

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Jul 07, 2018

Drawing Trees

Halkjær From, Andreas ; Schlichtkrull, Anders; Villadsen, Jørgen

Published in:
Proceedings of the Isabelle Workshop 2018

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Halkjær From, A., Schlichtkrull, A., & Villadsen, J. (2018). Drawing Trees. In Proceedings of the Isabelle
Workshop 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/159136044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/drawing-trees(fe5975fd-ccdc-4963-9962-47dde5289b99).html

Drawing Trees

Andreas Halkjær From Anders Schlichtkrull Jørgen Villadsen

DTU Compute, AlgoLoG, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

Abstract

We formally prove in Isabelle/HOL two properties of an algorithm for laying out trees visually.
The first property states that removing layout annotations recovers the original tree. The second
property states that nodes are placed at least a unit of distance apart. We have yet to formalize
three additional properties: That parents are centered above their children, that drawings are
symmetrical with respect to reflection and that identical subtrees are rendered identically.

1 Introduction

We consider the functional pearl Drawing Trees by Andrew J. Kennedy [1] and formalize it in Isabelle/HOL.
The formalization is available online.1 The paper presents a functional program for laying out trees in an
“aesthetically pleasing” way according to four rules. Quoting Kennedy, the properties are as follows: [1,
p. 527]

1. Two nodes at the same level should be placed at least a given distance apart.

2. A parent should be centered over its offspring.

3. Tree drawings should be symmetrical with respect to reflection – a tree and its mirror image should
produce drawings that are reflections of each other. In particular, this means that symmetric trees will
be rendered symmetrically. So, for example, Figure 1 [1, p. 528] shows two renderings, the first bad,
the second good.

4. Identical subtrees should be rendered identically – their position in the larger tree should not affect
their appearance. In Figure 2 [1, p. 528] the tree on the left fails the test, and the one on the right
passes.

We have implemented the algorithm in Isabelle using Complex Main since the algorithm uses real numbers
for node offsets. Our formalization includes a proof of property 1 as well as a proof of structural preservation.
We construct a counterexample to property 3 as it is stated in the paper and suggest a remedy, which we
leave to future work along with properties 2 and 4.

The paper is structured as follows. First we give a brief overview of the layout algorithm as implemented
in Isabelle (§ 2). We show that the algorithm is equivalent to a slower but simpler definition (§ 3). This
is used to show that layouting preserves the structure of the original tree (§ 4) and that nodes are spaced
at least a unit apart (§ 5). Then we show a counterexample to property 3 as stated (§ 6) before finally
concluding (§ 7).

We are unaware of other work on formally verifying aesthetic properties of layout algorithms.

1http://www.student.dtu.dk/~s144442/Drawing_Trees.thy

1

2 Algorithm

Kennedy presents an implementation in Standard ML. We have translated this to corresponding Isabelle
definitions, cf. Figure 1 — these can be code generated back to Standard ML if needed.

The algorithm takes a tree as input and annotates each node with a horizontal offset relative to its parent.
Vertical offsets between levels are implicit. The main function, design’, returns both the annotated tree and
its extent. An extent is a list of horizontal ranges, one for each level of the tree, denoting the space taken
up by the tree. Extents use absolute coordinates. The body of design’ works by calculating the annotated
subtrees and their extents recursively, then, based on these extents, calculating the horizontal offsets that
make the subtrees fit after each other via fitlist and finally doing some bookkeeping to return the correct
extent for itself.

For fitting, fitlist tries to fit the given extents from both the left and right, and then takes an average to
produce a balanced layout.

We have to define unzip ourselves, as it is not currently included in Isabelle. We use the efficient definition
given by Kennedy, but show it equivalent to a version using built-in functions on lists to reason about it
more easily:

lemma unzip [simp]: 〈unzip xs = (map fst xs, map snd xs)〉

by (induct xs) auto

The running time of the presented algorithm is quadratic in the size of the tree, as we use absolute
positions for extents and move these in every recursive call. Kennedy notes that it can be made linear by
using relative positions, as for the offsets, but that the definitions become “rather less elegant” [1, p. 534].
We have opted for the elegant version here.

3 Simpler Definition

The algorithm calculates the extent on-the-fly for the sake of performance, but this makes it harder to reason
about than doing it explicitly every time. Therefore we prove it equivalent to the following slower but simpler
definition.

First, we need a way to calculate the extent of a tree:

fun extent-of-tree :: 〈(′a ∗ real) tree ⇒ extent〉 where
〈extent-of-tree (Node (-, offset) subs) =
(offset , offset) # mergelist (map (λt . moveextent (extent-of-tree t , offset)) subs)〉

This can then be used to obtain the extents of subtrees in a simpler version of design’, dubbed raw-design:

primrec raw-design :: 〈 ′a tree ⇒ (′a ∗ real) tree〉 where
〈raw-design (Node label subtrees) = (

let trees = map raw-design subtrees;
extents = map extent-of-tree trees;
positions = fitlist extents;
ptrees = map movetree (zip trees positions)

in Node (label , 0) ptrees)〉

We prove that the two new definitions are functionally equivalent to design’ :

theorem design ′-raw-design:
〈design ′ t = (raw-design t , extent-of-tree (raw-design t))〉

2

datatype ′a tree = Node ′a 〈 ′a tree list〉

type-synonym extent = 〈(real ∗ real) list〉

fun movetree :: 〈(′a ∗ real) tree ∗ real ⇒ (′a ∗ real) tree〉 where
〈movetree ((Node (label , x) subs), x ′) = Node (label , x + x ′) subs〉

primrec moveextent :: 〈extent ∗ real ⇒ extent〉 where
〈moveextent (e, x) = map (λ (p, q) ⇒ (p + x , q + x)) e〉

fun merge :: 〈extent ⇒ extent ⇒ extent〉 where
〈merge [] qs = qs〉

| 〈merge ps [] = ps〉

| 〈merge ((p1 , p2) # ps) ((q1 , q2) # qs) = (min p1 q1 , max p2 q2) # merge ps qs〉

primrec mergelist :: 〈extent list ⇒ extent〉 where
〈mergelist [] = []〉

| 〈mergelist (e#es) = merge e (mergelist es)〉

fun fit :: 〈extent ⇒ extent ⇒ real 〉 where
〈fit ((p1 ,p2)#ps) ((q1 ,q2)#qs) = max (fit ps qs) (max p1 p2 − min q1 q2 + 1)〉

| 〈fit - - = 0 〉

primrec fitlistl ′ :: 〈extent ⇒ extent list ⇒ real list〉 where
〈fitlistl ′ acc [] = []〉

| 〈fitlistl ′ acc (e#es) = (let x = fit acc e in x # fitlistl ′ (merge acc (moveextent (e, x))) es)〉

definition fitlistl where 〈fitlistl ≡ fitlistl ′ []〉

definition flipextent :: 〈extent ⇒ extent〉 where
〈flipextent = map (λ(p, q). (−q , −p))〉

definition fitlistr :: 〈extent list ⇒ real list〉 where
〈fitlistr = rev o map uminus o fitlistl o map flipextent o rev 〉

definition fitlist :: 〈extent list ⇒ real list〉 where
〈fitlist es = map mean (zip (fitlistl es) (fitlistr es))〉

fun unzip :: 〈(′a × ′b) list ⇒ ′a list × ′b list〉 where
〈unzip [] = ([], [])〉

| 〈unzip ((a, b) # xs) = (case unzip xs of (as, bs) ⇒ (a # as, b # bs))〉

primrec design ′ :: 〈 ′a tree ⇒ (′a ∗ real) tree ∗ extent〉 where
〈design ′ (Node label subtrees) = (

let (trees, extents) = unzip (map design ′ subtrees);
positions = fitlist extents;
ptrees = map movetree (zip trees positions);
pextents = map moveextent (zip extents positions);
resultextent = (0 , 0) # mergelist pextents;
resulttree = Node (label , 0) ptrees

in (resulttree, resultextent))〉

definition design where 〈design t ≡ fst (design ′ t)〉

Figure 1: The layout algorithm

3

4 Property 0 — Structure Preservation

We should be able to strip away the annotated offsets and get the same tree back. In other words, the
following function should cancel design:

fun strip-offsets :: 〈(′a × real) tree ⇒ ′a tree〉 where
〈strip-offsets (Node (label , offset) subs) = Node label (map strip-offsets subs)〉

And it does:

theorem strip-offsets-design: 〈strip-offsets (design t) = t〉

unfolding design-def using strip-offsets-design ′ by (metis prod .collapse)

This immediately gives us that design is injective:

theorem design-inj : 〈t = t ′ ←→ design t = design t ′〉

using strip-offsets-design by metis

5 Property 1 — Spacing

We prove that all nodes are offset in such a way that they are at least one unit apart from every other node
on that level in the tree. This is proved first for extents and then for nodes. We use the following definition
to check that two extents are properly spaced:

fun spaced :: 〈extent ⇒ extent ⇒ bool 〉 where
〈spaced ((p1 , p2) # ps) ((q1 , q2) # qs) = (q1 − p2 ≥ 1 ∧ spaced ps qs)〉

| 〈spaced - - = True〉

It is useful to consider extents within other extents, as this gives us a more readily applicable induction
hypothesis for functions that accumulate extents. We define the following:

fun within-extent :: 〈extent ⇒ extent ⇒ bool 〉 where
〈within-extent ((p1 , p2) # ps) ((q1 , q2) # qs) = (q1 ≤ p1 ∧ p2 ≤ q2 ∧ within-extent ps qs)〉

| 〈within-extent [] - = True〉

| 〈within-extent - - = False〉

For instance, if ps is contained within xs and we fit es relative to xs, then ps automatically becomes
spaced correctly with regards to es:

lemma fitlistl ′-spaced-within:
〈within-extent ps xs =⇒ list-all (spaced ps) (map moveextent (zip es (fitlistl ′ xs es)))〉

To check every extent relative to every other extent to the right of it, we use the function all-pairs:

primrec all-pairs :: 〈(′a ⇒ ′a ⇒ bool) ⇒ ′a list ⇒ bool 〉 where
〈all-pairs - [] = True〉

| 〈all-pairs p (e # es) = (list-all (p e) es ∧ all-pairs p es)〉

definition all-spaced :: 〈extent list ⇒ bool 〉 where
〈all-spaced = all-pairs spaced 〉

Thus we can prove that fitlistl spaces extents correctly:

lemma all-spaced-fitlistl : 〈all-spaced (map moveextent (zip es (fitlistl es)))〉

unfolding fitlistl-def using all-spaced-fitlistl ′ .

4

We reverse the order of extents and flip them around in the definition of fitlistr, so the following property
relating these operations is useful:

lemma spaced-move-flip:
〈spaced (moveextent (flipextent qs, y)) (moveextent (flipextent ps, x)) =
spaced (moveextent (ps, −x)) (moveextent (qs, −y))〉

unfolding flipextent-def by (induct ps qs rule: spaced .induct) auto

This and a few other lemmas allow us to prove that fitlistr spaces extents correctly:

lemma all-spaced-fitlistr :
〈all-spaced (map moveextent (zip es (fitlistr es)))〉

If moving an extent by either of two values spaces it correctly, then the mean of those two will also space
it correctly:

lemma spaced-mean:
〈spaced (moveextent (ps, x)) (moveextent (qs, y)) =⇒
spaced (moveextent (ps, a)) (moveextent (qs, b)) =⇒
spaced (moveextent (ps, mean (x , a))) (moveextent (qs, mean (y , b)))〉

by (induct ps qs rule: spaced .induct) (simp-all add : add-divide-distrib)

And building on this gives us correct spacing for fitlist :

lemma all-spaced-fitlist : 〈all-spaced (map moveextent (zip es (fitlist es)))〉

Finally we define what it means for a tree to be properly spaced:

fun get-offset :: 〈(′a ∗ real) tree ⇒ real 〉 where
〈get-offset (Node (-, x) -) = x 〉

definition spaced-offset :: 〈real ⇒ real ⇒ bool 〉 where
〈spaced-offset x y = (x + 1 ≤ y)〉

primrec spaced-tree :: 〈(′a ∗ real) tree ⇒ bool 〉 where
〈spaced-tree (Node - subs) =
(all-pairs spaced-offset (map get-offset subs) ∧ list-all spaced-tree subs)〉

If the extents of two trees are properly spaced, then so are the trees’ offsets:

lemma spaced-extents-offsets:
assumes 〈spaced (extent-of-tree s) (extent-of-tree t)〉

shows 〈spaced-offset (get-offset s) (get-offset t)〉

unfolding spaced-offset-def using assms
by (cases s rule: get-offset .cases, cases t rule: get-offset .cases) simp-all

Next we prove that raw-design spaces correctly. We get proper spacing for the subtrees by the induction
hypothesis, then we show that fitting them together preserves that spacing:

lemma spaced-raw-design: 〈spaced-tree (raw-design t)〉

proof (induct t)
case (Node v subs)
define trees where 〈trees ≡ map raw-design subs〉

define extents where 〈extents ≡ map extent-of-tree trees〉

define positions where 〈positions ≡ fitlist extents〉

have 〈list-all spaced-tree trees〉

5

unfolding trees-def using Node by (induct subs) simp-all
then have 〈list-all spaced-tree (map movetree (zip trees positions))〉

using move-spaced-trees by blast
moreover from this have 〈all-spaced (map extent-of-tree (map movetree (zip trees positions)))〉

unfolding extents-def positions-def
using Node all-spaced-fitlist all-spaced-extent-of-fitted-tree by blast

moreover have 〈?case = spaced-tree (Node (v , 0) (map movetree (zip trees positions)))〉

unfolding trees-def extents-def positions-def by simp
ultimately show ?case

using all-spaced-tree by metis
qed

And through the equivalence between the two definitions, we also obtain the property for the faster one:

theorem spaced-design: 〈spaced-tree (design t)〉

using design-raw-design spaced-raw-design by metis

6 Property 3 — Mirror Image Property

Kennedy defines the following two functions:

fun reflect :: 〈 ′a tree ⇒ ′a tree〉 where
〈reflect (Node v subtrees) = Node v (map reflect (rev subtrees))〉

fun reflectpos :: 〈(′a ∗ real) tree ⇒ (′a ∗ real) tree〉 where
〈reflectpos (Node (label , offset) subtrees) = Node (label , −offset) (map reflectpos subtrees)〉

And states that for all trees t, it should hold that design t = reflect (reflectpos (design t)) [1, p. 533]. The
function reflect reverses the positions of subtrees, while reflectpos mirrors the tree’s offsets horizontally. But
since the drawing is based on the offsets, and only reflectpos changes these, this equation will not hold for any
asymmetric tree. We can therefore prove the negation of Kennedy’s claim using a specific counterexample:

lemma ¬(∀ t . design t = reflect (reflectpos (design t)))
proof −

let ?t = Node undefined [Node undefined [Node undefined [Node undefined [], Node undefined []]],
Node undefined [Node undefined []]]

have ¬ (design ?t = reflect (reflectpos (design ?t)))
by normalization

then show ?thesis
by blast

qed

What is actually meant is probably that design t ≈ reflectpos (design (reflect t)) should hold for all trees
t. Here we first reflect the tree structurally, then design it, and then mirror the produced offsets. By ≈ we
mean that the trees are drawn equally, not that they are equal as Isabelle/ML values, since the children will
be in opposite order because of the structural reflection. Formalizing this property is a work-in-progress.

7 Conclusion

It is notable how easily a functional algorithm as the one given by Kennedy [1] can be formalized in Isabelle.
Furthermore, Isabelle can easily deal with real numbers in a practical application as this one.

Proving the algorithm equivalent to a slower but simpler version helped tremendously in the formalization.
It would have helped us if unzip was included in Isabelle along with various lemmas similar to how zip or
map as in the Isabelle distribution.

6

For future work, the rest of the properties should be formally proved as well. While Kennedy states that
this can easily be done for most of them [1, p. 533], doing so in practice has turned out to be non-trivial and
even revealed an error in the specification of property 3. This showcases the value of formalizing seemingly
obvious properties.

References

[1] Andrew J. Kennedy. “Functional Pearls: Drawing Trees”. In: Journal of Functional Programming
6.3 (1996), pp. 527–534. doi: 10.1017/S0956796800001830. url: https://doi.org/10.1017/

S0956796800001830.

7

