.) . (.) . (.)

the maximum likelihood estimators for γ and σ are negatively
correlated and since γ̂ is positive for the second model.

To estimate the risk of a future landslide we assume that the
extreme rainfalls, that is, the 142 data points whose third com-
ponents exceed u = 24, occur in time as a Poisson process. The
number of extreme rainfalls in a year then follows a Poisson
distribution whose mean we will denote by ζ . Assuming that
the sizes of the excesses are independent of the Poisson pro-
cess, the yearly number of rainfalls for which at least one compo-
nent exceeds the risk level y = (39.5, 56.6, 69.9) (obtained from
(6.1)) has a Poisson distribution with parameter

μ = ζ

{
1 − H

(
y − u

σ
; 1, 0

)}
. (6.2)

Estimating ζ by #extreme rainfalls
#years = 142/102 and H by integrating

the density (7.7), using the parameter estimates (̂λ1, λ̂2, λ̂3, σ̂ )

from the top row of Table 4, we obtain the estimate μ̂ = 0.102.
Hence, for any given year, the probability that there is exactly one
rainfall episode which could lead to a landslide is 0.092, and the
probability that there is at least one such rainfall is 0.097. This
is higher than the result in Rudvik (2012) who used data from
1913–2008 and analyzed daily, three-day and five-day precipita-
tion amounts to estimate the yearly risk of at least one dangerous
rainfall episode. In the data, we observed seven exceedances of y
over 102 years. This is not too far from the ten extreme rainfalls
that we would expect based on our model.

Marginal QQ-plots show good fits for components 2 and 3,
but less so for component 1 for the model with γ = 0 (Figure 5
in the supplementarymaterial). This is due to the restrictionσ =
σ1 used to ensure that the components are ordered.

For the dependence structure, using Equation (2.4) (see also
Section 4.3) and γ = 0, we display the empirical counterpart of
the ratio

P[Y − u ∈ A | y � u]
t P[Y − u − σ log t ∈ A | Y � u]

, (6.3)

where σ is the vector of scale parameter estimates of the
marginal GP models above u = 24 for the sets Aj = {x ∈ R3 :
x j > 0}, j ∈ {1, 2, 3} (Figure 6). The plots indicate that a GP
dependence structure is appropriate. The plot for A1 uses few
observations and hence is more variable.

Formulas for pairwise and trivariate χ and comparisons with
their empirical counterpart can be found in Section F of the sup-
plementary material. The model-based estimates of exceedance
probabilities are P[X1 > 0] = 0.34 (0.03), P[X2 > 0] = 0.63
(0.03) using values from the top row inTable 4 and deltamethod
standard errors. The empirical probabilities are 0.32 and 0.69,
respectively. Plots of the empirical probabilities for a range of
different thresholds (not shown) confirm the chosen threshold
value u = 24.

The test statistic in Einmahl, Kiriliouk, and Segers (2018,
Corollary 2.5) compares the estimates of (χ12, χ13, χ23, χ123)

Table . Precipitation data in Abisko: parameter estimates for the structured components model with u = 24; standard errors in parentheses.

Model λ̂1 λ̂2 λ̂3 σ̂ γ̂ Log-likelihood

γ = 0 . . (.) . (.) . (.)  −.
γ > 0 . . (.) . (.) . (.) . (.) −.
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Figure . Abisko precipitation data: ratio (.) with u = 24. Approximate 95% pointwise confidence intervals are obtained by bootstrapping from {Y i : i = 1, . . . ,Y n}.

with an empirical estimator. It depends on a value kwhich repre-
sents a threshold: a low value of k corresponds to a high thresh-
old. Asymptotically the test statistic has a chi-square distribu-
tion with 2 degrees of freedom whose 95% quantile is 5.99. For
k ∈ {50, 75, 100, 125, 150},we obtain the values 1.08, 4.48, 1.17,
5.42, and 0.99, and hence cannot reject the structured compo-
nents model for any value of k.

7. Parametric Models

Here, we derive the explicit densities for a number of GP mod-
els. To control bias when fitting a multivariate GP distribution
to threshold excesses, we often need to use censored likelihood
(Section 4) and thus not just to be able to calculate densities, but
also integrals of those densities. Although any (continuous) dis-
tribution may be used as generator, this requirement together
with the considerations in the beginning of Section 3 guide our
choice of models presented below. For each model, we give the
uncensored densities in the subsequent subsections, and their
censored versions are given in the supplementary material. The
supplementary material also contains calculations of the bivari-
ate tail dependence coefficients χ1:2, where these are available in
the closed form.

In Sections 7.1 and 7.2, we consider particular instances of
densities fT and fU to evaluate the corresponding densities hT
and hU in (3.3) and (3.4). As noted in Section 3, even if fT = fU ,
the GP densities hT and hU are still different in general. Thus,
we will focus on the density of a random vectorV , denoted fV ,
and create two GP models per fV by setting fT = fV and then
fU = fV , in the latter case with the restrictionE[eUj ] < ∞. The
support for each GP density given in Sections 7.1 and 7.2 is {x ∈
Rd : x �≤ 0}, and for brevity, we omit the indicator 1{max(x) >

0}. In Section 7.3, we exhibit a construction of hR in (3.7), with
support depending on γ and σ. In the supplementary material,
we show scatterplots for some of these models together with the
corresponding density contours.

In all models, identifiability issues occur if T or U have
unconstrained location parameters β, or if R has unconstrained
scale parameters λ. Indeed, replacing β or λ by β + k or cλ,
respectively, with k ∈ R and c > 0, leads to the same GP dis-
tribution (Rootzén, Segers, and Wadsworth 2018b, Proposition
1). A single constraint, such as fixing the first parameter in the
parameter vector, is sufficient to restore identifiability.

7.1 Generators with Independent Components

LetV ∈ Rd be a random vector with independent components
and density fV (v) =∏d

j=1 f j(v j), where f j are densities of real-
valued random variables. The dependence structure of the asso-
ciated GP distributions is determined by the relative heaviness
of the tails of the f j: roughly speaking, if components have high
probability of taking very different values, then dependence is
weaker than if all components have a high probability of taking
similar values. Throughout, x ∈ Rd is such that max(x) > 0.

Generators with independent Gumbel components: Let

f j(v j) = α j exp{−α j(v j − β j)} exp[− exp{−α j(v j − β j)}],
α j > 0, β j ∈ R.

Case fT = fV . Density (3.3) is

hT (x; 1, 0) = e−max(x)
∫ ∞

0
t−1

d∏
j=1

α j
(
tex j−β j

)−α j e−(tex j−β j )
−α j dt.

(7.1)
If α1 = · · · = αd = α then the integral can be explicitly
evaluated:

hT (x; 1, 0) = e−max(x)αd−1
�(d)

∏d
j=1 e

−α(x j−β j )(∑d
j=1 e−α(x j−β j )

)d .

Case fU = fV . The marginal expectation of the exponentiated
variable is E[eUj ] = eβ j�(1 − 1/α j) for α j > 1 and E[eUj ] =
∞ for α j ≤ 1. For min1≤ j≤d α j > 1, density (3.4) is

hU (x; 1, 0) =
∫∞
0
∏d

j=1 α j
(
tex j−β j

)−α j e−(tex j−β j )
−α j dt∫∞

0

(
1 −∏d

j=1 e−(t/eβ j )
−α j
)
dt

.

(7.2)

If α1 = · · · = αd = α then this simplifies to:

hU (x; 1, 0) = αd−1�(d − 1/α)
∏d

j=1 e
−α(x j−β j )(∑d

j=1 e−α(x j−β j )
)d−1/α

�(1 − 1/α)
(∑d

j=1 eβ jα
)1/α .

Observe that if in addition to α1 = · · · = αd = α, also β1 =
· · · = βd = 0, then this is the multivariate GP distribution asso-
ciated to the well-known logisticmax-stable distribution.
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Generators with independent reverseGumbel components:Let

f j(v j) = α j exp{α j(v j − β j)} exp[− exp{α j(v j − β j)}],
α j > 0, β j ∈ R.

As the Gumbel case leads to the multivariate GP distribution
associated with the logistic max-stable distribution, when fU =
fV , the reverse Gumbel leads to the multivariate GP distribu-
tion associated with the negative logistic max-stable distribu-
tion.1 Calculations are very similar to the Gumbel case, and
hence omitted.

Generators with independent reverse exponential components:
Let

f j(v j ) = α j exp{α j(v j + β j)}, v j ∈ (−∞, −β j), α j > 0, β j ∈ R.

Case fT = fV . Density (3.3) is

hT (x; 1, 0) = e−max(x)
∫ e−max(x+β)

0
t−1

d∏
j=1

α j(tex j+β j )α j dt

= e−max(x)−max(x+β)
∑d

j=1 α j∑d
j=1 α j

d∏
j=1

α j(ex j+β j )α j .

(7.3)

Case fU = fV . The expectation of the exponentiated variable is
E[eUj ] = 1/{eβ j (1/α j + 1)}, which is finite for all permitted
parameter values. Density (3.4) is

hU (x; 1, 0) = 1
E[emax(U )]

∫ e−max(x+β)

0

d∏
j=1

α j(tex j+β j )α j dt

= (e−max(x+β))
∑d

j=1 α j+1

E[emax(U )]
1

1 +∑d
j=1 α j

d∏
j=1

α j(ex j+β j )α j .

(7.4)

The normalization constant may be evaluated as

E[emax(U )] =
∫ ∞

0

(
1 −∏d

j=1 min(eβ j t, 1)α j
)
dt

= e−β(d) −
∏d

j=1 e
α jβ j∑d

j=1 α j + 1
e−β(1) (

∑d
j=1 α j+1)

+
d−1∑
i=1

∏d
j=i+1 e

α[ j]β( j)∑d
j=i+1 α[ j] + 1

(
e−β(i+1)(

∑d
j=i+1 α[ j]+1)

− e−β(i) (
∑d

j=i+1 α[ j]+1)
)

,

where β(1) > β(2) > · · · > β(d) and where α[ j] is the compo-
nent of α with the same index as β( j) (thus the α[ j]’s are not
ordered in general). As far as we are aware, the associated max-
stable model is not well known. If β = β1, then E[emax(U )] =
[e−β

∑d
j=1 α j]/[1 +∑d

j=1 α j], and hU = hT .

 The authors are grateful to Clément Dombry for having pointed out this
connection.

Generators with independent log-gamma components: if eVj ∼
Gamma(α j, 1) then

f j(v j) = exp(α jv j) exp{− exp(v j)}/�(α j),

α j > 0, v j ∈ (−∞,∞).

Case fT = fV . Density (3.3) is

hT (x; 1, 0) = e−max(x)

⎛⎝ d∏
j=1

eα jx j

�(α j)

⎞⎠∫ ∞

0
t
∑d

j=1 α j−1e−t
∑d

j=1 e
x j dt

=
�
(∑d

j=1 α j

)
∏d

j=1 �(α j)

e
∑d

j=1 α jx j−max(x)(∑d
j=1 ex j

)∑d
j=1 α j

.

Case fU = fV . The marginal expectation of the exponentiated
variable is E[eUj ] = α j, hence finite for all permitted param-
eter values. Density (3.4) is

hU (x; 1, 0) =
⎛⎝ 1
E[emax(U )]

d∏
j=1

eα jx j

�(α j)

⎞⎠∫ ∞

0
t
∑d

j=1 α j e−t
∑d

j=1 e
x j dt

= 1
E[emax(U )]

�
(∑d

j=1 α j + 1
)

∏d
j=1 �(α j)

e
∑d

j=1 α jx j(∑d
j=1 ex j

)∑d
j=1 α j+1

.

The normalization constant is

E[emax(U )] =
�
(∑d

j=1 α j + 1
)

∏d
j=1 �(α j)

∫

d−1

max(u1, . . . , ud )

×
d∏
j=1

uα j−1
j du1 · · · dud−1,

where 
d−1 = {(u1, . . . , ud ) ∈ [0, 1]d : u1 + · · · + ud = 1}
is the unit simplex, and the integral can be easily computed
using the R packageSimplicialCubature. ThisGP dis-
tribution is associated with theDirichletmax-stable distribu-
tion (Coles and Tawn 1991; Segers 2012).

7.2 Generators withMultivariate Gaussian Components

Let fV (v) = (2π)−d/2|�|−1/2 exp{−(v − β)T�−1(v − β)/2},
where β ∈ Rd is the mean parameter and � ∈ Rd×d is a
positive-definite covariance matrix. As before, max(x) > 0. For
calculations, it is simplest to make the change of variables s =
log t in (3.3) and (3.4).

Case fT = fV . Density (3.3) is

hT (x; 1, 0) = e−max(x)
∫ ∞

−∞

(2π)−d/2

|�|1/2
exp

{− 1
2 (x − β − s1)T�−1(x − β − s1)

}
ds

= (2π)(1−d)/2|�|−1/2

(1T�−11)1/2

exp
{− 1

2 (x − β)TA(x − β) − max(x)
}
(7.5)
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with

A = �−1 − �−111T�−1

1T�−11
, (7.6)

a d × d matrix of rank d − 1.
Case fU = fV . The expectationE[eUj ] = eβ j+� j j/2 is finite for all

permitted parameter values, where � j j denotes the jth diag-
onal element of �. Density (3.4) is

hU (x; 1, 0) = 1
E[emax(U )]

∫ ∞

−∞

(2π)−d/2

|�|1/2
exp

{− 1
2 (x − β − s1)T�−1(x − β − s1) − s

}
ds

= (2π)(1−d)/2|�|−1/2

E[emax(U )](1T�−11)1/2

× exp
{

− 1
2

[
(x − β)TA(x − β)

+ 2(x − β)T�−11 − 1
1T�−11

]}
,

with A as in (7.6). This is the GP distribution associated
to the Brown–Resnick or Hüsler–Reiss max-stable model
(Kabluchko, Schlather, and de Haan 2009; Hüsler and Reiss
1989). A variant of the density formula with E[eUj ] = 1
(equivalently β = −diag(�)/2) was given in Wadsworth
and Tawn (2014). The normalization constant is

∫∞
0 [1 −

�d(log t1 − β;�)] dt , where �d(·;�) is the zero-mean
multivariate normal distribution function with covariance
matrix �. This normalization constant can be expressed as
a sum of multivariate normal distribution functions (Huser
and Davison 2013).

7.3 Generators with Structured Components

Wepresent amodel forR based on cumulative sums of exponen-
tial random variables and whose components are ordered; for
the components of the correspondingGP vector to be ordered as
well, we assume that γ = γ 1 and σ = σ1. We restrict our atten-
tion to γ ∈ [0,∞) in view of the application we have in mind:
this model is used in Section 6 to model cumulative precipita-
tion amounts which may trigger landslides.

Case γ = 0. By construction, the densities hR( · ; 1, 0) and
hU ( · ; 1, 0) coincide sinceR = U . LetR ∈ (−∞,∞)d be the
random vector whose components are defined by

Rj = log
(∑ j

i=1
Ei
)

, Ej
iid∼ Exp(λ j), j = 1, . . . , d,

where the λ j are the mean values of the exponential distribu-
tions. Its density, fR, is

fR(r) =

⎧⎪⎪⎨⎪⎪⎩
(∏d

j=1 λ jer j
)

× exp
{
−∑d

j=1(λ j − λ j+1)er j
}

, if r1< · · · < rd,
0, otherwise,

where we set λd+1 = 0. In view of (3.4), R1 < · · · < Rd (or
equivalently U1 < · · · < Ud) implies X0,1 < · · · < X0,d . The

density of X0 is given as follows: if x1 < · · · < xd , then

hR(x; 1, 0) = 1 (xd > 0)
E[eRd ]

⎛⎝ d∏
j=1

λ jex j

⎞⎠∫ ∞

0
td

× exp

⎧⎨⎩−t

⎛⎝ d∑
j=1

(λ j − λ j+1)ex j

⎞⎠⎫⎬⎭ dt

= 1(xd > 0) d!
∏d

j=1 λ jex j(∑d
j=1 λ−1

j

) (∑d
j=1(λ j − λ j+1)ex j

)d+1 ,

(7.7)

while hR(x; 1, 0) is zero otherwise. The density hR(x; σ, 0) is
obtained from (3.5).

Case γ > 0. Let R ∈ (0,∞)d be the random vector whose com-
ponents are defined by

Rj =
j∑

i=1

Ei, Ej
iid∼ Exp(λ j), j = 1, . . . , d,

Its density, fR, is similar to the one for γ = 0. Then

E
[
emax(U )

] = E

[
max
1≤ j≤d

(
γRj

σ

)1/γ
]

=
(γ

σ

)1/γ
E
[
R1/γ
d

]
.

The distribution of Rd is called generalized Erlang if λi �= λ j
for all i �= j (Neuts 1974), and, letting fRd denote its density
we get

E
[
R1/γ
d

]
=
∫ ∞

0
r1/γ fRd (r) dr

= �

(
1
γ

+ 1
) d∑

i=1

λ
−1/γ
i

⎛⎝ d∏
j=1, j �=i

λ j

λ j − λi

⎞⎠ .

If λ1 = · · · = λd , then Rd follows an Erlang distribution. By
(3.7), the density of X becomes, for xd > · · · > x1 > −σ/γ

and xd > 0,

hR(x; σ, γ )

=
(∏d

j=1 λ j

) ∫∞
0 tdγ exp

{
−tγ

∑d
j=1(λ j − λ j+1)(x j + σ/γ )

}
dt( γ

σ

)1/γ
E
[
R1/γ
d

]
=

(∏d
j=1 λ j

) ( γ
σ

)−1/γ
�
(
d + 1

γ

)
/�
(

1
γ

)
(∑d

j=1(λ j − λ j+1)x j + (σ/γ )λ1

)d+1/γ ∑d
i=1 λ

−1/γ
i

(∏d
j=1, j �=i

λ j
λ j−λi

) .
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