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Summary (English)

We are on the verge of the fourth industrial revolution also known as industry 4.0[1].
The goal of industry 4.0 is to increase the incorporation of sensor information into
decision making for machinery. This in turn increases the popularity of feedback control,
and by extension, closed loop schemes. With the increasing popularity of closed loop
control it is important that the impact of the feedback loop is handled appropriately.
Because of the feedback loop, signals that might normally be uncorrelated are suddenly
not and assumptions often used for identification and fault diagnosis schemes are no
longer realistic to achieve.

The thesis aims at introducing the reader to design methods with proper handling
of noise for closed loop systems. In order to achieve this goal, it is investigated how to
transform a closed loop identification problem into an open loop identification problem.
Such a transformation is already well known, however the excitation signal design is
not intuitive when applying such a transformation. The shape of the excitation signal is
of paramount importance for the quality of the identified model. By making the design
of the excitation signal more intuitive, it should be possible to increase the quality of
identified models.

Another interesting closed loop application is fault diagnosis. More and more sys-
tems will be part of a closed loop scheme in the future in accordance with industry 4.0.
Often, systems are designed without sensor redundancy, and with disturbance rejecting
controllers. Methods which are not limited in isolability due to sensor redundancy,
and which decouple the effect of the disturbance rejecting controller, are therefore
of huge interest. Active fault diagnosis obtains the required information through a
known excitation signal instead of the sensor redundancy. Design of detectors based on
active fault diagnosis can therefore make fault diagnosis possible for systems where
installation of extra sensors are too cost demanding.

The methods were developed with a piezoelectric rotor-bearing application in mind.
The bearing is using air as the lubricant between the bearing and the shaft and is there-
fore referred to as a gas bearing. Gas bearings have relative low damping compared to
high friction bearings such as ball bearings. Feedback control is therefore employed to
increase the damping of the Gas Bearing. This makes Gas Bearings a prime example of
technology following with the industry 4.0 standard.

The PhD has been carried out in collaboration with DTU Department of Mechanical
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Engineering, and DTU Department of Applied Mathematics and Computer Science, both
of which contributed with their respective expertise. Furthermore, DTU Department of
Mechanical Engineering provided an experimental gas bearing test rig with which to
conduct experimental validation of the methods developed. The scientific results of the
research have been summarised in 3 conference papers which have been published and
presented, 1 published journal paper, 1 journal paper accepted for publication and 1
journal paper which have been submitted.



Resumé (Dansk)

Vi er på tærsklen til den fjerde industrielle revolution, også kendt som industri
4.0 [1]. Målet med industri 4.0 er at øge brugen af sensorinformation i styring af
maskiner. Dette som konsekvens øger populariteten af regulering og tilbagekobling.
Med den stigende popularitet af regulering ved brug af tilbagekobling er det vigtigt at
tilbagekoblingssløjfens effekt håndteres korrekt. På grund af regulatoren bliver signaler
der normalt ikke er korrelerede pludselig korrelerede. Antagelser, der ofte anvendes til
identifikation og fejldiagnose, bliver derved urealistiske.

Afhandlingen sigter mod at introducere læseren til designmetoder der tager højde
for støjs indflydelse i lukketsløjfe systemer. For at nå dette mål undersøges det, hvordan
man omdanner et lukketsløjfe identifikationsproblem til et åbensløjfe identifikation-
sproblem. En sådan transformation er allerede velkendt, men design af excitation
signalet er ikke intuitivt, når der bruges en sådan transformation. Excitationssignalet
er af afgørende betydning for kvaliteten af den identificerede model. Ved at gøre de-
signet af excitationssignalet mere intuitivt bør det være muligt at øge kvaliteten af de
identificerede modeller.

En anden interessant lukketsløjfe anvendelse er fejldiagnose. Flere og flere systemer
vil blive styret af en regulator i fremtiden i overensstemmelse med industri 4.0. Ofte er
systemer designet uden sensorredundans og med regulatorer designet til at undertrykke
forstyrrelser. Metoder, som ikke bliver begrænset af sensor redundans, og som afkobler
effekten af regulatoren, er derfor af stor interesse. Aktiv fejldiagnose opnår den nød-
vendige information gennem et kendt excitationssignal i stedet for sensor redundans.
Design af detektorer baseret på aktiv fejldiagnose kan derfor gøre fejldiagnose mulig
for systemer, hvor ekstra sensorer er for omkostningskrævende.

De præsenterede metoder blev udviklet med et piezoelektrisk luftleje i tankerne.
Lejet anvender luft som smøremiddel mellem lejet og akslen og betegnes derfor som
et luftleje. Luftlejer har relativt lav dæmpning i forhold til højfriktionslejer såsom
kuglelejer. Tilbagekobling er derfor anvendt til at øge luftlejets dæmpning. Dette gør
luft lejer til et perfekt eksempel på teknologi, der følger med standarden fra industri 4.0.

Ph.d.-uddannelsen er udført i samarbejde med DTU Institut for Mekanisk Teknologi
og DTU Institut for Matematik og Computer Science, der har bidraget med deres respekt-
ive ekspertise. Desuden leverede DTU Institut for Mekanisk Teknologi en eksperimentel
testopstilling til at udføre eksperimentel validering af de udviklede metoder på. De
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videnskabelige resultater er opsummeret i 3 konferenceartikler, der er blevet udgivet
og præsenteret, 1 tidsskrift der er publiceret, 1 tidskrift der er blevet accepteret for
publicering og 1 tidsskrift der er indsendt.



Preface

This thesis is submitted as a prerequisite to obtain a Danish PhD degree. The PhD-
thesis is based on the contributions described in 3 conference and 3 journal papers
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a summary which links the contributions from all the articles together. The work has
primarily been carried out at the Section of Automation and Control (AUT), Department
of Electrical Engineering, Technical University of Denmark (DTU). The PhD project
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external stakeholders.

The project was supervised by associate professor Hans Henrik Niemann, and co-
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help and technical discussions, as well as sharing with me the burdens encountered
during a PhD. I need to also thank Adriana Gabriela Zsurzsan for listening to all my
complaints, and Elbert Hendricks for his endless tries at making me a better writer,
which hopefully has made this thesis more enjoyable to read. Furthermore, a general
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Abbreviations and nomenclature

This nomenclature covers the thesis summary. The nomenclatures of the appended
publications may differ.

Abbreviations

N4SID Numerical Subspace State Space System Identification
MOESP Multi-variable Output Error State Space
PEM Prediction Error Method
YJBK Youla-Jabr-Bongiorno-Kucera
LQR Linear Quadratic Regulator
SISO Single Input Single Output
MIMO Multiple Input Multiple Output
gcd Greatest Common Divisor
LFT Linear Fractional Transformation
FAR False Alarm Rate
LCF Left coprime factorisation
RCF Right coprime factorisation
WGN White Gaussian Noise
PDF Probability Density Function
AMB Active Magnetic Bearing
FEM Finite Element Model
CUSUM Cumulative Sum
FD Fault Detection
LTI Linear Time Invariant

Latin symbols

K Stiffness matrix [ N
kg·µm ]

D Damping matrix [ N
kg·µm ]

B Input gain matrix [ N
kg·µm ]

H Hypothesis [−]
s Laplace variable [ jω]
|| · ||x The x-norm [−]
θ Parametric fault or Parametric uncertainty diagonal matrix [-]
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θi Specific parametric fault or parametric uncertainty [-]

Notation
�

A B
D D

�

Shorthand notation for the state space realisation C(sI − A)−1B + D

�

G11 G12

G21 G22

�

Partition of the system G into four subsystems

? Star product G ? K :=

�

Fl(G, K11) G12(I − K11G22)−1K12

K21(I − G22K11)−1G21 Fu(K , G22)

�

Fl(G,θ ) Shorthand notation for lower LFT:= G11 + G12θ (I − G22θ )−1G21

Fu(G,θ ) Shorthand notation for upper LFT:= G22 + G21θ (I − G11θ )−1G12



Chapter 1

Introduction

1.1 Motivation

Research into low friction bearings has been a hot topic for the last decade. Active
gas bearings is one such bearing technology. These bearings have several advantages
that make them suitable for specialised industries. Another low friction bearing type is
the Active Magnetic Bearing (AMB), unlike gas bearings, AMB’s are open loop unstable.
This makes gas bearings preferable for systems where controller failures is a possibility.
Other popular applications of gas bearings are in air-conditioning systems of closed
environments such as aeroplanes and in the food industry. The reason for gas bearings
being popular in these applications is that gas bearings use air as a lubricant and
therefore do not pose the danger of leaking toxic lubricants.

Until recently there were no models that could predict the behaviour of active
gas bearings for control design purposes[2]. An experimental test setup containing
an active gas bearing was therefore constructed at DTU [3, 4, 5]. It is shown that it
is possible in [6, 7, 8, 9] to create a Finite Element Model (FEM) that appropriately
predicts the dynamics of the active gas bearing. Such models consist of an inconvenient
high number of states for the design of feedback controllers. This is mainly because
the purpose of such models is to help in the design phase of the plant, which requires
a lot of information that is unimportant for control purposes. It was thus the task in
[10] to identify low order models appropriate for design of feedback control. Initial
success was achieved with a fourth order model in [11] which disregarded the actuator
dynamics. The model was found to have discrepancies because of the actual actuator
dynamic, and was improved in [12] identifying the actuator dynamics as well. This
approach resulted in a 10’th order model. Lastly, it is shown possible in [13] to reduce
the order of the model so that a 6’th order model could capture the main dynamics of
the plant.

All previous identified models were identified and verified using open loop experi-
ments. It is often not possible to identify a plant using open loop experiments. This
can be due to safety related issues, or the plant simply not being open loop stable. For
active gas bearings this is especially true. Active gas bearings is a technology meant for
precision operation in systems with a low downtime. It is therefore seen as advisable to
conduct identification with feedback control active.

Because of the importance of low downtime for active gas bearings, it is furthermore
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essential to only conduct maintenance when required. Fault diagnosis is a promising
tool to determine when machinery requires maintenance. As for the identification, it
is important that the fault diagnosis is usable while the plant is subject to a feedback
loop. Besides the closed loop requirement, the active gas bearing experimental test
rig used for experiments is supplied with a fixed sensor setup. In order to be able to
conduct exact diagnosis of faults, it is natural to investigate the possibilities of active
fault diagnosis. With such a fault diagnosis scheme, the downtime can be reduced to a
minimum where the active gas bearing can show its full potential compared to other
types of bearings.

The goal of the thesis can be summarised into 3 points.

• Identify the active gas bearing when part of a closed loop scheme.

• Design methods for closed loop active fault diagnosis.

• Conduct active fault diagnosis on the active gas bearing.

The thesis is a product of simulation and experimental results. Such an approach
has been chosen because it is able to cover the entire range from idea to application.

1.2 State of the art - literature survey

In this section state of the art literature is presented. This section is separated into
3 subsections, each dealing with one of the goals of the thesis.

Close loop identification of active gas bearings

Identification is an intensively studied subject with base line defining contributions
such as [14, 15]. In [15] it was argued that closed loop identification methods can be
divided into three main categories

• Direct identification

• Indirect identification

• Joint input-output identification

Direct identification is similar to ignoring the feedback loop. The risk of identifying
the controller instead of the plant with direct identification is shown in [15, 14].
Indirect identification methods deal with identification of the closed loop system using
an external excitation signal. Afterwards, the knowledge of the feedback loop is
used to determine the plant. One method in this category is known as the Hansen
scheme [16, 17]. This method is based on the Youla-Jabr-Bongiorno-Kucera (YJBK)
parametrisation of the plant first introduced in [18] for the Single Input Single Output
(SISO) case, and in [19] for the Multiple Input Multiple Output (MIMO) case. The
Hansen scheme transforms the identification problem from a closed loop problem to
an open loop problem as illustrated in Figure 1.1. This is achieved by formulating the
identification problem as identifying the Youla deviation system, instead of the plant
the plant to identify, and therefore indirectly identifying the plant.



1.2 State of the art - literature survey 3
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(a) Block representation of a closed loop system.
The goal is to identify the plant G using the
measurable input u and the measurable output
u. It is clear from the block diagram that both
u and y depend on the noise d.
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(b) Reformulation of the identification problem
using the Youla deviation system S. The goal is
to identify the Youla deviation system S using
the known input η and the known output ε.
The noise d is subject to a linear filter F . It is
clear that the reformulation makes the input η
independent of the noise d.

Figure 1.1: Block diagram illustration of the transformation from a closed loop to open
loop identification problem using the Hansen Scheme.

Identification of the Youla deviation system is an open loop identification problem as
shown in [16, 17]. It can be problematic to identify the Youla deviation system simply
because required a priori knowledge might not be obtainable. Subspace identification
methods have shown promising results when it comes to identification of the Youla
deviation system. They, for example, make it possible to identify the Youla deviation
system easily for both the SISO and MIMO case. Several different subspace identification
methods have been developed with some of the more well-known methods being the
Multi-variable Output Error State Space (MOESP) [20, 21] and the Numerical Subspace
State Space System Identification (N4SID) [22] algorithms. An overview of the different
subspace identification methods and their strengths and weaknesses is given in [23].

Active Fault Diagnosis of Closed Loop Systems

Model based fault diagnosis has been shown to be applicable for different applic-
ations [24, 25, 26, 27]. All of these schemes are based on a passive fault diagnosis
approach. By passive it is understood that the fault diagnosis is conducted based only
on monitoring the input and output signals. It was first proposed in [28] to design
a diagnosis scheme which used an external signal to diagnose faults. In this thesis a
diagnosis scheme that uses external signals for diagnosis is referred to as an active fault
diagnosis scheme. Active fault diagnosis has been applied to several different diagnosis
problems. One such example is [29] where pitch actuator faults on a wind turbine
were simulated. The main objective of active fault diagnosis schemes is to determine
the optimal external signal for diagnosis. This issue was discussed from a deterministic
viewpoint in [30] and was based on set theory. It was argued that often the plant to be
diagnosed is subject to a feedback loop. Controllers are often designed for disturbance
rejection which essentially tries to hide faults on the monitored signals. Active fault
diagnosis has the advantage, compared to passive schemes, that the excitation signal can
be designed to reveal such hidden faults. Methods for the design of optimal excitation
signals for closed loop systems have also been considered in [31, 32].

Often active fault diagnosis schemes are stated as an output fitting problem. The
problem of determining which fault that has occurred is solved by creating a bank of
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plants, where each plant represents a specific fault. The objective is then to determine
which plant that produces the output that best resembles the measured output. The
method is illustrated on Figure 1.2 where G0 is the fault free system, and G1 to Gn are
the models given each of the possible faults.

u G0

G1 ym

G2 T

G3

Gn

Figure 1.2: Illustration of the active fault diagnosis problem using a bank of possible
plants representing the fault free case G0, and the different possible faulty cases G1 to
Gn together with the measured output ym.

The problem illustrated in Figure 1.2 is to determine which plant in the bank pro-
duces the output which mimic ym the best. Some examples of this problem description
can be found in [33, 34].

The research conducted throughout this thesis investigates how to apply the YJBK-
parametrisation for fault diagnosis purposes of closed loop systems instead. The frame-
work was first described in [35, 36]. It was argued by the authors that it is possible to
construct a fault signature system which is zero in the fault free case, and non-zero in
the case of a fault for closed loop systems. A scheme was therefore constructed where
a signal was applied to the fault signature system, and diagnosis was based on the
attributes of the signal measured from the fault signature system. The scheme was
extended with a statistical test based on a Cumulative Sum (CUSUM) detector in [37].
It is here shown possible to diagnose small faults using a linearised version of the fault
signature system.

Fault diagnosis of rotation machinery

Most of the experimental work conducted in this thesis has been completed using a
rotating machinery test rig, or more specifically an active gas bearing test rig. The test
rig consist of a shaft held in a selected position by an active gas bearing and is shown
in Figure 1.3.

Fault diagnosis of rotating machinery is within the framework of industry 4.0, the
goal of which is to implement intelligence into the existing systems. In [38] the authors
show that it is possible to diagnose faults on a bearing rotating between 10 and 60
RPM. The diagnosis is conducted using the vibrations created due to mass unbalance
during rotation inside the bearing. The bearing in itself is passive and cannot be excited
directly. Fault diagnosis based on neural networks was applied in [39] to diagnose
faults in induction motors. The authors pointed out that often machinery can be subject
to one or more faults without failing. The production cost might however increase,
thus fault diagnosis is important to keep the production cost low. As stated in [6], until
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Figure 1.3: Picture of an experimental test rig consisting of a shaft with a disc attached
to the end and a position controlled by an active gas bearing.

recently, models have not been available for fault diagnosis of active gas bearings. It is
shown possible here for the first time to adequately predict the dynamics of an active
gas bearing. The model was designed using the FEM method and was of too high an
order to be used for control purposes. A 6’th order model was presented in [40]. The
model has proven able to identify the main dynamics of the system, and is therefore
useful for model based fault diagnosis.

Summary of the literature survey

Research into active gas bearings has been intensified during the last decade. This
is partly due to the trends identified in industry 4.0 that predict sensor information
to have an increasing impact on the industry in the future. All identification of active
gas bearings has so far been conducted using open loop schemes. Because modelling
of active gas bearings is still in its infancy, proof of concept has been the goal of the
modelling so far.

Equivalently, active fault detection based on the fault signature system has still
not been applied to any real systems. The method has shown great promise with
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simulations, but the issues with regards to implementation have not been studied yet.
Examples of various kinds of fault diagnosis on rotating machinery have become

popular. Not until recently have the models for active gas bearing matured enough to
apply model based fault diagnosis. The most recent models however, have the order
and accuracy believed to be required for successfully applying active fault diagnosis.

1.3 Original Contribution

The contributions in each of the attached papers are highlighted in this section. The
papers are presented in chronological order.

The thesis has 3 main contributions. A novel approach to the experimental setup
regarding identification using the Hansen scheme is presented in paper P1, P2 and
P6, whereas paper P1 focuses on identifying specific parameters in AMB’s, and paper
P2 and P6 focus on identification of active gas bearings. The second contribution is a
method for active fault diagnosis based on a matched filter design described in paper
P3 and P4. The diagnosis method presented is the first method where test statistics
have been developed for active fault diagnosis based on the YJBK-parametrisation. The
last contribution is the implementation of active fault diagnosis of active gas bearings.
It is shown possible in paper P5 to diagnose both sensor and actuator faults without
modifying the setup used in the laboratory.

Paper P1: Identifying parameters in active magnetic bearing system
using LFT formulation and Youla factorisation. By Jonas S. Lauridsen,
André K. Sekunda, Ilmar F. Santos and Henrik Niemann.

Presented at IEEE Multi-Conference on Systems and Control, September 2015. Pub-
lished in Control Applications (CCA), 2015 IEEE Conference on page 430-435.

It is shown in the conference paper P1 how to identify uncertain parameters for
AMB’s. A FEM is constructed, and it is shown with simulation examples that it is
possible to identify uncertain stiffness parameters for the AMB. Since AMB’s are open
loop unstable all identification and verification was conducted in closed loop. The
uncertain parameters were isolated using a Linear Fractional Transformation (LFT)
approach. Because of the high order usually associated with the FEM approach, a
comparison between model identification with the full order model, and a model
obtained through model reduction, was conducted. It was proposed in the paper to
apply the excitation signal inside the controller for a simpler optimisation.

Paper P2: Closed loop identification using a modified Hansen scheme. By
André K. Sekunda, Henrik Niemann, Niels Kjølstad Poulsen and Ilmar F.
Santos.

Presented at Advanced Control & Diagnosis conference, November 2015. Published in
"Journal of Physics": Conference Series Vol. 659, No. 1, page 012009

In conference paper P2, a modification to the Hansen scheme is proposed for
simplification of the identification process. The idea introduced in paper P1, with direct
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excitation inside the controller, is formalised to the Hansen scheme framework. The
original version of the Hansen scheme required the excitation signal to indirectly excite
the Youla deviation system in order to be identified. By introducing the excitation in
the controller, it was shown possible to directly excite the Youla deviation thus skipping
a step in the identification procedure. This new identification scheme was named the
modified Hansen scheme. A reformulation of the controller was introduced in order
to generalise the method to work for any linear controller setup. The method was
presented using an active gas bearing for experimental validation of the identification
scheme. An observer based controller was implemented such that the gas bearing was
working as part of a closed loop environment. It was shown possible to identify the
active gas bearing using the modified Hansen scheme.

Paper P3: Active Fault Detection Based on a Statistical Test. By André K.
Sekunda, Henrik Niemann and Niels Kjølstad.

Presented at 3´rd International Conference on Control and Fault-Tolerant Systems,
September 2016. Published in "Control and Fault-Tolerant Systems" (SysTol), 2016 3rd
Conference on page 511-518

A method for active fault diagnosis using a statistical detector based on the YJBK
parametrisation was first introduced in paper P3. A linearised version of the fault
signature system was used in order to be able to cope with small faults. A novel detector
design was presented based on a desired false alarm rate (FAR). The detector design
used a moving window to be able to give a probability of detection and the probability
of a false alarm occurring. This was made possible by using a sinusoidal excitation
signal with a known frequency and amplitude. The approach was furthermore able to
diagnose several different faults using a single sensor. This was shown possible with
a simulation example where two different actuators were having a fault imposed at
different times.

Paper P4: Detector Design for Active Fault Diagnosis in Closed Loop
Systems. By André K. Sekunda, Henrik Niemann and Niels Kjølstad.

Published in International "Journal on Adaptive Control and Signal Processing"

The journal paper P4 introduces the framework for active fault diagnosis based on
the fault signature system without linearisation. The main contribution of the paper is
a detector design which is able to cope with faults no matter the magnitude. It was
shown that the residual generator used in P3 resulted in the noise being coloured in the
fault free case. A whitening filter was therefore introduced, to be used both for open
loop stable and unstable systems. Finally, the choice of excitation signal was discussed
and a solution was proposed to choose the frequency of the signal. The fault diagnosis
scheme was presented using a simulation example where it was shown possible to
diagnose faults on different parameters. The impact of parametric uncertainties was
investigated for dealing with implementation on a real experimental test rig.
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Paper P5: Parametric Fault Diagnosis of an Active Gas Bearing. By André
K. Sekunda, Henrik Niemann, Niels Kjølstad Poulsen and Ilmar F. Santos.

Submitted to "Journal of Control, Automation and Systems"

Journal paper P5 dealt with implementing active fault diagnosis based on the fault
signature system on an active gas bearing. The method introduced in paper P4 was
implemented, and it was shown possible to diagnose faults introduced on both actuators
and sensors. The method was shown to be able to diagnose several different faults using
only one sensor. Several different experiments were conducted to show the method
with feedback control using P-control and more complex observer based controllers.
The main contribution of the paper was to show that it was possible to implement active
fault diagnosis on active gas bearings with the potential to reduce downtime.

Paper P6: Closed-loop Identification of an Active Gas Bearing. By André
K. Sekunda, Henrik Niemann, Niels Kjølstad Poulsen and Ilmar F. Santos.

Accepted for publication in "Journal of Systems and Control Engineering"

It was in paper P2 shown possible to identify the active gas bearing as part of a
closed loop system using the modified Hansen scheme framework. In journal paper
P6, identification using the modified Hansen scheme is compared with Prediction Error
Method (PEM) identification and direct subspace identification. All methods are given
the same inferior nominal model and a comparison of the different methods ability to
identify a model is conducted. Simulations of the system have been employed to find
characteristics of the different identification methods. The characteristics found were
experimentally verified. Experimental work was conducted using the active gas bearing
test rig both with and without the disc rotating.

1.4 Structure of the Thesis

The thesis is structured as follows: In Chapter 2 the theory forming the basis for the
methods developed and applied throughout the thesis is presented. The experimental
test rig consisting of the active gas bearing is described in Chapter 3. The results and
experience obtained with regards to closed loop system identification are given in
Chapter 4. In Chapter 5, active fault diagnosis is discussed, and methods for active fault
diagnosis are presented. Furthermore, the results obtained in regards to fault diagnosis
theoretically and experimentally are given. Lastly, a conclusion is given in Chapter 6
summarising the presented contributions and future research subjects. The 6 papers
containing the foundation for the thesis are included in the appendix.



Chapter 2

YJBK Theory

The control tools used throughout the thesis are based on results obtained through
the use of ring theory. The subject of ring theory is described in [41]. A survey of
the YJBK parametrisation, together with proofs, can be found in [42]. The work is
based on the possibility of parameterising all systems stabilised by a known controller
using a stable system S. The stable system S is in this thesis denoted as either the fault
signature system or the Youla deviation system. Different schemes dealing with the
use of the Youla deviation system are summarised in [43]. The schemes relevant for
identification and fault diagnosis as conducted throughout the thesis are introduced in
this chapter.

2.1 Coprime factorisation

In order to introduce the reader to the YJBK parametrisation we first need to discuss
the meaning of coprimeness. Two numbers are coprime if their greatest common divisor
(gcd) is 1. Tightly written in Eq. (2.1) where a and b are two arbitrary real numbers.

gcd(a, b) = 1 (2.1)

For polynomials the gcd is equivalent to the two polynomials sharing no common
factor. It is possible to write any linear SISO system as two polynomials, one for the
nominator and one for the denominator. This is shown in Eq. (2.2) where n(s) and
m(s) are two polynomials describing the transfer function H(s).

H(s) =
n(s)
m(s)

(2.2)

It is evident that if n(s) and m(s) are coprime, a minimal representation of the
transfer function H(s) is given by Eq. (2.2). This in turn means that the transfer
function does not contain any pole-zero cancellations. Based on the notion of a minimal
representation, extending the definition of coprimeness to MIMO systems, is rather
straight forward, from the SISO case. Two MIMO systems are said to be coprime if they
contain no pole-zero cancellations. Because the order is important for matrices, two
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different kinds of coprimeness are needed when working with MIMO systems. A system
is said to be left coprime if:

G = M̃−1Ñ M̃ , Ñ ∈ RH∞ (2.3)

Throughout the thesis˜denotes the left coprime systems. Equivalently a system is
said to be right coprime if:

G = N M−1 M , N ∈ RH∞ (2.4)

It is important to note that even though the system G might be unstable, the coprime
pairs {N , M} and {Ñ , M̃} are all stable systems.

2.2 Bezout Identity

The Bezout identity is presented in this section. The Bezout identity is a powerful tool
used to prove properties when using the coprime factorisation of plant and controller.
The Bezout identity is based on a coprime factorisation of both the controller and the
plant. The coprime factorisation of the plant is given in Eq. (2.5).

G = N M−1 = M̃−1Ñ M̃ , Ñ , M , N ∈ RH∞ (2.5)

Likewise, to the plant it is possible to describe the controller using a coprime pair of
systems. Such a description is given in Eq. (2.6).

K = UV−1 = Ṽ−1Ũ Ṽ , Ũ , V, U ∈ RH∞ (2.6)

It is assumed that the controller K stabilises the plant G which makes the following
statements possible. For a coprime factorisation of plant and controller Eq. (2.7) and
Eq. (2.8) is furthermore true.

I = Ṽ M − ŨN (2.7)

I = M̃V − ÑU (2.8)

It is possible to write Eq. (2.7) and Eq. (2.8) more tightly using a matrix represent-
ation. This is known as the Bezout identity and is shown in Eq. (2.9).

�

I 0
0 I

�

=
�

M U
N V

��

Ṽ −Ũ
−Ñ M̃

�

=
�

Ṽ −Ũ
−Ñ M̃

��

M U
N V

�

(2.9)

2.3 All Stabilising Controllers

One of the main ideas behind reformulating the plant and controller using the
coprime factorisation is to be able to describe all stabilising controllers. Given a sta-
bilising controller K for the plant G it is possible to describe all stabilising controllers
K(Q) as in Eq. (2.10).
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K(Q) = (U +MQ)(V + NQ)−1 = (Ũ +QM̃)−1(Ṽ +QÑ) Q ∈ RH∞ (2.10)

Using Eq. (2.10) it is possible to design any controller that stabilises the plant G by
choosing an arbitrary system Q that is stable. A block diagram of the controller setup is
shown in Figure 2.1 using the Left coprime factorisation (LCF).

+

+

G
+

+

+

Ṽ−1
+

+

Ũ

Q

Ñ
− +

M̃

u y

β

α

d

v1

v2

Figure 2.1: Representation of a YJKB parametrised controller for generation of signals
for identification.

Any linear controller can be reformulated into the control scheme showed in Figure
2.1. The signals v1 and v2 represent possible external signals, whereas the signal d
denotes the noise. It is possible to write any linear controller using the Right coprime
factorisation (RCF) as well. This controller scheme based on the RCF is, however, rarely
used as it does not have a direct translation to the observer residual signal. The closed
loop system can be represented in a more familiar way as shown in Figure 2.2.

+

+

Jk

+ +

G

+

+

Q

v1
α β

u

v2

y

d

Figure 2.2: Block diagram of the closed loop system using the augmented controller.

Here Jk, together with the system Q, is a compact representation of Eq. (2.10). The
augmented controller Jk is given in Eq. (2.11) using the coprime representation of the
controller and plant.
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Jk =
�

UV−1 Ṽ−1

V−1 −V−1N

�

(2.11)

From Figure 2.2 and Eq. (2.11) it is clear that the controller simplify to the nominal
controller if Q is 0. With Q disconnected, the augmented controller description can be
utilized for active fault diagnosis.

2.4 All Stabilised Plants

It has been shown how to describe all controllers that stabilise a nominal plant.
However, often full knowledge of the controller is possible whereas it is not for the plant.
It is here shown how, given a stabilising controller, all plants that will be stabilised can
be found. Given a nominal controller K stabilising the nominal plant G, it is possible to
describe all stabilised plants G(S) using Eq. (2.12).

G(S) = (N + VS)(M + US)−1 = (M̃ + SŨ)−1(Ñ + SṼ ) S ∈ RH∞ (2.12)

Here S is a stable system describing the deficiencies between the nominal plant
and the real plant. Using Eq. (2.12) has great potential due to the possible a priori
knowledge when designing controllers. For a controller stabilising the plant to be
identified, the search space is considerably reduced when identifying S instead of G(S).
This is because S has to be a stable system, and all unstable systems are therefore not
needed to be considered. A block diagram of the closed loop system scheme is shown
in Figure 2.3 when the plant is described using Eq. (2.12).

+

+

K
+ + JG

+

+

S

v1
u

v2

y

d

ηε

Figure 2.3: Block diagram of the closed loop system with the nominal stabilising
controller and the augmented plant.

Here JG together with S is a compact matrix representation of the real system based
on Eq. (2.12). The augmented system JG is given in Eq. (2.13).

JG =
�

−M−1U M−1

M̃−1 N M−1

�

(2.13)

The closed loop scheme simplify to a closed loop representation of the nominal
controller and plant if S is 0, in which case the nominal plant is equal to the true plant.
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By using this knowledge it is possible to indirectly identify the plant by identifying the
Youla deviation system S.

2.5 Relationship between S and Q

So far the chapter has dealt with what the YJBK parametrisation is and how to
derive it using coprime factorisation. This section is instead focussed on giving the
reader some motivation for using the framework. It is not possible to directly obtain
the signals η and ε due to the location inside the plant. However, in many applications
determining S is of interest. On the other hand it is possible to measure β , and impose
α directly due to their location inside the controller. The control signals α and β are
therefore more convenient to use than the signals η and ε. A relationship between S
and Q was shown in [43].

S

JG

Jk

Q

η ε

y u

αβ

G

K

S

Q
β

η ε

α

u y

Figure 2.4: Block diagram of the relationship between S and Q

It is shown in Figure 2.4 how to divide the closed loop system into what is a priori
known, illustrated by the top right block diagram and what is a priori undetermined,
illustrated by the bottom right block diagram. The controller scheme makes it possible to
either design Q to adapt the controller to system changes or identify unknown dynamics
through S. Using Figure 2.4 it is possible to show that Eq. (2.14) holds.

I = JG ? JK (2.14)

This in turn implies a relationship between the signals in the controller and plant as
shown in Eq. (2.15).

�

α
β

�

=
�

I 0
0 I

��

η
ε

�

(2.15)

The relationship found in Eq. (2.15) is used to gain easier access to problems related
to the system S and thus the plant.
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2.6 Parametrisation in S

The previous sections have dealt with the relationship between the parametrised
plant and controller. In this section, focus is instead on how to obtain a physical
understanding of S in relation to possible parametric deviations. In (2.16) a nominal
plant has been augmented with two additional signals z and w to accommodate for
these parametric deviations.

�

z
y

�

= Gaug

�

w
u

�

=
�

Gzw Gzu
Gyw Gyu

��

w
u

�

(2.16)

The signals w and z are the error signals describing the deviation between the nom-
inal plant Gyu and the true plant G(S). The error signals are related to the parametric
deviations θ as given in Eq. (2.17).

w= θz = diag(θi)z (2.17)

Here diag(θi) denotes a diagonal matrix where each parametric deviation is a
diagonal element. A block diagram of the relationship is shown in Figure 2.5.

Gzw Gzu
Gyw Gyu

θ

u y

zw

Figure 2.5: Block diagram of the plant augmented Gaug with the parametric deviations
θ .

The plant is thus possible to describe, using the known augmented plant Gaug and
the parametric deviation diagonal matrix θ , as a LFT as shown in Figure 2.5. It is shown
in [44] that such a LFT description can be expressed as Eq. (2.18).

G(θ ) = Gyu + Gywθ (I − Gzwθ )
−1Gzu =Fu(Gaug ,θ ) (2.18)

Equivalent to Eq. (2.18) which expresses the plant based on the nominal plant
and parametric deviations, it is possible to express S as a function of the parametric
deviations and augmented plant as shown in Eq. (2.19).

S(θ ) = M̃Gywθ (I − (Gzw + GzuU M̃Gyw)θ )
−1GzuM (2.19)

This relationship between the parametric deviation and the system S makes it
possible to obtain knowledge about the structure of S given different possible parametric
deviations. There are several important points to gain from comparing G(θ ) from Eq.
(2.18) with S(θ) from Eq. (2.19). Firstly it is noted that while G(θ) simplify to Gyu
when the parametric deviation goes to 0, S(θ ) simplify to 0, stated in Eq. (2.20).



2.7 Coprime Factorisation of Controllers 15

S = 0|θ=0 (2.20)

Secondly, the impact of the controller is integrated in S(θ ) which is not the case for
G(θ). This makes an analysis of the impact of the parametric deviation easier when
using S(θ) than when using G(θ). By combining Figure 2.4 and Figure 2.5, a fault
detector is designed as shown on Figure 2.6 based on the fault signature system S.

Gaug ? JK

θ

α β

zw

Figure 2.6: Block diagram of the residual generation based on the impact of the
parametric faults θ on S. Here Gaug ? JK denotes the star product between the two
systems Gaug and JK .

Based on the relationship between the controller and the plant, it is possible to
extract the control signals shown on Figure 2.6 for active fault diagnosis.

2.7 Coprime Factorisation of Controllers

It has been shown possible to represent all plants stabilised by a nominal controller
and all controllers stabilising a nominal plant, using an YJBK parametrisation. In order
to be able to design such a scheme we must be able to derive the coprime factorisation
given different controller design schemes. The coprime factorisations have been derived
in [43] and [45]. A state space description of the nominal plant is given in Eq. (2.21).

G =

�

A B
C 0

�

(2.21)

The most simple controller used is a standard proportional controller. Such a
controller is presented in state space form in Eq. (2.22).

K =

�

0 0
0 P

�

(2.22)

Here P is the proportional gain and can be either a scalar or matrix. With the
proportional gain defined as in Eq. (2.22), the RCF of controller and plant is given by
Eq. (2.23) and the LCF is given in Eq. (2.24).

�

M U
N V

�

=





A+ BF B 0
F I P
C 0 I



 (2.23)
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�

Ṽ −Ũ
−Ñ M̃

�

=





A+ BPC −B BP
F − PC I −P

C 0 I



 (2.24)

Here F is a fictitious gain which satisfy that all poles of A+ BF are contained in
the stable left half plane. With the coprime factorisation it is possible to implement
the controller using the controller scheme presented in Figure 2.1 with the system Q
disconnected. Another common control design is the full order observer. A state space
description of the full order observer is given in Eq. (2.25) where the direct gain is 0.

K =

�

A+ BF + LC −L
F 0

�

(2.25)

For a controller scheme based on the full order observer, the RCF is given in Eq.
(2.26) and the LCF is given in Eq. (2.27).

�

M U
N V

�

=





A+ BF B −L
F I 0
C 0 I



 (2.26)

�

Ṽ −Ũ
−Ñ M̃

�

=





A+ LC −B L
F I 0
C 0 I



 (2.27)

Here the observer gain is denoted L and state feedback gain is denoted F . It is
possible to use the same implementation based on the scheme presented in Figure 2.1.
If the interest lies in the signals denoted α and β it was shown in [46] how to obtain
these signals from the classic full order observer scheme. A block diagram of the full
order observer is shown in Figure 2.7 where the signals α and β are added.

It is seen in Figure 2.7 that the signal β is equivalent with the innovation signal. This
link between the signal β and the innovation signal is useful for design of controllers.

Coprime Factorisation given a Stable Controller

Previously, methods using the state space form of the controller and plant to generate
a coprime factorisation have been presented. The solutions presented so far have
all relied on a stabilising observer gain, fictitious or not. Here, instead is given a
method easily implemented when working with transfer functions and standard linear
controllers. The factorisation method was first presented in [47]. Given a stable linear
controller K , it is possible to write the 8 systems as in Eq. (2.28) to Eq. (2.35).
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G(S)
+ +

−L
−

+

D

+

+
B

+

+

+
∫

C
+ +

A

F

α

u y

d

β

Figure 2.7: Block diagram of the full order observer scheme. The signals α and β have
been added for comparison with Figure 2.1

M = (I + KG)−1 (2.28)

N = G(I + KG)−1 (2.29)

V = I (2.30)

U = K (2.31)

M̃ = (I + GK)−1 (2.32)

Ñ = (I + GK)−1G (2.33)

Ṽ = I (2.34)

Ũ = K (2.35)

Here, G is the nominal plant, and I is an identity matrix of appropriate size. The
factorisation method is useful for when a state space description of the nominal plant
and controller is not given.

2.8 Perspective

In this chapter, the YJBK-parametrisation using a coprime factorisation of plant and
controller was presented. The relationship between signals in the plant and controller
were established. Furthermore, an interpretation of S given parametric deviations
from the nominal plant was discussed. These relationships have been taken advantage
of for the identification and fault diagnosis methods to be presented further on in
this thesis. Furthermore coprime factorisations of plant and controller were given for
different controller schemes and for state space models, as well as systems described
using transfer functions. The basis for the identification and fault diagnosis methods
presented in this thesis is thus outlined in this chapter. In addition, the tools for how to
implement the methods are given using Eq. (2.23), (2.24), (2.26) and (2.27) and the
framework was shown in Figure 2.1.





Chapter 3

Experimental Test Rig

Throughout this thesis, several theoretical contributions are presented on identifica-
tion and fault diagnosis. This theoretical work is backed up by a benchmark study to
validate the given assumptions and further prove the validity of the methods presented.
The experimental work is conducted using an active gas bearing experimental test rig.
The design of the test rig was presented in [48] and modelling of the active gas bearing
was presented in [49], from a mechanical point of view. Lastly, a model of appropriate
order for control purposes was introduced in [10].

3.1 Experimental Test Rig

The experimental test rig consists of a rigid shaft held in position by a ball bearing
and an active gas bearing. A disc is attached at the end of the rigid shaft and has its
vertical and horizontal positions measured using position sensors. A picture of the
whole system is shown on Figure 3.1.

While the ball bearing is passive, the gas bearing is actively controlled using 4
piezo electric actuators. The gas bearing is known as an active gas bearing due to the
possibility to control the inflow of air. On Figure 3.1 the active gas bearing can be
seen with its 4 piezo electric actuators denoted b and c which controls the vertical and
horizontal flow of air into the bearing. The actuators have been lumped together such
that the two vertically oriented actuators denoted b are controlled as one input, and
the two horizontally oriented actuators denoted c are controlled as a single input as
well. By grouping the actuators together it is possible to have one input controlling the
vertical position, and one input controlling the horizontal position. By controlling the
inflow of air into the gas bearing, it is also possible to increase the damping inside the
bearing. A schematic of the active gas bearing is shown on Figure 3.2a.

Figure 3.2 is a simple schematic of the active gas bearing. In Figure 3.2 a cross
sectional view of the gas bearing is shown with the actuators and valve inlets. The air
is pumped into the gas bearing through the tubes denoted a and the flow is actively
controlled using the piezo electric actuators denoted b and c. A schematic of how
the actuator functions is shown in Figure 3.2b. The flow of air into the gas bearing
is controlled by moving the actuator towards and away from the shaft, located at
the middle of the bearing. For simplicity, the two actuators positioned in the vertical



20 3 Experimental Test Rig

d

c

b

e f
g

Figure 3.1: Picture of the experimental test rig, used for experimental validation of the
methods introduced. The different parts of the test rig is as follows: b are the piezo
actuators pumping air into the controllable gas bearing in the vertical direction, c are
the piezo actuators pumping air into the controllable gas bearing in the horizontal
direction, d is the flexible shaft, e is the sensor measuring the vertical displacement of
the disc, f is the disc and g is the sensor measuring the horizontal displacement of the
disc.

direction have been lumped together as one. Likewise, the two actuators positioned in
the horizontal direction have been lumped together as one actuator. It is thus possible
to control the vertical and horizontal position of the shaft using the piezo electric
actuators.

Objective

Besides the gas bearing, the test rig consists of a shaft with a disc attached in one
end. The disc is denoted f on Figure 3.1. The system has two distance sensors attached,
denoted e and g on Figure 3.1. The sensors are placed orthogonal of each other so one
measures the position of the disc in the vertical direction while the other measures the
position in the horizontal direction. A schematic of the full test rig is shown in Figure
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b

dc c

a

a

a

a

(a) A cross section schematic of the active
gas bearing. The air is pumped in through
the 4 tubes denoted by a. The piezo actuat-
ors denoted c open and close the flow of air
from the horizontal direction. Likewise, the
piezo actuators denoted c open and close
the flow of air towards the shaft d in the
vertical direction.

(b) Schematic of the piezo electric actuator
used to inject air into the bearing. The ac-
tuator is able to change position horizont-
ally such that the gap increases or decreases
between the air tube and the small tube in-
side the actuator.

Figure 3.2: Schematic of the active gas bearing seen on Figure 3.1

3.3.
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Figure 3.3: Side view schematic of the test rig with measurements given in mm.

It is the goal of the control effort to keep the disc in a fixed position by injecting
air into the gas bearing in the horizontal and vertical directions. The movement of the
disc is limited to 10 µm in each direction in order to prevent the test rig from getting
damaged. Control schemes are designed with the primary goal of increasing the overall
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damping of the system. Furthermore, the disc attached to the shaft contributes to a
mass imbalance when the shaft is rotating due to imperfections. Such a mass unbalance
is equivalent to a sinusoidal disturbance with the same frequency as the rotational
speed of the shaft. The control design thus needs to compensate for the mass imbalance
in the frequency range that the system has when it is rotating.

Model

It is imperative to have an adequate model of the plant for feedback control design.
Models to describe the active gas bearing have been based on two different modelling
methods. A FEM was developed in [7] which was able to describe the dynamics of the
plant. The model gave a good physical understanding of the plant. This was however
obtained at the cost of a model containing 144 states. Such a high order model is
inconvenient for controller design, which gets especially clear for observer design. The
first attempt at a low order model was presented in [12]. The FEM was based on a
mass springer damper model of the movement of the disc when a voltage was applied
to the piezo electric actuator. The mass spring damper equation is shown in Eq. (3.1).

l̈ − Dl̇ − Kl = Bu (3.1)

Here l is a vector with the position displacement in the horizontal and vertical
direction, K is the specific stiffness matrix and is in [ N

kg µm ], D is the specific damping

matrix expressed in [ Ns
kg µm ] and B is the actuator gain matrix in [ N

kg V ]. Based on Eq.
(3.1) a state vector is defined in Eq. (3.2)

x =





l
l̇
u



 (3.2)

The model developed in [12] consist of the dynamics of the gas bearing given by
Eq. (3.3).

Gr b =







0 I 0 0
K D 2Bτ −B
0 0 −τ I
I 0 0 0






(3.3)

The model given in Eq. (3.3) consist of 6 states. Furthermore, the actuators are
modelled as 4’th order system given in Eq. (3.4)

Gact =
�

Ga,x 0
0 Ga,y

�

(3.4)

Here Ga,x describes the dynamics of the horizontal actuator, and Ga,y describes the
dynamics of the vertical actuator. Each of the actuators are modelled as a second order
system as shown in Eq. (3.5)
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Ga, j =
κa, j

( 1
p1, j s+1 )(

1
p2, j s+1 )

(3.5)

Here κ is the actuator gains, and p1, j and p2, j are the two poles of the actuator
transfer function. The two systems Gact and Gr b are lumped together in series to
represent the full dynamics of the test rig as shown in Eq. (3.6).

Gbearing = Gact Gr b (3.6)

Because Gr b contains 6 states, and Gact contains 4 states, the plant Gbearing consists
of 10 states. The full system using the model from Eq. (3.6) is shown in Figure 3.4.
Here a controller is added to illustrate the signals used for the model and for control of
the active gas bearing.

K Gact Gr b
u pz y

Figure 3.4: Block diagram of the full system using the gas bearing model given in Eq.
(3.6). The input to the system u is a voltage (in volts). The signal pz between Gact and
Gr b is the opening position of the piezoelectric actuators. Lastly, the output y is the
displacement of the disc given in micrometers.

A new first principle model was developed in [13] which only used 6 states instead
of 10 to describe the plant dynamics. The physical understanding of the plant was
somewhat sacrificed to obtain such a low order model. The model has proven advant-
ageous for control design purposes due to it being a linear relatively low order model.
However, the model parameters depend on the gas pressure of the air flowing into the
piezo electric actuators and the rotational speed of the disc. The papers presented in
this thesis uses the model presented in [13] as state of the art using a fixed rotational
speed and air pressure. With air pressure and rotational speed fixed, it is possible to
treat the model as a simple Linear Time Invariant (LTI) model.

With the state vector defined in Eq. (3.2) a state space description of the plant is
given in Eq. (3.7)

Gbearing =







0 I 0 0
K D B 0
0 0 −P P
I 0 0 0






(3.7)

Here K is the stiffness matrix, D is the damping matrix and B is the input gain
matrix. The matrix is designed as a diagonal matrix with each element h j defined by
Eq. (3.8) as a first order low pass filter.

h j(s) =
p j

s+ p j
j ∈ {1, 2} (3.8)
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The system h j describes the actuator dynamics and was the last extension to the
model described in [50]. The parameters of the matrices are identified using greybox
PEM identification. An example of identified parameters of the system, when it is not
rotating, using the 6’th order model are shown in Eq. (3.9) to Eq. (3.12).

D =
�

−224.9 3.97
9.12 −267.7

�

(3.9)

K =
�

−1.869 · 106 −8577
−9510 −1.737 · 106

�

(3.10)

B =
�

−6.126 · 106 3.154 · 105

−1.571 · 105 −4.516 · 106

�

(3.11)

P =
�

989 0
0 942.5

�

(3.12)

Implementation

Besides the active gas bearing, a desktop computer is associated with the test rig. All
controller schemes are implemented on the computer using real time software through
the simulink interface. A picture of the computer with the real time software is shown
in Figure 3.5.

Figure 3.5: Picture of the computer with the real time software open. On the right
screen is the simulink system shown while on the left screen dSpace software is seen.
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The control architecture is implemented using matlab simulink as shown on the right
computer screen in Figure 3.5. The program dSpace, shown on the left screen in Figure
3.5, is used for online interaction with the actuators and sensors of the experimental
test rig. The experimental test rig uses a sampling speed of 0.2 ms and it is possible to
acquire data sequences of up to 14 seconds. Real time is ensured by the software, and
a warning will be given if it is not possible to comply with the sampling speed.





Chapter 4

System Identification

In this chapter, closed loop identification is discussed and methods used for identific-
ation of stable and unstable plants are presented. The chapter is organised with a short
introduction into the issue of identifying systems as part of a closed loop. An initial
solution is presented for identifying parameters where the structure of the model is
perfectly known beforehand. Using this approach, identifications results for a simulated
AMB are given. The Hansen scheme method is presented and a modification is proposed
to the process. Lastly, the results using the modified Hansen scheme on an active gas
bearing are presented, and a summary of the contributions presented in this chapter is
given.

The main points used from Chapter 2 are summarised in Figure 4.1 which illustrate
the scenarios investigated in this chapter for identification purposes.

θ S(θ)

Jaug JG

⇐⇒

JK JK

z w

y u

αβ

η ε

y u

αβ

Figure 4.1: On the left, a block diagram is shown representing the relationship between
the augmented controller signals (α,β) and the parametric uncertainties θ . On the right
we see a block representation of the relationship between the augmented controller
signals (α,β) and the Youla deviation system S(θ ).

On the left it is illustrated how to find the parametric uncertainties directly using the
signals from the augmented controller JK . On the right it is illustrated how to identify
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the parametric uncertainties through S by the use of the signals from the augmented
controller JK .

4.1 Closed Loop Identification

It is often the case that it is not possible to obtain identification data from open
loop experiments. There can be several different reasons for this such as safety issues,
cost of taking the system offline, or it might simply be an open loop unstable system.
Whichever the reason, data is only possible to obtain while a feedback loop is active.

The subject of closed loop identification has been of great interest for many of the
most influential researchers within identification. Indeed, two of the most recognised
books within the field [14, 15] have both devoted a considerable space to cover the
issue. In order to discuss closed loop systems it is important to define what is meant by
the term. In this thesis, closed loop systems are defined as shown in Figure 4.2.

v2

v1

+

+
K

+ +

G(S) y

+

+

d

ū u

ym

Figure 4.2: Block diagram of a plant G(S) as part of a closed loop system with the
controller K . The signal d is unknown noise while v1 and v2 are possible external input
signals.

Here, G(S) is the plant to be identified, K is the controller, d is the unknown noise
signal, and v1 and v2 are possible known external signals. For such a system the goal
is to identify the plant G(S) and the most simple way is using Eq. (4.1) which can be
rewritten as in Eq. (4.2) based on the spectral density of the signals.

ym = G(S)u+ d (4.1)

Φymu = G(S)Φu +Φd (4.2)

Here, ym, u and d are data vectors of the same length, G(S) is time domain system,
Ĝ is the estimated system and Φ denotes the spectral density. The system is usually
identified using the input and measurement signal as shown in Eq. (4.3). For the case
where the noise and input are uncorrelated using a sufficient amount of data, Eq. (4.3)
will simplify to Eq. (4.4).

Ĝ =
Φymu

Φu
= G(S) +

Φd

Φu
(4.3)

lim
t→∞

Φymu

Φu
= G(S) (4.4)

Eq. (4.4) is however, based on the assumption that the noise d and input u are
not correlated which is clearly not the case when the feedback loop is active. For this



4.2 Identification of Parametric Uncertain Parameters 29

example, inspired by [15], we use v2 as the external excitation signal. First the two
signals ym and u have to be found based on the external signals v2 and d.

Φym
= 1

1−G(S)K (G(S)Φv2
+Φd) (4.5)

Φu = 1
1−G(S)K (Φv2

+ KΦd) (4.6)

Again, the identification is based on the correlation of the input and output signals
as shown in Eq. (4.7).

Φym

Φu
=

G(S)Φv2
+Φd

Φv2
+ KΦd

(4.7)

It is easy to see that if the excitation signal v1 is dominant relative to the noise signal
d Eq. (4.7) simplify to Eq. (4.8).

lim
||v2 ||2
||d||2

→∞

Φym

Φu
= G(S) (4.8)

Here, the identification succeeds and it is possible to identify the plant G(S) using the
input and output signal. However, the issue arises when the noise becomes significant.
Indeed, if the noise is dominant relative to the excitation signal, Eq. (4.9) becomes
true.

lim
||v2 ||2
||d||2

→0

Φym

Φu
= 1

K (4.9)

Suddenly 1
K is identified using the signals u and ym for identification. This fact

comes from the correlation between the input signal and the unknown noise. The
above example is shown for SISO systems, the inclusion of MIMO systems is rather
straightforward. It was however chosen with this example, to strive for transparency to
introduce the reader to the issues associated with identification of closed loop systems.
Furthermore, the problem showed above is related to identification using spectral meth-
ods. A whole set of possible fallacies when conducting closed loop identification using
different methods was discussed in [14]. Here, both PEM and subspace identification
methods are mentioned, as well as the spectral methods. In this work the possible
fallacies have tried to be avoided by decorrelation of the input signal, used for the
identification process, and the noise.

4.2 Identification of Parametric Uncertain Parameters

In this section a method is presented as to how to identify specific parameters for an
a priori known model structure. Given a diagonal matrix θ , containing all the parameter
uncertainties, it is possible to state the real plant as an LFT of the nominal plant and
the uncertainty. The LFT can be shown as a system description as on Figure 4.3.
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Gyu Gyw
Gzu Gzw

θ

u y

Figure 4.3: Lower lft description of G(θ ).

Equivalently the gain from input (u) to output (y) is given in Eq. (4.10) for
uncertainties θ .

Fl = Gyu + Gywθ (1− Gzwθ )
−1Gzu (4.10)

This can be written in a slightly more compact form as given in Eq. (4.11).

G(θ ) =Fl

��

Gyu Gyw
Gzu Gzw

�

,θ
�

(4.11)

Methods for how to select Gyw Gzw and Gzu can be found in [44], and depends on
the type of the specific parametric uncertainty. In order to identify parameters for a
plant, the parameter uncertainties θ have been defined as in Eq. (4.12) throughout
this analysis.

p(θi) = p(0)(1+ θi) (4.12)

Here, p(0) is the initial estimate of the parameter, and θi is the uncertainty and
is the diagonal element i of the diagonal matrix θ containing all the uncertainties.
Uncertainties are thus treated as relative parameter changes.

Instead of defining the uncertainties as part of the full system, it is possible to use the
dual Youla parametrisation to define the uncertainties based on the deviation between
the real plant and initial model. Hence, the uncertainties need to be formulated as a
function of S. With the uncertainties given as defined in Eq. (4.12), S can be formulated
as a function depending on the parameter uncertainties θ as shown in Eq. (4.13).

S(θ ) =Fl

��

0 M̃Gyw
GzuM Gzw + GzuU M̃Gyw

�

,θ
�

(4.13)

It is possible to write the lower LFT as a transfer function shown in Eq. (4.14).

S(θ ) = M̃Gywθ (I − (Gzw + GzuU M̃Gyw)θ )
−1GzuM (4.14)

Determining S(θ) in Eq. (4.14) is a non-linear problem. In order to solve the
problem, an YJKB parametrised controller as shown in Figure 4.4 is used with Q set to
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Ñ
− +

M̃

u y

β

α

d

v1

v2

Figure 4.4: Representation of a YJKB parametrised controller for the generation of
signals for identification.

0. It is then possible to inject a signal α into the system whereby the signal β can be
measured.

The goal is thus to be able to isolate the signal going from α to β , from the disturb-
ance signal as shown in Eq. (4.15). The signal α, is for this purpose chosen to be a
sinusoidal wave defined in Eq. (4.16).

β = S(θ )α+ d̄ (4.15)

α= Asin(ω0 t) (4.16)

For simplicity Eq. (4.13) can be written as Eq. (4.17).

S(θ ) = S12θ (I − S22θ )
−1S21 (4.17)

Here, S12, S21 and S22 are all a priori known systems. In order to identify the
uncertainty parameters a cost function is used. The cost function is given in Eq. (4.18),
and shaped to make it an approximately quadratic problem.

J(θ ) =
1
2
‖β(t)− S(θ )α(t)‖2

1 (4.18)

The 1-norm is used here, but other norms might be convenient due to a priori
knowledge. A visualisation of a possible cost plane is shown in Figure 4.5 given two
possible uncertainties.

The goal is to minimise the cost function J(θ ). The minimum of a cost function as
shown in Eq. (4.18) can be found using non-linear programming methods such as the
one presented in [51].

The method was used to show it possible to identify specific parameters on an AMB
which had a high uncertainty from the construction phase. A FEM, of a shaft kept held
in a constant position using two AMB’s, was developed. It was shown possible to reduce
the order of the model while isolating specific parameters at the same time.
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Figure 4.5: Contour plot of J(θ ) given two parametric uncertainties.

4.3 Hansen Scheme

In the previous section a simple method was given for how to determine specific
parameters in a predetermined model framework for closed loop systems. The complex-
ity of the method explodes when the amount of uncertain parameters increases. In this
section an introduction is given to a method developed in [16] in order to reformulate
the closed loop identification problem into an open loop problem. The formulation was
further simplified in [17] where a block diagram as shown in Figure 4.6 was presented.

v2

v1

+

+
Ṽ−1Ũ

+ + +

−
M−1

η
N

+

+
ym

S

+ +

M̃ + SŨ d

U
ε

V

u

Figure 4.6: Block diagram of the Hansen Scheme as presented in [17].

The idea with the Hansen scheme, as presented in Figure 4.6, is to identify the
unknown system S using the signals η and ε instead of identifying the plant G using
the signals u and y . As explained in Section 4.1, the issue with identification of a plant
subject to a feedback loop arises from the correlation between the input and noise
signals. However, where u is correlated with d the signal η is not. It was shown in [16]
that η can be solely expressed using v1 and v2 as in Eq. (4.19).
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η= Ũ v1 + Ṽ v2 (4.19)

It is not obvious from Figure 4.6 that Eq. (4.19) is true. A proof is given in Eq.
(4.20) to Eq. (4.25). The proof is based on the bezout identity presented in Chapter 2.

u= (M + US)η+ U(M̃ + SŨ)d (4.20)

ym = (N + VS)η+ V (M̃ + SŨ)d (4.21)

Ṽ u− Ṽ (M + US)η= Ũ ym − Ũ(N + VS)η (4.22)

Ṽ (Ṽ−1U(v1 + y) + v2)− Ṽ (M + US)η= Ũ ym − Ũ(N + VS)η (4.23)

Ũ v1 + Ṽ v2 = Ṽ (M + US)η− Ũ(N + VS)η (4.24)

η= Ũ v1 + Ṽ v2 (4.25)

The signal η is thus not correlated with the noise d which is the main motivation
behind the reformulation of the identification problem. The signal ε can be estimated
using Eq. (4.26).

ε = M̃ ym − Ñu (4.26)

Again a proof is given in Eq. (4.27) to Eq. (4.31) and is based on the bezout identity.

Mη = u− Uε (4.27)

Nη = ym − Vε (4.28)

Ñu− ÑUε = M̃ ym − M̃Vε (4.29)

M̃ ym − Ñu = (M̃V − ÑU)ε (4.30)

ε = M̃ ym − Ñu (4.31)

It is thus possible, using only known signals, to create the signals η and ε. The
identification problem is thus possible to formulate as Eq. (4.32).

ε= Sη+ (M̃ + SŨ)d (4.32)

The identification problem of identifying S is thus an open loop identification
problem. It is worth noticing that S represents all the dynamics not represented in the
initial model. For this reason it can be extremely difficult to predict the structure of S
beforehand.

Subspace identification methods require no a priori knowledge about the structure
of the system to identify. The methods excel in identifying systems where the order
and structure is not known beforehand. Subspace identification methods are therefore
very convenient to use for identifying S. With the system S identified, the plant G can
be calculated, as shown in Chapter 2, using either the right factorised form as in Eq.
(4.33) or the left factorised form as in Eq. (4.34).
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G(S) = (N + VS)(M + US)−1 (4.33)

G(S) = (M̃ + SŨ)−1(Ñ + SṼ ) (4.34)

The Hansen scheme has thus indirectly identified the plant by reformulating the
closed loop problem, of identifying G, into the open loop problem of identifying S. The
downside of the method comes with the loss of physical understanding. When using Eq.
(4.33) or Eq. (4.34) to construct the plant G(S), any a priori physical knowledge used
to create the nominal model G(0) is lost in the parameters of the identified model.

4.4 Modified Hansen Scheme

The Hansen scheme has proven to be an effective method for transforming a closed
loop identification problem into an open loop identification problem. The method
however, is based on using the signals η and ε for identification. These signals are
internal plant signals and therefore impossible to directly measure or impose. The goal
is to modify the Hansen scheme such that it is possible to both directly impose the
identification signal and measure the output signal. A method able to produce such
results is for the future denoted a modified Hansen scheme.

For design of the modified Hansen scheme, the nominal controller is augmented
with two new signals α and β , such that an augmented controller as presented on
Figure 4.7 is constructed. This augmented controller was first introduced in Chapter 2
when discussing the relationship between the system Q in the controller, and the system
S in the plant. It is important to notice that the controller simplify to the nominal
controller when the two newly introduced signals are left unused.

JK

y u

βα

Figure 4.7: Representeation of the augmented controller with the two newly introduced
signals α and β .

With an augmented controller as shown in Figure 4.7, the relationship between the
signals α and β in the controller and the signals η and ε in the plant was shown in
Section 2. This relationship is repeated in Eq. (4.35).

�

α
β

�

=
�

I 0
0 I

��

η
ε

�

(4.35)

The relationship as shown in Eq. (4.35) makes it possible to use the signals from
the augmented controller, which can be obtained and imposed directly, instead of
indirect approach corresponding with using η and ε. A graphical comparison of the two
identification methods is shown in Figure 4.8a where the Hansen scheme is depicted
and in Figure 4.8b where the modified Hansen scheme is given instead.

Using the modified Hansen scheme the identification problem changes from Eq.
(4.32) to Eq. (4.36).
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(a) Block diagram of the original Hansen
scheme, using the signals η and ε for iden-
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(b) Block diagram of the modified Hansen
scheme, using the signals α and β for iden-
tification.

Figure 4.8: Comparison of the Hansen scheme and the modified Hansen scheme.

β = Sα+ (M̃ + SŨ)d (4.36)

As for the Hansen scheme, the identification problem is again an open loop problem.
It is clear that the signals α and d are not correlated. As with the original Hansen
scheme, standard identification methods can be used to identify S when using the
modified Hansen scheme.

4.5 Initial Results Closed loop Identification of Gas Bearing

The modified Hansen scheme has been used to identify the active gas bearing which
was presented in Chapter 3 with an active feedback loop. A simulation of the active gas
bearing was conducted in order to examine whether the method would be feasible. A
nominal insufficient model of the active gas bearing was used, and the signals α and β
were obtained using the scheme presented in Figure 2.1 with Q omitted. Given that the
real plant is known, which is the case for a simulation example, it is possible to compare
the identified S with the real S. The real S can for such examples be calculated as in
Eq. (4.37)[43].

S = Ṽ−1(I − G(S)K)−1(G(S)− G(0))M (4.37)

Here, G(S) is the plant to be identified, as shown in Figure 4.2. For simulations
this is treated as a known LTI system. This, in turn, is of course unrealistic for real
systems which is why the comparison is only possible during simulations. Using the
signals α and β and the subspace identification method N4SID it is possible to identify
the unknown dynamics as the system S. An example of an identified S for a simulation
example is shown in Figure 4.9 where it is compared with the real S calculated using
Eq. (4.37).

The identified S is seen to have a similar gain to the real S. However, the identified
system was chosen of an order such that it was not possible to identify the peak gain. It is
interesting to examine the impact of using a low order approximation for reconstructing
the plant. This is possible by comparing the identified plant with the real and nominal
plant such as shown in Figure 4.10.

The result shown in Figure 4.10 shows that it is possible to reach the true system from
the nominal system through the identification process. Simulation experiments, such as
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Figure 4.9: Bode plot comparison of an identified S and the true S calculated using Eq.
(4.37).
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Figure 4.10: Bode plot comparison of an identified G(S) the true G(S) calculated using
Eq. (4.37) and the nominal G(0).

the example shown in Figure 4.9 and Figure 4.10, suggest that it is possible to identify
the active gas bearing as part of a closed loop system. It should however be noted, that
the identified system using the modified Hansen scheme is of an inconvenient high
order relative to the nominal model. This is because of the step where the identified
plant is calculated using Eq. (4.33). This is a well-known issue with identification
based on the Hansen scheme, and makes a model reduction step required. The impact
of conducting model reduction will be discussed later.
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4.6 Method Comparison for Closed Loop Identification

It has been shown possible in Section 4.5 to identify the gas bearing using the
modified Hansen scheme. A comparison with more commonly used identification
schemes is seen as required in order to be able to justify using this fairly complex
identification scheme. A qualitative measure for the identified models is needed to be
able to determine the quality of the identification results for the different methods. In
this work, a R2 measure as shown in Eq. (4.38) is used for this purpose.

R2 = 1−
||y − ŷ||2
||y − ȳ||2

(4.38)

Here R2 is the goodness of the fit and should be as close to 1 as possible. The
measured output is denoted y whereas the estimated output is ŷ and ȳ is the mean
of all the measured output values y. The purpose of the R2 is thus to estimate the
goodness of the fit where outliers are given less importance.

For comparison, the identification scheme is compared with direct identification
using a grey box PEM. Two possible scenarios have been explored to study the effect of
using the modified Hansen scheme for identification.

A study into the impact of a priori insufficient knowledge about the system dynamics
was conducted. A numerical study was conducted where the ability of each identification
scheme to reconstruct the real plant, given a degraded nominal model, were investigated.
The study used 300 imperfect nominal models obtained using Eq. (4.39).

Amodel = (1− θ ) · Areal (4.39)

Here, Areal is the true systems system matrix, Amodel is the system matrix of the
nominal model, and θ is a uniformly distributed scalar between 0 and 1. Using the
300 nominal models, both identification schemes were applied, and the quality of the
identification schemes were found relative to θ . Identification results are shown in
Figure 4.11 using Eq. (4.39) for construction of the nominal models.

The results as shown on Figure 4.11 suggest that it is advantageous to use the
modified Hansen scheme when a priori knowledge of the system dynamics is insufficient.
Simulations suggest that it can be advantageous to use the modified Hansen scheme
for closed loop identification when a priori knowledge is lacking.

4.7 Experimental Results

It was suggested through simulation results, that identification using the modified
Hansen scheme would produce superior results to direct identification using PEM when
the initial nominal model does not represent the system well.

The results obtained from the simulation experiments have been investigated on
the active gas bearing. Several different experiments were conducted to compare direct
PEM identification with the modified Hansen scheme.

For the first set of experiments conducted, the nominal model was designed to
mimic the dynamics of the active gas bearing well. The gas bearing was rotating with
2500 RPM, and both identification and verification sequences were obtained. The
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Figure 4.11: Comparison of the R2 fit relative to θ using the modified Hansen scheme
(blue), and direct PEM identification (red). The top plot shows the fit for the horizontal
direction, and the bottom plot shows the fit in the vertical direction.

identification schemes are under such circumstances both able to identify the active gas
bearing with the PEM getting slightly better results. The identification results from the
experiments are shown in the first column of Table 4.1.

For the second set of experiments, the nominal model was chosen to mimic the
dynamics well, while the rotation of the gas bearing was set to 0 RPM. The nominal
model has a very high R2 fit, and both identification schemes are only able to improve
the result in the vertical direction. The result of the identification schemes are shown
in the third column in Table 4.1. Again, the PEM identification scheme achieves slightly
better results, however, both identification schemes produce models of similar quality
to the nominal case.

The last set of experiments was executed using a nominal model lacking knowledge
of the plant dynamics. The results of the experiments are shown in the second column
of Table 4.1. For such a nominal model, the modified Hansen scheme clearly outper-
forms the PEM identification. The model identified using the modified Hansen scheme
produces similar results to the models identified based on a good nominal model as
shown in the third column of Table 4.1. Such results correspond with the simulations
result shown in Figure 4.11 and confirms that the method can be advantageous when a
priori knowledge is insufficient.
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Order Reduction

The models identified using the modified Hansen scheme and direct PEM identifica-
tion has so far been directly compared. This is seen as being unfair due to the order
difference between the models generated using the two different schemes. The models
generated using the PEM have the same order as the nominal model, whereas the
order of the models generated using the modified Hansen scheme are of a much higher
order. In order to get similar models which are comparable model reduction of the
models generated using the modified Hansen scheme is needed. The low order model
approximation is denoted Gred(S), and G(S) is the original model identified using the
modified Hansen scheme. The model reduction technique used is described in [52].
The technique is used to obtain approximated models of the same order as the nominal
model. The identification results using the full order models, and the models obtained
using model reduction techniques are shown in Table 4.1.

high deviation small deviation
2500 RPM 0 RPM 0 RPM

Horizontal Vertical Horizontal Vertical Horizontal Vertical

Nominal model 51.36% 54.13% 3.19% 3% 83.21% 76.12%
Open loop PEM model 62.87% 75.78% 48.91% 39.47% 83.9% 84.63%
Modified Hansen scheme G(S) 61.94% 69.19% 76.76% 83.58% 83.53% 81.18%
Modified Hansen scheme Gred(S) 60.71% 69.33% 76.73% 83.53% 83.07% 79.59%

Table 4.1: Model R2 fit using each of the two identification methods.

4.8 Contributions

The work presented in the chapter is based on the results presented in publication
P1, P2 and P6. The chapter introduced methods for the identification of systems that
are subject to feedback control. The first contribution presented in the chapter was
parameter identification for open loop unstable high order systems. The method was
based on initial knowledge about the structure of the model and specific parametric
uncertainties in the design phase. The method was first presented in P1 where an AMB
model was used as the example.

The second contribution of the chapter is the modification to the Hansen scheme.
Here it is shown how to design an identification scheme with the same properties as
the Hansen scheme, while still possible to directly impose an excitation signal. The
method was first presented in P2, and was used to identify an active gas bearing while
a feedback loop was active.

Lastly, a comparison between PEM identification and identification using the modi-
fied Hansen scheme was presented. It was shown advantageous to use the modified
Hansen scheme when a priori knowledge about the dynamics of the active gas bearing
was lacking. The results of the comparison between the two identification schemes and
closed loop identification of the active gas bearing was presented in P6.





Chapter 5

Fault Diagnosis

It has always been a huge driving force for control engineers to acquire precise
models making it possible to design advanced control architectures. The controllers
are designed to satisfy beforehand chosen requirements. However, due to faults and
uncertainties, the system might change over time, and the a priori decided requirements
might become infeasible. For known uncertainties and possible faults, robust controllers
are often employed to keep up with performance requirements. However, the possible
faults might be so severe that designing a robust controller is unachievable. Another
approach is to conduct fault diagnosis, examining when the system has changed in
such a way that the current control scheme is not able to satisfy the a priori defined
requirements, and then repair the system accordingly. Fault diagnosis thus consists of
determining whether a system is in its nominal or faulty state. Design of residual signals
and kernel design have been studied widely and some approaches for kernel design
are given in [24, 53, 54, 26]. Recently, research into using the Youla deviation system,
introduced in Chapter 2 for kernel design, was conducted [37, 36]. It is in this chapter
presented how to apply the YJBK-parametrisation and the augmented controller design
presented in Chapter 2 for fault diagnosis design.

Fault diagnosis usually focuses on 4 different possible states. The first state is no
fault (N F) which is when the plant is fault free and no fault is detected. The second
state is false alarm (FA) which is when a fault is detected but the plant is fault free.
The third state is missed alarm (MA) which is when no fault is detected, but the plant
is experiencing a fault. Lastly, the fourth possible state is fault detected (F D) which is a
fault being detected when the plant is experiencing a fault. This is illustrated in Table
5.1 where each of the possible states for a fault diagnosis scheme are shown.

H0 H1

Ĥ0 N F FA
Ĥ1 MA F D

Table 5.1: Possible states when using a fault diagnosis scheme. The fault free case is
denotedH0, whileH1 correspond to system state being faulty. The ·̂ is to be understood
as the detectors estimate of the system state.
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Usually, the goal of a fault diagnosis scheme is to maximise the diagonal elements in
Table 5.1 relative to the off-diagonal elements. This is often accomplished by deciding
on an allowed FAR, and optimising based on the detection probability. The FAR is
defined in Eq. (5.1) based on NF and FA.

FAR=
FA

NF + FA
(5.1)

The quality of most FD schemes are therefore measured on their ability to detect
faults given a beforehand chosen FAR.

Some different methods for residual design are given in [24], such as the null space
method and structural analysis. A common kernel used for residual generation is shown
in Eq. (5.2).

r = y − G(0)u (5.2)

Here, noise has been omitted for simplicity, and it is clear that the residual is 0 in the
fault free case, and different from 0 in the faulty case. It is advantageous to design such
residuals where the fault free case is easy to distinguish from the different possible faulty
cases. This advantage comes in the form of easier threshold design and calculation of
FAR. It is not possible to conduct open loop FD on all systems. There can be plenty
of reasons for it not to be possible to conduct FD using an open loop scheme. The
plant might be unstable without feedback control, performance might not be possible
to maintain without feedback control, or it might simply not be feasible to disconnect
the controller. For example, residual generation using Eq. (5.2) is clearly impossible
to realise when the plant is open loop unstable. The fault diagnosis conducted in this
thesis are based on a closed loop scheme instead. Such a scheme is presented in Figure
5.1.

v2

v1

+

+
K

+ +

G(S) y

+

+

d

ū u

ym

Figure 5.1: Block diagram of a plant G(S) as part of a closed loop system with the
controller K. The signal d is unknown noise while v1 and v2 are possible reference
signals.

For such a system description, the closed loop kernel representation was presented
in [55] where the kernel is based on the LCF of the plant. Unlike Eq. (5.2), the kernel
presented ensures a stable residual generator for both open loop stable and unstable
plants. The kernel presented in [55] is given in Eq. (5.3).

r = RM̃(y − G(0)u) (5.3)
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Here r is the residual vector, and R is a stable filter which can be used to shape
the residual signal appropriately. The system M̃ ensures that the residual generator is
stable for both open loop stable and unstable plants. The problem of optimizing FD is
usually counterproductive to the goal of the designed controllers. Often, controllers are
designed for disturbance rejection which has similar characteristics to faults. In order
to determine the detectability of a fault, the impact of the controller thus needs to be
taken into account. One such method is the k-gap metric [56, 57] based on the gap
metric [58] which measures the gap between the fault free plant, and a given faulty
plant given feedback control.

5.1 Active Fault Diagnosis

Passive fault diagnosis is a well-established research area. For passive fault diagnosis
schemes, isolation of different faults is conducted using sensor redundancy information.
Such redundancy is for many systems not possible, and it is indeed a goal for most
companies to use only the minimal required amount of sensors. Active fault diagnosis
uses a known excitation signal instead to obtain sufficient information for isolation of
different faults. Active fault diagnosis using the input and output signal of the plant to
conduct diagnosis has been studied intensively [59, 60]. Such fault diagnosis schemes
has many similarities to direct identification. The active fault diagnosis schemes often
work with a discrete bank of possible systems such as shown in [61, 62, 31, 33]. An
alternative approach was introduced in [36] which bases the fault diagnosis on the
fault signature system instead of the plant directly. Recall the YJBK-parametrisation
from Chapter 2, the fault signature system can be shown to fulfil Eq. (5.4) in the fault
free case, and Eq. (5.5) in the faulty case.

S(θ ) = 0|θ=0 (5.4)

S(θ ) 6= 0|θ 6=0 (5.5)

The main advantage of using the fault signature system for fault diagnosis comes
from Eq. (5.4) and Eq. (5.5) which states that the fault signature system is 0 in the fault
free case, and different from 0 when a fault occurs. Hypothesis testing becomes easier
and a CUSUM detector was introduced for fault diagnosis using the fault signature
system in [37]. It is possible to express the fault signature system as a function of the
faults as shown in Eq. (5.6).

S(θ ) = M̃Gywθ (I − (Gzw + GzuU M̃Gyw)θ )
−1GzuM (5.6)

Here Gyw, Gzu and Gyw are all defined in Eq. (4.13) as part of the augmented plant
consisting of the nominal plant and the considered faults. Active fault diagnosis using
the fault signature system is similar to the standard closed loop kernel presented in Eq.
(5.3) when the filter R is identity. This can easily be shown by recalling the Hansen
scheme from Chapter 4. It was possible to express the output of S as given in Eq. (5.7)
based on a right YJBK-parametrisation of the plant.
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ε = M̃ y − Ñu (5.7)

ε = M̃(y − M̃−1Ñu) (5.8)

ε = M̃(y − G(0)u) = r (5.9)

It is clear that the output of S denoted ε in Eq. (5.9) is equal to the residual
generated for the closed loop kernel in Eq. (5.3). For active fault diagnosis the system
S is excited with a known signal η, and the output of S is the residual. Since it is not
possible to directly use the signals η and ε as explained in Chapter 2, the equivalent
controller signals α and β are used instead by augmenting the controller. The standard
active fault detection scheme for this thesis is shown in Figure 5.2.

G(θ)

Jkβ α

u y

Figure 5.2: Block diagram of the standard active fault diagnosis scheme using an
augmented controller Jk.

Here, Jk is given in Eq. (5.10), and is the controller augmented to accommodate
for the signals α and β as shown in Chapter 2. It is easy to see from Eq. (5.10) that the
augmented controller simplifies to the nominal when the excitation signal α is unused.
The nominal performance is therefore kept for the time periods where fault diagnosis is
not conducted.

Jk =
�

UV−1 Ṽ−1

V−1 −V−1N

�

(5.10)

So far noise has not been considered in the fault diagnosis scheme. For simplicity,
all noise is in this analysis treated as White Gaussian Noise (WGN) output noise. This is
a simplification used for transparency. It can be shown that all noise on linear systems
can be modelled as WGN on the output subject to some filter. This filter is here treated
as identity, but it is straightforward to extend the analysis to cover examples where that
is not the case. A block diagram with the noise incorporated is shown in Figure 5.3.

G(θ)

Jk

+ +

d
β α

u y

Figure 5.3: Block diagram of the standard active fault diagnosis scheme using an
augmented controller Jk. Noise is treated as output noise and represented by the signal
d.

With an active fault diagnosis scheme as presented in Figure 5.3 the closed loop
system is given in Eq. (5.11).
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�

d
α

�

= Pcl(S)
�

d
α

�

(5.11)

The residual signal with the noise considered is given by Eq. (5.12) for the active
diagnosis scheme presented in Figure 5.3.

β = S(θ )α+ (M̃ + S(θ )Ũ)d (5.12)

It is worth noticing that Eq. (5.12) is equviavalent to the identification problem
stated in Chapter 4 when using the modified hansen scheme. For active fault diagnosis
schemes based on the fault signature system, the goal is to detect the signal α through
S(θ) in the measurable signal β given Eq. (5.12). There are plenty of methods to
conduct such detection with the CUSUM method presented in [37] and the Matched
Filter detector, which is presented in P4.

5.2 Whitening filter

The detection method to be presented in Section 5.3 is based on the assumption
that the residual signal consists of only WGN in the fault free case. This assumption
does not hold for a residual as given in Eq. (5.12) even though the noise signal d is
WGN. In the fault free case the residual signal β is given in Eq. (5.13).

β = M̃d (5.13)

The method introduced in Section 5.3 uses a threshold based on an allowed FAR. A
correlator design is introduced which in the fault free case uses the whiteness of the
noise to determine the variance of the detector signal. For coloured noise the method
fails and produces a higher amount of FA than expected due to correlation in the noise
signal. It is therefore important to introduce a filter which makes the noise white in the
fault free case.

This section introduces 2 different cases and their respective solutions. The first
case is output noise as shown on Figure 5.3 with an open loop stable plant. This is
the simplest case, and a residual generator as shown in Eq. (5.14) will translate to the
noise being white in the fault free case.

r = M̃−1β = M̃−1(M̃ y − Ñu) = y − G(0)u (5.14)

Here, the transfer function from the excitation signal to the residual is M̃−1S(θ)
instead of S(θ ). It is worth noticing that the kernel is equivalent to the open loop kernel
presented in Eq. 5.2. For this reason the residual generator will be unstable if the plant
is unstable.

The second case is again based on the scheme presented in Figure 5.3. For this case
the plant is open loop unstable which means that the filter M̃−1 will be unstable. The
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goal is to obtain a stable filter denoted W−1 with the same spectrum as M̃−1. This can
be achieved using spectral factorisation as described in [63]. A stable residual generator
for an open loop unstable plant is shown in Eq. (5.15).

r =W−1β =W−1(M̃ y − Ñu) =W−1M̃(y − G(0)u) (5.15)

This residual generator is of the same type as the closed loop stable residual generator
shown in Eq. (5.3), where W−1 is used as the filter R. The transfer function from the
excitation signal to the residual is here W−1S(θ), and from the noise signal d to the
residual is given in Eq. (5.16) for when the plant is fault free.

r =W−1M̃d = Hd|θ=0 (5.16)

Here, H is a diagonal matrix which describes the difference between the variance of
d and the variance of the residual signal. The next section is based on the residual given
in Eq. (5.15) which is the general case. However, for plants where M̃−1 is possible to
use as the filter, H simplify to an identity matrix.

5.3 Matching filters

Matching filter detection is based on the idea of estimating the Probability Density
Function (PDF) most likely to be observed. The method is based on the Neyman-
Pearson lemma and is described in [64]. By using the fault signature system for the
fault diagnosis, the residual signal only consist of noise in the fault free case. It is
therefore possible to design aH0 as in Eq. (5.17) for the fault free case. For active fault
diagnosis, the excitation signal is a known entity. Therefore, aH1 as introduced in Eq.
(5.18) with a known signal but a delay and amplitude that depends on the specific fault
occurring, is possible.

H0 : r[n] = Hd[n], n= 0, 1, ...., N − 1 (5.17)

H1 : r[n] = ASθα[n− n0] + (H +WS(θ )Ũ)d[n], n= 0,1, ...., N − 1 (5.18)

Here, d is the output noise signal, H is a diagonal matrix designed using the
whitening filter, W is the whitening filter, ASθ is a fault dependent amplitude and n0
is a fault dependent delay. For the derived method the noise is assumed white in the
fault free case, which is true when the whitening filter is applied. It is thus possible to
determine whether theH1 is true by detecting a known signal with an unknown delay
and amplitude. For simplicity of the method, the excitation signal is expected to be
a sinusoidal wave. Both the unknown delay and amplitude can be shown to belong
to a set that depends on the possible faults. For the delay this set is denoted τ and is
determined by the parametric faults considered, compactly written in Eq. (5.19).

n0 ∈ τ(θ ) (5.19)

The matched filter method consist of 2 steps. First step is to determine which fault
that might have occurred. For this step, the method employs a correlation filter with a
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fixed moving window to determine which fault from the set of faults that is most likely
to have occurred. The correlation filter is given in Eq. (5.20) which chooses the delay
with the highest correlation.

φ = argmax
n0∈τ
(

n0+N−1
∑

n=n0

r[n]α[n− n0]) (5.20)

Here, N is the window length chosen for the detector, r[n] is the residual signal
and α is the excitation signal. The correlator gives the best estimate of the delay
corresponding with S. In the fault free case the residual signal r is white noise and the
correlator is equally likely to choose any of the possible delays. The second step for the
matched filter method is to determine whether a fault has occurred or not. For this, it is
necessary to be able to decide whether theH0 orH1 is found to be true. A detector is
implemented as shown in Eq. (5.21) to determine the probability that the actual signal
is observed.

T (r) =
φ+N−1
∑

n=φ

r[n]A0α[n−φ] (5.21)

Here, A0 is a predetermined gain and T is the decision variable. The decision
variable is used to determine which hypothesis to be true deciding on the H0 if Eq.
(5.22) and onH1 if Eq. (5.23) is true.

H0 : T ≤ γ (5.22)

H1 : T > γ (5.23)

Here, γ is the threshold which has to be determined beforehand based on the allowed
FAR as illustrated in Table 5.1. A graphical illustration of the detector introduced in Eq.
(5.21) is shown in Figure 5.4. A fault is introduced after 5 seconds to the system which
makes the detector signal rise above the threshold line. The change introduced by the
fault makes Eq. (5.22) become true instead of Eq. (5.22).

It is possible to determine the threshold as shown in Figure 5.4 based on a desired
FAR using Eq. (5.24) as shown in [64]. The possibility of designing the threshold based
on a desired FAR makes the method easy to integrate with functionality requirements.

γ=
p

σ2νQ−1(FAR) (5.24)

Here, σ2 is the variance of the noise in the fault free case shown in Eq. (5.17), ν is
the energy contained in the signal for one window length and Q(·) is the complementary
cumulative distribution. It is assumed for Eq. (5.24) that the system consist of no
uncertainties. In reality this is not the case, and the model uncertainties will result in a
higher FAR than expected using Eq. (5.24). The energy contained in a sinusoidal signal
is given in Eq. (5.25) as used for determining the threshold limit.

ν= N
A2

0

2
(5.25)
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Figure 5.4: Graphical example of the detector signal T (r) given a fault free plant subject
to a fault after 5 seconds. The fault introduced to the plant is detected when T (r) rises
above the threshold line andH1 becomes true.

The calculation of the energy contained in the residual signal is based on a sinusoidal
excitation wave. Another type of excitation signal can be used, however Eq. (5.25)
would have to be modified accordingly. The final active fault detection scheme is shown
in Figure 5.5 with the detector implemented as the T block.

G(θ)
+ +

JKWT
β

αr

d̄

H0
H1

Figure 5.5: Block diagram of the active fault diagnosis scheme with a hypothesis testing
implemented.

The fault diagnosis method is thus based on a threshold design given by an a priori
chosen FAR. The design procedure does not as such give insight into the detectors ability
to detect the possible parametric faults. The probability of detection can be defined
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based on the last row in Table 5.1 as shown in Eq. (5.26).

PD =
FD

MA+ FD
(5.26)

The quality of detection is thus measured by how often a fault is detected relative to
how often that it is missed. A PD close to 1 is therefore seen as a good detector design,
while a PD close to 0 means that the detector is unable to detect the given fault. It is
possible to calculate the probability of detection for each specific fault based on the
energy of the correlator signal in the faulty case and the variance of the noise. The
probability of detection is given in Eq. (5.27).

PD = Q(Q−1(FAR)−
p

D) (5.27)

D2 =
(E(T ;H1|θk)−χ)E(T ;H1|θA0

)−χ)
var(T ;H0)

(5.28)

Here, D is the deflection coefficient which was introduced in [64] as defined in Eq.
(5.28), θk denotes the specific considered fault, θA0

denotes the fault used to determine
the gain A0 and X i is the expected value of the detector signal given the plant is fault
free also written in Eq. (5.29).

χ = E(T ;H0) (5.29)

Model Uncertainty

The detector scheme previously presented is based on the assumption of perfect
model knowledge for the fault free case. However, identified parameters are often asso-
ciated with an uncertainty. It is possible to modify the detector scheme to accommodate
for such uncertainties. TheH0 can be reformulated as shown in Eq. (5.30), and the
H1 can be reformulated as shown in Eq. (5.31).

H0 : r[n] = ASµα[n] + (H +W−1S(µ)Ũ)d[n] (5.30)

H1 : r[n] = AS(θ ,µ)
α[n− n0] + (H +W−1S(θ ,µ)Ũ)d[n] (5.31)

Here, µ denotes the parametric uncertainties. The uncertainties make the residual
signal consist of both a sinusoidal signal and non-white noise in the fault free case. It is
assumed that the noise is approaching white noise in the fault free case. The parametric
uncertainties can be shown to translate into an uncertainty band on the phase shift
used for isolation. Furthermore, parametric uncertainties will add a constant gain to
T (r) in the fault free case. Such a gain is possible to compensate for with an equivalent
increase to the threshold.

5.4 Design of excitation signal

Passive FD is based on observing the plant in steady state, and detecting discrepancies
between the measured and expected output. The faults are there isolated based on
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information from extra sensors. Such diagnosis schemes are not disturbing the ongoing
process, and are therefore supposed to always be active. Active fault diagnosis uses
information from an excitation signal to gain insight into the isolation of faults. The
process is therefore disturbed while active fault diagnosis is being conducted. It is
therefore preferred to conduct active fault diagnosis for short intervals and reduce
the disturbance introduced during these periods. To do this, it is desired to find the
excitation signal that gives the best probability of detection relative to the disturbance
on the output of the plant. The following procedure is based on the use of a single
frequency sinusoidal excitation signal. Other types of excitation signals might yield
better results for specific systems, but are disregarded to keep in line with the matched
filter method. Based on Eq. (5.6), and the whitening filter presented in Section 5.2,
the transfer function from the excitation signal to the residual is given in Eq. (5.32).

ξr(ω) = |W−1M̃Gywθ (I − (Gzw + GzuU M̃Gyw)θ )
−1GzuM | (5.32)

Here, θ is the specific fault considered. The optimal frequency therefore depends
both on the type and magnitude of the specific fault. It is therefore clear that the
analysis needs to be conducted for each fault to be considered. The transfer function
from the excitation signal to the output is less complicated, as shown in Eq. (5.33).
Whereas for Eq. (5.32), each of the faults has to be considered, here the goal is just to
minimize the disturbance on the output in the fault free case.

ξy(ω) = σ̄(N(ω)) (5.33)

Here, σ̄(·) is the highest singular value. By using the highest singular value it is
possible to find the highest gain between the excitation and output signal [65]. Eq.
(5.33) is therefore based on the fault free case why it does not depend on the specific
fault. The efficiency is defined in Eq. (5.34) using the transfer function from the
excitation signal to the residual, in the faulty case, defined in Eq. (5.32) and the
transfer function from the excitation to the output, in the fault free case, defined in Eq.
(5.33).

fα(ω) =min
θ=∆

ξr(θ ,ω)
ξy(ω)

(5.34)

The goal of Eq. (5.34) is to find the lowest efficiency between all the possible
faults at each frequency. The lowest efficiency is believed to be the only important
parameter to optimise, since all other faults will be possible to detect if that specific
fault is detectable. The method is illustrated in Figure 5.6 with a simple plant with two
possible parametric faults.

By using the new function fα(ω) it is possible to find the optimal frequency of the
excitation signal for detecting the fault with the lowest efficiency. This search for the
optimal frequency of the excitation signal is shown in Eq. (5.35)

ωα = arg max
ω1≤ω≤ω2

fα(ω) (5.35)
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Figure 5.6: Plot of ξr (θ ,ω)
ξy (ω)

for two possible faults. For this example fα(ω) is equal to
the red stippled line until ω is around 300 rad/s where the two lines cross. From ω is
300 rad/s and upwards fα(ω) is the blue line instead.

Here, ωα is the optimal frequency for the excitation signal, ω1 is the lower bound
for the frequency and ω1 is the upper bound for the frequency. These bounds usually
come naturally from the specific plant and operation. Indeed, for the active gas bearing
the lower bound is determined based on how many full wave lengths is desired during
a test which is limited to 14 seconds. The upper bound is chosen based on the sampling
rate used during diagnosis on the gas bearing. An upper limit of the frequency is chosen
such that the sinusoidal signal is still smooth.

5.5 Experimental Diagnosis

In this section an implementation example, of the active fault diagnosis scheme, on
an active gas bearing is presented. The description of the active gas bearing and its
state space model was given in Chapter 3. In order to design a detector and conduct
fault diagnosis the following points have to be addressed first.

• Determine possible faults

• Identify noise model

• Design or obtain a stabilising controller
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Fault description Notation Bound Description
Horizontal actuator θ1 [0 -1] The fault on the opening degree of the horizontal actuator is 100 · (−θ1)%

of its expected value. This results in a reduction of the horizontal input gain.
Vertical actuator θ2 [0 -1] The fault on the opening degree of the vertical actuator is 100 · (−θ2)%

of its expected value. This results in a reduction of the vertical input gain.
Horizontal sensor θ3 [0 -1] The fault on the measured distance of the horizontal displacement sensor is

100 · (−θ3)%. This is equivalent to a reduction in the
horizontal output gain, and the controller is then demanding wrong actuation.

Vertical sensor θ4 [0 -1] The fault on the measured distance of the vertical displacement sensor is
100 · (−θ4)%. This is equivalent to a reduction in the vertical output
gain, and the controller is then demanding wrong actuation.

Table 5.2: Lookup table for the different possible faults

With the points above addressed the detector design is found using the following
steps.

• Calculate coprime factorisation of controller and plant

• Construct the augmented plant based on the possible faults

• Define the fault signature system (S)

• Determine optimal excitation signal

• Choose the window length based on a decided FAR

• Calculate the phase shift of possible faults

For the design of active fault diagnosis, the analysis is conducted using 4 different
possible faults. The four possible faults considered are faults on the sensor in either
the vertical or horizontal direction, and faults on the actuator in either the vertical or
horizontal direction. The faults are described in further detail in Table 5.2.

The diagonal fault matrix ∆ is designed as shown in Eq. (5.36). Each of 4 faults
is deemed possible to occur, and the isolation process is therefore trying to determine
which fault is most likely.

θ =







θ1 0 0 0
0 θ2 0 0
0 0 θ3 0
0 0 0 θ4






(5.36)

With a fault description as given in Eq. (5.36), the plant can be described as an
upper LFT as shown in Eq. (5.37).

G(θ ) =Fu(Gaug ,∆) (5.37)

Where the augmented system is defined as in Eq. (5.38).

Gaug =
�

Gzw Gzu
Gyw Gyu

�

(5.38)
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The four subsystems are defined by Figure 2.5 which describes the relationship
between the faults and the nominal plant. Based on Eq. (5.38) the augmented plant
Gaug is shown in Eq. (5.39).

Gaug =















0 I 0 0 0 0
K D B 0 0 0
0 0 −P P 0 P
I 0 0 0 0 0
0 0 0 0 0 I
I 0 0 0 I 0















(5.39)

Each element in Eq. (5.39) is a 2x2 matrix with the elements defined in Chapter
3. The system Gzw has 4 input and 4 output, the system Gzu has 2 input and 4 output,
the system Gyw has 4 input and 2 output and the system Gyu consists of 2 input and 2
output. The augmented plant is used for the design of the fault signature system for
analysis of the impact of the different possible faults.

Noise analysis

For design of a statistical based detection scheme, the noise influencing the plant
needs to be properly identified. Such identification is conducted in open loop, and it
was found possible to model all noise as output noise to follow the detector scheme
given in Figure 5.5. Because it is possible to model the noise as WGN on the output, a
filter as presented in Section 5.2 can be implemented on the residual. The whitening
filter is given in Eq. (5.40) for active fault diagnosis on the active gas bearing.

W−1 = M̃−1 (5.40)

It is possible to use the filter introduced in Eq. 5.40 due to the plant being open
loop stable. With this whitening filter, the variance is unchanged between the measured
output and the residual. A histogram of the residual with the whitening filter imple-
mented is shown in Figure 5.7. The data is obtained without any excitation signal, such
that discrepancies between the model and real plant does not influence the experiment.

The histogram shows the distribution of the noise to be gaussian. Furthermore, no
direct or cross correlation is found for the noise in the fault free case. Using the model
of the noise, a threshold can be decided based on a window length of the detector and
the amplitude of the excitation signal using Eq. (5.24).

Controller Design

In order to conduct active closed loop fault diagnosis a controller is required. Two
different control designs have been implemented in order to investigate the modular-
ity of the detector design. The first controller is a simple proportional controller as
presented in Eq. (5.41).

K = k
�

1 0
0 1

�

(5.41)
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Figure 5.7: Histogram of the residual measurements obtained from an experiment
without any input signal and with a fault free plant. The left histogram is for the
horizontal residual measurement and the right histogram is for the vertical residual
measurement.

Here, k is a scalar which results in a symmetric controller for the horizontal and
vertical direction. The implemented proportional controller is thus without any gain
in the off diagonal. The design is chosen in order to show that it is possible to detect
faults using only the cross coupling in the plant.

The second control design is a Linear Quadratic Regulator (LQR) controller designed
using a full order observer. The observer gain and the state feedback gain are both fully
populated matrices with non-zero elements. The two controllers therefore, differ both
in structure and solution to the control problem. Where the proportional controller
is trying to treat each direction as independent, the LQR controller is trying to take
advantage of the cross coupling to increase the damping. A gain plot of the closed loop
plant given each controller, and the nominal open loop plant is shown in Figure 5.8.

Fault Diagnosis

Based on a known controller, it is possible to conduct an analysis to determine the
expected phase shift given each of the considered faults. For each of the possible faulty
sensors and actuators, the magnitude of the fault is chosen as shown in Eq. (5.42).
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Figure 5.8: Bode plot of the gain from a disturbance, in form of a displacement, to the
displacement of the rotor. The left column is for a disturbance in the horizontal direction,
while the right column is for a disturbance in the vertical direction. Equivalently the
top row is for the position of the rotor in the horizontal direction, while the bottom
row is for the position in the vertical direction. The blue line represents the gas bearing
without any control, the red line represents the gas bearing with the LQR controller
implemented and the green line represents the gas bearing with the proportional
controller implemented.

θi = 0.5 (5.42)

This gives the possibility of 4 different faults on the active gas bearing. Based on
the severity of the faults considered, the optimal frequency for the excitation signal can
be determined using the method described in Section 5.4. Recall that the efficiency
parameter was based on the transfer function from the excitation signal to the output,
and from the transfer function from the excitation signal to the detector. Such a ratio
can be described as in Eq. (5.43).

fαi
(ω) =

ξr(θi ,ω)
ξy(ω)

(5.43)

Using Eq. (5.43) a plot of the efficiency parameter fα given each of the 4 possible
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faults is then shown in Figure 5.9 using the horizontal excitation signal and vertical
residual signal.
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Figure 5.9: Plot of fα versus the frequency of the excitation signal where αh and βv are
used. The blue line represents fα given a fault on the horizontal actuator, the red line
is for a fault on the vertical actuator and the black line represents the vertical sensor.
The horizontal sensor cannot be detected in the signal which is why it is not shown.

Using Figure 5.9, the frequency of the excitation signal is found using Eq. (5.35).
Based on the decided frequency, the delay given each of the faults can be calculated
using faulty system and whitening filter. With this information it is possible to apply
the detector as given in Eq. (5.21).

The efficiency plot on Figure 5.9 suggests that it is only possible to detect 3 of the
faults in each of the residual directions. The reason is that it is impossible to detect and
isolate faults on the sensor which is not used to design the residual. Hence, faults on
the horizontal sensor can only be detected when using βh, and faults on the vertical
sensor can only be detected when using βv . A plot of this phenomena is shown in
Figure 5.10. There, a horizontal excitation signal is applied, and the vertical residual
signal is used for fault diagnosis. Each of the four subplots corresponds to one of the
four different faults being introduced to the active gas bearing and using the detector
design described in Eq (5.20) and Eq. (5.21).

Figure 5.10 shows how the detector is unable to detect faults introduced on the
horizontal sensor when using the vertical residual signal. It is, however, possible to
detect all four faults by the use of both the vertical and horizontal residual signal.
Furthermore, the isolation based on the phase shift introduced by the excitation signal



5.6 Contributions 57

0 2 4 6

Time [s]

0

50

100

150

200

T
(r

)

0 2 4 6

Time [s]

0

50

100

150

200

T
(r

)

0 2 4 6

Time [s]

0

50

100

150

200

T
(r

)

0 2 4 6

Time [s]

0

50

100

150

200
T

(r
)

Figure 5.10: Plot of T[n] for the gas bearing when each of the 4 possible parametric
faults is introduced respectively. A horizontal excitation signal is applied and the vertical
output of the fault signature system is used for detection purposes. The top left plot is
for a fault on the horizontal actuator whereas the top right is for a fault on the vertical
actuator. On the bottom left plot a fault is introduced on the horizontal sensor, and on
the bottom right a fault has been introduced on the vertical sensor instead.

going through S was shown to be able to isolate the actual occurring fault.

5.6 Contributions

The chapter summarises the contributions of publication P3, P4 and P5. A method
for active fault diagnosis based on a matching filter design with a moving window was
first introduced in P3. The detector derived in P3 was based on a linearized version
of the fault signature system. Initial detection and isolation of parametric faults was
introduced and shown possible using a simulation example. The method was extended
to use the nonlinear fault signature system in P4. The whitening filter was presented as
well to get the residual signal as presented in Section 5.2. The choice of frequency for
the excitation signal was furthermore discussed, and a solution was proposed. Lastly,
the results from using the method to diagnose faults on an active gas bearing was
presented in P5. The publication presented the detector process and identified the most
interesting faults to detect. It was shown possible in P5 to diagnose several different
faults on an active gas bearing using the proposed active fault diagnosis method.





Chapter 6

Conclusion

Closed loop identification and fault diagnosis schemes offer methods which handle
the influence of the feedback loop introduced by most control systems. This project
has investigated methods for identification and active fault diagnosis of systems subject
to such a feedback loop. Extra focus has been on applying such methods to an active
gas bearing. Closed loop identification is seen as crucial for many applications because
of the use of sensor feedback. There can be several different reasons for feedback
control to be required; it might not be safe to excite the system without feedback, the
plant might simply not be stable without it, or it might not be feasible to disconnect
the controller. Identification of systems with low damping such as gas bearings is one
example of this. To show that it is possible to apply closed loop methods to an active gas
bearing is therefore of great relevance. For this, the Hansen scheme was investigated.
It was proposed to augment the controller such that signals in the controller could be
used for closed loop identification.

For fault diagnosis, most methods require a large number of sensors to isolate
different faults. Such a sensor requirement might not be desirable, and indeed many
systems are designed without such possibilities. In the case of the experimental active
gas bearing test rig, the sensor setup is indeed without redundancy. Injecting a known
disturbance into the system is an alternative approach for exposing the information
required to conduct faults isolation. This project has contributed with methods applic-
able for closed loop control problems. A method for design of a statistical detector for
active fault diagnosis therefore is proposed. It was found possible to use the active
fault diagnosis scheme for detection and isolation of parametric faults on an active gas
bearing. The methods were based on a coprime factorisation of controller and plant.
Information was given on how to exploit internal controller signals in order to gain
insight into the relevant plant dynamics.

Several contributions have been given on closed loop fault diagnosis.

• A comparison between the Hansen scheme and the modified Hansen scheme
showed it is possible to identify the plant using direct injection in the controller.
This modification made it straightforward to determine the excitation of the fault
signature system to be identified.

• The experimental results from the active gas bearing proved that it is also possible
to identify the system dynamics using the modified Hansen scheme. It was found
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possible to reach a higher R2 fit using the modified Hansen scheme than direct
PEM identification when good a priori knowledge of the system dynamics is not
available. The identification approach based on subspace identification of the
fault signature system made it easy to determine the order of the fault signature
system based on the Hankel singular values.

• It was shown possible to identify uncertain parameters in an AMB. The bearing is
open loop unstable, and identification of the uncertain parameters through the
stable system S was found to be possible.

Likewise, several new contributions were presented regarding active fault diagnosis
with a focus on active gas bearings. The contributions consists of:

• A method for active fault diagnosis using a matched filter detector was intro-
duced. The method used a moving window to correlate the residual signal with
the expected signal. The correlation was used to determine which fault that
has happened, while the amplitude of the residual was estimated to determine
whether the plant is fault free or not. The amplitude of the residual was therefore
used for detection, while the delay was used for isolation.

• The residual signal used for active fault diagnosis in [37] was subject to coloured
noise in the fault free case. A whitening filter was presented which made the
residual signal subject to white noise in the fault free case. Both a filter for open
loop stable and open loop unstable systems were presented which ensured a stable
fault signature system. A threshold based on an acceptable FAR was constructed
using the whitening filter.

• An approach to determine the optimal frequency of the excitation signal for
the active fault diagnosis scheme, when considering periodic input signals, was
found. The active fault diagnosis approach presented, disturbs the system during
diagnosis. A measure of the excitation disturbance on the output, relative to the
residual signal, was therefore formulated. A novel formulation was given which
determines a single optimal frequency for a sinusoidal wave with regards to the
possible faults on the system.

• Experimental results showed that it is possible to diagnose both sensor and
actuator faults on the active gas bearing in the vertical and horizontal direction.
The approach was shown possible to use with both a simple proportional and an
observer based controller. The proportional controller was designed without any
cross coupling gain, to show that diagnosis of faults occurring in the orthogonal
direction of the residual is possible due to the internal cross coupling in the
plant. The experimental results confirmed that the FAR based threshold method
successful. The method was furthermore found easy to implement.

6.1 Future Perspectives

As shown above, the project has resulted in several new contributions for closed
loop identification and fault diagnosis. There are however plenty of possible future
opportunities based on the results from the project:
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• The identification scheme used to identify the active gas bearing in closed loop
is strongly linked to performance recovery using a Q parameter. It would be
interesting to use the identified fault signature system for controller adaptation.
Proper order reduction is required such that the controller order does not increase.
Furthermore, adaptation needs to be converging which can make noise a possible
issue.

• The active fault diagnosis scheme only uses the delay invoked by the fault signa-
ture system for fault isolation at this time. Isolation using both amplitude and
phase can improve the gap between faults, making isolation less sensitive to noise.
The amplitude estimation is only used for the lower bound on the probability of
detection in the faulty case with the current design method.

• Applying the identification and fault diagnosis schemes at higher rotational speed
is of interest for closer resemblance with a normal operating point for an active
gas bearing. Better understanding of the disturbances associated with a higher
rotational speed, and how to decouple them, is required to make the schemes
work at such an operating point.

• An approach for finding the optimal sinusoidal signal for excitation used in the
active fault diagnosis scheme is presented in the thesis. The approach searches
for a single frequency which will allow best detection relative to the disturbance
on the outputs of the plant. It might be convenient to design an excitation signal
which consists of several frequencies instead in order to obtain a higher signal to
disturbance ratio. Further adaptation of the approach is required to accommodate
excitation signals consisting of several frequencies instead of a single one.

• The active fault diagnosis method was shown able to diagnose faults on an active
gas bearing. The quality of a fault diagnosis scheme is often measured as its FAR
relative to its FD. So far, the method has not been compared on such parameters
with other fault diagnosis schemes, and it could be of great interest to obtain a
clear overview under which circumstances the fault diagnosis scheme is superior
to other methods. Such a comparison should be performed experimentally.

• It was proven possible to diagnose parametric sensor and actuator faults in both
the vertical and horizontal directions on the active gas bearing. Introducing other
parametric faults on the gas bearing which are related to the plant dynamics,
would improve the experimental results. The experimental test rig would need
to be modified so that changes associated with a single parameter are possible.

• It has been shown possible to identify an open loop stable active gas bearing.
Since the method is based on a stabilising feedback gain, it would be interesting
to use it on an unstable plant. Increasing the rotational speed of the gas bearing
will result in it becoming such an open loop unstable plant. Investigation into
the treatment of the mass unbalance in closed loop has to be conducted to apply
the modified Hansen scheme at higher rotational speed.
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Abstract

In this paper, a method for identifying uncertain parameters in a rotordy-
namic system composed of a flexible rotating shaft, rigid discs and two radial
active magnetic bearings is presented. Shaft and disc dynamics are mathematic-
ally described using a Finite Element (FE) model while magnetic bearing forces
are represented by linear springs with negative stiffness. Bearing negative stiffness
produces an unstable rotordynamic system, demanding implementation of feed-
back control to stabilize the rotordynamic system. Thus, to identify the system
parameters, closed-loop system identification techniques are required.

The main focus of the paper relies on how to effectively identify uncertain
parameters, such as stiffness and damping force coefficients of bearings and seals
in rotordynamic systems. Dynamic condensation method, i.e. pseudo-modal re-
duction, is used to obtain a reduced order model for model-based control design
and fast identification.

The paper elucidates how nodal parametric uncertainties, which are easily
represented in the full FE coordinate system, can be represented in the new co-
ordinate system of the reduced model. The uncertainty is described as a single
column vector of the system matrix A of the full FE model while it is represented
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as several elements spread over multiple rows and columns of the system matrix
of the reduced model. The parametric uncertainty, for both the full and reduced
FE model, is represented using Linear Fractional Transformation (LFT). In this
way the LFT matrices represent the mapping of the uncertainties in and out of
the full and reduced FE system matrices. Scaling the LFT matrices easily leads
to the amplitudes of the uncertainty parameters.

Youla Parametrization method is applied to transform the identification prob-
lem into an open-loop stable problem, which can be solved using standard optim-
ization methods.

An example shows how to decouple and identify an uncertainty in the linear
bearing stiffness of a reduced FE rotordynamic system.

1 Introduction

The Active Magnetic Bearing (AMB) has many advantages compared to con-
ventional fluid film bearings and ball bearings, such as no mechanical contact,
no lubrication, low maintenance, practically no friction, low vibration level and
high rotational speed, which makes it extremely useful in special environments
such as cleantech, subsea among others. Today the AMB is widely used on
several types of industrial applications such as centrifugal compressors, turbo
expanders, blood pumps, centrifuges, machine drilling tools, energy storage fly-
wheel etc. The AMBs have been applied in turbomachinery equipment with
capacities that range from a few kilowatts up to 29,000 kW and with operation
speed up to 60,000 RPM.

Rotors levitated by AMB’s are essentially unstable systems whose properties
cause several challenges to the design of active control system due to: gyroscopic
effects, mass unbalance, rotor flexibility, aerodynamic excitations among others.
It is essential to have a global mathematical model which precisely predicts the
real plant dynamics, in order to design a high performance control system and
to predict its stability and performance.

Due to assembly tolerances and simplified model assumptions, discrepancies
between the model and real plant typically exist and adjustment of some of the
model parameters are often needed. System identification techniques should
therefore be applied to find the deviation between model and the real plant, to-
ward more accurate global mathematical models, which in turn makes improved
controller design possible.

Due to the fact that AMB systems are open-loop unstable, input-output data
is only possible to gather in a closed-loop scheme with a stabilizing controller.
Standard open-loop identification methods are therefore ill suited [3] since they
typically assume that the measurement noise is uncorrelated with the system
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inputs and outputs, which does not holds, once the controller action links input
and output signals.

There are several methods which take into account that the plant is part of a
closed loop scheme [3, 7, 14]. Each method has advantages and the method used
in this paper is chosen for the easy translation to fault diagnosis of parameters.
In this paper a method for closed-loop identification of the rotordynamic system
(turboexpander) using a coprime factorization is proposed. The method is based
on the well known Hansen scheme [17]. However classical identification using
the Hansen scheme makes it difficult to take advantage of physical knowledge of
the plant. The method proposed in this paper is therefore an extension which
makes it possible to identify specific plant parameters through the identification
of the open loop error dynamics. The method proposed in this paper has also
been applied to estimate parametric faults in systems[1, 2].

The main originality of the work relies on parametrization and identification
of uncertainties in FE rotordynamic systems. Focus is put on how LFT repres-
entation of a reduced system can be obtained based on a full FE representation
of a rotordynamic system.

This paper deals with a 700 kW turboexpander supported by AMB designed
for air separation units. The turboexpander can essentially be considered as a
flexible rotor spinning at angular velocities up to 31500 RPM, levitated by
AMB forces. In this paper the modelling of the shaft is carried out using FE
method including gyroscopic effects [11, 12], and the forces of the AMB have
been characterized using the basic laws of electromagnetism [10].

The paper is structured as follows: Section II introduces the identification
method of unstable systems based on Youla parmetrization; Section III contains
a description of the system to be identified, modelling and reduction of the
system, followed by representation of the uncertainty; Section IV discuss results
obtained from a simulation example of applying the identification method to
a plant with parameter uncertainties; Section V contains a conclusion on the
results presented in the paper.

2 Method

Identification of system using Coprime factorization

In this section a method for identification of closed-loop systems using coprime
factorization is given. The method uses the coprime factorisation of plant and
controller and is based on the theory outlined in [4]. The closed-loop scheme
is given as shown in Fig. 0.1. Let G = G(0) be the nominal plant i.e. initial
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r2

r1 + K + G(θ) yū u

Figure 0.1: Closed-loop system representation.

model guess and K be a stabilising controller to both the real plant G(θ) and
the nominal plant G, where θ is the parameter uncertainty. Then G and K are
given as:

G = NM−1 = M̃−1Ñ (1)

K = UV −1 = Ṽ −1Ũ (2)

For the 8 matrices given in Eq. (1) and Eq. (2) to be coprime factors, the double
Bezout identity shown in Eq. (3) have to be satisfied.


I 0

0 I


 =


 Ṽ −Ũ
−Ñ M̃




M U

N V


 =


M U

N V




 Ṽ −Ũ
−Ñ M̃


 (3)

With a coprime factorization of the nominal plant G and of the controller K
stabilizing both the real plant G(θ) and the nominal plant G(0), Eq. (4) gives
a parametrization of all stabilizing controllers, for the nominal plant, using the
stable transfer matrix Q, from ε to η shown in Fig. 0.2 [4].

K(Q) = (Ṽ +QÑ)−1(Ũ +QM̃) (4)

This controller can be represented as a LFT [6].

K(Q) = Fl

([
UV −1 Ṽ −1

V −1 −V −1N

]
, Q

)
(5)

= Fl(Jk, Q) (6)

Equivalent, all plants stabilized by K can be parameterized as Eq. (9). Taking
advantage of the relationship given in Eq. (7) between the parametrized con-
troller K(Q) and the parametrized plant G(S) [4], it is possible to show that
Eq. (9) is a parametrization of all plants stabilized by the controller K using
the stable system S(θ) being the transfer matrix from η to ε shown in Fig. 0.2.

S = Fl(Jk, G(S)) (7)

ε = S(θ)η (8)

G(S) = (M̃ + SŨ)−1(Ñ + SṼ )−1 (9)
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+ Jk

Q

+ G(θ)r1
e

η

ū

ε

u

r2

y

Figure 0.2: Closed-loop system representation with all stabilizing controllers
parametrised using a stable transfer matrix Q.

A B

Displacement sensors

Axial AMB

Radial AMB

Figure 0.3: Cross-section of the turboexpander testrig.

If the nominal plant is equal to the real plant, S(θ) is zero. As the nominal
plant differs from the real plant, S(θ) increases and can thus be considered as a
expression of the deviation between the nominal and the real plant.

A standard Luenberger observer is used for implementation of S(θ) for sim-
ulation examples. However any controller with its associated coprime factor-
ization can be used. For a system such as shown in Fig. 0.2, the closed-loop
transfer function can be written as [1].

74 Publication P1





y
u
ε


 = Tcl(S)



r1

r2

η


 (10)

Tcl(S) =




(N + V S)Ũ (N + V S)Ṽ N + V S

(M + US)Ũ (M + US)Ṽ M + US

M̃ + SṼ Ñ + SŨ S


 (11)

With input and output of the system defined, the uncertainties need to be given
in regards to S(θ). Parameter uncertainties are given using a LFT description.
Plant uncertainties are therefore given as in Eq. (12).

G(θ) = Fl

([
Gyu Gyw

Gzu Gzw

]
, θ

)
(12)

Here θ is a diagonal matrix with a parameter uncertainty in each diagonal
element. It is worth noticing that G(0) is equivalent to the nominal plant. A
description of how to represent the parameter uncertainties as an LFT is shown
in Section 3. With the uncertainties defined as in Eq. (12), S(θ) is found in [1]
to be

S(θ) = Fl

([
0 M̃Gyw

GzuM Gzw +GzuUM̃Gyw

]
, θ

)
(13)

Due to η not being correlated with the disturbances r1 and r2, Eq. (10) can be
used for identification of the open loop error S. Estimation of the open loop
error S from η to ε simplifies to Eq. (14), which can be considered as an open-
loop identification problem of the stable system S(θ) with uncorrolated noise in
the prediction [4].

ε = S(θ)η +D1r1 +D2r2 (14)

Identification of parameter uncertainties using a LFT scheme is a well studied
subject in open-loop identification of Linear Parameter Varying (LPV) systems
[7, 8, 9]. The approach is to define a cost function and minimize the error
between the measured and calculated output of the system. The cost function
is given in Eq. (15) in its approximate quadratic form.

J(θ) =

∫ t

0

1

2
(ε− S(θ)η)2dt (15)

The goal is to find the global minima of (15) which can be done using several
different methods. In this paper the Matlab function fminsearch is used,
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which is an general unconstrained nonlinear optimization method. Other meth-
ods, like gradient methods, has shown to yield faster convergence for specific
types of plants, however this has not been the main focus.

3 System and Uncertainty Representation

In this section, the rotordynamic system is described and it is shown how dy-
namic uncertainties from such a system can be extracted and represented in
Linear Fractional Transformation (LFT) form.

The real system

A cross-section schematic of the turboexpander investigated is shown in Fig.
0.3. The turboexpander essentially consists of a shaft levitated using axial and
radial AMBs. It is assumed that the only forces acting on the rotor are the left
and right radial AMB. The displacement sensors are placed close to the AMBs.
The placement of the sensors and actuators will be denoted by Ax, Ay and Bx,
By.

The analysis will be focused on rotor lateral movements and for simplicity the
rotor axial movements will not be investigated. The term AMB will therefore
refer to the radial AMBs in the following.

Model of AMBs

The model of the magnetic bearing is simplified to describe the forces acting on
the rotor as function of the rotor lateral displacements s and the control current
ix. The linearized expression of the forces are given as [10]

fb(ix, s) = Kiix +Kss (16)

where Ki are Ks are constants. Ks can be considered as the stiffness of the
bearing forces which is negative and thus makes the system open-loop unstable.
The dynamics of the electromechanical system including the inductance of the
coil and the amplifiers have been neglected.

Model of shaft

The rotating shaft has been modelled using the FE method and Bernoulli-Euler
beam theory taking into account the gyroscopic effects of the shaft and discs [11,
12]. The shaft have been dicretized in 40 node points with 4 degrees of freedom
each, which is x and y direction, and the rotation around the x and y axes, which
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yields 320 states in total. The discretization of node points of the shaft and the
placement of sensors and AMBs is shown in Fig. 0.4. The goal is to control the
rigid body motion of the rotating shaft and it is possible to obtain a reduced
model of the rotor-bearing system with 8 states by using pseudo-modal reduction
[15, 16] and removing all flexible modes, described in the following section. The
reduction method are later used for LFT representation of uncertainties in the
reduced FE plant model G.

Hence a MIMO system with 4 inputs (control current) and 4 outputs (rotor
displacement) and 8 states have been obtained.

Model Reduction

The full order rotordynamic system Gf consisting of the finite element model
of the shaft and negativ stiffness forces from the AMB can be written in state
space form

ẋf = Afxf +Bfu, y = Cfxf (17)

The system left and right eigenvectors (Ul and Ur) are found by solving the
eigenvalue problem

AfUr = λUr (18)

AT
fUl = λUl (19)

The system can be sorted by the undamped natural frequencies, |I(λ)|, since
only the low frequency dynamics are of interest. The eigenvectors for the cor-

AMB AMBSensor Sensor

Figure 0.4: Discretization of the shaft. Placement of sensors and AMBs are
shown.
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responding eigenvalues are used to create right and left transformation matrices

Tr =
[
Ur1 Ur2 ... Urn

]
(20)

Tl =
[
Ul1 Ul2 ... Uln

]
(21)

The reduced system is then given as

ẋc = Acxc +Bcuc, yc = Ccxc (22)

where

xc = Tl
Txf (23)

Ac = Tl
TAfTr (24)

Bc = Tl
TBf (25)

Cc = CfTr (26)

In this way the system is decomposed into a reduced system Ac which contains
the dominant dynamics and the residual system Ares containing the residual
dynamics, as shown below

[
ẋc
ẋres

]
=

[
Ac 0
0 Ares

] [
xc
xres

]
+

[
Bc

Bres

]
u (27)

Fig. 0.5 shows the singular values of the full and the reduced system. It is
seen that the reduced 8 states system fits the dynamics very well up to approx.
20× 103 rad/s which is above the frequency range of interest. The singular val-
ues are shown for the rotordynamic system when angular velocity is 31500 RPM
since the system identification is assumed to take place at nominal operational
conditions.

Complex separation

The reduced state space model obtained by modal reduction consist of complex
coefficients. This model can be rewritten to real form with 2n states, one state
to represent the real part and one for the imaginary part [13]. This can be done
by transforming the T T

l and Tr to

Trsep =
[
R(Tr1) −I(Tr1) ... R(Trn) −I(Trn)

]
(28)

Tlsep =
[
R(Tl1) I(Tl1) ... R(Tln) I(Tln)

]
(29)

Such that the new system Gs with new state vector xs and the matrices As, Bs

and Cs are given as
ẋs = Asxs +Bsu, y = Csxs (30)
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Figure 0.5: Singular values of the full and the reduced rotor dynamic system
shown at nominal angular velocity of 31500 RPM

xs =
[
R(xc1) I(xc1) ... R(xcn) I(xcn)

]T
, (31)

As =




. . . 0
Acii

0 . . .


 , Acii =

[
R(λi) −I(λi)
I(λi) R(λi)

]
, (32)

Bs = [R(Bc1), I(Bc1)...R(Bcn), I(Bcn)]T , (33)

Cs = [R(Cc1),−I(Cc1)...R(Ccn),−I(Ccn)] , (34)

Reduction of uncontrollable and unobservable modes

After complex separation the system consist of 2n states. By considering which
states that is controllable and which are observable it becomes clear that some
states are uncontrollable and can be removed. A similarity transform Tsim exists
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which transforms the complex separated system Gs into a controllable part and
an uncontrollable part which can be removed

Ā = TsimAsT
T
sim (35)

B̄ = TsimBs (36)

C̄ = CsT
T
sim (37)

and the transformed system has the form

Ā =

[
Ancon 0
A21 Acon

]
, B̄ =

[
0

Bcon

]
, C̄ =

[
0

Bcon

]
(38)

where Acon, Bcon, Ccon represents the controllable system.
The final transformation matrices denoted TR and TL can thus be found as

the lower part of the products TrsepT
T
sim and T T

lsep
Tsim

Tr∗ = TrsepT
T
sim (39)

Tl∗ = TsimT
T
lsep

(40)

TR = Tr∗(: , n+1:2n) (41)

TL = Tl∗(n+1:2n , :) (42)

Thus the final reduced system matrices can be written as

A = TLAfTR (43)

B = TLBf (44)

C = CfTR (45)

The transformation matrices TR and TL will later be used to map the uncertainty
from the full system to the reduced system.

Identification of parameter uncertainty using LFT of full system

LFT can be used for representing a nominal system with a parameter uncer-
tainty. A lower LFT can be written as [6]

Fl(G, θ) = Gyu +Gywθ(I −Gzwθ)
−1Gzu (46)

If Gzw is zero, the LFT representation can be simplified to

Fl(G, θ) = Gyu +GywθGzu (47)
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Gyw and Gzu can be considered as the mapping of the uncertainty in and out
of the the states of the system, where Gyu can be considered as the nominal
system as if the uncertainty is zero (G(0)).

It is chosen to investigate the possibility of identifying the uncertainty of a
parameter in the system. A change in the negative bearing stiffness in a single
direction, in a single position, is considered, which happens at e.g. By, see Fig.
0.4.

It is therefore investigated if the change in negative stiffness can be described
by an LFT using Gywf

and Gzuf
scaled by θ, on the form shown in Eq. (47). The

subscript f denotes the full system i.e. the full finite element system with 40
nodes and 320 states (before model reduction). It can be proved that a change
in stiffness (or damping) at a single direction at e.g. By corresponds to a change
in a single column of system matrix A, which corresponds to the node j where
the stiffness has changed.

A∆f
=




0 . . . 0 a1,j 0 . . . 0
0 . . . 0 a2,j 0 . . . 0
... . . . ...

...
... . . . ...

0 . . . 0 ai,j 0 . . . 0


 (48)

Gywf
and Gzuf

can then easily be obtained by selecting Gywf
to be the column

of system matrix A which has changed

Gywf
=




a1,j

a2,j
...
ai,j


 (49)

and select Gzu to be

Gzuf
=
[
0 0 ... 1 ... 0 0

]
(50)

where 1 should be placed at the position of column which has changed in A
(node position). θ is simply selected to 1 which would correspond to a 100%
change in the system parameter.

LFT of reduced system

The LFT of the reduced system can now simply be described using the trans-
formation matrices given in Eq. (41) and Eq. (42) to transform the uncertainty
mapping Gywf

and Gzuf
from the full finite element system to the reduced system
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on modal form given by Eq. (43).

Gyw = TLGywf
(51)

Gzu = Gzuf
TR (52)

4 Results

This section demonstrates that it is possible to identify an uncertainty using
the method introduced in Section 2 on a rotordynamic system and uncertainty
representation as presented in Section 3.

Before identification of the plant is conducted, it is shown why open-loop
identification of the plant is not possible. On Fig. 0.6 the poles and zeros of real
plant G(θ) is shown, hence the real plant to be identified. It is easy to see that
any input given to the plant would make the output increase to infinity, due to
poles in the right half plane. Such right half plane poles are not present in S(θ),
as can be seen in Fig. 0.7, why open-loop identification of S(θ) is possible. A
simulation is conducted with a controller stabilizing both nominal model plant
and the real plant. A stiffness reduction of 50 % (θ = 0.5) is introduced to the
real plant compared to the nominal plant model.

The frequency response of the nominal and real plants are shown in Fig.
0.8. The plot shows that the uncertainty injected through the LFT change the
dynamics of the system.

For the identification, a random binary signal is chosen for η and both r1 and
r2 are set to 0. The variables η, r1 and r2 are shown in Fig. 0.2. A time period
of 0.5 s and a time step of 0.001 s are chosen. The uncertainty, θ, is identified
to be 0.502 which is practically the same as the theoretical result (θ = 0.5).

5 Conclusion

The problem of estimating uncertain dynamics in a rotordynamic system sup-
ported by AMB is considered. Finite element and modal reduction methods
are applied to establish a reduced model of the system and to parametrize un-
certain dynamics in the system into uncertain parameters, which then can be
identified. Youla parametrization theory is applied to show how the unstable
system in connection with a standard observer based feedback structure can be
used to transform the identification problem into an open loop stable formula-
tion describing the change of dynamics between the modelled system and the
real system. This method is proposed for rotordynamic systems, in which the
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Figure 0.6: Pole-Zero plot of G(θ). Poles are marked using ×’s and zeros are
marked using ◦’s.

finite element model of shaft is known in advance, but where e.g. bearing or
seal dynamics is uncertain.

From the example it can be concluded that the method works when consid-
ering an ideal case where the bearing stiffness in one direction is uncertain. The
ideal case is used to give a clear overview of the methodology proposed. The
example shows that the bearing stiffness is efficiently identified, while the shaft
is spinning at nominal angular speed.

There are various possibilities to be investigated with this method such as to
extend the shaft model to include flexible modes, identify multiples parameters
simultaneously, investigate the effect of disturbances, investigate the effect of
uncertain shaft dynamics and carry out experimental tests.
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Figure 0.7: Pole-Zero plot of S(θ). Poles are marked using ×’s and zeros are
marked using ◦’s.
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Abstract

It is often not feasible or even impossible to identify a plant in open loop. This
might be because the plant contains unstable poles, or it is simply too expensive
to remove the plant from its intended operation, among other possibilities. There
are several methods for identifying a plant in closed loop [4], and one such method
is the Hansen scheme [1]. Standard identification using Hansen scheme demands
generating the identification signals indirectly. In this paper it is instead proposed
to use the relationship between the Youla factorization of a plant and its stabiliz-
ing controller to directly measure the signals used for identification. A simulation
example and identification of a gas bearing is given to show the method in ac-
tion. Rotors supported by controllable gas bearings are open loop stable systems.
However as the rotational speed is increased feedback control is necessary in order
to keep the system stable. Furthermore because the dynamics of such a system
depends on the rotational speed it is needed to conduct an identification while
the system is part of a closed loop scheme. The authors believe the paper able to
contribute towards a simpler and more direct way of identifying closed loop plants
using Hansen scheme.

1 Introduction

Identification of closed loop systems is of great interest for many practical ap-
plication. It is often not possible to conduct open loop identification on a plant.
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This can be due to several reasons, such as the system being open loop un-
stable, or disconnecting the controller being too costly. The Hansen scheme is a
method for identification of closed loop systems, proposed by Fred Hansen [1].
The method takes advantage of the parametrization of all plants stabilized by
a specific controller.

The experimental design procedure proposed by Fred Hansen demands the
use of signals, which are not directly measurable from the plant G. It is therefore
necessary to recreate the signals from known signals sent through predefined
filters. The advantage of the method proposed in this paper is to get rid of the
step of recreating the signals and instead measure directly the equivalent signals
from the controller. Such a change will eliminate any need of a priori knowledge
of the system states and reduce the amount of numerical inaccuracies related to
the identification procedure.

In this paper the control architecture is based on a Luenberger observer
design. The identification method proposed will be shown theoretically as well as
experimentally, using data from a rotor-bearing system linked to a controllable
gas bearing. However the method can easily be used with other controller
architectures.

The paper is structured as follows: Section 2 introduces Hansen scheme and
how to conduct identification of closed loop systems; Section 3 introduces the
coprime factorization of plant and controller together with a Youla paramet-
rization; Section 4 presents results from a simulation example for the reader;
Section 5 presents an identification example of a gas bearing; Section 6 contains
a conclusion on the results presented in the paper.

2 Closed loop identification using the Hansen
Scheme

The Hansen scheme is a method originally introduced by Fred Hansen [1] for
identification of plants connected as part of a closed loop scheme. In this section
a brief description of the Hansen scheme is given together with a motivation for
modification. The method takes advantage of the coprime factorisation of plant
and controller and is based on the theory outlined in [7]. A standard setup
for a plant as part of a closed loop scheme can be seen in Fig. 0.1. Here the
signals r1 and r2 can be both known or unknown disturbance input. Let G be
the nominal plant and K be the nominal controller, a coprime factorization of
the nominal plant is then given in Eq. (1) and a coprime factorization of the
nominal controller is given in Eq. (2), given the 8 matrices satisfies the double
Bezout identity shown in Eq. (3).
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2. CLOSED LOOP IDENTIFICATION USING THE HANSEN SCHEME

r2

r1
+

+
K

+ +

G(S) y

+

+

n

ū u

Figure 0.1: Closed-loop system representation.

G = NM−1 = M̃−1Ñ (1)

K = UV −1 = Ṽ −1Ũ (2)


I 0

0 I


 =


 Ṽ −Ũ
−Ñ M̃




M U

N V


 =


M U

N V




 Ṽ −Ũ
−Ñ M̃


 ∈ RH∞ (3)

With a coprime factorization of the nominal plant G and of the controller K
stabilizing the nominal plant G(0), Eq. (4) gives a parametrization of all plants
stabilized by the nominal controller K [3].

G(S) = (N + V S)(M + US)−1 = (M̃ + SŨ)−1(Ñ + SṼ ) (4)

The goal of the identification method is to find a signal uncorrelated with the
output disturbance, n, to use for identification of the open loop error system,
denoted S in Eq. (4).

The real plant can be described using the nominal controller and nominal
plant together with the open loop error. Such a description is shown in Fig.
0.2 [1]. Here the output noise have been moved to inside the plant. This
representation is believed to make it easier to determine the impact of the noise
on the identification process.

For the representation shown in Fig. 0.2 it is possible to recreate the signal
η from the 2 input, r1 and r2 which are independent of the input and output
noise. The calculation of η is given by Eq. (5) to Eq. (10).
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Figure 0.2: Block representation of the Hansen Scheme.

u(t) = (M + US)η(t) + U(M̃ + SŨ)n(t)
(5)

y(t) = (N + V S)η(t) + V (M̃ + SŨ)n(t)
(6)

Ṽ u(t)− Ṽ (M + US)η(t) = Ũy(t)− Ũ(N + V S)η(t)
(7)

Ṽ (Ṽ −1U(r1(t) + y(t)) + r2(t))− Ṽ (M + US)η(t) = Ũy(t)− Ũ(N + V S)η(t)
(8)

Ũr1(t) + Ṽ r2(t) = Ṽ (M + US)η(t)− Ũ(N + V S)η(t)
(9)

η(t) = Ũr1(t) + Ṽ r2(t)
(10)

In a similar fashion it is possible to calculate ε using only the input meas-
urements u and the output measurements y. How to calculate ε is derived in
Eq. (11) to Eq. (15).

Mη(t) = u(t)− Uε(t) (11)

Nη(t) = y(t)− V ε(t) (12)

Ñu(t)− ÑU = M̃y(t)− M̃V ε(t) (13)

M̃y(t)− Ñu(t) = (M̃V − ÑU)ε(t) (14)

ε(t) = M̃y(t)− Ñu(t) (15)

With the signals η and ε it is possible to identify the open loop error system
S as shown in Eq. (18), which is an open loop identification problem.
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3. CONTROLLER PLANT RELATIONSHIP

η(t) = Ũr1(t) + Ṽ r2(t) (16)

ε(t) = M̃y(t) + Ñu(t) (17)

ε(t) = Sη(t) + d(t) (18)

Because the signals η and ε are internal signals in the plant it is impossible to
measure them directly. It is therefore necessary to create them from the already
known signals, as shown in Eq. (16) and Eq. (17). This approach might give
lead to numerical problems because of how the signals are calculated, while the
input signals are also led through a filter shaping the excitation signal. Further-
more initial conditions might increase the uncertainty of the signal estimation.
It is therefore believed by the authors that it is a huge advantage to measure
the signals directly instead.

The rest of the paper will outline a method for how to directly apply a signal
equivalent to η and how to measure a signal equivalent to ε using a full order
observer based controller. A simulation example will be given and results from
applying it to a gas bearing is finally presented.

3 Controller plant relationship

In this section the relationship between the parametrization of all controllers
stabilised by a specific plant and all plants stabilized by a specific controller
investigated. The results stated in the following section can also be found in [3]
[8].

As shown in [3] [7] all controllers stabilising a specific plant is given in Eq.
(19).

K(Q) = (U +MQ)(V +NQ)−1 = (Ṽ +QÑ)−1(Ũ +QM̃) | Q ∈ RH∞ (19)

K(Q) = Fl(Jk, Q) (20)

Jk =

[
K Ṽ −1

V −1 −V −1N

]
(21)

It is easy to see that the parametrization can be represented as a lower linear
fractional transformation [5]. Such a controller can be implemented as seen in
Fig. 0.3. Here Q is chosen to be zero, a set up which will be used throughout
the rest of the paper. It is easy to see in Fig. 0.3 that by closing the loop from
β to α using Q, the controller is given as in Eq. (19).
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Figure 0.3: Closed loop description with a controller given as in Eq. (19), where
the system Q is disconnected.

Equivalently it is possible to state all plants stabilised by a specific controller
as shown in Eq. (22).

G(S) = (N + V S)(M + US)−1 = (M̃ + SŨ)−1(Ñ + SṼ ) | S ∈ RH∞ (22)

G(S) = Fu(JG, S) (23)

JG =

[−M−1U M−1

M̃−1 G

]
(24)

Again it is possible to represent G(S) as an upper LFT as shown in Fig. 0.4.
It is important to notice that the signals η and ε shown in Fig. 0.4 are the same
η and ε signals as shown in Fig. 0.2.

+

+

K
+ +

JG

+

+

S

r1
u

r2

y

n

ηε

Figure 0.4: General lower LFT description of G(S).

Combining Jk and JG as shown in Fig. 0.5 it is possible to calculate the
transfer function from each input to the two outputs.

It is easy to see that the cross coupling of Jk and JG in Fig. 0.5 can be
calculated as a redheffer star product. The gains of the block is shown in Eq.
(25).
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3. CONTROLLER PLANT RELATIONSHIP

S

JG

Jk

η ε

y u

αβ

Figure 0.5: Block representation of the relationship between G(S) and K(Q).

JG ? Jk =

[
Fl(JG, K) M−1(I−KG)−1Ṽ −1

V −1(I−GK)−1M̃−1 Fu(Jk, G)

]
(25)

In order to determine the relationship between the signals on each side of
the system Q and the system S the gains of the redheffer starproduct shown in
Eq. (25) are calculated. First the transfer function from the output of S to the
input of S is found:

Fl(JG, K) = −M−1U +M−1K(I −GK)−1M̃−1 (26)

= −M−1U +M−1UV −1(I −GK)−1M̃−1 (27)

= −M−1U +M−1UV −1(I − M̃−1ÑUV −1)−1M̃−1 (28)

= −M−1U +M−1UV −1V (M̃V − ÑU)−1M̃M̃−1 (29)

= −M−1U +M−1U(M̃V − ÑU)−1 (30)

= −M−1U +M−1U(I)−1 (31)

= 0 (32)

The transfer function from the output of Q to the input of Q can in a similar
fashion be proved to be 0. It is therefore only left to show the transfer function
respectively from the output of Q to the input of S, which can be seen in Eq.
(34) and from the output of S to the input of Q, which can be seen in Eq. (33).
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M−1(I−KG)−1Ṽ −1 = M−1(I− Ṽ −1ŨNM−1)−1Ṽ −1

= M−1M(Ṽ M − ŨN)−1Ṽ Ṽ −1

= (Ṽ M − ŨN)−1 = I (33)

V −1(I−GK)−1M̃−1 = V −1(I− M̃−1ÑUV −1)−1M̃−1

= V −1V (M̃V − ÑU)−1M̃M̃−1

= (M̃V − ÑU)−1 = I (34)

Combining the results from Eq. (32),(33) and (34) the relationship between
α and β can be described as in Eq. (35). The result can be found in [3] where
the relationship between Q and S, to the best of the authors knowledge, was
examined for the first time.

β = Sα (35)

It is thus proved that the input signal of S is equal to the output signal of
Q and the output signal of S is equal to the input signal of Q. It is therefore
possible to directly measure the signals equivalent to η and ε from the paramet-
rized controller as the signals α and β respectively. To the best knowledge of
the authors this approach is not limited to a specific controller architecture, but
can be applied to any controller implemented as showed in Fig. 0.6.

+

+

G(S)
+

+

+

Ṽ −1
+

+

Ũ

Ñ
− +

M̃

u y

β

α

n

r1

r2

Figure 0.6: General controller scheme using a coprime plant and controller
description.

The approach demands that it is possible to find the signals α and β in the
controller. This is in this paper done using an observer based controller. It
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4. SIMULATION EXAMPLE

is important to notice the order of the recast controller is increased by twice
the order of the nominal plant model. It can therefore be convenient to use
an observer based control scheme, where the order of the controller is 2 times
the order of the nominal plant, which is the minimal order possible for such a
controller set up.

For a controller given as in Fig. 0.6 as part of a closed loop as shown in Fig.
0.1 the closed loop transfer functions are given in Eq. (36), where α is a free
signal to choose for identification purposes.



y
u
β


 =




(N + V S)Ũ (N + V S)Ũ (N + V S)Ṽ N + V S

(M + US)Ũ (M + US)Ũ (M + US)Ṽ M + US

M̃ + SŨ M̃ + SŨ Ñ + SṼ S







n
r1
r2
α


 (36)

By applying a known disturbance signal on both the observer input and the
plant input, hence the α signal, it is possible to measure β as the difference
between the predicted output by the observer and the output from the plant
G(S). This method is seen as superior in regards to the freedom of the identific-
ation signal compared to the method proposed in [1], where the excitation signal
is imposed through r1 and r2. It is clear from Eq. (36) that the 3 excitation
signals and the disturbance signal are uncorrelated why open loop identification
can be conducted.

4 Simulation example

A simulation example is presented to give the reader some insight into the
identification procedure. A random open loop stable plant with 2 inputs, 2
outputs and 4 states is generated. The nominal plant is chosen such that the
system matrix (Amodel) is 70% of the actual system matrix (Areal) as shown in
Eq. (37).

Amodel = 0.7 · Areal (37)

The nominal plant have thus both an dynamic and steady state error that
needs to be identified. The test set up is shown in Fig. 0.7 where both the
unknown disturbance signal, n, and the excitation signal (α) are implemented
as white noise signals. The amplitude of the noise was chosen to be 10% of the
β signal. Furthermore only output noise, r1, was used for this simulation.
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Figure 0.7: Block diagram of simulation example. The observer is designed for a
plant where the elements of the system matrix is only 70 % of the actual values
of the elements of the system matrix. The state feedback is designed using
LQR design and the observer poles are placed to have insignificant dynamics
compared to the state feedback poles.

The order of the state space model is chosen by calculating the real open
loop error, which was found to be a 12’th order system. It is therefore possible
to identify the real open loop error, S, as a 12’th order system, why the open
loop error is identified as a 12’th order state space model.

In order to be able to determine the goodness of a model an error signal is
calculated using Eq. (38).

φ(t) = Grealu(t)−Gmodelu(t) (38)

An error signal sequence of respectively the nominal model and the identified
plant, using Eq (38), can be seen in Fig. 0.8. It is clearly seen that the identified
plant reduce the output error why it can be concluded possible to improve the
nominal model, which was on purpose designed to be imperfect. The dynamics
are identified although there is still a small deviation between the identified and
the real plant, which is due to numerical issues and presence of output noise
on the identification signal. It is important to note that there is not applied
any noise to the validation data shown in Fig. 0.8 why any deviation from zero
corresponds to a deviation between the real plant and respectively the nominal
or identified plant.
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5. LAB EXPERIMENT
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Figure 0.8: Goodness of fit of Nominal and identified plant. Each signal is cal-
culated using Eq. (38). The top plot shows respectively nominal and identified
model for the first output, while the lower plot shows the signal for output 2.
The identified plant have a better goodness fit which can be seen from the vari-
ance in the signal being lower than for the nominal model while the mean is at
0.

A bode plot of respectively the real plant, the identified plant and the plant
model is shown in Fig. 0.9. It is easily seen from the bode plot that the model
does not agree with the real plant. However the identified plant have successfully
minimized the error over the whole frequency span.

For validation of the identification procedure it is also possible to compare
the real S with the one identified through the identification procedure. A bode
plot of the identified and real S are shown in Fig. 0.10.

5 Lab experiment

Identification of a gas bearing test rig is given to show the identification pro-
cedure with data obtained from a real system. A photo of the gas bearing test
rig is shown in Fig. 0.11.

A block diagram of the test rig is shown in Fig. 0.12. Here Ks describes
the direct stiffness and cross stiffness of the gas bearing, Dd the direct damping
and cross damping of the gas bearing and B is the direct input gain and cross
input gain of the gas bearing.
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Figure 0.9: Bode plot of the real plant, the identified plant and the plant model.
The plant model and real plant are clearly not the same, while the identified
plant have almost same frequency response as the real plant.
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Figure 0.10: Bode plot of the real S calculated as described in [3] and the
identified S using the procedure described in section 3.

The rotor-bearing system thus consists of 8 states, 2 inputs and 2 outputs.
A model for this set up have been derived and identified in [9] where the gas
bearing is not a part of a closed loop Scheme. The identification shown in this
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5. LAB EXPERIMENT
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Figure 0.11: Photo of the gas bearing test rig. Here (1) is the turbine, (2) is the
flexible shaft, (3) is a ball bearing, (4) is the gas bearing, (5) is a disc used for
preload the journal and (6) is the displacement sensors.
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Figure 0.12: Block diagram representation of the gas bearing test rig.

section is based on non-rotating shaft levitated by the externally presented gas
bearing shown in Fig. 0.11, as part of a closed loop scheme. The controller
implemented is designed as a standard Luenberger observer where the observer
gain and state feedback gain is chosen using lqr design. It is important to
note that the gas bearing is open loop stable at zero rotational speed. It is
therefore possible to identify the plant using open loop techniques. However the
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point is to show that the method is applicable why it will be possible to use
the same method for higher rotational speeds. At higher rotational speed the
rotor-bearing is open loop unstable why only closed loop identification will be
possible.

For identification an observer with state feedback is designed and as for the
simulation example showed in section 4 a white noise excitation signal is applied
as the η signal in the horizontal and vertical direction. The open loop error, S,
is estimated as a 8’th order system, same order as the nominal model, which is
found to produce a good identification result.

An error plot as described in Eq. (38) is presented in Fig. 0.13 using both
the nominal model and the identified model. For validation the excitation signal
is only applied in the horizontal direction. It is worth noticing that the nominal
model is a good representation of the test rig, why the error is relative small
compared to the output noise which is measured to have an amplitude of 1 µm.
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Figure 0.13: Plot of the error between the predicted output and measured out-
put for horizontal and vertical direction. The top plot shows the error in the
horizontal direction, while the bottom plot shows the error in the vertical dir-
ection.

From Fig. 0.13 it can be seen that the identification have produced a more
accurate model for prediction of the horizontal direction (the top plot), while
there is no significant improvement in the vertical direction. The error in the
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horizontal direction is reduced to close to 1 µm which is the level of the output
noise induced by the displacement sensors. The result suggests that it has been
possible to identify the direct gains from horizontal input to horizontal output
while the cross coupling between the two inputs have not been improved through
the identification. It is believed possible to identify the direct gain in the vertical
direction with a pure vertical excitation signal in a likewise manner.

6 Conclussion

Identification using Hansen scheme has so far been conducted using indirect
excitation signals for identification. Such an approach makes it difficult to de-
termine the frequency response of the excitation signal. In this paper a method
is given, on how to use the equivalent signals in the controller, for identification
of the open loop error system S, thus letting the excitation be imposed without
pre filtering which is the case with the original method proposed in [1]. It is
therefore believed that the Hansen scheme is a more limiting special case of the
identification approach outlined in this paper. The paper outline an approach
for how to excite a plant and measure the needed signals for identification, given
an observer based controller. The paper furthermore shows how it is possible to
recast any controller such that it is possible to excite and measure the signals
used here for identification. Using a simulation example and a Gas Bearing
system for identification the method is proven to work.
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Abstract

In this paper active fault detection of closed loop systems using dual Youla-
Jabr-Bongiorno-Kucera(YJBK) parameters is presented. Until now all detector
design for active fault detection using the dual YJBK parameters has been based
on CUSUM detectors. Here a method for design of a matched filter detector is
proposed instead, based upon the Neyman-Pearson criterion for optimal detector
design. Furthermore alternative ways to design the excitation signal which relates
to indirect identification methods are presented. Examples are given on detection
of actuator faults using a simulated gas bearing for both one and multiple possible
parametric faults.

1 Introduction

Fault detection is a well studied subject which has been a popular research area
for many years [1, 2]. Usually fault detection is divided into two subgroups,
active and passive fault detection. Passive fault detection is based on the use of
redundancy equations to generate residuals which detect and isolate the faults
in the system [3]. Equivalently active fault detection is based on applying excit-
ation signals to a system in order to detect residual signals which point towards
specific parametric changes. In this paper focus is put on detector design for
active fault detection, based on the huge amount of research which have been
conducted in the area of statistical test design [4, 5].
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Since no redundancy equations are needed in active fault detection the
amount of sensors required are less than for passive fault detection in order
to get the same amount of possible detectable faults. However this advantage
comes at the cost of degradation of performance while active fault detection is
conducted due to the auxiliary signal. Application of active fault detection is
therefore advantageous when detection of a fault is non critical such that con-
stant detection is not required or when adding extra sensors hugely influence
the cost compared to the performance degradation.

The study of active fault detection have historically been divided into two
main categories. The two philosophies for active fault detection differ in regards
to the approach used when determining the auxiliary signal[6]. One branch
look into the method of trying to determine which model, from a set of models,
describe the system behaviour the best. Such a method is based on knowledge
of the magnitude of faults that might occur. The method is presented in [7, 8]
and design of the auxiliary signal is discussed in [9, 10, 11].

In this paper active fault detection based instead on the Youla-Jabr-Bongiorno-
Kucera(YJBK) parameters is presented. This method was first introduced in
[12] and have been extensively described in [13, 14, 6, 12]. Where the first
method was based on finding the model that best describe the system beha-
viour from a set of models, the method presented in [12] is based on the error
system associated with a system given a chosen model. It was shown in [14] how
to isolate parameters from such an error system and a linearisation of the prob-
lem was introduced, while introduction of the CUSUM detector to the detection
problem was presented in [6].

In this paper a matched filter detector is designed instead of the CUSUM
detector and test statistics are calculated based on the auxiliary signal. Using
a matched filter instead of a CUSUM detector is advantageous in several ways.
With a matched filter it is possible to quantify how long time it is needed to wait
before it is possible to determine whether a fault has occurred, such information
is not possible to obtain for a CUSUM detector. Furthermore the properties of
a matched filter makes it extremely useful for fault isolation in case of multiple
hypothesis testing. Such a statistical based detector has never before been shown
in regards to active fault detection based on the Youla-Jabr-Bongiorno-Kucera
parameters.

To give an example the matched filter detector is applied to a gas bearing
simulation. The model used for the gas bearing was first developed and verified
in [15] where it was shown possible to increase performance of the gas bearing
by design of feedback control. Furthermore gas bearings are used for high per-
formance equipment with low maintenance requirements. It is seen as critical
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2. SYSTEM FORMULATION

for such a system to be able to keep in running until a fault occur. A system
using gas bearings is therefore seen as the perfect application of active fault
detection.

This paper limits to only show detection of actuator faults in the examples.
However it is possible to detect faults on any model parameter with the approach
presented. The actuator faults are chosen since they have been identified as the
most critical parts of a gas bearing. It is therefore seen as relevant for future
work to show it possible to detect faults on the actuators.

The paper is structured as follows: Section 2 introduce the state of the art;
Section 3 presents the model of the gas bearing used in the examples; Section 4
discuss the design of the excitation signal; Section 5 presents the detector design
given a single fault and Section 6 presents the detector design given multiple
faults. Lastly a conclusion is given in section 7.

2 System formulation

The work presented in this paper is based on the use of a coprime description of
plant and controller. The nominal plant denoted G(0) and controller denoted
K are therefore given respectively in Eq. (1) and Eq. (2)

G(0) = NM−1 = M̃−1Ñ , N,M, Ñ, M̃ ∈ RH∞ (1)

K = UV −1 = Ṽ −1Ũ , U, V, Ũ , Ṽ ∈ RH∞ (2)

Here N and M , Ñ and M̃ , U and V , Ũ and Ṽ are each coprime pairs
respectively. In Eq. (1) and Eq. (2) the plant and controller using the systems
denoted with a tilde are known as the left factorizations where as the non-tilde
pairs are known as the right factorized form. These 8 matrices thus satisfy the
bezout identity given in Eq. (3).

[
I 0
0 I

]
=

[
M U
N V

] [
Ṽ −Ũ
−Ñ M̃

]
(3)

Taking advantage of the coprime factorization of the nominal plant and
controller, all plants stabilized by a given controller, K, can be expressed as in
Eq. (4) using the right factorized form and as in Eq. (5) using the left factorized
form.

G(S) = (N + V S)(M + US)−1, S ∈ RH∞ (4)

G(S) = (M̃ + SŨ)−1(Ñ + SṼ ), S ∈ RH∞ (5)
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Here S is known as the open loop error [16]. It can be seen from Eq. (4)
and Eq. (5) that as S increases the real plant deviate from the nominal plant
defined in Eq. (1). Assuming perfect knowledge of the plant a fault will therefore
be seen as the open loop error deviating from 0. The goal of the active fault
detection is therefore to describe the faults independent of each other using the
open loop error. For this it is needed to define an appropriate excitation signal
to use for detection through the open loop error. The method described here
for design of the excitation signal was first presented in [14, 13]. Throughout
the rest of the paper the true plant is defined using Eq. (6) and the control law
imposed is given in Eq. (7).

y = G(S)u (6)

u = Kym (7)

The closed loop system is shown on Fig. 0.1, where the two known external
signals r1 and r2 are introduced together with the output noise denoted n.

r2 n

r1
+

+
K

+ +

G(S)
+ +

ym
ū u y

Figure 0.1: Closed loop system setup.

The closed loop system presented on Fig. 0.1 can be expanded using the
definition of G(S) given in Eq. (4). The closed loop system is represented using
the coprime factorization on Fig. 0.2, which makes it more clear how the open
loop error influence the plant.

Here the output noise have been moved using simple block transformation
rules in order to make the impact of the noise on the open loop error more
transparent. It was shown in [17] that the signal η is independent of the noise.
The advantage of detecting changes in the open loop error is therefore twofold.
Firstly any change in behaviour from the nominal case is directly translated to
a change in S diverging from zero, this makes it into a more simple problem
of detection since in the healthy case the signal to detect is only containing
noise. Secondly, because the signal η is independent of the noise signal, the
detection signal and the noise are independent of each other which is used for
implementation of the detector.
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r2

r1
+

+
K

+ + +

−
M−1

η
N

+

+

ym

S

+ +

(M̃ + SṼ )n

U ε V

u

Figure 0.2: Closed loop system setup using the coprime factorisation of the
plant.

Parametrisation of faults

As it is possible to represent the true plant, G(S), using Eq. (4) it is also
possible to represent all controllers stabilising the nominal plant by the use of
Eq. (8) which is known as the right factorised form, while the left factorised
form is given in Eq. (9).

K(Q) = (U +MQ)(V +NQ)−1, Q ∈ RH∞ (8)

K(Q) = (Ṽ +QÑ)−1(Ũ +QM̃), Q ∈ RH∞ (9)

Such a controller can also be represented using a linear fractional transform-
ation as shown in Eq. (10).

K(Q) = Fl(JK , Q) (10)

JK =

[
UV −1 Ṽ −1

V −1 −V −1N

]
(11)

A block diagram of the controller setup is shown on Fig. 0.3. Here the
connections to Q are stippled to represent that Q is disconnected from the
system. The signals α and β shown on Fig. 0.3 are the signals being used for
the fault detection.

It was proved in [18] that the output signal of the open loop error S is equal
to the input signal for Q and the output signal from Q is equal to the input
signal for S. The transfer function from α to β was thus shown in [18] to be
given as in Eq. (12).
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u
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n

Figure 0.3: Closed loop system setup using the coprime factorisation of the
controller.

β = Sα + (M̃ + SṼ )n (12)

(13)

Combining Eq. (12) with Fig. 0.3, following connection between (α, β) and
(η, ε) is directly given in Eq. (14).

α = η ∧ β = ε (14)

For fault detection the two external inputs, r1 and r2 are disregarded in this
work. If preferred these two inputs could be used for the fault detection. Using
the relationship given in Eq. (14) and letting Q be equal to zero, it is possible
to state the closed loop system as in Eq. (15) using the two external inputs.



y
u
β


 = Tcl(S)

[
n
α

]
=




(N + V S)Ũ N + V S

(M + US)Ũ M + US

M̃ + SṼ S



[
n
α

]
(15)

With the impact of the external inputs on the open loop error given in Eq.
(15) a connection between the open loop error, S, and the parametric faults,
θ, need to be established. In [19] the connection between the open loop error
and specific parameters is thoroughly examined. Expressing the open loop error
using the parametric faults was shown possible to express as in Eq. (16) [14].

S(θ) = M̃Gywθ(I − (Gzw +GzuUM̃Gyw)θ)−1GzuM (16)

It is easy to see from Eq. (16) that the open loop error is zero when the faults
are zero. This is based on an assumption of perfect knowledge of the system.
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Gyu Gyw

Gzu Gzw

θ

u y

Figure 0.4: LFT description of system faults.

The systems, Gyw, Gzw and Gzu can be found by use of the linear fractional
transformation shown on Fig. 0.4. Furthermore θ is a diagonal matrix where
the faults are the diagonal elements.

The goal of the fault detection is to detect the faults from Eq. (16) in Eq.
(17) where noise(w) is added.

β = S(θ)α + (M̃ + SṼ )n (17)

β = S(θ)α + w (18)

Since S(θ) is a non-linear function it was proposed in [14] to linearise S(θ)
around θ = 0 which corresponds to no fault. This linearised version will be
denoted S̄(θ) and is given in Eq. (19).

S(θ) ≈ M̄GywθGzuM (19)

Here θ is a diagonal matrix with each diagonal element corresponding to a
fault in the system. Such a linearisation is seen as appropriate when detecting
small faults where θ is close to zero.

Multiple faults

Using S̄(θ) from Eq. (19) the impact of multiple faults on the signal is rather
straightforward. Due to the linearisation each fault is independent and the
amplitude of the signal is simply a summation of the impact of all faults as
shown in Eq. (21).
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β =
k∑

i=1

(M̃Gywi
GziuMθiα) + w (20)

β = (S̄1θ1 + S̄2θ2 + ..+ S̄iθi)α + w =
k∑

i=1

(S̄iθiα) + w (21)

Here i is used to specify which fault is considered, why i describe which
input of Gywi and output of Gziu is used. Detection and isolation of fault is in
the rest of this paper based on Eq. (21).

3 Model of active gas bearing

Fault diagnosis conducted throughout this paper is applied to an simulation
example of a disc held in place by an active gas bearing. A model for such a
test rig is based on experiments conducted on the flexible shaft held in place
by a gas bearing which is shown on Fig. 0.5. The system showed on Fig. 0.5
is designed to keep the disc(5) in a fixed position. Through feedback control of
the active gas bearing(4) it is possible to increase the damping of the system
and thus increase the disturbance rejection.

(2)
(3) 

(4) (5) (6)

Y
X

1
2

3

4

(1)
(7) (2)

(3)
(4)

X

Y
3

4

(1)
(7)

Figure 0.5: Photo of the gas bearing test rig. Here (1) is the turbine, (2) is
the flexible shaft, (3) is a ball bearing, (4) is the gas bearing, (5) is a disc used
for preload the journal, (6) is the displacement sensors and (7) is the connector
between the turbine and the flexible shaft.
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3. MODEL OF ACTIVE GAS BEARING

A model of the system was presented and verified in [15] and it was shown
possible to model the plant as a 6’th order system with 2 inputs and 2 outputs.
The model inputs represent the air injected in the horizontal and vertical direc-
tion to the gas bearing, while the system outputs is the vertical and horizontal
position of the disc. A block diagram of the system modelled is shown on Fig.
0.6.

r x (t)

r y (t)

Commanded
piezoactuator
posit ions r (t)

Dynamics of the pair of
horizontal piezoactuators

Dynamics of the pair of
vert ical piezoactuators

ux (t)

uy (t)

Di erence of
piezoactuator
posit ions u(t)

Rotor-
bearing

dynamics

px (t)

py (t)

Disc lateral
movement p(t)

Damping inject ing
controller

Figure 0.6: Block diagram of the model used for simulation examples.

The states of the plant are sorted with the two first representing the position
of the disc, the next two states representing the velocity of the disc, while the
two last states are a product of the Tustin approximation of the delay in the
system. The structure of the state space model is given in Eq. (22) to Eq. (25).
Here each element in the state space system denotes a 2x2 matrix, hence the
dynamics governing the horizontal and vertical movement are modelled in an
identically.

A=




0 I 0
K D 2Bτ
0 0 −τ


 (22)

B=




0
−B
I


 (23)

C=
[
I 0 0

]
(24)

D=
[
0
]

(25)

Here K denotes the stiffness, D denotes the damping, B denotes the actuator
gain and τ denotes the Tustin approximation of the delay. The model thus
describes the relation between the opening degree of the valves controlling the

114 Publication P3



flow of air to the gas bearing and the position of the disc at the end of the
rotating shaft.

The actuators of the active gas bearing are identified as the components
which are most susceptible to tear and wear. It is therefore seen as necessary
to be able to detect faults on the actuators, which is equivalent to a change in
the input gains. The faults are modelled as multiplicative faults as shown in
Eq. (26) which is the input matrix modified with the possible faults identified
for the plant.

B(θ) =




0
−B
I


 [I + θ

]
(26)

Here θ is a diagonal matrix denoting the magnitude of the faults on each
of the actuators in the diagonal elements. Both faults (θ1, θ2) are limited to
the interval 0 to -1, where 0 corresponds to no fault and -1 corresponds to a
complete failure. The faults are therefore only present in the input matrix. In
the fault free case both faults are zero and Eq. (27) hold.

G(S|θ=0) = Gyu = NM−1 = M̃−1Ñ (27)

Going from the fault free to the faulty case therefore corresponds to the open
loop error S diverging from zero. The relationship between the faults and the
open loop error is thus given in Eq. (28).

S(θ) = 0 |θ=0 (28)

This is an extremely useful property which means that no signal will be
generated in the healthy case, which greatly simplify detection.

4 Detection Signal

For active fault detection an excitation signal is needed. It is decided here to
look into the use of a sinusoidal wave. The excitation signal, α, is therefore
defined in Eq. (29).

α = Aα sin(ωt) (29)
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4. DETECTION SIGNAL

From a detection point of view the excitation signal has to be chosen such
that the fault give the maximum amplification of the excitation signal and hence
makes it the easiest to detect a fault. For the gas bearing model the frequency
response of S̄ for a fault on respectively the horizontal and vertical actuator
is given on Fig. 0.7 when considering signals from the horizontal input to the
horizontal output.
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Figure 0.7: Gain of the linearised system S̄i given a fault on each of the two
actuators. The bode plot shows the transfer function from an excitation signal
on the horizontal input to the horizontal output. The phase is shifted 180
degrees since the fault can only be negative.

It can be seen from Fig. 0.7 that a fault on the horizontal actuator is
easiest to detect by excitation of input 1. This corresponds well with input
1 representing the horizontal actuators and input 2 representing the vertical
actuators. Using Fig. 0.7 the excitation signal used to detect faults is chosen
to be a 1030rad/s sine wave on the horizontal input. The frequency of the
excitation signal is chosen such that faults on the vertical actuator is amplified
the most, which maximise the smallest gain.

With a known excitation signal, a known nominal model and a known con-
troller it is possible to define the residual to detect as in Eq. (30).
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β(t) =
k∑

i=1

(S̄iθiAα sin(ωt)) + w(t) (30)

It might be convenient to keep the original non-factorised controller on the
system or not excite the system by the use of the external input α. In such
cases instead of using α as the excitation signal, r1 or r2 shown on Fig 0.1 can
be used. The excitation signal of the open loop error will then be subject to a
phase shift and gain change depending on the external input used. The transfer
function from the 3 outputs to the residual signal are given in Eq. (31). It is
thus possible to use any of the 3 known inputs and compensate from the phase
shift introduced due to the excitation used.

β = Sα + (Ñ + SŨ)r1 + (M̃ + SṼ )r2 (31)

The extra systems introduced when using the two alternative inputs, r1 and
r2 can easily be compensate for by reformulating the residual signal. In the case
r1 is used the residual signal is reformulated to β̄r1 as shown in Eq. (32) and
the residual signal is thus a proper residual signal as shown in Eq. (33). The
same procedure for reformulation of the residual signal is shown when using r2
as the excitation signal in Eq. (34) and Eq. (35).

β̄r1=β − Ñ (32)

β̄r1=SŨr1 (33)

β̄r2=β − M̃ (34)

β̄r2=SṼ r2 (35)

5 Detector design for a single fault

In order to design the detector a model of the noise signal is needed. A normal-
ized histogram of respectively the vertical and horizontal output signals in the
fault free case have been obtained from a real gas bearing test rig. The normal-
ized histogram for each residual is shown on Fig. 0.8 and a normal distribution
with a zero mean and a variance of 0.11 is found to be the best fit of the noise.

In Eq. (30) the only unknown parameter is the magnitude of the fault why
a detector should be able to detect a known signal with an unknown amplitude.
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Figure 0.8: Normalized histogram of the vertical and horizontal residual, given
a steady state of zero and no excitation signal imposed.

For such a problem it is possible to design a null hypothesis as in Eq. (36) and
a one hypothesis as in Eq. (37).

H0 : β[n] = w[n] n = 0, 1, ...., N − 1 (36)

H1 : β[n] = Ax[n] + w[n] n = 0, 1, ...., N − 1 (37)

Here w[n] is white gaussian noise with variance 0.11 found from the measure-
ments of the residual signal in the fault free case, due to the output noise from
Fig. 0.8. The known signal is denoted x[n] and A is the unknown amplitude
due to the magnitude of the fault. For such a detection problem it is usually not
possible to design an optimal detector [4] due to the detection being two sided,
hence A can be both smaller or larger than 0. However due to only degradations
in performance are considered θ is limited to [−1 0[ why the amplitude is only
negative and the detection is therefore one sided. A Neyman Pearson detector
can therefore be implemented [4]. In order to detect the sinusoidal signal in the
residual signal β a matched filter detector is designed. The detection signal,
T (β) for a matched filter is given in Eq. (38).
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T (β) =
N−1∑

n=0

β[n]x[n] (38)

The energy of the detector signal is needed in order to determine the threshold
and depends on the window size and the characteristics of the excitation signal.
Given a sinusoidal excitation signal, the energy of the signal can be expressed
as in Eq. (39).

ε = N
A2

2
(39)

Here N is the window size as shown in Eq. (38) and A is the amplitude of
the residual signal given in Eq. (30). The amplitude can be determined from
Eq. (40). It is worth noticing that the amplitude depends on the magnitude of
the fault, the test statistic therefore depends on the expected magnitude of the
fault [14].

A = S̄iθiAα (40)

With the energy of the detection signal, ε defined in Eq. (39) and the
variance of the residual signal, σ2, the threshold can be found using Eq. (41)
based on the allowed frequency of false alarms.

γ = (σ2ε)0.5Q−1(PFA) (41)

Similarly with the threshold, the probability of detection can be determine
as in Eq. (42), given an allowed probability of false alarm.

PD = Q
(
Q−1(PFA)− (d)0.5

)
(42)

In Eq. (42) d is known as the deflection coefficient and is defined in Eq.
(43).

d2 =
ε

σ2
=

(E(T ;H1)− E(T ;H0))
2

var(T ;H0)
(43)
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5. DETECTOR DESIGN FOR A SINGLE FAULT

Example

A simulation example using the gas bearing model introduced in [15] is presen-
ted next. For simplicity only a fault on the horizontal actuator is considered.
Because only a fault on the horizontal actuator is considered the residual with
the greatest gain as shown on Fig. 0.7 is from the horizontal input to the ho-
rizontal output. Given the white gaussian output noise with a variance of 0.11
the PDF of the residual in the faulty and healthy case are shown on Fig 0.9.
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Figure 0.9: PDF of the residual signal β for the case of a fault free system and
in the case a fault has happened.

Using the residual signal generated when no fault is happening the variance
of the residual, σ, was found to be 0.11. The amplitude of the sinusoidal wave
was chosen such that the signal could be detected without an inappropriate
window length, but disturbing the system as little as possible, hence keep the
amplitude of the excitation signal as small as possible. The residual signal
both with and without a fault on the system is shown on Fig. 0.10 where the
sinusoidal wave is chosen to have a frequency of 1030rad/s. Distinguishing
between the residual in the healthy and the faulty case is not trivial why a
matched filter detector can be used.
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Figure 0.10: Residual signal β with and without a fault on the horizontal ac-
tuator respectively. The system have been excited with a sinusoidal signal as
described in Eq. (29) and both output signals have been subject to white Gaus-
sian noise with a variance of 0.11.

In order to determine the threshold and probability of detection, it is chosen
that one alarm is allowed to happen once every 10’th second on average, hence
PFA is equal to the one tenth the sampling time. Furthermore the gain of the
residual was determined with an expected magnitude of the fault of 10% and
using the gain of S̄ at 1030rad/s found on Fig. 0.7. The window size is chosen
to be 420 and the energy of the signal can thus be found using Eq. (44).

ε = N
A2

2
= 560

0.122

2
= 2.9 (44)

With the energy of the signal determined, the threshold is calculated in Eq.
(45)

γ = (σ2ε)0.5Q−1(PFA)

= (0.112 · 2.9)0.5Q−1(0.1 · Ts) = 2.3 (45)
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6. DETECTOR DESIGN FOR MULTIPLE FAULTS

With the threshold calculated it is possible to design the detector and sim-
ulate a system where a fault of 10% occur after half a second. On Fig. 0.11
the matched filter detector is implemented and it can be seen there is a clear
distinction between the detector signal in the healthy and faulty case.
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Detector signal
Threshold

Figure 0.11: Detection signal using a matched filter detector with a window size
of N = 420 with an expected fault of 10%. The excitation signal is designed
as a sinusoidal signal with a frequency of 1030 rad/sec which was found to
correspond with the greatest gain of the residual signal in case of a fault. The
gas bearing is initially fault free and a fault of 10% is at 5 seconds introduced
to the horizontal actuator.

With a detector as described in this section the probability of detection can
be calculated using Eq. (42). The probability of detection is found to be 80%
which corresponds well with what is seen on Fig. 0.11.

6 Detector Design for Multiple Faults

So far design of an optimal detector have been considered with one possible
fault for the system. In this section the method is extended to cover design of
an optimal detector given multiple faults. Again the faults are assumed to be
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small in which case it is appropriate to linearise Eq (16). The residual signal to
detect is therefore given as in Eq. (46).

β =
k∑

i=1

(M̃Gywi
GziuMθi)α + w (46)

Given only one fault can happen at a specific time and a known sinusoidal
excitation signal, the residual signal to detect is a sinusoidal signal with a known
frequency but unknown amplitude and phase. The unknown amplitude comes
from the magnitude of the fault which is not known, where the phase depends
on which fault is occurring and is therefore treated as unknown from a known
set related to the faults considered. The detection problems H0 hypothesis is
therefore given in Eq. (47) and corresponds to no fault has happened and the
H1 hypothesis is given in Eq. (48), and correspond to any fault has happened.
The unknown phase shift is treated as an unknown delay and the unknown
amplitude A is the unknown amplitude.

H0 : β[n] = w[n] n = 0, 1, ...., N − 1 (47)

H1 : β[n] = Ax[n− n0] + w[n] n = 0, 1, ...., N − 1 (48)

Such a detector is described in [4] and is somewhat similar to the detector
designed in the case of a single fault in section 5. The unknown amplitude
depends on both the magnitude of the fault(θ) and which parametric fault that
has happened. It is easily seen from Fig. 0.7, how the gain depends on the
specific parametric fault. In the case of a single fault considered A was guessed
to be the gain given a 10% degradation of the parameter, used in order to
calculate the test statistics. It is needed to give an estimate of the amplitude A
in order to calculate the test statistics. The test is therefore based on the gain
open loop error gain given a 10% fault of the faulty parameter given fault 1(f1).
The gain is for this case denoted A0 and is used for determining the delay and
probability of detection. It was shown in [4] that the delay can be found by
maximising the correlation between the measured signal and the known part of
the predicted signal. The unknown delay is therefore possible to determine by
maximizing Eq. (49).

φ = arg max
n0∈T

(

n0+M−1∑

n=n0

β[n]A0x[n− n0]) (49)

Even though the phase(n0) is unknown some information is still known about
it which makes the evaluation of Eq. 49 much simpler. Given each specific
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fault the detector is designed to detect, the phase shift is known from Eq (46).
Evaluation of Eq. (49) is therefore only needed for each of the delays imposed
by each possible fault. The set of possible delays given the faults considered
is thus denoted by T . Using Eq. (49) the detection problem simplifies to the
case of detecting a known signal with an unknown amplitude in gaussian white
noise. Using a matched filter optimal detector is therefore seen as appropriate
and is given in Eq. (50).

T (β) =
N−1∑

n=0

β[n]x[n− n0] (50)

Again as in the case of 1 fault the threshold can be determined from Eq.
(51).

γ = (σ2ε)0.5Q−1(PFA) (51)

It is here worth noticing that the threshold is independent of the faults
considered, and the number of faults considered will therefore not influence the
threshold. The probability of detection does depend on the faults considered,
and it is needed to calculate the probability for each of the faults considered.
The probability of detection is given in Eq. (52).

PD = Q(Q−1(PFA)− (di)
0.5) (52)

The deflection coefficient di depends on the fault considered and the mag-
nitude of the fault. The probability of detection therefore depends on the energy
in the signal, which in turn depends on the amplitude of the matched signal.
The deflection coefficient is given in Eq. (53).

d2i =
(E(T ;H1|f1)− E(T ;H0))(E(T ;H1|fi)− E(T ;H0))

var(T0;H0)
(53)

It can be seen from Eq. (53) that when the reference fault is considered the
deflection coefficient simplifies to Eq. (43).

Example

Again the example is based on a simulation using the gas bearing model in-
troduced in [15]. However while only a fault on the horizontal actuator was
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considered in section 5, it is in this example possible that a fault can occur both
on the horizontal and vertical actuator. The detector design therefore need to
be able to both detect when a fault occurs and determine which actuator is
faulty. Using the residual signal, generated in the fault free case, the variance of
the residual, σ, was found to be 0.11. The residual signal both with and without
a fault on the system is shown on Fig. 0.12 where the sinusoidal wave is chosen
to have a frequency of 1030 rad/sec. The fault in this example is chosen to
be a 10% reduction of the vertical actuator gain. Once again it is shown that
distinguishing between the residual in the healthy and the faulty case is not
trivial.

Time [s]
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D
is

ta
n
ce

 [
µ

m
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2

Fault Free Case
Faulty Case

Figure 0.12: Residual signal β with and without a fault on the vertical actuator
respectively. The system have been excited with a sinusoidal signal as described
in Eq. (29) and both output signals have been subject to white Gaussian noise
with a variance of 0.11.

In order to determine the threshold and probability of detection, the prob-
ability of a false alarm is chosen to be the same as in the previous example.
Furthermore the gain of the residual was determined with an expected mag-
nitude of the fault, on the vertical actuator, of 10% and using the gain of S̄ at
1030 rad/sec found on Fig. 0.7. The window size was chosen to be 60 which
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made it possible to distinguish between the faulty and fault free case. The
energy of the signal can thus be found using Eq. (54).

ε = N
A2

2
= 60

0.32

2
= 2.7 (54)

With the energy of the signal determined, the threshold is calculated in Eq.
(45)

γ = (σ2ε)0.5Q−1(PFA) = (0.112 · 2.7)0.5Q−1(0.1 · Ts) = 2.2 (55)

With the threshold calculated it is possible to design the detector and sim-
ulate a system where a fault on the vertical actuator of 10% occur after five
seconds. On Fig. 0.11 the matched filter detector is implemented and it can be
seen there is a clear distinction between the detector signal in the healthy and
faulty case.

With a detector as described in this section the probability of detection can
be calculated using Eq. (42). The probability of detection is found to be 80%
which corresponds well with what is seen on Fig. 0.11. Since the amplitude of
the residual would be greater in the case of a fault on the horizontal actuator
the probability of detection would be higher.

In order to determine which fault has happened Eq. (49) is used. The phase
shift of the residual signal in case of each of the faults is found using Fig. 0.7
and at each time step it is checked which of the two phase shifts maximise the
detector signal. A plot of the decision at each time step is shown on Fig. 0.14.
The decision algorithm clearly choose a fault at random in the fault free case,
while the vertical actuator is chosen continuously when a fault happens at 5
seconds.

7 Conclusion

So far detectors for active fault detection using dual YJBK parameters have
been based on waiting sufficient amount of time for detection to happen. Such
CUSUM detectors were designed without regard to a threshold based on the
accepted probability of false alarm. In this paper a matched filter detector
was designed instead. Methods for determining an appropriate threshold and
probability of detection was given based on the allowed false alarm rate. The
problem of detecting parametric changes was shown possible to formulate in
such a way that standard hypothesis testing was possible. Using the designed
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Figure 0.13: Detection signal using a matched filter detector with a window size
of N = 60 with an expected fault of 10% on the vertical actuator. The excitation
signal is designed as a sinusoidal signal with a frequency of 1030 rad/sec which
was found to correspond with the greatest gain of the residual signal in case of
a fault. The gas bearing is initially fault free and a fault of 10% is at 5 seconds
introduced to the vertical actuator.

matched filter detector it was shown possible to detect actuator faults in a
detector signal corrupted by Gaussian noise using a gas bearing model for the
simulation example. The detection procedure was conducted using a sinusoidal
excitation signal, however in theory the excitation signal could be of any shape.
The frequency of the sinusoidal wave was determined by maximising the gain
from the excitation signal to the parametric fault most difficult to detect. It was
thus shown possible to minimize the disturbance introduced by the excitation
signal relative to the probability of detecting a specific parametric fault.
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Time [s]
4.5 5 5.5

Vertical

Horizontal

Figure 0.14: Plot of the decision taken by Eq. (49) at each time step. The
plot shows how the decision algorithm goes from randomly choosing the fault
to only deciding the vertical fault after a fault occur at 5 seconds. The random
behaviour of the algorithm in the fault free case corresponds well with the noise
being white.
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Abstract

Fault diagnosis of closed loop systems is extremely relevant for high precision
equipment and safety critical systems. Fault diagnosis is usually divided into two
schemes, active and passive fault diagnosis. Recent studies have highlighted some
advantages of active fault diagnosis based on dual Youla-Jabr-Bongiorno-Kucera
(YJBK) parameters. In this paper a method for closed loop active fault diagnosis
based on statistical detectors is given using dual YJBK parameters. The goal
of the paper is twofold; Firstly the authors introduce a method for measuring
a residual signal subject to white noise; Secondly an optimal detector design is
presented for single and multiple faults using the amplitude and phase shift of
the residual signal to conduct diagnosis. Here both the optimal case of a perfect
model and the suboptimal case of a model with uncertainties are discussed. The
method is successfully tested on a simulated system with parametric faults.

Keywords— YJBK Parameters, Active Fault Diagnosis, Statistical Test,
Closed-loop Systems

1 Introduction

Fault diagnosis has been an intensively studied subject which has branched into
two subgroups; passive [1, 2, 3] and active [4, 5, 6] fault diagnosis. Broadly
speaking passive fault diagnosis obtain information of faults by the use of resid-
ual signals generated by comparing input-output data [7] whereas active fault
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diagnosis uses auxiliary signals to obtain extra information about the state of
a system to use for fault diagnosis. So far most active fault diagnosis solutions
have been based on the assumption of an open loop system description, how-
ever, fault diagnosis of closed loop systems is more relevant for critical systems.
For open loop processes it is usually possible to assume the characteristics of
the noise to be the same for the open loop measurements as for the residual sig-
nal. This is however not the case when a feedback law is imposed. It has been
shown in [8] how to design a residual generator where the noise characteristics
are independent of the feedback loop, using active fault detection of a coprime
factorised system.

A method for detecting parametric faults by the use of a nominal fault
free model was given in [9]. The method was based on translating different
parametric faults to a fault signature system and detecting changes in this fault
signature system using a known excitation signal. Furthermore it was shown
in [8] how to design a CUSUM detector for such a problem. Research into
linearisation of the fault signature system and isolation of faults have been
investigated in [10, 11].

Detector design for statistical tests have been presented in [12] and the
Neyman-Pearson detector was presented for optimal detection of partially known
signals corrupted with noise. Using a statistical detector have the advantage of
an easy translation to the false alarm rate and probability of detection, the
classical succes criteria for a fault diagnosis scheme. The detectors introduced
in [12] assume the noise to be white which was not the case with the solution
presented in [8]. A method for isolation of faults based on a sequential detector
was proposed in [13] using several excitation signals with different frequencies.
An implementation of a statistical detector for detecting faults was proposed
first in [14] where the fault signature system was linearised. A simulation of
how to detect parametric faults on the actuators of an active gas bearing was
presented. The linearised fault signature system was however found ill suited
for parametric faults that showed highly non-linear behaviour. Furthermore
the residual was subject to coloured noise which resulted in an increase in false
alarm occurrences.

In this paper it is proven possible to implement a detector as presented in [12]
for active fault detection based on the fault signature system. The system to be
detected faults on is part of a closed loop scheme with a known controller. Most
systems to be conducted fault detection on are believed to be part of a closed
loop scheme. Pre-whitening of the noise has been conducted to improve the
results. It is proposed to use the knowledge of the detectors sensitivity towards
different faults to enable isolation of several faults using only a single excitation
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signal with a known amplitude and frequency. The method presented exploits
knowledge about the phase shift and gain impacts of the faults in order to isolate
different faults using only a single signal. Basing the fault diagnosis on the
magnitude and phase information makes the solution advantageous compared
to other methods such as previously shown in [4, 5, 6, 15]. It is shown that
it is possible to design the detector based solely on the stochastic model of
the noise in addition to the model of the controller and plant. The detector
is implemented as a moving window to be able to detect changes over time.
The impact of model uncertainties is furthermore discussed. It is believed that
a design procedure for residual signals of closed loop systems that ensure the
noise on the residual signal to be white is useful for fault diagnosis of closed
loop systems.

The paper is structured as follows: Section 2 introduces the reader briefly to
the preliminary work conducted; Section 3 presents the residual signal design;
Section 4 presents the detector design and isolation procedure; Section 6 shows
some examples using the method described; The paper is closed with a conclu-
sion in section 7.

2 Preliminary Results

Most detector designs are based on the assumption that the detector signal
is influenced by white noise. Such assumptions are usually valid given open
loop problems such as depicted on Figure 0.1. Here the plant G(θ) is subject
to a known input u and the output of the plant ym is subject to an unknown
disturbance d which is in this paper assumed to be white gaussian noise.

d

u G(θ)
+ +

ym
y

Figure 0.1: Simple open loop plant setup. The plant G(θ) is only subject to
a known input and the output signal(ym) is generated by the plant and the
unknown disturbance d.

Such a system structure as presented on Figure 0.1 is only feasible to use
when feedback control is not required and the plant is open loop stable. However
most interesting control applications require some form of feedback control.
When feedback control is applied, the system representation changes to Figure
0.2, which is the standard implementation used throughout this paper.
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K G(θ) y

+

+

d

u

ym

Figure 0.2: Representation of the system description used throughout this paper.
The system is here subject to feedback control through the controller K. Again
the output is subject to an unknown disturbance signal (d)

From Figure 0.2 it is easy to see that the assumption of white noise on the
measurement signal ym does not hold due to the feedback loop. The noise signal
d is treated as white with a Gaussian distribution for simplicity in the paper.
However much of the analysis conducted throughout the paper is independent
of the noise distribution.

Coprime Representation

In this section a coprime description of the nominal plant and controller are
exploited to represent the parametric faults in the plant through the use of
the fault signature matrix. Given a nominal plant G(0) and a controller K(0)
the coprime factorisation of plant and controller are given in the following two
equations respectively.

G(0) = NM−1 = M̃−1Ñ , N,M, M̃, Ñ ∈ RH∞ (1)

K(0) = UV −1 = Ṽ −1Ũ , U, V, Ṽ , Ũ ∈ RH∞ (2)

Here the ·̃ represent the left coprime factorisation where as systems without,
are the right coprime factorisation. Such a left and right coprime factorisation
are always possible to find when the plant and controller can be represented as
rational functions [16]. Given the eight matrices in Eq. (1) and Eq. (2) the
double Bezout identity shown in Eq. (3) is satisfied due to the coprimeness.

[
I 0
0 I

]
=

[
M U
N V

] [
Ṽ −Ũ
−Ñ M̃

]
=

[
Ṽ −Ũ
−Ñ M̃

] [
M U
N V

]
(3)

Given a nominal plant as defined in Eq. (1) it is possible to define all
stabilising controllers based on a nominal stabilising controller. Such a controller
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is given in Eq. (4) using the right coprime factorisation and in Eq. (5) based
on the left coprime factorisation of plant and controller [17].

K(Q) = (U +MQ)(V +NQ)−1, Q ∈ RH∞ (4)

K(Q) = (Ṽ +QÑ)−1(Ũ +QM̃), Q ∈ RH∞ (5)

K(Q) can be represented as a linear fractional transformation (LFT). A
lower LFT of the parametrised controller K(Q) is given by:

K(Q) = Fl(JK , Q) (6)

JK =

[
UV −1 Ṽ −1

V −1 −V −1N

]
(7)

In principle it is possible to design a realisation as in Eq. (6) of any linear
controller. Such a control implementation is shown on Figure 0.3. The system
shown in Figure 0.3 is the same as presented in Figure 0.2, however two new
signals α and β are introduced to the closed loop system description.

JK G

+

+
Q

α β

u y

d

Figure 0.3: Closed loop system setup using the Youla parametrisation of the
controller.

It is shown in [17] how to transform some of the most general controller
schemes into the form shown on Figure 0.3.

It is possible to parametrise all plants stabilised by the nominal controller.
In Eq. (8) and Eq. (9) a parametrisation of all plants stabilised by a nominal
controller based on the right and left coprime factorisation are respectively given.

G(S) = (N + V S)(M + US)−1, S ∈ RH∞ (8)

G(S) = (Ñ + SṼ )−1(M̃ + SŨ), S ∈ RH∞ (9)

Equivalently as for the parametrised controller it is possible to represent the
parametrised plant as a LFT:
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G(S) = Fu(JG, S) (10)

JG =

[−M−1U M−1

M̃−1 NM−1

]
(11)

A block diagram of the closed loop system introduced in Figure 0.2 with the
parametrised plant using Eq. (10) is shown in Figure 0.4.

K JG

+

+

S

u y

d

ηε

Figure 0.4: Closed loop system setup using the Youla parametrisation of the
plant.

Again two new signals are introduced, η and ε. The transfer function S
parametrising all plants stabilised by the nominal controller have been known
as the open loop error between the nominal and real plant [18] and describe the
dynamics of the true system omitted from the nominal model. It was shown in
[18] that the signal η is independent of the output noise d.

The signals η and ε are however not directly measurable. It was shown in
[17] that the relationship between the set of signals {α, β} from Figure 0.3 and
the set of signals {η, ε} from Figure 0.4 can be depicted as in Figure 0.5

S

Q

ε

βα

η

Figure 0.5: Figure showing the relationship between the input-output pair of S
and Q.

There are several ways to prove the relationship between the two set of
signals {α, β} and {η, ε}, with one approach to be found in [19]. Whereas it is
not possible to directly excite the system using η, it is using the signal α. It is
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therefore convenient to use the signals related to the controller for identification
and detection purposes.

JK G

+

+

α β

u y

d

Figure 0.6: Alternative controller representation based on a coprime factorisa-
tion of the controller and plant model.

The system setup in Figure 0.6 is equivalent to the setup shown in Figure 0.3
but with Q omitted. Furthermore it is also straightforward to see from Figure
0.6 that the controller is not changed from the nominal one as long as Q is
disconnected.

In order to state the detection problem the closed loop system with regards
to the external inputs is required. The transfer functions are shown in Eq. (12)
and are derived from Figure 0.4 with the input and output vector defined as in
Eq. (12) as well as the connection of the signals shown in Figure 0.5.



y
u
β


 =




(N + V S)Ũ N + V S

(M + US)Ũ M + US

M̃ + SŨ S



[
d
α

]
= Pcl(S)

[
d
α

]
(12)

Here the β output is considered the detection or residual signal. The input
signal d is considered an unknown input, while α is the controllable input used
for active fault detection.

Fault diagnosis in the YJBK setup

In order to detect faults in the system based on the fault signature system S, it is
necessary to translate the behaviour of parametric faults from the input-output
pair u, y to the signal pair η, ε. Such a parametrisation was first introduced in
[20] and methods to represent different parametric faults were first presented in
[21]. This method is based on a coprime factorisation of a nominal model of
the implemented plant and controller in order to design a residual signal which
is zero for the fault free case and non zero when a fault occurs. However in
order to define the parametric faults through the fault signature system it is
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first necessary to establish how faults on the plant are represented. Given a
parametric fault θ assume that the plant can be defined as an upper LFT as
shown in Eq. (13), where Gzw, Gzu, Gyw and Gyu are defined using only the
fault free plant and the parametric fault θ. θ is given as a diagonal matrix where
each diagonal element, denoted θi, corresponds with a parametric fault.

G(θ) = Fu
([
Gzw Gzu

Gyw Gyu

]
, θ

)
(13)

Instead of expressing the plant G as a function of θ it is advantageous to
formulate the fault signature system as a function of the unknown parametric
faults θ. Given faults in the form presented in Eq. (13) it was shown in [10]
that the fault signature system can be expressed as:

S(θ) = Fl
([

0 M̃Gyw

GzuM Gzw +GzuUM̃Gyw

]
, θ

)
(14)

It is clear from Eq. (14) that the fault signature system S(θ) is a non-linear
function with regards to the parametric faults. The gain and the phase shift of
the fault signature system depends on the parametric fault and are therefore of
interest for fault diagnosis. With the fault signature system given with respect
to the parametric faults, it is useful to state the diagnosis problem solved in this
paper.

The main advantage of using the fault signature system as described in Eq.
(14) comes from the fact that S(θ) is zero in the fault free case i.e

S(0) = 0 (15)

While it is different from zero when a detectable fault occurs, i.e.

S(θ) 6= 0 ∀ θ 6= 0 (16)

The effect of faults on S is thus similar to the effect of faults on the residual
generator used for passive fault detection.

3 Detection Problem Formulation

In section 2 the connection between parametric faults and the fault signature
system was established based on the system description given in section 2. In
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this section the residual signal used for detection is presented and the assump-
tions used for detector design in the following sections are presented.

Using Eq. (12) the residual signal is

β[n] = S(θ)α[n] + (M̃ + S(θ)Ṽ )d[n] (17)

The residual in Eq. (17) is influenced by white noise d which goes through a
filter. The residual signal β is therefore influenced by coloured noise. In active
fault diagnosis the goal of the detector is to detect a known signal with unknown
amplitude and phase, corrupted by noise, compactly written

β[n] = ASθα[n− n0] + (M̃ + S(θ)Ũ)d[n] n = 0, 1, ....., N − 1 (18)

Here α[n] is the known excitation signal at sample n, ASθ is the gain through
the fault signature system of the known excitation signal α[n], n0 is the delay
of the excitation signal through the fault signature system and d[n] is the noise
signal which in this paper is assumed to be white gaussian noise. For the
transition from Eq. (17) to Eq. (18), it is assumed that the excitation signal α is
having a period sufficiently long compared to the sampling period. Furthermore
the period of α is possible to describe as a whole multiple of the sampling period.

For the detection methods presented in this paper the noise is modelled as
gaussian. However the noise is not required to be gaussian in order to design a
matched filter detector, but this requirement is maintained throughout the paper
for simplicity. Whiteness of the noise is on the other hand a strict requirement,
to be able to give an upper bound to the number of false alarms in the fault
free case. Given the method presented the noise on the residual signal is kept
white in the fault free case when the system is only subject to white noise.
Furthermore it is mentioned briefly how to keep the whiteness requirement for
a system subject to both system and measurement noise.

Design of whitening filter

In the first case for a signal as given in Eq. (18) and letting H0 be the fault free
case, since S(0) is zero, the residual signal β simplifies to

H0 : β[n] = M̃d[n] (19)

Since M̃ is a model dependent known system the residual signal is redefined
to
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H0 : r[n] = M̃−1β[n] = d[n] (20)

It is clear from Eq. (20) that if the noise d is white gaussian, then the noise
imposed on the residual signal in Eq. (20) is white gaussian as well. Furthermore
the variance of the noise on the residual signal is equivalent to the variance of
the measurement noise. Designing the decorrelation filter M̃−1 is only feasible
for open loop stable systems. Given any open loop unstable system M̃−1 will
be unstable, and instead a stable filter with the same correlation as M̃−1 is
required.

Such a filter can be realised by a spectral factorisation, finding a stable filter
with the same pre-whitening effect as the unstable filter M̃−1. In this paper
all theory is handled in discrete time however a continuous equivalent is also
possible by mirroring the right half plane zeros through zero on the real axis.

For the system M̃ containing zeros outside the stability area it is possible
to design a system which has no zeros outside the stable area with the same
spectrum denoted W . The method can be found in [22] and a transformation
which keeps the same spectrum is shown in eq. (21) while transforming the
unstable solution into a stable one.

W (z̄)W T (z) = M̃(z̄)M̃T (z) (21)

The stable filter is thus denoted W−1 and the detection signal is given in Eq.
(22) with the proposed stable filter that makes the noise white on the detector
signal in the fault free case.

H0 : r[n] = W−1β[n] = Hd[n] (22)

where H = W−1M̃ is a constant diagonal matrix [22]. Since H contains no
dynamics the detector signal is again only subject to white gaussian noise, how-
ever the method does alter the variance of the noise as shown by the constant
H matrix.

The methods presented above are based on the assumption that all noise
can be modelled as white gaussian noise on the output. For the case of a white
gaussian process and measurement noise, designing a Kalman filter is proposed
instead. A Kalman filter ensures that the noise is white on the innovation signal
and thereby on β as shown in [23].

In this paper the detectors are designed based on white gaussian output
noise only. Therefore if the system is open loop unstable, the residual is given
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by Eq. (23) where the variance of the noise d in the fault free case has been
subject to the constant diagonal matrix H.

r = W−1M̃Gywθ(I − (Gzw +GzuUM̃Gyw)θ)−1GzuMα + (H +W−1S(θ)Ũ)d
(23)

For the case that the plant is open loop stable the residual signal can be
simplified. The residual signal of interest to detect in white gaussian noise is
then with regards to the parametric uncertainties given as

r = Gywθ(I − (Gzw +GzuUM̃Gyw)θ)−1GzuMα + (I + M̃−1S(θ)Ũ)d (24)

4 Fault Diagnosis

In this section the detector design is presented together with calculations of the
probability of detection and the threshold. The matched filter detector with a
moving window is chosen since it is natural to design based on a wanted false
alarm rate. The detector design is based on the residual signal given by Eq. (23)
which is the general case. It is assumed that several different faults can occur
in the plant however multiple faults can’t happen simultaneously. In order to
detect the faults a moving window is used. The detector is based on selecting
1 input and 1 ouput of the plant to use for diagnosing the faults. This section
is structured such that first detection design is presented without any further
assumptions. The ability to isolate faults is then discussed and test statistics
for the detector design is given. Finally the detector design is presented for the
case of unique phase shifts for each of the faults considered.

Detector Design

Using the framework introduced in [24] to design the detector a H0 hypothesis is
constructed in Eq. (25) for the fault free case, and aH1 hypothesis is constructed
in Eq. (26) representing the case that one of the possible faults has occurred.

H0 : r[n] = Hd[n], n = 0, 1, ...., N − 1 (25)

H1 : r[n] = ASθα[n− n0] + (H +W−1S(θ)Ũ)d[n], n = 0, 1, ...., N − 1 (26)

Here d is white gaussian noise, ASθ is the amplification of the detector signal
through the system W−1S(θ), which both depends on which fault is occurring
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and the magnitude of the fault. n0 is the unknown delay due to the fault occur-
ring and the magnitude of this fault. Only faults causing parameter degradation
are considered in this paper, which limits the relative faults θi to [−1 0[, where 0
corresponds to no fault and -1 corresponds to a complete failure. There is thus
no sign change through the whole possible fault range which makes a Neyman-
Pearson detector feasible [12].

The design of the detector is based on the H1 hypothesis given a predeter-
mined possible fault. A moving window is used for the detector such that it is
possible to determine when a change occurs. Since the delay is unknown and
depends on the fault occurring, it is required to determine the delay of detector
signal, which can be accomplished using

φ = arg max
n0∈τ

(

n0+N−1∑

n=n0

r[n]α[n− n0]) (27)

Here φ is the maximum likelihood estimate of the delay, τ is the set of
possible delays given a priori knowledge about the parametric faults and N is
the window length. With the delay estimated using Eq. (27) the test statistic
can be designed. For the generalised case, the test statistic is

T (r) =

φ+N−1∑

n=φ

r[n]A0α[n− φ] (28)

Here A0 is a predetermined amplification of the signal excitation α through the
fault signature system given the initial guess of the magnitude of one of the
faults. It is possible to design other test statistics which might be beneficial in
special cases.

An example of such a test statistic is given in subsection 4 which for certain
assumptions has attributes which simplify the test statistics.

In fault detector design the probability of a false alarm and probability of
detection are usually the two design criteria. For a detector as described in Eq.
(28) the probability of false alarm is used to determine the threshold γ as shown
in Eq. (29)

γ =
√
σ2νQ−1(PFA) (29)

ν = N
A2

0

2
(30)
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Here σ2 is the variance of the noise, ν is the energy contained in the signal
for one window length given a sinusoidal wave, Q(·) is the complementary cumu-
lative distribution and PFA is the allowed frequency of false alarms. It is worth
noticing that the threshold is independent of the different possible faults. The
H1 hypothesis chosen by Eq. (27) is discarded if T (r) is below the threshold γ
and found to be true if T (r) is above the threshold γ.

With a threshold design based on the allowed probability of a false alarm,
the probability of detection is

PD = Q(Q−1(PFA)−
√
D) (31)

The probability of detection is based on the assumption of the noise to be
white which it is not in the case when H1 is true. The variance of the detector
signal will therefore be higher than approximated. The deflection coefficient D
is

D2 =
(E(T ;H1|θk)−X )(E(T ;H1|θA0

)−X )

var(T ;H0)
(32)

The deflection coefficient depends on the fault detected θk and the initial
guess of the fault θA0

. It is therefore necessary to calculate the probability of
detection separately for each fault considered. It is worth noticing that Eq. (32)
is only true when the test statistic in Eq. (28) is used.

Here X is defined in Eq. (33) and is the expected value of the test statistic
given that the H0 is true.

X = E(T ;H0) (33)

Using Eq. (31) it it possible to determine the smallest parametric fault with
an acceptable probability of detection given the desired probability of the false
alarm rate.

Design of the excitation signal

It is of paramount importance to be able to design the excitation signal in
accordance with predetermined criteria. In this subsection one such criteria is
presented so that it is possible to design the excitation signal. It is for simplicity
decided to use only one input for the excitation signal and one output of the
fault signature system. The relevant fault signature system thus becomes a SISO
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system which makes the analysis simpler. The shape of the excitation signal has
in this paper been limited to be a single sinusoidal wave with the single degree of
freedom being the frequency. It is the task of the excitation signal to maximise
the impact of a fault in the residual signal. Thus it is desired to determine the
gain of the transfer function from the excitation signal to the residual given as

ξr(ω) = |W−1M̃Gywθ(I − (Gzw +GzuUM̃Gyw)θ)−1GzuM | (34)

If the design criteria is simply to maximise the amplitude of the excitation
signal the goal is to maximise Eq. (34). However it is believed that for most
systems the design of the excitation signal should be a trade off between max-
imising the signature of faults while minimising the impact of the excitation
signal on the system outputs. The highest gain from the excitation signal to
the system outputs can be found using Eq. (12) and is

ξy(ω) = σ̄(N(ω)) (35)

Here σ̄ denotes the highest singular value [25] which corresponds to the
direction with the highest gain for a MIMO system. It is possible to define
a criteria for design of the excitation signal with the gain from the excitation
signal to the residual and outputs respectively determined as

fα(ω) =
ξr(ω)

ξy(ω)
(36)

The frequency of the excitation signal is thus chosen.

ωα = argmax
ω1≤ω≤ω2

fα(ω) (37)

Here ω1 defines the lowest considered frequency and ω2 is the highest fre-
quency considered for the sinusoidal excitation signal. For many systems the
range of possible frequencies might be limited due to mechanical limitations or
the sample speed which would naturally define the upper and lower limit. So
far only a single fault is considered for detection. For several possible faults the
frequency should be chosen such that the detectability of the fault most difficult
to detect is maximised why Eq. (36) is changed to:

fα(ω) = min
θ=∆

ξr(θ, ω)

ξy(ω)
(38)
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Here ∆ denotes the set of different possible faults considered. With Eq. (36)
reformulated as Eq. (38) the optimal excitation frequency can again be found
using (37).

Isolation of Faults

In this subsection the ability to isolate faults is discussed. The discussion is
based on an excitation signal containing a single sinusoidal wave and estimating
the phase shift using Eq. (27). It is in the general case not possible to isolate a
fault only based on the phase shift, given that the phase shifts of several faults
might be the same. An example is given in Figure 0.7 of how two parametric
faults that share the same phase shift.
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Figure 0.7: Phase shift of a sinusoidal wave for an example system with two
possible parametric faults. Here it is seen that all delays that could correspond
to parametric fault 1 (θ1) occurring might as well correspond to parametric fault
2 (θ2) occurring with a magnitude degradation around 20 %.

It can be seen from Figure 0.7 that the set of possible phase shift for fault 1
is a subset of the set of possible phase shifts for the second parametric fault. It is
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therefore not possible to distinguish when fault 1 has occurred from instances of
fault 2 occurring solely based on the phase shift. It is thus seen to be convenient
to exploit the knowledge about the phase shift and the gain of the fault signature
system. Using the test statistic T (r) from Eq. (28) with the moving window N,
which are whole periods, the energy of the signal is

κ = N
AkA0

2
(39)

Here Ak is the amplitude of the sinusoidal wave r[n]. Using the fact the the
noise is Gaussian with a mean of 0, by isolating Ak in Eq. (39) the amplitude
of the sinusoidal detector wave can be found as Eq. (40) for an appropriate
window length.

Ak =
2κ

NA0
(40)

The gain from the excitation signal to the detection signal is thus.

ASθ =
Ak

|α| (41)

As with the phase shift, it is also possible to determine how the gain of the
excitation signal changes with regard to the magnitude of the fault for a specific
frequency of the sinusoidal signal.

The gain of the excitation signal is shown in Figure 0.8 for the same system
and same parametric faults as were presented in Figure 0.7. By combining
the two it is easy to see that it is possible to isolate which fault has occurred.
The fault isolation so far is based on choosing the frequency which makes the
job of fault detection easiest. Such a choice does not consider whether the
fault characteristics are similar or not and might therefore be a poor choice
when it comes to fault isolation. In such a case it can be beneficial to change
the frequency of the sinusoidal wave of the excitation signal to maximise the
difference between the fault signatures when a fault is detected and isolate the
fault through a second test.

Multiple faults without phase shift crossing

The method presented in subsection 4 might for some cases be simplified. De-
pending on how the phase shift develops if there is a unique mapping between
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Figure 0.8: Gain of a sinusoidal wave for an example system with two possible
parametric faults.

the phase shift and which fault occurs a simplification is possible. This corres-
ponds to the phase shift lines on Figure 0.7 not reaching the same vertical level
at any point. If such a mapping is possible the test statistic can be expressed
as

T (r) =

φ+N−1∑

n=φ

r[n]Aφα[n− φ] (42)

Here Aφ is the gain from the excitation signal α to the residual signal r
based on the fault determined by the delay using Eq. (27). The gain thus
changes with regard to the delay identified, which results in a change of the test
statistic. Besides changing the test statistic the detector used in Eq. (42) has
the advantage of directly identifying which fault is occurring. The threshold is
again given as in Eq. (43), but the energy of the signal is now determined by
Eq. (44).
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γ =
√
σ2νQ−1(PFA) (43)

ν = N
A2
φ

2
(44)

With the threshold determined from Eq. (43) the probability of detection is

PD = Q(Q−1(PFA)−
√
D) (45)

The probability of detection is thus given in the same way for both detectors.
The difference is a bit subtle and comes in the change of the definition of the
deflection coefficient D. Here D is

D2 =
(E(T ;H1|θk)− E(T ;H0))

2

var(T ;H0)
(46)

The deflection coefficient depends on the fault detected θk and must be
calculated separately for each fault considered. It is worth noticing that Eq.
(46) is only true when the test statistic in Eq. (42) is used, and the deflection
coefficient is much more intricate when the assumption of no phase shift crossing
cannot be used.

5 Analysis of Model uncertainties

So far a perfect model without any uncertainties has been assumed. It is however
important to examine the impact of model uncertainties on the residual signals
derived. For this analysis only parametric uncertainties are considered, and the
impact of higher order dynamics not contained in the model are disregarded.
For parametric uncertainties µ the residual signal is expressed in Eq. (47).

r = W−1S(θ, µ)α + (H +W−1S(θ, µ)Ũ)d (47)

The H0 when no fault occurs is then given in Eq. (48), while the H1 is given
in Eq. (49).

H0 : r[n] = ASµα[n] +Hd[n] (48)

H1 : r[n] = AS(θ,µ)
α[n− n0] + (H +W−1S(θ, µ)Ũ)d[n] (49)
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Here ASµ is the gain through W−1S(µ) given the frequency of the signal α.
µ defines the bound on the uncertainty set, however since the open loop error is
non-linear with regards to the parametric uncertainties, the highest amplitude
of ASµ might not be at the boundary. A search in the uncertainty space can
thus be conducted in order to find the uncertainty that maximises the gain
from the excitation to the residual signal. Such a problem is a N dimensional
problem where N is the number of parametric uncertainties. It might therefore
be convenient to linearise W−1S(µ) and determine the gain from the uncertainty
bound if the dimension is too large. The threshold is therefore given similarly as
the threshold for the case of no uncertainties with the addition of a bias which
depends on the uncertainty bound as shown in Eq. (50).

γ′ = γ + νµ =
√
σ2νQ−1(PFA) + νµ (50)

νµ = N
(A0ASµ)

2

2
(51)

Here A0 is replaced with Aφ if it is possible to use the detector presented in
Eq. (42), used for the case when no phase shift crossing is present. Furthermore
ASµ is the maximal amplitude of the signal r due to the uncertainty such that
the constant νµ is the energy of the detector due to the uncertainty and is an
upper bound. The threshold is therefore determined such that the number of
false alarms never exceeds the allowed amount. The threshold given in Eq. (50)
however is only valid when Eq. (52) is true.

σ̄(H)� σ̄(W−1S(θ, µ)Ũ) (52)

If Eq. (52) is true the noise can be seen as approximately white and gaussian
in the fault free case. Such an assumption as given in Eq. (52) is usually valid
when proper identification of the system has been conducted beforehand.

Summary of method

The theory has been outlined in the previous sections for how to design a
matched filter detector for active FDI. The steps to go through for applying
the active FDI method is shown in Figure 0.9. The flow chart is divided into
three steps; preliminary experimental work, design phase and implementation.

The method was shown to be based a model of the plant, controller and
considered faults. Furthermore knowledge about the PDF and correlation of
the noise is required. Based on this initial information is was shown possible to
design a detector based on a wanted false alarm rate.
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Identify model of plant
Obtain model of controller

Identify the noise contribution
FDI system design

Calculate coprime 
factorisation of 

controller and plant

Determine the 
optimal excitation 

signal Eq. (37)

Choose window 
length to sattisfy 

FAR and PD Eq. (31)

Implementation of FDI

Implement coprime 
version of controller 

Eq. (7)

Implement 
whitening filter Eq. 

(21)

Implement detector 
Eq. (27) and Eq. (28)

Conduct active 
fault diagnosis

Preliminary Experimental Phase

Design the 
augmented plant 

Eq. (13)

Define the fault 
signature system S 

Eq. (14)

Analyse possible 
faults on the plant

Calculate the Phase 
shift of the possible 

faults Eq. (14) 

Figure 0.9: Flow chart of the steps involved in using the active FDI method.
The round box symbolise information that need to be obtained, the rectangular
box symbolise steps derived using already known information and the pointy
box symbolise actions.

6 Examples

In this section examples are given to introduce the reader to the method. Sim-
ulation examples are given of how to apply the method given in the paper. A
discrete second order SISO state space system is used to show how a parametric
change can be detected. A MIMO system could as easily be used for the fault
detection but is excluded here for simplicity. White gaussian output noise with
a variance of 0.11 is applied to the system. The sample time is 1 ms and the 4
matrices of the discrete state space system are given in Eq. (53) to Eq. (56).

A =

[
a11 a12

a21 a22

]
=

[
1 −0.3
−0.5 0.2

]
(53)

B =

[
b1

b2

]
=

[
2
3

]
(54)

C =
[
c1 c2

]
=
[
−1 4

]
(55)

D =
[
0
]

(56)

The state space system used for the example here has a pole outside the unit
circle and it is therefore an open loop unstable system. In order to stabilise the
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system an observer is designed with a LQR state feedback and observer gain.
Furthermore the input gains b1 and b2 are prone to multiplicative faults. The
input matrix is therefore redefined as in Eq. (57).

B =

[
b1(1 + θ1)
b2(1 + θ2)

]
(57)

The augmented system taking the faults into account is given in Eq. (58)
using the system description presented in Eq. (13).

[
z
y

]
=




a11 a12 b1 0 b1

a21 a22 0 b2 b2

0 0 0 0 1
0 0 0 0 1
c1 c2 0 0 0




[
w
u

]
(58)

w =

[
θ1 0
0 θ2

]
z (59)

The frequency of the excitation signal was chosen based on the method
described in 4. Using Eq. (37) and Eq. (38) the lower bound ω1 is chosen to be
10 rad/s. The upper bound ω2 is chosen to be 125 rad/s such that the sampling
time is still sufficiently higher.

ωα = argmax
10≤ω≤125

fα(ω) = 125 (60)

Using Eq. (60) the frequency of the excitation signal is chosen to be 125
rad/s. An illustrative plot of the efficiency for detecting each of the two possible
faults using Eq. (36) is shown on Figure 0.10 where θ1 and θ2 equal to −0.1
have been considered respectively.

Using Figure 0.10 it is easy to see that the fault which is most difficult to
detect is easier to detect as the frequency of the excitation signal is increased.
With the augmented system description presented in Eq. (58) and the excitation
signal chosen to be a sinusoidal wave of 125 rad/s it is possible to determine the
relationship between the phase shift and the magnitude of the fault occurring.
Due to the pole location outside the unit circle, the detector signal is given by
Eq. (22). The phase shift with regard to the magnitude of the fault is thus as
shown on Figure 0.11.

Before designing the detector it is important to verify that the noise is white
on the residual signal. It is possible to verify the whiteness of the residual signal
by looking at the auto correlation of the signal in the fault free case.
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Figure 0.10: Plot of fα(ω) for θ1 of −0.1 (blue) and for θ2 of −0.1 (red).

The auto correlation of the innovation signal and the innovation signal with
the whitening filter W applied is presented on Figure 0.12. The filter W is
used since the system itself contains an unstable pole outside the unit circle
and M̃−1 is thus not stable. From Figure 0.12 it is seen that the noise is white
after applying the whitening filter W and thus a detector can be designed.
Furthermore by measuring the residual signal in the fault free case the variance
of the noise was found to be 0.14 on the residual signal and A0 was decided to
be a 10% fault on θ1, which is equal to the fault introduced in the example.
Using Eq. (30) the energy in the detector signal can be determined as shown in
Eq. (61) where A0 is found using Eq. (23).

ν = N
A2

0

2
= 200

0.292

2
= 8.3 (61)

With the energy and the variance of the signal determined the threshold is
found using Eq. (29) as

γ =
√
σ2νQ−1(PFA) =

√
0.14 · 8.3Q−1(0.0001) = 4 (62)
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Figure 0.11: Phase shift of a sinusoidal wave of 125 rad/s introduced as the α
signal upon the residual signal r. The blue dashed line corresponds to θ1 and
the red dashed line corresponds to θ2. The phase shift is shown for each fault
from the fault free case to the case of a complete failure.

The fault on either parameter 1 or 2 is expected to be a 10% reduction in
the gain, which result in a 48.4 degree phase shift of the detector signal if it is
fault 1 and a 306 degree phase shift if it is fault 2. The set of possible phase
shifts of the detector signal is limited to the set of no fault or a 10% reduction
in either of the parameters. The set of possible phase shifts is thus

τ = {0, 48.4, 306} (63)

This is a very limited set and could easily be expanded. It is however for the
sake of clarity chosen to be rather small in this example.

In case the magnitude of the possible fault is unknown the set τ is simply
expanded to cover the fault range in an appropriate manner. Given a window
length of 200 samples and a sinusoidal excitation signal with an amplitude of 0.1,
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Figure 0.12: Autocorrelation plot of the innovation signal and residual signal
respectively. The circles show the normalised autocorrelation for the respective
sample delay. The black stippled lines show the 95% confidence bounds.

for a fault θ1 occurring at 5 seconds, the decision algorithm Eq. (27) produces
decisions as shown on Figure 0.13.

With the decision algorithm indicating a fault after 5 seconds the threshold
is determined such that one false alarm is on average happening within the
simulation period. The threshold is then calculated using Eq. (29) and detection
of a fault is shown on Figure 0.14a.

It is possible to increase the probability of detection simply by increasing
the window length. However it is important to notice that the window length
directly imposes a delay between the occurrence of a fault and the detection
of it. The window length should therefore be chosen in accordance with the
tolerable delay of detection.
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Figure 0.13: Plot of the decision at each time step. The possible phase shifts
have been chosen such that a fault of 10% in either θ1 or θ2 or no fault at all
are searched for. A fault is occurring at 5 seconds on θ1.

Fault detection with uncertainty

The example system above is now used to show the impact of parametric un-
certainties. The system is modified with a parametric uncertainty of the first
parameter in the system matrix. The system is thus redefined by the new system
matrix

A =

[
a11(1 + µ) a12

a21 a22

]
=

[
1 + µ −0.3
−0.5 0.2

]
(64)

This is the same system as used in the first example with the addition of
the small parametric uncertainty µ. The bound of the uncertainty is given as
|µ| = 0.01. Again parametric faults of the gains from the input to the two states
are considered as shown in Eq. (57). The augmented system taking the faults
and uncertainty into account is
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(a) Plot of the test statistic given fault θ1 oc-
curring after 5 seconds.
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(b) Plot of the test statistic given fault θ2 oc-
curring after 5 seconds.

Figure 0.14



z

∆y
y


 =




a11 a12 b1 0 b1 b1

a21 a22 0 b2 0 b2

0 0 0 0 0 1
0 0 0 0 0 1
1 0 0 0 0 0
c1 c2 0 0 0 0






w

∆u
u


 (65)

[
w

∆u

]
=



θ1 0 0
0 θ2 0
0 0 µ



[
z

∆y

]
(66)

Here Eq. (66) presents the faults and uncertainties as a single complete diag-
onal system with the vectors z and w having an entry for each of the two faults
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considered. This uncertainty introduces an uncertainty region for the phase
shift as well as the amplitude of the residual. However for a properly identified
system the impact of the uncertainties on the phase shift and amplitude should
always be insignificant compared to the impact of the fault in the faulty case.
An analysis however is possible to determine the phase shift regions of each fault
when taking the bounds of the uncertainties into account. On Figure 0.15 the
bounds of the phase shift is shown for fault θ1 and θ2.
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Figure 0.15: Plot of the predicted phase shift of the residual signal r given the
fault θ1 (blue) or the fault θ2 (red). The black dashed lines represent the bounds
on the phase shift given the uncertainty bound, and the red and blue lines are
the phase shift introduced by the fault when the uncertainty is not considered.

From Figure 0.15 it is clear that as the magnitude of the fault is increased
the impact of the uncertainty on the phase shift decreases as expected. In order
to determine the threshold such that the probability of a false alarm does not
exceed the predetermined value from the previous example the energy added
due to the uncertainty is calculated. The bias added to the threshold due to
the uncertainty is found, using Eq. (67), to be 0.1, which guarantees that the
number of false alarms does not exceed the previously determined acceptable
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limit.

νµ = N
(A0ASµ)

2

2
= 0.1 (67)

γ′ = γ + νµ = 4.1 (68)

With the re-evaluated threshold the decision response is shown on Figure
0.16a. Here the set of possible phase shifts has been kept the same as in the
previous example since the two possible faults are still clearly separated.

The addition to the threshold using Eq. (67) is based on the assumption that
the noise is white for the fault free case, which is not true due to the uncertainty.
However the uncertainty in this example has a relatively insignificant impact on
the whiteness of the noise and thus the approximation works.
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(a) Plot of the test statistic given the uncer-
tainty on the system matrix and the fault θ1
occurring after 5 seconds.
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(b) Plot of the test statistic given the uncer-
tainty on the system matrix and the fault θ2
occurring after 5 seconds.

Figure 0.16

It may be noticed that the threshold is hardly increased due to the uncer-
tainty. This is because the uncertainty introduced in the example has a much
larger impact on the phase shift than the magnitude and was thus chosen with
a magnitude that provides almost no energy to the detector. It is still possible
to distinguish fault from no fault but the variance of the detector signal has
increased due to the uncertainty. The example shows that the ability to detect
and isolate faults is reduced and a bit more involved when an imperfect model
has to be taken into account.
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7 Conclusion

A method for design of an optimal detector for active fault detection of a plant
in a closed loop system was presented in this paper. It was shown possible
to decorrelate the noise for both open loop stable and unstable systems. This
made it possible to design optimal detectors based on the Neyman-Pearson
detector. Furthermore it was shown how the detector design makes it possible
to isolate parametric faults using only a single excitation signal by exploiting
knowledge about the phase shift and amplitude of the fault detection signal. A
general method was proposed for detector design which could cope with multiple
possible parametric faults, and a special case was given which greatly simplified
the deflection coefficient. Lastly a simulation example of an open loop unstable
system was given. It was shown possible for such a system to generate a residual
signal with white noise and design a detector able to both isolate and detect
faults of the system for both a system with and without uncertainties.
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André K. Sekunda1, H Niemann1, N Kjølstad Poulsen2 and Ilmar

Santos3

1) Department of Electrical Engineering, Technical Unversity of Denmark, Kgs. Lyngby,
Denmark

2) Department of Applied Mathematics and Computer Science, Technical Unversity of
Denmark, Kgs. Lyngby, Denmark

3) Department of Mechanical Engineering, Technical University of Denmark, Dk-2800 Kgs.
Lyngby, Denmark

E-mail: aksek@elektro.dtu.dk, hhn@elektro.dtu.dk, nkpo@dtu.dk, ifs@mek.dtu.dk

Abstract

Recently research into active gas bearings has had an increase in popularity.
There are several factors that can make the use of gas bearings favourable. Firstly
gas bearings have extremely low friction due to the usage of gas as the lubricant
which reduce the needed maintenance. Secondly gas bearings is a clean technology
which makes it possible to use for food processing, air condition and so on. Active
gas bearings are therefore useful for applications where downtime is expensive and
dirty lubricants such as oil are inapplicable. In order to keep as low downtime
as possible it is important to be able to determine when a fault occurs. Fault
diagnosis of active gas bearings is able to minimize the necessary downtime by
making certain the system is only taken off-line when a fault has occurred. It is in
this paper shown possible to apply active fault diagnosis to diagnose parametric
faults on a controllable gas bearing. The fault diagnosis is based on a statistical
detector which is able to quantify the quality of the diagnosis scheme.

Keywords— Active Fault Diagnosis, Active gas bearing, Parametric Faults,
Laboratory Experiment, Closed Loop Fault Diagnosis
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1 Introduction

Control of active radial gas bearings by means of piezoelectric actuation is an
interesting subject that can significantly extend gas bearing technology in the
framework of industry 4.0. Until recently all multiphysical mathematical mod-
els derived based on the first principles, linking fundamental equations coming
from the fields of rotordynamics, fluid dynamics, material science and control
techniques, presented considerable deviations from experimental results, as it
can be concluded from [1, 2, 3, 4, 5]. Not long ago there wasn’t any proper
models available for control design of active radial gas bearings via piezoelec-
tric actuation. Pierart and Santos [6, 7, 8, 9] developed accurate mathematical
models based on the first principles leading to high order models consisting 144
states. After model reduction, it was shown by the authors to be possible to
use them to effectively design model-based controllers. Lately it was shown by
[10] that identification of low order models of the position of a shaft held in
place by an active gas bearing using a 6th order linear model is possible. With
such a model it is possible to design advanced controllers such as done in [10].
The goal of all the controllers applied to the gas bearings has been to reject
external disturbances. This is possible as long as the system is not changing.
Fault detection is thus relevant to determine when and how the system changes
such that appropriate action can be conducted and performance regained. It
has previously been shown how to detect and isolate faults for several different
mechanical systems such as induction engines [11], gearboxes [12] and bearings
[13]. In all these cases the goal of the fault diagnosis was to regain performance
or stop the system before it broke down.

Fault diagnosis can be divided into two subcategories, active and passive
fault detection. Where passive fault diagnosis makes it possible to diagnose
faults by information gained from redundancy, active fault detection introduces
an excitation signal in order to gain information usable for diagnosis of faults.
The gas bearing system used in this paper has a fixed non-redundant number
of sensors which can become problematic for fault diagnosis based on passive
fault diagnosis. For such a system, as the active gas bearing, isolation of several
faults using passive fault diagnosis can become unrealistic to achieve. Active
fault detection add information, through an excitation signal, to the diagnosis
scheme and is therefore seen as a more appropriate approach for fault diagnosis
of the active gas bearing.

Active fault diagnosis has been studied extensively with the research branch-
ing into two directions. One branch treats the fault diagnosis problem as a
discrete bank of different possible systems and compares the measured output
with that predicted given each of the systems in the bank. One of the systems
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2. MODEL STRUCTURE

represents the healthy system while the others represent the system subject
to one of the possible faults. Extensive effort has been put into defining the
framework and the optimal input for the diagnosis of such a problem statement
[14, 15, 16, 17, 18, 19, 20]. Another approach for defining the effect of the fault
has been proposed in [21]. Here a fault signature system is designed and the
effect of each of the faults on the fault signature system is instead used for dia-
gnosis [22, 23]. The approach is based on the system being part of a closed loop
scheme and automatically decouple the noise from the residual. The active gas
bearing should always have an controller active when faults are introduced due
to safety where this feature becomes extra convenient.

The main contribution of this paper is to diagnose faults on an active
gas bearing. The active gas bearing test rig used is a multiple input mul-
tiple output system with two inputs(piezo actuators) and two measured out-
puts(displacement sensors). It is shown possible to diagnose faults occurring
both on the piezo actuators and the displacement sensors. The fault detection
is conducted by designing a fault signature system and using a matched filter
detector for diagnosis of the faults. The method was proposed in [24] where
examples using a simple second order system were given. All faults considered
are here modelled as parametric faults. It is here shown possible to successfully
diagnose different faults for the gas bearing under non-rotating as well as ro-
tating conditions. Furthermore experiments have been conducted using both a
simple proportional controller as well as a linear-quadratic controller. Lastly a
whitening filter proposed in [24] was implemented and shown able to whiten the
noise on the residual signal. The whitening of the noise makes the residual into
a standard form for design of statistical detectors.

This paper is structured as follows: In Section 2 the model of the gas bearing
is introduced together with the identification results; In Section 3 the controller
design and augmented controller scheme is presented; In Section 4 the para-
metric faults considered are defined; In Section 5 an analysis of the excitation
signal design is conducted; In Section 6 the detector design is presented; In
Section 5 an analysis of the excitation signal design is conducted; In Section 7
the experimental results are presented, and finally, in Section 8, a discussion of
the results and future possible improvements are given.

2 Model Structure

An active gas bearing is used for the experimental work conducted in this paper.
A schematic of the gas bearing considered is shown on Figure 0.1.

The vertical piezo actuators denoted b and the horizontal piezo actuators
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a
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Figure 0.1: A cross section schematic of the active gas bearing. The air is
pumped in through the 4 inlets denoted by a. The piezo actuators denoted c
open and close the flow of air from the horizontal direction. Likewise the piezo
actuators denoted c open and close the flow of air towards the shaft d in the
vertical direction.

denoted c on Figure 0.1 have each respectively been lumped together as a single
controllable input. The goal is to keep a rotor in place using only the active gas
bearing. This is done by pumping air into the gas bearing through the tubes a
using the piezo actuators b and c. The rotor and gas bearing are connected by
a flexible shaft. The horizontal and vertical positions of the rotor are measured
and used for feedback control. A picture of the experimental test rig is shown
on Figure 0.2 where the location of the displacement sensors and actuators can
be seen.

A low order physical model structure was identified in [25] which can de-
scribe the main dynamics. The model describe the dynamics from the piezo
actuators to the position of the disc. It was shown that the model depends on
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2. MODEL STRUCTURE

the rotational speed of the rotor and injection pressure of the lubricant injected
into the bearing gap. In this work a constant rotational speed and fixed pressure
of the gas in the active gas bearing is chosen for each experiment. The state
vector is defined in equation (1).

x6x1 =



l

l̇
M


 (1)

Here l is a column vector denoting the lateral displacement of the rotor
in the horizontal and vertical direction respectively. M is a column vector
denoting the state of the actuator dynamics described by the linear position of
the piezo electric stacks. Let the system be described by the standard state
space description given by equation (2).

ẋ = Ax+Bu

y = Cx+Du (2)

Where:

G =

[
A B
C D

]
(3)

The model structure is thus given in Eq . (4) - (7) using a standard state
space description of the system as given in equation (2).

A6x6 =




0 I 0
K D B
0 0 −P


 (4)

B6x2 =




0
0
P


 (5)

C2x6 =
[
I 0 0

]
(6)

D2x2 =
[
0
]

(7)

HereK is the stiffness matrix of the system and is in [ N
kg µm ], D is the damping

matrix of the system expressed in [ Ns
kg µm ] and B is the input gain matrix in [ N

kg V ].

168 Publication P5



d

c

b

e f
g

Figure 0.2: Picture of the experimental test rig used for conducting active fault
detection. The different parts of the test rig are as follows: b are the piezo actu-
ators which pump air into the controllable gas bearing in the vertical direction,
c are the piezo actuators which pump air into the controllable gas bearing in
the horizontal direction, d is the flexible shaft, e is the sensor measuring the
vertical displacement of the disc, f is the disc and g is the sensor measuring the
horizontal displacement of the disc.

The matrix P is designed as a diagonal matrix with each element pj defined by
equation (8) as a low pass filter describing the actuator dynamics, i.e linear
displacement of piezo actuators as a function of the input voltage:
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3. CONTROLLER SETUP

hj(s) =
pj

s+ pj
j ∈ {1, 2} (8)

hj is the first order low pass filter through which the system is actuated.

The model parameters have been identified using a grey box open loop pre-
diction error method. The parameters are given in Table 0.1 for the gas bearing
without rotation and in Table 0.2 when the shaft is rotating at 1100 RPM. A
rotational speed of 1100 RPM has been chosen as a prove of concept to show
that it is possible to diagnose faults during rotation.

K =

[
−1.79 · 106 1.726 · 104

1.061 · 104 −1.926 · 106

]

D =

[
−283.2 −13.82
−8.152 −219.7

]

B =

[
4.318 · 106 −2.672 · 105

9.204 · 104 4.81 · 106

]

P =

[
1021 0

0 944.5

]

Table 0.1: Table of the identified parameters for the model of the active gas
bearing when the shaft is not rotating.

The identified model is discretised using the zero order hold method for
design and implementation of controllers on the active gas bearing. A sampling
rate of 5000 Hz (sampling time = 0.0002s) is chosen for the discrete model.

3 Controller Setup

Two different controllers are discussed and implemented to examine the effect
of different control architectures in connection with fault diagnosis of the active
gas bearings. The first controller implemented is a simple P-controller where
the gain is determined by examining its root, while the second controller is an
observer based LQR controller.
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K =

[
−1.79 · 106 3.43 · 104

3.171 · 104 −1.931 · 106

]

D =

[
−241.6 45.97

7.94 212.1

]

B =

[
−4.446 · 106 7887 · 104

6085 4.853 · 106

]

P =

[
898.9 0

0 955.7

]

Table 0.2: Table of the identified parameters for the model of the active gas
bearing when the shaft is rotating with 1100 RPM.

Design of P controller

In order to be able to examine the root of the closed loop system poles the
controller is given as in equation (9).

K = k

[
1 0
0 1

]
(9)

Using same control in both directions is found appropriate due to the sim-
ilar dynamics for the two directions. This description of the controller with k
being a scalar makes it possible to follow the loci of the poles where as for a
proper MIMO controller, with non-diagonal elements different from zero, the
Gershgorin circle theorem would be applicable instead. The root locus plot is
shown on Figure 0.3 for the control design given in equation (9).

Using Figure 0.3 the controller gain k was chosen to be −0.2 and the final
controller is thus given in equation (10).

K =

[
−0.2 0

0 −0.2

]
[V/µm] (10)

The controller design was chosen to examine the effect of a simple controller
without considering any cross coupling.
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Figure 0.3: Root locus plot of the rotor gas bearing a proportional gain between
0 and -10. The system is found to be stable for a gain from each position error
to each input of 0.2 or smaller.

Design of LQR controller

The second controller used for experiments is a LQR controller designed using
a full order observer. The observer gain is shown in equation (11) and the state
feedback gain is given in equation (12).
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L =




−0.17 0.00
0.00 −0.19
−3.99 1.94
2.62 −15.77
−0.02 −0.00
0.00 −0.02




(11)

F =




−0.08 2.36
2.5 0.10
0.00 −0.00
−0.00 −0.00
0.04 −5.16
−5.70 0.04




T

(12)

Controller Implementation

With both a proportional and observer based control design the detectors are
implemented using the active fault diagnosis scheme as presented on Figure 0.4.

G(θ)

Jkβ α

u y

Figure 0.4: Experimental test setup. G(θ) represents the gas bearing, Jk is the
nominal controller augmented with the two signals α which is the excitation
signal and β which is the residual signal.

Here Jk is the controller augmented with the vector signals (α,β) and θ
denotes the parametric faults in the system. The noise has been omitted from
Figure 0.4 and will be considered in section 6. For an observer based controller
design the setup in Figure 0.4 is realised by letting the signal β be the innovation
signal and by letting α be a control signal of Jk, see Figure 0.4. With the
controller architecture from Figure 0.4 the detection signal β is given by equation
(13).

β =

[
βh
βv

]
= S(θ)α = S(θ)

[
αh
αv

]
(13)
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4. FAULT DESCRIPTION

Here S(θ) is the fault signature system. βh is the residual in the horizontal
direction and βv is the residual in the vertical direction. Equivalently αh is the
excitation signal in the horizontal direction and αv is the excitation signal in
the vertical direction. The fault signature system has the property of being zero
in the fault free case and non-zero when a fault has occurred or as written in
equation (14).

S(θ) = 0|θ=0 (14)

It is always possible to design an augmented controller scheme as in Figure
0.4 by a coprime factorisation of controller and plant. The method is explained
in the supplemental material where it is shown how to design Jk and find the
Youla-Kucera factorisation given different controller designs.

The ability of the gas bearing to suppress disturbances is shown on Figure
0.5 for both the nominal gas bearing and for each of the two implemented
controllers. The plot shows that both controllers give the system increased
disturbance rejection compared to the open loop system.

4 Fault Description

In this section the possible faults considered are discussed and the fault signature
system is derived based on the faults to be detected. Typically faults on an
active gas bearing are due to wear of the actuators and defective sensors. The
model structure established in section 2 forms the basis for the fault structure
introduced in this section.

In this paper the faults considered are represented as parametric faults.
Faults on the actuators are represented as a decrease in the input gain, while a
fault on a sensor is modelled as a decrease in the sensor readings. The different
possible faults have been summarised in Table 0.3 together with the bounds
associated with each of the faults. With the bounds as shown in Table 0.3, the
fault free case corresponds to θi = 0 where as a complete failure hence a fault
of 100% corresponds to θi = -1 where i represent the specific fault.

The possible faults are described using a linear fractional transformation as
shown in equation (15).

G(θ) = Fu(Gaug, θ) (15)

Further, the connection between z and w is given by equation (16).
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Figure 0.5: Plot of the gain from a displacement disturbance to the displace-
ment of the rotor for when the rotor is not rotating. The left column is for a
disturbance in the horizontal direction while the right column is for a disturb-
ance in the vertical direction. Equivalently the top row is for the position of the
rotor in the horizontal direction while the bottom row is for the position in the
vertical direction. The blue line represent the gas bearing without any control,
the red line represent the gas bearing with the LQR controller implemented
and the green line represent the gas bearing with the proportional controller
implemented.

w = θz (16)

Where θ is a diagonal matrix with the four faults considered, i.e.
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5. DESIGN OF THE EXCITATION SIGNAL

Fault description Notation Bound Description
Horizontal actuator θ1 [0 -1] The fault on the opening degree of the horizontal actuator is 100 · (−θ1)%

is expected to be. This results in a reduction of the horizontal input gain.
Vertical actuator θ2 [0 -1] The fault on the opening degree of the vertical actuator is 100 · (−θ2)%

is expected to be. This results in a reduction of the vertical input gain.
Horizontal sensor θ3 [0 -1] The fault on the measured distance of the horizontal displacement sensor is

100 · (−θ3)%. This is equivalent to a reduction in the
horizontal output gain and the controller is then demanding wrong actuation.

Vertical sensor θ4 [0 -1] The fault on the measured distance of the vertical displacement sensor is
100 · (−θ4)%. This is equivalent to a reduction in the vertical output
gain and the controller is then demanding wrong actuation.

Table 0.3: Lookup table for the different possible faults

θ =




θ1 0 0 0
0 θ2 0 0
0 0 θ3 0
0 0 0 θ4


 (17)

Where the augmented system is defined as in equation (18).

Gaug =

[
Gzw Gzu

Gyw Gyu

]
(18)

The augmented plant Gaug is shown in equation (19).

Gaug =




0 I 0 0 0 0
K D B 0 0 0
0 0 −P P 0 P
I 0 0 0 0 I
0 0 0 I 0 0
I 0 0 0 0 0




(19)

5 Design of the excitation signal

During fault diagnosis, the process is disturbed by the excitation signal. Redu-
cing the disturbance to the production is imperative so that the performance
degradation is minimised during fault diagnosis. It is therefore convenient to
use an excitation signal that makes it possible to detect the faults while trying
not to disturb the process. A method for determining the frequency of the si-
nusoidal excitation signal was introduced in [24]. The goal of the method is to
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maximise the impact of faults on the fault signature system while minimising
the impact of the excitation signal on the outputs.

Based on Fig. 0.4 the transfer function from the excitation signal to the
residual signal is found. It is thus possible to determine the impact of the faults
on the residual signal. It is worth noting that the transfer function from the
excitation signal to the residual signal depends on the specific fault occurring
and the known nominal model as well as controller parameters. Equivalently
the transfer function from the excitation signal to the outputs of the system is
required to define an efficiency criteria:

fα =
ξr(ω)

ξy(ω)
(20)

Here ξr(ω) is the frequency dependent gain from the excitation signal α
to the output of the fault signature system β. Equally ξy(ω) is the frequency
dependent highest singular value for the single input multiple output system
from the excitation signal α to the outputs y. With fα defined in equation (20)
the frequency of the excitation signal can be determined as shown in equation
(21).

ωα = argmax
ω1≤ω≤ω2

fα(ω) (21)

Here ω1 and ω2 are chosen as the bound for the frequencies considered us-
ing for the excitation signal. The active gas bearing has two possible inputs
for the excitation signal and two possible residual signals where four different
combinations are possible and should be considered. A plot of the efficiency
gain of the residual for a fault corresponding to a gain degradation of 50% for
each of the four faults, using the proportional controller is shown on Figure 0.6a
to Figure 0.6d where the four different possible excitation and residual signal
combinations have been tested.

From Figure 0.6a to Figure 0.6d it is seen that fα increases as the frequency
of the excitation signal is increased. The frequency of the excitation signal was
found using equation (21) with ω1 = 1rad/s and ω2 = 62rad/s. The excitation
has been chosen to be 62 rad/s, such that the excitation signal is kept smooth
given the sampling rate. With the frequency of the excitation signal selected
it is necessary to examine the phase shift of the residual signal given the fault
signature system for each of the 4 different parametric faults. It is possible to
calculate the phase shift for the interval, fault free to failure, given the chosen
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Figure 0.6: Plot of fα versus the frequency of the excitation signal where αh
and βh is used in Figure 0.6a, αh and βv in Figure 0.6b, αv and βh in Figure
0.6c and αv and βv in Figure 0.6d. The blue line represent fα given a fault
on the horizontal actuator, the red line is for a fault on the vertical actuator,
the green line represent the horizontal sensor and the black line represent the
vertical sensor. Faults on the horizontal sensor cannot be detected when using
βv and faults on the vertical sensor cannot be detected when using βh.
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Figure 0.7: Plot of the phase shift versus the magnitude of each of the 4 faults
considered using the horizontal α signal and vertical β signal. The blue line
represents a fault on the horizontal actuator, the red line is for a fault on the
vertical actuator, the green is for a fault on the horizontal sensor and the black
represents the vertical sensor.

excitation signal. The phase shift versus the magnitude of the faults is shown
on Figure 0.7 using the excitation signal αh and residual signal βv.

Based on Figure 0.7 the phase shift given each of the four possible faults is
found with an excitation signal frequency of 62 rad/s when using the excitation
signal αh and residual signal βv. It is possible to make similar plots given the
other combinations of excitation and residual signals.

It is not possible to detect faults on the horizontal displacement sensor using
the horizontal residual as seen from Figure 0.6b and 0.6d. Equivalently it is
found impossible to detect faults on the vertical displacement sensor using the
vertical residual signal as seen on Figure 0.6a and 0.6c. It is therefore found
necessary to use both the vertical and horizontal residual signals to be able to
detect all the predetermined possible faults.
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6 Detector Design

A detector design is required in order to detect and isolate faults. It is decided
in this paper to use a matched filter detector design. Such a matched filter
detector design was introduced in [26] and it was shown in [24] how to apply it
to the case of active fault detection based on the fault signature system. Based
on Figure 0.8, diagnosis is based on equation (22) where the disturbance is
introduced.

β = Sα + d (22)

The signal β is as shown in equation (23) used as the residual signal denoted
r in keeping with common practice, i.e

r = β (23)

Here the disturbance d is assumed to be white gaussian noise (WGN). Based
on the results in [26] it is possible to formulate a H0 hypothesis as in equation
(24) and a H1 hypothesis as in equation (25).

H0 : r[n] = d[n] (24)

H1 : r[n] = |S(θ)|α[n− nφ] + d[n] (25)

Here r[n] is the fault signature signal as given in equation (23), α is the
excitation signal and |S(θ)| is the gain of the fault signature system given the
selected excitation frequency and nφ is the delay of the excitation signal though
the fault signature system. The fault free case thus results in simply white
noise, while the faulty case results in a known signal with an unknown delay
and unknown amplitude. The unknown delay and amplitude both depend on
the specific fault occurring and the magnitude of the fault. Identifying the delay
and amplitude thus make it possible to isolate the faults. A correlator design as
presented in equation (26) is implemented to determine which fault most likely
occurred.

nφ = arg max
n0∈τ

(

n0+m−1∑

n=n0

r[n]α[n− n0]) (26)

Here nφ is the identified delay of the fault signature signal through the fault
signature system, m is the length of the matched filter window and τ is the set
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of possible delays considered. With the delay identified a test statistic can be
generated using equation (27).

T [n] =
m−1∑

n=0

r[n]α[n− nφ] (27)

A schematic of the detector design explored in this section is shown in Figure
0.8.

G(θ)
+ +

JK
T

β
αH0

H1

d̄

Figure 0.8: Experimental test setup. G(θ) represents the gas bearing, Jk is the
augmented controller, α is the excitation signal, β is the residual signal. The
block T is the statistical detector implemented.

Based on this test statistic it is possible to determine the threshold(γ) and
probability of detection(PD). It is in this paper decided to base the threshold on
the probability of a false alarm(PFA). Before the threshold can be determined
it is furthermore required to quantify the detector signals energy. In equation
(28) the energy of the detector is given.

ε = m
A|S(θ)|

2
(28)

Here A|S(θ)| is the amplitude of the fault signature signal. Since more than
one fault is considered A|S(θ)| is chosen to be the highest amplitude of the fault
signature signal given the faults and fault magnitudes considered possible. With
the energy of the signal determine it is possible to decide on a threshold for the
test statistic given a probability of false alarm as shown in equation (29).

γ =
√
σ2εQ−1(PFA) (29)

Here σ2 is the variance of the measurement noise and Q(∗) is the comple-
mentary cumulative distribution function. With the use of the of the determined
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probability of a false alarm the probability of detection can be calculated using
equation (30).

PD = Q(Q−1(PFA)−
√
D) (30)

Here D is given in equation (31) and is the deflection coefficient which is
based on the expected value of the test statistic for the case of a fault and no
fault together with the variance of the test statistic in the fault free case.

D2 =
(E(T ;H1|Fk

)− E(T ;H0))
2

var(T ;H0)
(31)

Fk is the notation for which of the considered faults that has occurred, thus
the deflection coefficient and hence the probability of the detection changes
depending on which fault that is considered.

Design and Performance of the Whitening Filter

The residual signal used in [21] and here denoted as β is filtering a systems
noise signals through a linear filter. The detector design is based on the noise in
equation (24) being white. This will in general not be satisfied when using the β
signal as the residual for fault detection on the active gas bearing. A whitening
filter is therefore needed.

The main contributor to noise (d) on the active gas bearing is identified to
be the displacement sensors and a open loop experiment without any excitation
was conducted which showed the noise to be approximately Gaussian and white.
Using the signal β as the residual signal results in that the measurement noise is
subject to a linear filter. It was proposed in [24] to design a whitening filter for
the fault free case. Since the active gas bearing is open loop stable it is possible
to find a whitening filter that also keep the variance of the noise the same on
the residual signal as on the measurements. The residual signal is therefore
reformulated in equation (32) using the known signal β and a linear whitening
filter W .

r = Wβ (32)

The whitening filter W is designed such that the measurement noise on
the active gas bearing is white in the fault free case on the residual signal. A
throughout description of how to design the whitening filter can be found in
[24]. A block diagram where the filter is implemented and the identified source
of the noise is shown is shown in Figure 0.9.
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Figure 0.9: Experimental test setup. G(θ) represents the gas bearing, Jk the
augmented controller, α is the excitation signal, β is the residual signal subject
to non-white noise, W is the whitening filter and r is the residual signal subject
to white noise.

7 Experiments

Based on the possible faults described in section 4, four experiments are con-
ducted in order to show that it is possible to detect and isolate each of the four
different faults considered using a one excitation signal and one residual signal.
Each of the faults considered are induced as θi = −0.5. Even though the faults
are quite severe a gain reduction of 50% on the actuators is found to be likely.
Such a reduction can be due to pressure loss or something getting stuck in the
tube letting air into the active gas bearing. Due to the severity of the faults
a linearised version of the fault signature system cannot be considered for the
fault diagnosis.

Analysis of the noise on the Gas bearing

Firstly the effect of the whitening filter is examined. In order to examine the
effect of the whitening filter W a residual signal has been obtained for the
fault free gas bearing without any excitation signal applied. On Figure 0.10
the normalised autocorrelation is shown using the signal β which is the residual
signal before any whitening has been conducted.

It is clear from Figure 0.10 that the signal is not white even though the
noise the system originally was subject to is. Equivalently the same test can be
conducted using equation (32) as the fault signature system. In this case the
normalised autocorrelation is shown on Figure 0.11.

From Figure 0.11 it is seen that the residual signal is much closer to being
white in the fault free case. For a perfect model this experiment could be
conducted with an active excitation signal applied, however even though the
model is able to produce a good fit it is not considered perfect and the excitation
signal would thus pollute the experiment. This imperfection of the model is
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Figure 0.10: Plot of the autocorrelation of β in the fault free case. The stems
show the correlation depending on the number of lags, while the black stippled
lines are the upper and lower confidence bounds.

also possible to see in that the residual signal, even though it is closer to being
white, it is still not within the bounds of the statistical uncertainty for the
autocorrelation function.

With the whitening filter verified an analysis of the noise on the residual
signal is required. The residual signal has been monitored without any excita-
tion signal applied and a normalised histogram is shown on Figure 0.12 for the
horizontal direction and vertical direction.

It is clear from the two histograms that the residual signal is subject to
approximately gaussian noise with a mean of zero in both directions. The
variance was found in the horizontal direction to be 0.12 and in the vertical
direction to be 0.15.

Diagnosing faults using a P-controller

In the first experiment the residual signal from the horizontal direction is used
whose variance the threshold is thus based upon. In this experiment the disc
is not rotating. Before detection can be conducted it is needed to calculate the
energy in the signal depending on the fault occurring and the magnitude of the
possible fault. A plot of the gain through the fault signature system is shown
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Figure 0.11: Plot of the autocorrelation of r in the fault free case. The stems
show the correlation depending on the number of lags, while the black stippled
lines are the upper and lower confidence bounds.
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Figure 0.12: Histogram of the signal r in the fault free case with the horizontal
direction on the left hand side and the vertical direction on the right hand side.
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on Figure 0.13.
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Figure 0.13: Plot of the gain from the horizontal excitation signal α to the
horizontal residual signal r given each of the possible faults. The blue line
represent a fault on the horizontal actuator, the red line is for a fault on the
vertical actuator, the green is for a fault on the horizontal sensor and the black
represent the vertical sensor.

From Figure 0.13 the gain through the fault signature system is found to be
close to 1 for a fault on the horizontal piezo electric actuator of 50% and around
0.0003 for a fault on the vertical actuator of 50%. A fault of 50% reduction in
the opening degree was introduced on the horizontal actuator after 4 seconds.
To determine whether it is possible to detect the fault a test statistic as shown
in equation (27) is implemented. The threshold is determined using equation
(29) as shown in equation (33).

γ =
√
σ2ε · Q−1(PFA)

=
√

0.422 · 31275 · Q−1(2 · 10−5) = 305 (33)

The test statistic is then shown on Figure 0.14 for a fault on the horizontal
actuator.

It is clear from Figure 0.14 that it is possible to detect a fault on the hori-
zontal actuator using the horizontal input and horizontal output. In order to
determine which fault occur equation (26) is utilised. In order to determine the

186 Publication P5



0 1 2 3 4 5 6 7 8

Time [s]

0

500

1000

1500

2000

2500

3000

3500

4000

T
(r

)

Figure 0.14: Detector signal T where a fault occurs after 4 seconds on the
horizontal actuator. A window length of 2.5 seconds is used for the diagnosis.

phase shift of the residual signal 4 different possible phase shifts are considered
and are given in equation (34).

τ = [93, 89, 94, 0] (34)

The phase shift set corresponds to the phase shift introduced given a 50%
degradation (θi = −0.5) of each of the possible faults shown in Table 0.3. The
phase shift was found as the phase shift of the fault signature system S(θ) for
each of the 4 different possible faults respectively. The result of the decision
algorithm is shown on Figure 0.15 using equation (26).

It is clear from Figure 0.15 that the fault is isolated almost 2 seconds after
it has actually occurred and is detected. With a window of 2.5 seconds almost
the whole window is used.

The decision algorithm determine a horizontal sensor fault to be most likely
in the fault free case. There can be several reasons why the decision algorithm
does not change between all the possible faults in the fault free case. The most
obvious reason is because the model is not a perfect representation of the active
gas bearings, thus the fault signature system is not zero in the fault free case.
Furthermore the window length is chosen to be 2.5 seconds which makes small
model deviations have a relative higher impact on the fault decision compared
to the noise. This is clearly seen from Figure 0.16 where the window has been
shortened to 0.2 seconds.
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Figure 0.15: Plot of the decision nφ where a fault has been introduced on the
horizontal actuator after 4 seconds.
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Figure 0.16: Plot of the decision nφ where a fault has been introduced on the
horizontal actuator after 2.5 seconds. The window m has here been reduced to
0.2 seconds.

From Figure 0.16 it is seen that the noise is dominant for the fault free case.
Again the decision algorithm is able to isolate the correct fault, however in the
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fault free case the decision switches between all possible faults instead of being
stuck at one as seen on Figure 0.15. The window length of 2.5 seconds was found
unnecessary for detecting faults on the horizontal piezo actuator. However in
the case of possible faults on the vertical actuator such a window size becomes
relevant due to the much lower gain of the fault signature system in case of such
a fault occurring. A fault of 50% degradation, is imposed on the vertical piezo
actuator after 4 seconds and the detection signal T (r) is shown on Figure 0.17.
We recall that such a fault corresponds to the valve opening half the expected
amount, hence the input gain of the system has been reduced.
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Figure 0.17: Detector signal T where a fault occurs after 4 seconds on the
vertical actuator.

Recall that a false alarm occurs every time that the signal T (r) goes above
the stippled line before 4 seconds. We notice that we get more false alarms
than we expected from the designed threshold. The unexpected amount of false
alarms is assumed to be caused by the model uncertainties which has a higher
impact on a vertical actuator fault than on the horizontal one in this experiment.
This is due to the relative small gain through the fault signature system from
the vertical excitation to the horizontal residual signal.

Again using equation (26) a decision on the possible fault occurring at each
time step is shown on Figure 0.18.

It is again found possible to isolate the fault which has been introduced to
the active gas bearing using equation (26).
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Figure 0.18: Plot of the decision nφ where a fault has been introduced on the
vertical actuator after 4 seconds.

Diagnosing faults using cross coupling

It has been shown possible to detect parametric actuator and sensor faults using
a horizontal excitation and residual signal. It is in this experiment shown that
it is possible to detect faults based on the cross coupling as well. Here it is done
using a horizontal excitation signal and the vertical residual signal where again
the disc is not rotating. As with the previous example the delay introduced to
the residual signal given each of the possible parametric faults is found as shown
in equation (35).

τ = [125, 269, 0, 93] (35)

Experiments are conducted where each of the 4 possible parametric faults
are introduced to the active gas bearing. A detection algorithm as presented in
equation (27) is applied and the result for each of the 4 cases is shown in Figure
0.19.

It is seen form Figure 0.19 that by applying an excitation signal in the
horizontal direction and using the vertical output of the fault signature system
it is possible to detect faults on both the vertical and horizontal actuators.
Where as it was expected that a fault on the horizontal actuator would not
be detectable a fault on the vertical actuator should be. However the fault
on the vertical displacement sensor is not detected due to the low gain from
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Figure 0.19: Plot of T [n] for the gas bearing when each of the 4 possible para-
metric faults is introduced respectively. A horizontal excitation signal is applied
and the vertical output of the fault signature system is used for detection pur-
poses. The top left plot is for a fault on the horizontal actuator where as the
top right is for a fault on the vertical actuator. On the bottom left plot a fault
is introduced on the horizontal sensor and on the bottom right a fault has been
introduced on the vertical sensor instead.

the excitation signal to the residual given a fault on the vertical displacement
sensor.

Detecting faults while the gas bearing is rotating.

An experiment has been conducted where the shaft held in place by the active
gas bearing has been set to rotate with a rotational speed of 1100 rounds per
minute (RPM). The plant has been identified at a rotational speed of 1100
RPM and the plant has been diagnosed where a parametric fault of 50% has
been introduced on the horizontal actuator. A plot of the detector (T [n]) is
shown on Figure 0.20.

The fault is introduced just after 4 seconds and a window length of 0.2
seconds is used. It is seen on Figure 0.20 that the fault is detected.
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Figure 0.20: Plot of T [n] for the gas bearing when the shaft is rotating with
1100 RPM and a fault is introduced to the horizontal actuator. The excitation
signal has been introduced in the horizontal direction and the horizontal output
of the fault signature system has been used for the detection

Diagnosing faults using a LQR based controller

For all the previous experiments the same proportional controller is used. An
observer based controller is instead investigated here as described in section 3.
An excitation signal is used in the vertical direction and each of the 4 faults has
been introduced to show the detectors ability to detect faults. The detection
signal for each of the 4 faults being introduced is shown in Figure 0.21.

It is seen from Figure 0.21 that it is still possible to detect different faults
when the control scheme is changed. The method is thus shown able to apply
with whichever linear control design used for the system. The isolation of the
fault occurring is shown on Figure 0.22 for the fault on the vertical sensor.

Again it is noted that a delay is present between a fault being detected and
the isolation. The fault is proper isolated when the whole window is using data
from after the fault has occurred.

8 Conclusion

It has been experimentally shown possible to detect and isolate different para-
metric faults on an active gas bearing using active fault diagnosis. It was shown
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Figure 0.21: Plot of T [n] for the gas bearing when each of the 4 possible para-
metric fault is introduced respectively. A window length of 2.5 seconds is used.
A vertical excitation signal is applied and the vertical output of the fault signa-
ture system is used for detection purposes. The top left plot is for a fault on the
horizontal actuator where as the top right is for a fault on the vertical actuator.
On the bottom left plot a fault is introduced on the horizontal sensor and on
the bottom right a fault has been introduced on the vertical sensor instead.

advantageous to apply an active fault diagnosis method to an experimental
active gas bearing test rig for diagnosis of parametric faults. The active fault
diagnosis was based on the fault signature system. A maximum likelihood es-
timator was successfully applied to the problem. Two different controller archi-
tectures were tested, a proportional and an observer based, to show the methods
flexibility. Both faults on the actuators and the sensors could be detected and
isolated using the proposed control architectures. The results were achieved
by the use of a sinusoidal excitation signal found to minimize the disturbance
on the system under the requirement of detectability of the considered faults.
The results thus showed consistency with the theory throughout the experi-
ments. Furthermore threshold design with a whitening filter applied was shown
to work. The assumptions used for the active fault diagnosis design was there-
fore found appropriate.
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Figure 0.22: Plot of the decision nφ where a fault has been introduced on the
vertical sensor after 3 seconds.
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Coprime Representation

The work presented in this paper exploits a coprime factorisation of the con-
troller and plant in order to design residual signals for active fault detection.
The fault free plant G(0) can be written as a coprime factorisation as shown in
equation (36) and the controller K can be represented as a coprime factorisation
as shown in equation (37).

G(0) = NM−1 = M̃−1Ñ , N,M, M̃, Ñ ∈ RH∞ (36)

K(0) = UV −1 = Ṽ −1Ũ , U, V, Ṽ , Ũ ∈ RH∞ (37)

Here the matrices denoted with a 0̃ are known as the left coprime factorisa-
tion while those without are the right coprime factorisation. For such a coprime
factorisation as shown in equation (36) and equation (37) the bezout identity
as shown in equation (38) is satisfied.

[
I 0
0 I

]
=

[
M U
N V

] [
Ṽ −Ũ
−Ñ M̃

]

=

[
Ṽ −Ũ
−Ñ M̃

] [
M U
N V

]
(38)
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Using the coprime factorisation of the nominal plant G(0) and controller K
it is possible to define all controller that stabilise the nominal plant as shown in
equation (39).

K(Q) = (Ṽ +QÑ)−1(Ũ +QM̃), Q ∈ RH∞ (39)

It is possible to define an equivalent representation of all controller stabilising
the nominal plant using the right factorisation as well. Such a controller can be
implemented as shown on Figure .23.

+

+

G(S)
+

+

+

Ṽ −1
+

+

Ũ

Ñ
− +

M̃

u y

β

α

d

v1

v2

Figure .23: Experimental test setup. G(S) represents the gas bearing, α is the
excitation signal and G is the nominal model of the gas bearing.

Here S describe the system dynamics diverging from the nominal model,
which in this paper is known as the system faults. How the system S influence
the plant is shown in equation (40) using the right coprime factorisation and in
equation (41) using the left coprime factorisation.

G(S) = (N + V S)(M + US)−1, S ∈ RH∞ (40)

G(S) = (Ñ + SṼ )−1(M̃ + SŨ), S ∈ RH∞ (41)

Furthermore the two signals α and β has been introduced on Figure .23
which are used for injecting the excitation signal used for active fault detection
and design of the residual generator. It was shown in [24] that for a system as
shown in Figure .23 the transfer functions from the inputs to outputs are given
as shown in equation (42).



y
u
β


 = Tcl(S)




d
v1
v2
α


 (42)
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Where Tcl is




(N + V S)Ũ (N + V S)Ũ (N + V S)Ṽ N + V S

(M + US)Ũ (M + US)Ũ (M + US)Ṽ M + US

M̃ + SṼ M̃ + SṼ Ñ + SŨ S




With the controller designed it is possible to calculate the Youla-Kucera
factorisation. One such factorisation for a P-controller can be found in [27] and
is given in equation (43) for the right coprime factorisation and in equation (44)
for the left coprime factorisation.

[
M U
N V

]
=



A+BF B 0

F I K
C 0 I


 (43)

[
Ṽ −Ũ
−Ñ −M̃

]
=



A+BPC −B BK
F − PC I −K

C 0 I


 (44)

Here F is a fictitious gain that satisfy all eigenvalues of A + BF are in the
stable left half plane. Equivalently it is possible to calculate the Youla-Kucera
factorisation for the observer based controller. For such a controller the right
factorisation is shown in equation (45) and the left factorisation is shown in
equation (46).

[
M U
N V

]
=



A+BF B −L

F I 0
C 0 I


 (45)

[
Ṽ −Ũ
−Ñ −M̃

]
=



A+ LC −B L

F I 0
C 0 I


 (46)

Here F is the state feedback matrix and L is the observer gain matrix. Using
the coprime factorisation of controller and plant the augmented controller can
be expressed as in equation (47).

Jk =

[
UV −1 Ṽ −1

V −1 −V −1N

]
(47)

Publication P5 199



BIBLIOGRAPHY

For an augmented controller as presented in equation (47) it might seem
that the order is higher than for the nominal controller. The order of the two
controllers has been shown to be the same in [28]. In the case of the observer
based control design the controller Jk can be written in state space form as in
equation (47).

Jk =



A+BF + LC + LDF −L B + LD

F 0 I
−(C +DF ) I −D


 (48)

Since a full order observer has been implemented the order of the nominal
controller is the same as for the plant. From equation (48) it is easy to see that
the augmented controller has the same order as well why the computational
effort is the same with the nominal controller and the augmented.

200 Publication P5



Publication P6

Closed Loop Identification of a
Piezo Electrically-Controlled
Radial Gas Bearing - Theory &
Experiment



Closed Loop Identification of a Piezo
Electrically-Controlled Radial Gas
Bearing - Theory & Experiment
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Abstract

Gas bearing systems have extremely small damping properties. Feedback
control is thus employed to increase the damping of gas bearings. Such a feed-
back loop correlates the input with the measurement noise which in turn makes
the assumptions for direct identification invalid. The originality of this paper
lies in the investigation of the impact of using different identification methods to
identify a rotor-bearing systems dynamic model when a feedback loop is active.
Two different identification methods are employed. The first method is open loop
Prediction Error Method (PEM) while the other method is the modified Hansen
scheme. Identification based on the modified Hansen scheme is conducted by
identifying the Youla deviation system using subspace identification. Identifica-
tion of the Youla deviation system is based on the Youla-Jabr-Bongiorno-Kucera
(YJBK) parametrisation of plant and controller. By using the modified Hansen
scheme, identification based on standard subspace identification methods can be
used to identify the Youla deviation system of the gas bearing. This procedure
ensures the input to the Youla deviation system and the noise are uncorrelated
even though the system is subject to feedback control. The effect of identify-
ing the Youla deviation system compared to direct subspace identification of the
gas bearing is further investigated through a simulation example. Experiments are
conducted on the piezoelectrically-controlled radial gas bearing. A dynamic model
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is identified using the modified Hansen scheme as well as using PEM identifica-
tion. The resulting models are compared for different imperfect nominal models,
to examine under which conditions each method should be used.

Keywords— Experiment, Gas Bearing, Closed-loop Identification, Coprime
Factorisation, Subspace Identification

1 Introduction

Active gas bearings are an interesting alternative to more commonly used bear-
ings such as ball and magnetic bearings. Compared to ball bearings, active gas
bearings have extremely low friction. At the same time active gas bearings are
open loop stable for appropriately low rotational speeds, unlike magnetic bear-
ings, which are always open loop unstable. The active gas film itself delivers low
damping. Because of the low damping the rotor system may become unstable
due to self-excited rotor whirling. Control is therefore still required although
it is less limited than for unstable systems. Designing models of gas bearings
has however been shown to be less straightforward, compared to the frictionless
alternative of magnetic bearings. A successful mathematchical model for active
gas bearings was first introduced in [1] with extensions to the model presented
in [2, 3, 4]. Recently a low order model able to describe the dynamics of the
active gas bearing was presented in [5]. Such low order models greatly simplify
the control design phase.

Identification of gas bearings have been a subject of some interest recently
[6, 7]. It has been shown possible to identify appropriately low order models that
mimic the behaviour of the gas bearing in a satisfying manner when no feedback
loop is active. Usually the gas bearing will operate under conditions at which
the damping is so small that feedback control is needed for safe operation. It is
therefore of extreme relevance to be able to identify an appropriate model for
the gas bearing under conditions where it is only possible to obtain identification
data while the gas bearing is part of a closed loop system.

There are plenty of different methods for identifying closed loop systems.
One of such methods transforms the closed loop identification problem of the
plant into an open loop identification problem by using the Youla paramet-
erization. Well known subspace identification methods are in this paper used
for identifying the Youla deviation system. It has become increasingly popu-
lar to use subspace identification methods due to their natural connection to
multiple-input and multiple-output state space models [8]. Some of the most
well known subspace identification methods are the Numerical algorithm for
Subspace IDentification (N4SID) proposed in [9] and the Multivariable Output-
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Error State-sPace (MOESP) proposed in [10]. Both methods, as with most
subspace identification methods, assume the noise and input to be uncorrel-
ated, hence the methods are based on assumptions that are only valid for open
loop identification. Some work has been done on extending the subspace iden-
tification methods to identification of closed loop systems. Several different
methods for coping with feedback connection have been proposed[8]. However,
often such methods show the same weakness of depending on being able to
identify the noise signal imposed on the system.

One possible indirect identification method is subspace identification of the
Youla deviation system. The Youla deviation system is used to reformulate the
identification problem from a closed loop to an open loop identification problem
using a coprime factorisation of the nominal plant model and the controller. This
identification procedure is known as the Hansen scheme and was first introduced
in [11]. The original version of the Hansen scheme used external excitation
signals to indirectly excite the Youla deviation system. A modified version
of the Hansen scheme, first introduced in [12], is used instead in this paper
which makes it possible to directly impose an excitation signal onto the Youla
deviation system. A gas bearing easily becomes an unstable system when the
rotational speed is increased. However the Youla deviation system identified by
the modified Hansen scheme will always be stable. The open loop identification
technique is thus applicable where direct open loop identification of the gas
bearing is not. The modified Hansen scheme however, has the drawback of loss
of physical understanding of the system.

The key contribution of this paper is to offer insight into when it can be ad-
vantageous to identify an active gas bearing using the modified Hansen scheme
instead of the more traditional Prediction Error Method (PEM) identification.
This paper thus focuses on comparing known identification techniques for iden-
tification of a gas bearing when being part of a closed loop system. The results
are gathered by a combination of simulations and experiments conducted on a
laboratory installation.

The paper is structured as follows: In the following section the model of
the gas bearing is introduced; In the third section some preliminary theory
is introduced in order to let the paper stand alone; In the fourth section the
three methods used for identification of the gas bearing are discussed; In the
fifth section the identification procedure is given and the quality of the nominal
model is discussed; In sixth section the experimental methods are presented
and the resulting model identified using each of the 3 different identification
methods are shown. Finally, in the last section, a discussion of the results and
future possible improvements are given.
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2 Gas Bearing System

The gas bearing test rig used in this paper has already been subject to different
identification methods, with the focus on its physical behavior in [13, 2, 14] and
on the system dynamics in [6, 7, 15]. These methods however, have all been
both conducted and verified under open loop conditions. All identification in
this paper are based on the gas bearing being subject to feedback control. The
nominal model is based on the model structure introduced in [15] which showed
it possible to model the vertical and horizontal position of a disc attached to a
flexible shaft. The shaft is held in position by the gas bearing, using gas injected
into the bearing in both the horizontal and vertical directions using a 6’th order
model. A picture of the test rig is presented on Fig. 0.1a.

c

b

a

d
e

f

(a) Picture of the experimental test rig used
for conducting active fault detection. The
different parts of the test rig is as follows: a;
vertical piezo actuator, b; horizontal piezo
actuators, c; flexible shaft, d; vertical dis-
placement sensor, e; disc and f horizontal
displacement sensor.

(b) Cross section illustration of the actu-
ator. The further out the pin is moved the
more air is able to flow in which increase
the pressure. The position of the shaft is
thus controlled by changing the flow of air
through the inlet valve.

Figure 0.1

A illustration of the gas bearing actuators is shown on Figure 0.1b. The
air is going into the bearing through the small pipe, a piezo electric actuator is
attached which controls how much air is able to get into the bearing and thus

Publication P6 205



2. GAS BEARING SYSTEM

controls the preasure inside the bearing.
The model of the gas bearing is based on the mass-springer-damper-model

in Eq. (1) for the non rotating case.

l̈−Dl̇−Kl = Bm (1)

Here l is a vector with the position in the horizontal and vertical direction
and m is the state of the actuator dynamics. K is the specific stiffness matrix
given in [ N

kg µm ], D is the specific damping matrix in [ Ns
kg µm ], and B is the

actuator gain matrix in [ N
kg V ]. Using Eq. (1) the state vector is defined in Eq.

(2).

x =




l

l̇
m


 (2)

The structure of the state space model is given in Eq. (3) to Eq. (6) where
each element is a 2x2 matrix

A =




0 I 0
K D B
0 0 −P


 (3)

B =




0
0
P


 (4)

C =
[
I 0 0

]
(5)

D =
[
0
]

(6)

The matrix P is a diagonal matrix with each element pj defined by Eq. (7).

hj(s) =
pj

s+ pj
j ∈ {1, 2} (7)

hj is the first order low pass filter through which the system is actuated.
The state space model is thus given in Eq. (8).

G :=

{
ẋ = Ax+ Bu
y = Cx+ Du

}
(8)
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In order to conduct closed loop identification of the system, the parameters
of the model have been identified with the disc not rotating as part of an open
loop scheme. The identified matrices are given in Eq. (9) to Eq. (12)

D =

[
−224.9 3.97

9.12 −267.7

]
(9)

K =

[
−1.869 · 106 −8577
−9510 −1.737 · 106

]
(10)

B =

[
−6.126 · 106 3.154 · 105

−1.571 · 105 −4.516 · 106

]
(11)

P =

[
989 0
0 942.5

]
(12)

3 Theory

The first part of this section is dedicated to presenting some definitions to the
reader in order to make the rest of the paper stand alone. A nominal plant is
given by G(0) and a stabilizing controller is given by K. The coprime factoriz-
ation of G(0) and K are given by:

G(0) = NM−1 = M̃−1Ñ , N,M, Ñ, M̃ ∈ RH∞ (13)

K = UV −1 = Ṽ −1Ũ , U, V, Ũ , Ṽ ∈ RH∞ (14)

Here N and M denote the right coprime factorisation of the nominal plant
and Ñ and M̃ denote the left coprime factorisation of the nominal plant. Equi-
valently the right coprime factorisation of the controller is given by V and U ,
and the left coprime factorisation is given by Ṽ and Ũ such that the Bezout
identity given in Eq. (15) is satisfied.

[
I 0
0 I

]
=

[
M U
N V

] [
Ṽ −Ũ
−Ñ M̃

]
=

[
Ṽ −Ũ
−Ñ M̃

] [
M U
N V

]
(15)

It will be assumed in this paper that K is a stabilizing controller for both
the nominal plant as well as for the real plant G(S). This is the case if Eq.
(15) is true. Here S is the Youla deviation system describing the divergence
between the nominal model and the real plant. With the controller and plant
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model factorisations defined in Eq. (13) and (14) the real plant is given by Eq.
(16) using the right coprime factorisation and Eq. (17) using the left corpime
factorisation.

G(S) = (N + V S)(M + US)−1, S ∈ RH∞ (16)

G(S) = (M̃ + SŨ)−1(Ñ + SṼ ), S ∈ RH∞ (17)

With a formulation of the true plant as in Eq. (17) only the Youla deviation
system(S) is unknown and needs to be identified. G(S) from Eq. (16) can be
formulated using a linear fractional transformation (LFT) given by:

G(S) = Fu(JG, S) (18)

where:

JG =

[−M−1U M−1

M̃−1 G(0)

]

Here the input and output signals of JG is presented in Eq. (19).

[
η
y

]
= JG

[
ε
u

]
(19)

The closed-loop system using the system description in Eq. (18) is shown in
Fig. 0.2, where v1 and v2 are two possible excitation signals and n is the noise.

+

+

K
+ +

JG

+

+

S

v1
u

v2

y

n

ηε

Figure 0.2: Closed loop system with the plant represented as a nominal part(JG)
and the unknown Youla deviation system S.
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Using Eq. (18) and the setup in Fig. 0.2, the vector introduced, ε, is given
in Eq. (20).

ε = Sη (20)

Eq. (20) shows that the identification of S is straightforward using the signals
η and ε. The two signals ε and η in Eq. (20) are not directly accessible. However,
it is shown that using the available signal vectors v1, v2, y and u it is possible
to generate ε and η. It is therefore not possible to inject η directly for the open
loop identification of S [11]. Instead, including the Youla parametrization of all
controllers in the closed-loop, it will be possible to have a direct access to ε and η
as shown further on. Let the Youla parametrization of all stabilizing controllers
for the nominal system G(0) be given by the following LFT description:

K(Q) = Fl(JK , Q) (21)

where:

JK =

[
K Ṽ −1

V −1 −V −1N

]

The input and output signals of JK are in Eq. (22).

[
u
β

]
= JK

[
y
α

]
(22)

Again it is possible to introduce two new signals in order to determine Q.

α = Qβ (23)

The two new signals β and α are part of the controller and can thus be dir-
ectly measured and inserted. The relationship between the signals in the plant
and controller can therefore give a significant advantage for direct identification
of S.

The relationship between the signals η, ε, β and α can be calculated as a
Redheffer star product as defined in [16]. The resulting relationship is shown in
Eq. (24).

[
α
β

]
= JG ? JK =

[
1 0
0 1

] [
η
ε

]
(24)
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Here ? denotes the redheffer star product. The Youla deviation system is
therefore possible to identify using the signals found in the controller, which is
used for the closed loop identification. Based on the system description given
on Figure 0.2 the Youla deviation system can thus be identified using Eq. (25).

β = Sα + (M̃ + SŨ)n (25)

This ability to directly impose the excitation signal on the Youla deviation
system S is the advantage of the modified Hansen scheme compared to the
original version. The modification is believed to make the identification more
intuitive and was first introduced in [12].

4 Identification methods

In all tests conducted the plant is subject to a feedback loop with an a priori
designed controller. In order to conduct a proper comparison between the meth-
ods, all methods use data from the same experiment. Furthermore the noise (n)
has been found to be approximately white gaussian from an open loop dataset
without any excitation.

Identification using the modified Hansen Scheme

It was argued in [12] that the signals should be obtained directly from the
controller by modifying it to the form shown in Fig. 0.3

Using the signals α and β it is possible to cast an identification problem as
given in Eq. (25) by taking advantage of the relationship found in Eq. (24).
Since α does not depend on the noise n as shown in [17] it is clear from Eq.
(25) that the noise and excitation signal are not correlated. The system S
is identified using the subspace method N4SID for identification. The choice
of using a subspace method for identification is two-fold. One of the great
advantages of using subspace identification is the direct identification of MIMO
state space models. The other important advantages of choosing a subspace
identification method is that the methods are based on zero a priori knowledge.
Unlike the true system G(S) it is rather difficult to determine a proper initial
structure of the Youla deviation system S. This comes from the fact that
the nominal system is believed to be the best initial guess possible. All prior
knowledge therefore points towards the Youla devitation system being 0.
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Ũ

Ñ
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β
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Figure 0.3: Representation of a YJKB parametrised controller for generation of
signals for identification.

Direct Grey Box Identification

This identification method, as the name suggests, does not use any information
regarding the feedback loop and the controller to determine the model. The
method was presented in [18] and is based on obtaining input and output data
of the plant and determining the model. In this paper it is implemented as a
PEM. The method uses the input-output data together with a nominal model
as the information for parameter identification.

5 Preliminary open loop identification

Identification is conducted in two separate steps. First, a nominal model is
generated to use as a basis for identification of the plant when part of a closed
loop scheme. Such a model is obtained using data acquired from an open loop
experiment conducted when the active gas bearing is not rotating. The iden-
tification results for the nominal model are based on the method described in
[7].

The identified nominal model is able to predict the displacement to an ac-
ceptable degree. The parameters identified through the experiment were presen-
ted in section 2. In order to give a quantitative measure of the quality of the
different identification procedures used during the experiments, a goodness fit
is calculated using Eq. (26) which is the normalised root mean square error.

Publication P6 211



6. SIMULATION RESULTS

R2 = 1− ||y − ŷ||||y − ȳ|| (26)

Here y is the measured output, ȳ is the mean of the measured output and ŷ is
the estimated output using the model. Based on the nominal model, a controller
is designed and a coprime factorisation is conducted. In the experiment only
the left factorised form is used. In order to show the effect of the closed loop
identification, the nominal model has been degraded in several different ways to
examine the ability of the different identification procedures when the plant is
part of a closed loop scheme. Lastly, a controller is been designed using the LQR
function in MATLAB and implemented using the controller design presented in
Fig. 0.3.

6 Simulation Results

It is in this section investigated which benefits there are from identifying the
Youla deviation system. Identifying the Youla deviation system is compared to
other more well known methods. It is decided to compare the method with grey
box PEM identification and subspace identification. Normal subspace identific-
ation is independent of the nominal model. Grey box PEM identification on the
other hand uses information from the nominal model.

Inferior a priori knowledge of the system dynamics

A definition of the inferior model from which the system has to be identified
is needed to compare the identification methods. For the first test inferior
knowledge about the system dynamics has been investigated. The system matrix
of the initial model is defined in Eq. (27) where Amodel has inferior knowledge
relative to the real system matrix A.

Amodel = (1− θ) · A (27)

Here A is the system matrix of the system to be identified, Amodel is the
system matrix of the nominal model and θ is a uniformly distributed random
variable in the interval 0 to 1. The nominal model thus contains a system
matrix where all elements are smaller than for the real plant. A simulation
has been conducted where 500 different initial models were constructed using
Eq. (27). For each model a controller was designed that would stabilise the
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initial model and the real plant. Noise has been added as output noise and
the system has been excited using a series of square waves. For each initial
model an input-output set has been gathered and an identification has been
conducted. In each case a second verification data set has been obtained where
noise was omitted from the system. The identification results are shown on
Fig. 0.4 for identification using PEM and subspace identification of the Youla
deviation system.
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Figure 0.4: Plot of the R2 fit in the horizontal direction (Top plot) and vertical
direction (bottom plot) using the PEM for identification and subspace identi-
fication of the Youla system.

It can be seen from Fig. 0.4 that for small deviations between the real system
and the initial model both methods produce similar results. However as θ is
increased the PEM identification starts to produce a lower R2 fit.

With the methods compared it is concluded that identification of the Youla
deviation system using subspace identification is resulting in higher R2 fit when
sufficient a priori knowledge of the system dynamics is lacking. Identifying the
Youla deviation system instead of the plant directly, increases the complexity.
The effect has therefore been examined when compared to direct subspace iden-
tification of the plant. Again 500 initial models were constructed using Eq. (27).
Identification was conducted using subspace identification to identify the plant
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directly and to identify the Youla deviation system. A box plot of the resulting
fit of the identified models is shown in Fig. 0.5.
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Figure 0.5: Boxplot of the R2 fit given direct identification of the plant and
identification of the Youla deviation system. The left plot is for the horizontal
direction where as the right plot is for the vertical direction.

It is seen from Fig. 0.5 that when the plant is directly identified, using a
subspace identification method, the variance of the R2 fit increases. Furthermore
the mean of the R2 fit is higher when identifying the Youla deviation system.
Identifying the plant indirectly by identification of the Youla deviation system
thus produces better results. Since both methods suffer from the loss of physical
understanding of the models produced it is decided not to look further into direct
subspace identification.

7 Experiments & Results

With the controller designed and nominal model identified using the method
described in [15], experiments have been conducted under 3 different conditions.
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The results have been summarised in Table 0.1 for all 3 experiments. In all
experiments the same 2 identification methods have been applied; PEM using a
fixed a priori model structure and identification of the Youla deviation system.
The identification signals are found as Eq. (28) for direct identification of S.
The system has been excited using the input signal denoted α on Fig. 0.3.

β = M̃y − Ñu (28)

The Youla devitation system is the identified based on Eq. (25). The first
experiment is conducted where the disc is non-rotating, and the nominal model
has been degraded so that it is not able to mimic the plant dynamic in a satisfy-
ing manner. The degradation of the nominal model was achieved by multiplying
all elements of the system matrix with 0.5. The result of the identification is
shown in Fig. 0.6 where the nominal model and the 2 identified models have
been compared with a verification dataset.

It is shown in Fig. 0.6 that with a poor nominal model, identification of the
Youla deviation system is able to recover the system dynamics. It is also noticed
that the PEM is unable to identify a model of the same quality and obtains a
lower R2 fit when the nominal model is of such low quality. The same trend
was observed in section 6 when θ is equal to 0.5. The result is summarised as
column 2 in Table 0.1.

To further examine the effect of the identification methods for low quality
nominal models, an experiment is conducted where the disc is rotating with
2500 revolutions per minute. Here it has instead been chosen to multiply all
elements of the input matrix with 0.7 so that the input gain is higher than
expected. The verification data together with the predicted output for each of
the models are shown in Fig. 0.7.

The nominal model is better than in the previous example at predicting the
position of the disc, however the nominal model is still having a fit lower than
what is expected possible to obtain. This is seen from the relatively large in-
crease in the fit for each of the identification methods. The result is summarised
as column 1 in Table 0.1. Lastly an experiment is conducted to examine the
identification methods ability to recover small deviations. Again the nominal
model has been tampered with to degrade its performance. The elements of the
system matrix have been multiplied by 0.97 so that the dynamics of the real
plant is slightly faster than for the nominal model. Identification of the Youla
deviation system using Eq. (28) has thus been conducted, and a plot of the
signal β measured and predicted using the identified system are shown in Fig.
0.8.
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Figure 0.6: Comparison of a verification signal (blue) with the predicted output
given the nominal model (red) and each of the 3 identified models. The nominal
model G was found to have a fit of 3.188% in the horizontal direction and 2.999%
in the vertical direction. The PEM (yellow) was found to have a fit of 48.91%
in the horizontal direction and of 39.47 in the vertical direction. Identification
of the Youla deviation system (purple) gave a fit of 76.76% in the horizontal
direction and of 83.58% in the vertical direction.

The nominal model and plant are fairly similar why noise is expected to
dominated the β signal. This is seen on Fig. 0.8 where the measured signal β
is presented. It is clear that the signal contain a dominant noise part in the
horizontal direction. It is clear from Fig. 0.8 that the identification should
improve the model in the vertical direction mainly. Again the identified model
has been compared with a verification signal which is shown in Fig. 0.9.

It can be seen from Fig. 0.9 that the nominal model does indeed produce a
better fit. Still, both methods are able to improve the model. As clearly seen
from Fig. 0.8 the improvement of the identified model was mostly in the vertical
direction. A zoom on the verification experiment is shown in Fig. 0.10.

It is clear from Fig. 0.10 that the identified models have improved the predic-
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Figure 0.7: Comparison of a verification signal (blue) with the predicted output
given the nominal model (red) and each of the 3 identified models. The nominal
model G was found to have a fit of 51.36% in the horizontal direction and 54.13%
in the vertical direction. The PEM (yellow) was found to have a fit of 62.87%
in the horizontal direction and of 75.78 in the vertical direction. Identification
of the Youla deviation system (purple) gave a fit of 61.04% in the horizontal
direction and of 69.19% in the vertical direction.

tion accuracy in the vertical direction. Both models show a clear improvement
compared to the nominal case as shown in the 3’rd column of Table 0.1. The
result of the 3 experiments for each of the identification methods using Eq. (26)
to determine the quality of the identified model are shown in Table 0.1 together
with the fit of the nominal model.

As seen in Table 0.1, using PEM or subspace identification of the Youla
deviation system based on the modified Hansen scheme (G(S)) gives similar
results for small deviations. However in the case where the nominal model lack
significant insight to the plant(low fit for nominal model) the PEM results in a
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Figure 0.8: Comparison of the measured β signal with the predicted β signal,
using the two identified models of the Youla deviation system. The blue line
represents the measured signals, the red line is the predicted signals given an
Youla deviation system identified using the modified Hansen Scheme.

high deviation small deviation
2500 RPM 0 RPM 0 RPM

Horizontal Vertical Horizontal Vertical Horizontal Vertical

Nominal model 51.36% 54.13% 3.19% 3% 83.21% 76.12%
Open loop PEM model 62.87% 75.78% 48.91% 39.47% 83.9% 84.63%
Modified Hansen scheme G(S) 61.94% 69.19% 76.76% 83.58% 83.53% 81.18%
Modified Hansen scheme Gred(S) 60.71% 69.33% 76.73% 83.53% 83.07% 79.59%

Table 0.1: Model fit using each of the two identification methods. The fit is R2

fit shown in Eq. (26)

lower fit.
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Figure 0.9: Comparison of a verification signal (blue) with the predicted output
given the nominal model (red) and each of the 3 identified models. The nominal
model G was found to have a fit of 81.93% in the horizontal direction and 76.12%
in the vertical direction. The PEM (yellow) was found to have a fit of 83.9%
in the horizontal direction and of 84.63 in the vertical direction. Identification
of the Youla deviation system (purple) gave a fit of 83.53% in the horizontal
direction and of 81.18% in the vertical direction.

Model reduction of the identified models

The models identified using the modified Hansen scheme are all of a inconveni-
ently high order. This is a well known result of the identification method and it
is therefore found useful to investigate the impact on the quality of the identi-
fication when model reduction is conducted. Model reduction has in this paper
been conducted by requiring all models to be of the same order as the nominal
model (6′th order). The same systems as identified previously have been com-
pared in Table 0.1 where those systems identified using the Hansen scheme have
been reduced to be of 6′th order. The identified plant after model reduction is
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Figure 0.10: Zoom in on the comparison of a verification signal(blue) with the
predicted output given the nominal model (red) and each of the 2 identified
models, PEM (yellow) and Youla deviation system (purple)

given in Eq. (29).

Gred(S) = modred(G(S)) (29)

Here modered() denotes the model reduction function used and G(S) is the
originally identifed plant using the modified Hansen scheme. The results of
the models for which model reduction has been conducted are shown in Table
0.1. The model reduction technique used is described in [19] and the resulting
6′th order approximations shows to have a similar fit to the full order identified
systems as shown in Tab. 0.1. It is worth noting that the initially identified
models had as much as 40 states, which makes control design problematic.
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8 Conclusion

Identification of a gas bearing as part of a closed loop system has been conduc-
ted. It was shown possible to identify the gas bearing, as part of a closed loop
system, by reformulating the problem into identification of the Youla deviation
system which is a standard open loop identification problem. Furthermore, us-
ing an open loop PEM method for identification gives similar results when the
nominal model predicts the system dynamics with high accuracy. A simula-
tion example was given which pointed towards the identification of the youla
deviation system to produce better results on average for poor knowledge of
the plant dynamics. Experiments showed that for a poor nominal model the
modified Hansen scheme method did indeed produce better results, with a fit
28% in the horizontal direction and 44% higher in the vertical direction for poor
a priori knowledge of the plant dynamics. The PEM method furthermore used
considerably longer time to identify a model than the subspace identification
method used to determine the Youla deviation system. This result might be
due to how the PEM method is restricted to the model structure determined
while the modified Hansen scheme is not. The identified systems using the
Youla deviation system however also has some disadvantages. Any physical un-
derstanding related to model parameters of the gas bearing is lost when using
the modified Hansen scheme. Furthermore the methods produced models of
higher order than the nominal model and the plant identified using the PEM
for identification. This tendency of order increase comes naturally from the
construction of the plant when the Youla deviation system has been identified.
Unnecessary high order model solutions is thus a well known consequence when
using the modified Hansen scheme. Model reduction has therefore been conduc-
ted which was able to produce acceptable results. It have thus been shown that
the method has its clear advantage over PEM identification when model expert
knowledge is lacking.
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