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Abstract: We experimentally demonstrate orbital angular momentum (OAM) modes 
emission from a high emission efficiency OAM emitter for 20-Gbit/s quadrature phase-shift 
keying (QPSK) carrying data transmission in few-mode fiber (FMF). The device is capable of 
emitting vector optical vortices carrying well-defined OAM efficiently with the efficiency of 
the device >37%. Seven modes propagate through a 2-km two-mode and a 3.6-km three-
mode FMF with measured optical signal-to-noise ratio (OSNR) penalties less than 4 dB at a 
bit-error rate (BER) of 2 × 10−3. The demonstrations with favorable performance pave the 
way to incorporate silicon photonic integrated devices as transceivers in an OAM-enabled 
optical fiber communication link. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction

The unabated exponential growth of global internet traffic is driving an ever-increasing 
demand for higher data transmission capacity and more efficient spectral usage in 
transmission links [1]. To break the coming capacity crunch, a great many of research efforts 
have been made to investigate different physical properties of a light wave for data 
transmission, including frequency/wavelength, amplitude, phase, polarization, time. Thus, 
various advanced multilevel modulation formats and multiplexing techniques, i.e. m-ary 
quadrature amplitude modulation (m-QAM), orthogonal frequency-division multiplexing 
(OFDM), wavelength-division multiplexing (WDM), time-division multiplexing (TDM), and 
polarization-division multiplexing (PDM), have been widely used to increase the transmission 
capacity [2–7]. Meanwhile, the multiplexing of multiple independent spatial channels, i.e. 
space-division multiplexing (SDM), has been proposed as a promising technology to boost 
attractive increase in transmission capacity by exploring the spatial domain of a light wave [1, 
8]. There are several different types of orthogonal modal basis sets that are potential 
candidates for such SDM systems. In fiber optical communications, few-mode fiber (FMF) 
and multi-core fiber (MCF) are well-known promising candidates enabling efficient SDM [9–
12]. In addition to FMF and MCF, another SDM focusing on the spatial phase structure of 
light beams, known as orbital angular moment (OAM) multiplexing, has also shown its 
potential use in both free-space, underwater and fiber optical communications to improve the 
transmission capacity [13–37]. An OAM beam is characterized by a helical phase front of 
exp( )ilθ  in which l  is the topological number and θ  refers to the azimuthal angle [38]. Owing 
to the helical phase structure, an OAM beam features a doughnut intensity profile with a 
phase singularity at the beam center. The unlimited topological charge values of OAM and 
the inherent orthogonality between different OAM states facilitate an alternative multiplexing 
technique, i.e. OAM-division multiplexing. 

So far, most of OAM transmission experiments rely on complex and bulky optical 
components, which are slow to respond, and cumbersome to use [17–29, 31–37]. This 
severely limits the prospect of its widespread use in future practical systems. In this paper, we 
experimentally demonstrate a FMF link based on a micro-meter-sized highly efficient silicon 
integrated optical vortex beam emitter. The device is capable of emitting vector optical 
vortices carrying well-defined OAM efficiently with the efficiency of the device >37% [39, 
40]. Using this device, seven modes, each modulated by 20-Gbit/s quadrature phase-shift 
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keying (QPSK) signal have been successfully transmitted through 2-km two-mode FMF (LP01 
and LP11) and 3.6-km three-mode FMF (LP01, LP11 and LP21), respectively. 

2. Concept and principle

Fig. 1. (a) Measured SEM image of the fabricated device (R = 7.5 μm ) with an angular 

grating patterned along the inner wall of a micro-ring resonator. (b) Schematic illustration of 
the device with an angular grating patterned along the inner wall of a micro ring resonator and 
an Al mirror layer. (c) Concept of OAM modes emission from the device for transmission in 
FMF. 

In the silicon integrated optical vortex beam emitter, a micro-ring resonator with angular 
grating patterned along the inner wall is coupled to an access waveguide for optical input. 
Figure 1(a) shows the scanning electron microscopy (SEM) image of the fabricated device (R 
= 7.5 um). The operation principle of this integrated device is to couple the rotating 
whispering gallery mode (WGM) in the micro-ring resonator to a vertically propagating 
cylindrical symmetric vector vortex mode. By matching the wavelength of the light with the 
micro-ring resonance, and by detuning from the grating Bragg wavelength, this device is 
capable of emitting a propagating field with desired vortex topological charge. The fabricated 
high emission efficiency OAM emitter is based on substrate transfer technology, and the 
sketch of the device is depicted in Fig. 1(b). An aluminum mirror is introduced below the 
micro-ring resonator by wafer bonding technology to the structure to effectively improve the 
emission efficiency [39, 40]. 

For the state of polarization (SOP) of the source, since WGMs and the angular grating 
structure are both cylindrically symmetric, the radiated beams should maintain this symmetry 
and should be cylindrical vector (CV) beams. In the devices, for quasi-transverse electric 
(TE) WGMs, the radiated near field is predominantly azimuthally polarized with its Jones 

vector ECV written as 
sin

exp( )
cosCVE il

θ
θ

θ
− 

=  
 

. The radiated CV vortex beam can be 

described as the superposition of two orthogonal scalar vortices, as ECV can be further 

decomposed into ( )1 1
 exp 1 exp [( 1) ]

2 2CV

i i
E i l i l

i i
θ θ   

= + − −     −   
, which consists of a right-

hand circularly polarized (RHCP) beam with topological charge of 1l +  and a left-hand 
circularly polarized (LHCP) beam with 1l −  [41–44]. The vector beam is emitted into free 
space and decomposed by a quarter-wave plate (QWP) and a polarizer. After passing through 
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the QWP, the LHCP beam and RHCP beam are converted to two orthogonal linearly 
polarization beams. Then the linearly polarized OAM beam we need is picked out by a 
polarizer. The linearly polarized beam then couples into and propagates through the FMF, 
followed by the detection and imaging to form a complete FMF transmission link. The FMF 
designed to support two modes is 2 km while the other one designed to support three modes is 
3.6 km. 

3. Experimental setup

Fig. 2. Experimental setup of OAM modes emission from a silicon photonic integrated device 
for transmission in FMF. PC: polarization controller. EDFA: erbium-doped fiber amplifier. 
AWG: arbitrary waveform generator. QWP: quarter-wave plate. Pol.: polarizer. FMF: few 
mode fiber. PC-FMF: polarization controller on few mode fiber. HWP: half-wave plate. SLM: 
spatial light modulator. Col.: collimator. VOA: variable optical attenuator. 

Fig. 3. Relative refractive index profiles of the (a) two-mode and (b) three-mode FMF. 

The experimental setup of OAM modes emission from a highly efficient silicon photonic 
integrated device for transmission in FMF is shown in Fig. 2. At the transmitter side, a 20-
Gbit/s QPSK signal is generated by a tunable laser followed by an optical I/Q modulator, 
which is modulated by an arbitrary waveform generator (AWG). Then the signal is coupled 
into the input waveguide of the micro-ring resonator. A polarization controller (PC) is used to 
launch light in the quasi-TE mode in the emitter chip waveguide, and the power is monitored 
by a power meter placed at the output port of the waveguide. The vortex vector modes with 
topological charge 1, 1, 2l = − −  are excited when the center wavelength of the tunable laser is 
1529.02 nm, 1552.32 nm and 1564.02 nm, respectively. While the vortex mode with 
topological charge 0l =  is splitting to two modes (TM01 and TE01) as the strongest cross-
coupling occurs at the wavelength of 1538.9 nm and 1541.96 nm respectively due to the 
second order Bragg reflection. The emitted beam is collimated by a 40X objective lens after 
emission. Then the collimated circularly polarized beams are converted by a QWP and 
filtered by a polarizer. The linearly polarized beam is coupled into the FMF by a 10X 
objective lens. After propagating through the 2 km or 3.6 km FMF, the beam is collimated 
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again by another 20X objective lens. The polarization controller (PC) on the FMF (PC-FMF) 
is adjusted to obtain the OAM states at the FMF output with the smallest possible crosstalk. 
The SLM is loaded with a reverse phase pattern to convert the OAM mode beam to a 
Gaussian-like beam which is coupled into a single-mode fiber (SMF) for coherent detection. 
The half-wave plate (HWP) is used to adjust the polarization of the output light of FMF 
aligning to polarization of the SLM as the SLM is polarization sensitive. The relative 
refractive index profiles of two-mode and three-mode FMF are shown in Fig. 3(a) and 3(b), 
respectively. 

4. Experimental results and discussion

First we measure the intensity profiles of the emitted vector vortex modes from a high 
emission efficiency device with a radius of 7.5. Figures 4(a)-4(f) show the decomposition of 
the emitted vector vortex mode after the QWP and polarizer, which is scalar vortex mode 
with topological charge 2l =  at the wavelength of 1529.02 nm, 0l =  at the wavelength of 
1529.02 nm, 0l =  at the wavelength of 1552.32 nm, 2l = −  at the wavelength of 1552.32 
nm, 1l =  at the wavelength of 1564.02 nm, and 3l = −  at the wavelength of 1564.02 nm 
respectively. Figures 4(g)-4(l) display the interference patterns of decomposed linearly 
polarized beam with a reference Gaussian beam corresponding to the scalar vortex modes 
above. The polarization of the reference Gaussian beam is −45° or 45° with respect to the fast 
axis of QWP. In addition, we also measure the intensity distributions of two splitting vector 
modes with 0l =  at the wavelength of 1538.9 nm and 1541.96 nm respectively. Figure 5(a) 
shows the measured intensity distribution of the TM01 mode of the device. Figures 5(b)-5(f) 
illustrate the measured intensity distributions of TM01 mode after a polarizer in the directions 
indicated by the arrows. The degrees of the polarizer are response to 0, 45, 90, 135 and 180. 
When the polarizer is rotated, the two-lobe pattern rotates in the same manner, confirming 
that the radiated beam is with radial polarization. Figure 5(g) shows the measured intensity 
distribution of the TE01 mode of the device. Similar to Figs. 5(b)-5(f), we can confirm that the 
radiated beam is with azimuthal polarization in Figs. 5(h)-5(l). 

Fig. 4. Measured intensity profiles of the decomposition of the vector vortex modes of a device 

(R = 7.5 μm ) after the QWP and polarizer, (a) 2l =  at the wavelength of 1529.02 nm, (b)

0l =  atthe wavelength of 1529.02 nm, (c) 0l =  at the wavelength of1552.32 nm, (d)

2l = −  atthe wavelength of 1552.32 nm, (e) 1l =  atthe wavelength of 1564.02 nm, (f)

 3l = −  at the wavelength of1564.02 nm respectively.(g)-(l) Measured interference patterns of 
the decomposition of the vector vortex mode after the QWP and polarizer with a reference 
Gaussian beam corresponding to the modes above. 
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Fig. 5. (a) Measured intensity profile of TM01mode at the wavelength of 1538.9 nm. (b)-(f) 
Measured intensity profiles of TM01 after a polarizer in the directions indicated by the arrows. 
(g) Measured intensity profile of TE01mode at the wavelength of 1541.96 nm. (h)- (l)
Measured intensity profiles of TE01 after a polarizer in the directions indicated by the arrows. 

Then we measure the radiation spectrum of the high emission efficiency device. Figure 
6(a) shows the measured radiation spectrum for the highly efficient device with a radius of 
7.5μm . Figure 6(b) displays the measured radiation spectrum of the low efficiency device 

with a radius of 7 μm . The spectra are measured by scanning the tunable laser to different 

wavelength while the input power maintains 10 dBm. We can see that the radiation power of 
the high emission device increases about 6 dB compared to the other device. 

We further measure the intensity profiles of the modes after propagation in the FMF. First, 
we measure the intensity profiles of decomposed scalar vortex modes 0l =  at the wavelength 
of 1529.02 nm, 0l =  at the wavelength of 1552.32 nm, 1l = −  at the wavelength of 1564.02 
nm and vector modes TM01 at the wavelength of 1528.9 nm, TE01 at the wavelength of 
1541.96 nm after propagating through a 2-km two-mode FMF as shown in Figs. 7(a)-7(c), 
7(e) and 7(f) respectively. Figures 7(e) and 7(f) also display the measured intensity 
distributions of TM01 and TE01 mode after a polarizer in the directions indicated by the 
arrows. The degrees of the polarizer are corresponding to 0, 45, 90, and 135 which are similar 
to the profiles before coupling to the FMF. The demodulated intensity profile of 1l = −  at the 
wavelength of 1564.02 nm is illustrated in Fig. 7(d). Meanwhile, in Figs. 8(a) and 8(c), we 
demonstrate the intensity profiles of decomposed scalar modes 2l =  at the wavelength of 
1529.02 nm and 2l = −  at the wavelength of 1552.32 nm after propagation of a 3.6-km three-
mode FMF. Figure 8(b) and 8(d) illustrate the intensity profiles of the demodulation of 2l =  
at the wavelength of 1529.02 nm and 2l = −  at the wavelength of 1552.32 nm after SLM 
respectively. 

Fig. 6. (a) Measured radiation spectrum of the high emission efficiency device with a radius of 
7.5μm . (b) Measured radiation spectrum of a low efficiency device with a radius of 7μm . 
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Fig. 7. Measured intensity profiles of (a) 0l =  at the wavelength of 1529.02 nm, (b) 0l =
at the wavelength of 1552.32 nm, (c) 1l = −  atthe wavelength of 1564.02 nm after 2 km two-

mode FMF respectively, (d) demodulation of 1l = −  atthe wavelength of 1564.02 nm after
SLM, (e) TM01 at the wavelength of 1538.9 nm and TM01 mode after a polarizer in the 
directions indicated by the arrows, (f) TE01 at the wavelength of 1541.96 nm and TE01 mode 
after a polarizer in the directions indicated by the arrows. 

In order to fully investigate the performance of FMF link based on a micro-meter-sized 
highly efficient silicon integrated optical vortex beam emitter, we further measure the BER 
performance for all the seven modes with 20-Gbit/s QPSK signal. Figure 9(a) shows the bit-
error rate (BER) curves of 2-km two-mode FMF link based on high emission efficiency 
vortex emitter. Five modes, including decomposed scalar vortex modes 0l =  at the 
wavelength of 1529.02 nm, 0l =  at the wavelength of 1552.32 nm, 1l = −  at the wavelength 
of 1564.02 nm and vector modes TM01 at the wavelength of 1528.9 nm, TE01 at the 
wavelength of 1541.96 nm, propagate through the 2 km two-mode FMF. Meanwhile, BER 
curves of the decomposed scalar modes 2l =  at the wavelength of 1529.02 nm and 2l = −  at 
the wavelength of 1552.32 nm propagating through the 3.6-km three-mode FMF are shown in 
Fig. 9(b). The observed optical signal-to-noise ratio (OSNR) penalties are less than 4 dB at a 
BER of 2 × 10−3 (enhanced forward-error correction (EFEC) threshold). The inserted images 
display the typical constellations corresponding to Figs. 9(a) and 9(b). 

Fig. 8. Measured (a) intensity profiles of 2l =  at the wavelength of 1529.02 nm after 3.6 km

FMF, (b) intensity profiles of the demodulation of 2l =  after a SLM, (c)intensity profiles of

2l = −  at the wavelength of 1552.32 nm after 3.6 km FMF, (d) intensity profiles of the

demodulation of 2l = −  after a SLM.
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Fig. 9. Measured BER versus OSNR of (a) 2 km two-mode FMF link (b) three-mode FMF link 
based on a micro-meter-sized highly efficient silicon integrated optical vortex beam emitter. 

Remarkably, in the proof-of-concept experiments, the designed and fabricated silicon 
integrated optical vortex beam emitter generates different OAM modes at different 
wavelengths. With future improvement, in order to further realize OAM mode multiplexing 
transmission, different OAM modes at the same wavelength are highly desired. Fortunately, 
such OAM mode multiplexer can be implemented based on a multimode microring resonator 
with angular grating [45]. Moreover, we can also use different emitters to generate different 
OAM modes at the same wavelength by thermally tuning their radiation wavelengths [46]. 

5. Conclusion

In summary, we experimentally demonstrate a FMF link based on a micro-meter-sized highly 
efficient silicon integrated optical vortex beam emitter. The device is capable of efficiently 
emitting vector optical vortices carrying well-defined OAM (efficiency>37%). Using this 
device, seven modes, each modulated by 20-Gbit/s QPSK signal have been successfully 
transmitted through 2-km two-mode FMF and 3.6-km three-mode FMF, respectively. The 
obtained results indicate impressive emission and transmission performance, which opens a 
door to further employ silicon photonic integrated devices as transceivers in OAM-based 
optical fiber communication systems. 
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