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Abstract

Statistical inference is a widely-used, powerful tool for learning about natural processes in

diverse fields. The statistical software platforms AD Model Builder (ADMB) and Template

Model Builder (TMB) are particularly popular in the ecological literature, where they are typi-

cally used to perform frequentist inference of complex models. However, both lack capabili-

ties for flexible and efficient Markov chain Monte Carlo (MCMC) integration. Recently, the

no-U-turn sampler (NUTS) MCMC algorithm has gained popularity for Bayesian inference

through the software Stan because it is efficient for high dimensional, complex hierarchical

models. Here, we introduce the R packages adnuts and tmbstan, which provide NUTS

sampling in parallel and interactive diagnostics with ShinyStan. The ADMB source code

was modified to provide NUTS, while TMB models are linked directly into Stan. We describe

the packages, provide case studies demonstrating their use, and contrast performance

against Stan. For TMB models, we show how to test the accuracy of the Laplace approxima-

tion using NUTS. For complex models, the performance of ADMB and TMB was typically

within +/- 50% the speed of Stan. In one TMB case study we found inaccuracies in the

Laplace approximation, potentially leading to biased inference. adnuts provides a new

method for estimating hierarchical ADMB models which previously were infeasible. TMB

users can fit the same model in both frequentist and Bayesian paradigms, including using

NUTS to test the validity of the Laplace approximation of the marginal likelihood for arbitrary

subsets of parameters. These software developments extend the available statistical meth-

ods of the ADMB and TMB user base with no additional effort by the user.

Introduction

Frequentist and Bayesian statistical inference are powerful tools for investigating natural pro-

cesses throughout diverse fields, including ecology [1,2]. The software package AD Model

Builder (ADMB; [3]) has a long history, primarily in fisheries science, for complex non-linear

fixed effects models, but an extension allowing estimation of mixed effects models, and an
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accompanying R package, led to broader use in the ecological community [4, 5]. However,

manual specification of separable functions hindered the popularity of this software for

complex mixed effects models. Recently, Template Model Builder (TMB; [6, 7]) was developed

specifically to efficiently estimate frequentist mixed effects models using the Laplace approxi-

mation to the marginal likelihood [4], effectively replacing ADMB for such models. However,

these software platforms designed for frequentist inference lack flexible, efficient (i.e., fast)

capabilities for working in the Bayesian framework.

Recently, the software package Stan [8, 9] has gained popularity due to its applicability to a

broad range of Bayesian models and efficient Markov chain Monte Carlo (MCMC) sampling

[10]. For instance, Stan is faster than the popular JAGS software [11] for complex hierarchical

ecological models [12]. Stan achieves such efficiency with the no-U-turn sampler (NUTS; [13],

a self-tuning variant of Hamiltonian Monte Carlo (HMC [14, 15], a family of MCMC algo-

rithms. Thus, ADMB and TMB models rewritten in Stan could use NUTS to gain state-of-the-

art MCMC methods.

However, it is not always feasible nor desirable to rewrite a model in Stan. For instance,

some ADMB models can be tens of thousands of lines of code (e.g., [16, 17]), or use features

unavailable in Stan such as phased optimization. Likewise, TMB users may not want to aban-

don the marginal Laplace approximation as an option for frequentist inference in hierarchical

models, either for philosophical or practical reasons. For instance, maximum marginal likeli-

hood estimation with the Laplace approximation tends to be orders of magnitude faster, and

thus useful during model development or for high-dimensional, challenging models. Despite

this reluctance, ADMB and TMB users would benefit from fast MCMC sampling for a broad

range of hierarchical models. An alternative approach is to add Stan-like capabilities (such as

the NUTS algorithm and diagnostic tools) to ADMB and TMB models.

Here, we introduce new software for running NUTS for ADMB and TMB models. The R

package adnuts [18] provides NUTS sampling for ADMB models, while the package

tmbstan [19] does the same for TMB. We detail their capabilities, demonstrate the methods

on ecological examples, and contrast their performance against Stan. Adding state-of-the-art

MCMC sampling to ADMB and TMB models allows users of these platforms an expanded

toolset to better analyze data and gain deeper insights into natural processes.

Software implementation

For HMC to be efficient, it needs fast and accurate gradient calculations for arbitrary log-pos-

teriors. Stan accomplishes this with automatic differentiation [20]. Fortunately, both ADMB

and TMB also have this capability for models built in their respective “template” languages.

HMC also needs optimal trajectory lengths and step sizes, and information about the posterior

shape via a ‘mass matrix’ (see section 4.1 of [14]). NUTS automatically produces nearly-opti-

mal trajectory lengths [21], and tunes the optimal step size during warmup, while Stan intro-

duced mass matrix adaptation during warmup (see section 34.2 of [8]).

ADMB added HMC a decade ago, but it is rarely used due to tuning difficulties. However,

it was a convenient starting place to build the basic NUTS framework (i.e., algorithm 6 in

[13]). We then added diagonal mass matrix adaptation modeled after Stan’s. As the NUTS

code is in the ADMB source, the capability is in the model executable, and can be called

directly from the command line (although we discourage it). In contrast, we were able to link

TMB directly to Stan using the class ’op_matrix_vari’ of the rstan package [22]. Thus, the

model objective (fn) and gradient (gr) functions are calculated by TMB but passed to Stan

which executes the NUTS algorithm.

No-U-turn MCMC sampling for ADMB and TMB models
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Accompanying Stan is a suite of tools for diagnosing convergence of NUTS chains and per-

forming inference. For instance, the rstan R package [22] contains functions to estimate

effective sample sizes (ESS) and potential scale reduction factor R̂ [23], and plotting functions

for examining chain behavior. ShinyStan is an interactive tool for visual and numerical sum-

maries of model parameters, and is particularly useful for examining NUTS chains [24]. Since

our goal was to provide broad, Stan-like functionality to ADMB and TMB users without con-

verting models to a new language, we developed R packages to facilitate running NUTS and

mirror Stan as closely as possible.

Summary of the adnutsR package

adnuts streamlines the workflow for ADMB users compared to command line execution,

including parallel execution and post-processing in R. The sample_admb function can run

both NUTS and Metropolis-Hastings algorithms, and can optionally evaluate the model in the

‘mceval’ phase on post-warmup samples from merged chains. The returned fits work with

Stan diagnostic tools, including ShinyStan (Table 1). In addition to adaptive diagonal mass

matrix, the user can specify arbitrary dense mass matrices (or the estimated maximum likeli-

hood covariance), which is a capability not currently available to Stan users. Thus, to use

NUTS an ADMB user only needs to define a valid model (including adding priors and a

proper posterior) and compilation by the newest ADMB version.

Summary of the tmbstanR package

tmbstan facilitates linkage with the function stanwhile adding a few top-level options.

Most importantly, univariate parameter bounds can also be passed to tmbstan as vectors

(including one-sided constraints) which are then applied internally, with Jacobian adjust-

ments, by Stan. Because tmbstan uses the stan function to sample, it returns an object of

class ‘stanfit’ just like a Stan model and thus works with Stan tools automatically. Thus, getting

a TMB model working with Stan only requires adding explicit priors.

TMB uses the Laplace approximation to integrate random effects, but this is usually unnec-

essary in a Bayesian analysis because MCMC integrates all parameters. Therefore, by default

TMB will ignore the declaration of integrated parameters, but this can be changed with the

tmbstan argument ‘laplace’. When enabled, TMB integrates random effects while Stan inte-

grates fixed effects with NUTS. The posterior distribution of the fixed effects will be the same

Table 1. Summary of key functions from R packages.

Function Purpose

sample_admb Run NUTS or RWM chains. Options include parallel chains, specification of the mass matrix, and fine tuning of the NUTS

algorithm parameters. Returns a list containing samples (samples), NUTS meta data for each iteration (sampler_params), and other

information.

extract_samples Extract samples from fitted object, including flags whether to include warmup samples and the log posterior column.

launch_shinyadmb Launch the interactive diagnostic tool ShinyStan for an ADMB fit for both NUTS and RWM chains.

extract_sampler_params Extract NUTS trajectory metadata, such as acceptance probabilities, divergences, and tree depths.

pairs_admb A modified pairs plot that works specifically for ADMB fits. Includes option to add a covariance matrix estimated by inverting the

Hessian matrix evaluated at the maximum likelihood point, if it exists.

tmbstan Wrapper to pass TMB model to function stan from the rstan package. The ‘laplace’ argument toggles the use of the Laplace

approximation. Other arguments are passed on to stan.

NUTS is the no-U-turn sampler and RWM is the random walk Metropolis algorithm (the original ADMB algorithm). All functions are from the adnuts package,

except tmbstanwhich is from the tmbstan package.

https://doi.org/10.1371/journal.pone.0197954.t001

No-U-turn MCMC sampling for ADMB and TMB models

PLOS ONE | https://doi.org/10.1371/journal.pone.0197954 May 24, 2018 3 / 10

https://doi.org/10.1371/journal.pone.0197954.t001
https://doi.org/10.1371/journal.pone.0197954


whether the Laplace approximation is enabled or not, so long as the approximation is accurate.

This approach can test the accuracy of the Laplace approximation, and we demonstrate it in

our case studies.

Case studies

ADMB model: Swallows

We demonstrate NUTS sampling in ADMB with the swallows model fitted to mark-recapture

data from Grüebler and Naef-Daenzer [25] and further analyzed in section 14.5 of Korner-

Nievergelt, Roth [26]. This model estimates state-space survival and detection with environ-

mental covariates and three random effect components for a total of 5 fixed effects and 172

random effects.

ADMB does not support one-sided constraints natively, so we included the variance param-

eters in log space, and used the exponentiated version in the log-density calculations. We

included the necessary Jacobian adjustment for this transformation directly in the model code.

We also used non-centered random effects which can perform better for HMC in hierarchical

models [12, 27, 28]. See ‘Data Accessibility’ below for information on how to access the model

files, data and reproducible R scripts used herein.

We recommend placing the model executable and any necessary inputs files into a separate

folder, here called ‘admb’. We begin with the default NUTS settings: 3 chains, target accep-

tance rate of 0.8, 2000 total iterations, 1000 warmup iterations, and adapted step size and

adapted diagonal mass matrix. We also include optional arguments to run three chains on par-

allel cores.

fit <- sample_admb(model = 'swallows', path = 'admb', init =
inits,
seeds = seeds, parallel = TRUE, cores = 3)
This model exhibits 4 divergent transitions (i.e., where the simulated Hamiltonian or total

energy goes to infinity), so we rerun with an increased target acceptance rate to reduce step

sizes with the argument control = list(adapt_delta = 0.9). This is the recom-

mended approach when models exhibit divergences (see section 34.4 of [8]). The model takes

longer to run, but the divergences are eliminated. Using helper functions (Table 1) we examine

the fit:

sum(extract_sampler_params(fit)$divergent__)
mon <- monitor(fit$samples)
launch_shinyadmb(fit)
Due to its complex hierarchical structure, this model was extremely difficult to fit using the

traditional approach for MCMC in ADMB (results not shown). We also fit this model in Stan

and TMB, and found that ADMB was approximately 88% as fast as Stan (via rstan), while

TMB (with tmbstan) was 126% as fast (S1 Table). Thus, this complex hierarchical model posed

no issues and ADMB was able to sample efficiently.

TMB model: Wildflower

We demonstrate NUTS for TMB with the tmbstan package using a binomial generalized lin-

ear mixed effects model for flowering success of a perennial plant. This wildflower model uses

a long-term data set (e.g., [29]) and was analyzed in Bolker, Gardner [30]. It includes three sets

of random effects, two of which are crossed. As above, we used non-centered random effects

and manually transformed the variance parameters. First, we compile and link the model as is

normally done:

No-U-turn MCMC sampling for ADMB and TMB models
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compile('wildflower.cpp')
dyn.load(dynlib('wildflower'))
random <- c('yearInterceptEffect_raw',

'plantInterceptEffect_raw',
'plantSlopeEffect_raw'),
obj <- MakeADFun(data = data, parameters = inits[[1]],

random = random)
We use the tmbstan function to sample with Stan defaults, with initial values supplied as

a list of lists.

options(mc.cores = 3)
fit <- tmbstan(obj = obj, chains = 3, init = inits)
launch_shinystan(fit)
Setting the mc.cores option tells Stan to use three cores to sample in parallel. The random

parameters declaration was ignored by default and they were integrated with NUTS, the same

as the fixed effects. We rerun the analysis with the Laplace approximation turned on, such that

Stan integrates the fixed effects with NUTS, and TMB integrates the random effects with the

Laplace approximation.

fit.la <- tmbstan(obj = obj, chains = 3, init = inits,
laplace = TRUE)

Here, the Laplace approximation is done at each step of each NUTS trajectory such that

Stan is unaware the random effects exist. The Bayesian posteriors for two of the fixed effects

differ between these two model runs (Fig 1), suggesting the Laplace approximation assump-

tions are not met, to a degree. This could lead to bias in parameter estimates or uncertainties.

In contrast, the swallows model did not exhibit this property (Fig 2). Although generally not

recommended with NUTS, thinning may be necessary for such tests to ensure equivalent ESS

between versions, otherwise comparisons may be misleading due to different mixing rates

rather than true differences. Enabling the Laplace was less efficient than full MCMC integra-

tion for the two case studies here (S2 Table), but it is unclear whether this will typically be

true.

We also fit the wildflower model in Stan and ADMB, and found that ADMB was about 75%

the speed of Stan, and TMB was 102% the speed. Thus, with only trivial changes to the TMB

model template file, we obtained efficient Bayesian inference on a complex hierarchical model

and tested the accuracy of the Laplace approximation.

Discussion

Here we introduced new software which bring state-of-the-art MCMC integration to

ADMB and TMB models with virtually no effort by the user. Efficiencies (i.e., effective sam-

ples per time) were relatively similar among platforms, typically within +/- 50% the speed of

Stan (S1 Text). Despite this, there are some distinct advantages to doing Bayesian modeling

in Stan.

We do not anticipate future developments to the ADMB NUTS code, so future algorithm

advances would be unavailable. This is already true, because Stan implements exhaustive

HMC [21], but this feature was not included in ADMB. Since TMB uses the Stan algorithms

directly, it will not have this problem. However, Stan was developed specifically for Bayesian

inference and has features in its template language that TMB users cannot use. For instance,

there are more complex parameter transformations with automatic Jacobian adjustments.

Thus, purely Bayesian analyses would have clear advantages by using Stan.

No-U-turn MCMC sampling for ADMB and TMB models
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Whether individual models should be converted to Stan will depend. Many important

ADMB models would be nearly impossible, due to extremely complex models with a suite of

other software tools supporting them (e.g., [16]). For TMB, migrating to Stan means losing the

ability to do the Laplace approximation on arbitrary subsets of parameters. Based on our per-

formance tests (S1 Table, S1 Fig), substantial speed improvements by converting models to the

Stan language is not guaranteed. ADMB and TMB users considering converting a model to

Stan can now explore NUTS to better gauge the expected advantages.

Hierarchical modeling is clearly a powerful modeling tool for exploring ecological processes

in complex data [1]. Previously, these models were difficult to estimate in ADMB and hyper-

variances were often fixed arbitrarily, and penalized maximum likelihood employed. Now

these models can be estimated efficiently in a Bayesian framework using NUTS. TMB can

Fig 1. Testing the Laplace approximation of the random effects. Bayesian integration was performed on the wildflower TMB model with random effects

integrated using two “versions”: (1) the Laplace approximation and (2) full MCMC integration via NUTS. Bayesian posterior samples of selected fixed effects

(estimated with NUTS) are shown. Columns and rows corresponds to a fixed effect parameter, with the diagonal showing a QQ-plot of the two versions of the

model for that parameter, including a 1:1 line in gray. Lower diagonal plots contain pairwise parameter posterior points, with color corresponding to integration

version, and larger colored circles the pairwise medians. Posterior rows were randomized to prevent consistent overplotting of one version. Differences in versions

suggest the Laplace approximation assumptions are not met. Other fixed effects showed no differences and are left off for clarity.

https://doi.org/10.1371/journal.pone.0197954.g001

No-U-turn MCMC sampling for ADMB and TMB models
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already fit mixed effects models using marginal maximum likelihood via the Laplace approxi-

mation, but now users can do a full Bayesian analysis as well. In addition, the Laplace approxi-

mation can be tested by running NUTS with it turned on and off (Figs 1 and 2).

Conclusions

These packages provide new estimation methods for thousands of existing models, primarily

in ecological fields. We expect NUTS to be useful particularly within the fisheries science com-

munity, by converting penalized likelihood ADMB models to be fully Bayesian. TMB users

now have access to two state-of-the-art forms of integration: the Laplace approximation and

NUTS sampling as performed by Stan. We expect many analysts to adopt this framework

given its flexibility in inference for a wide range of models. To our knowledge, TMB is the only

software platform capable of toggling between integration tools so effortlessly. We believe that

by adding powerful Bayesian integration capabilities to these two model building tools, ana-

lysts will have new tools to better investigate natural processes.

Fig 2. Testing the Laplace approximation integration of the random effects. Same as for Fig 1 except for three hypervariances and a slope parameter in the

swallows model.

https://doi.org/10.1371/journal.pone.0197954.g002
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S1 Text. Speed comparisons between ADMB, TMB, and Stan. Further details of how we
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S1 Fig. Results of simulation examples with increasing dimensionality. Rows show different

metrics: runtime (in seconds) includes warmup and sampling iterations but not compilation,

ESS is the minimum effective sample size, and efficiency is ESS/runtime. Columns show differ-

ent models: zdiag is independent normal but variable variances, growth is a non-linear mixed

effects model with increasing numbers of animals. Lines denote median across 30 chains inti-

tialized from diffuse points.

(PNG)

S2 Fig. Results of empirical models. Median and interquartile range (points and vertical

lines) across 30 chains.

(PNG)

S1 Table. Performance on empirical models of NUTS across three platforms using default

settings. Efficiencies are relative to Stan for each model, across 30 replicates with the same dif-

fuse initial conditions. Stan uses the package rstan, TMB models used package tmbstan and

ADMB models package adnuts.

(DOCX)

S2 Table. Performance of versions of inference for the swallows and wildflower model. The

TMB models were estimated in three ways: marginal maximum likelihood with the Laplace

approximation (MLE), Bayesian integration of all parameters with NUTS using tmbstan (Full

Bayesian), and Bayesian integration of fixed effects using tmbstan while using the Laplace

approximation for the random effects (Laplace).

(DOCX)
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