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Colistin resistance by mobilisable mcr genes has been described in bacteria of
food-animal origin worldwide, which has raised public health concerns about its
potential foodborne transmission to human pathogenic bacteria. Here we provide
baseline information on the molecular epidemiology of colistin-resistant, mcr-positive
Escherichia coli and Salmonella isolates in food-producing animals in Italy in 2014-
2015. A total 678, 861 and 236 indicator E. coli, Extended Spectrum Beta-Lactamase
(ESBL)/AmpC-producing E. coli, and Salmonella isolates, respectively, were tested for
colistin susceptibility. These isolates were collected according to the EU harmonized
antimicrobial resistance monitoring program and are representative of at least 90
and 80% of the Italian poultry (broiler chickens and turkeys) and livestock (pigs and
bovines < 12 months) production, respectively. Whole genome sequencing by Illumina
technology and bioinformatics (Center for Genomic Epidemiology pipeline) were used
to type 42 mcr-positive isolates by PCR. Colistin resistance was mainly observed in
the ESBL/AmpC E. coli population, and was present in 25.9, 5.3, 6.5, and 3.9% of
such isolates in turkeys, broilers, pigs, and bovines, respectively. Most colistin-resistant
isolates (141/161, 87.5%) harbored genes of the mcr-1 group. mcr-1 was also detected
in a small proportion of Salmonella isolates (3/146, 2.0%) in turkeys. Additional mcr
types were mcr-3 in four ESBL-producing E. coli from bovines, and two mcr-4 in
ESBL (n = 1) and indicator E. coli (n = 1) from pigs and bovines. We describe notable
diversity of mcr variants with predominance of mcr-1.1 and mcr-1.2 on conjugative
IncX4 plasmids in E. coli and in Salmonella serovars Typhimurium, Newport, Blockley
from turkey. A new variant, mcr-1.13 was detected in the chromosome in E. coli in
turkey and pig isolates. Additionally, we describe mcr-3.2 and mcr-4.3 in E. coli from
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bovines, and mcr-4.2 in E. coli from pigs. These findings elucidate the epidemiology of
colistin resistance in food-producing animals in Italy along with its genetic background,
and highlight the likelihood of mcr horizontal transfer between commensal bacteria
and major food-borne pathogens (Salmonella) within the same type of productions.
Thorough action and strategies are needed in order to mitigate the risk of mcr transfer
to humans, in a “One Health” perspective.

Keywords: epidemiology, colistin resistance, mcr genes, whole genome sequencing, food-producing animals,
Italy, E. coli, Salmonella

INTRODUCTION

Colistin is a polymyxin classified among the Highest Priority
Critically Important Antimicrobials for human medicine by
the World Health Organization (WHO), and it is considered
a last resort antimicrobial for the treatment of infections by
carbapenem-resistant Enterobacteriaceae in humans (Poirel et al.,
2017).

In 2015, colistin resistance mediated by mcr-1, a
phosphoethanolamine transferase gene located on a transferable
plasmid was first reported in Escherichia coli from animals, food
and patients from China (Liu et al., 2016). Since then, at least 32
countries from the five continents have found mcr-1 in E. coli
isolates from different sources including humans, animals and
foods (Xavier et al., 2016).

In Europe, the presence of mcr-1 was first detected in E. coli
from poultry meat and humans in Denmark (Hasman et al.,
2015). Subsequently, this gene was found in Enterobacteriaceae
from different sources in almost all European countries,
including Italy (Battisti, 2016; Cannatelli et al., 2016). In 2016,
a new mcr gene, mcr-2, was described in E. coli in calves
and piglets in Belgium (Xavier et al., 2016), followed by
the description of three additional mobile colistin resistance
genes in 2017, namely mcr-3 (Yin et al., 2017) in E. coli
isolated from pig in China, mcr-4 (Carattoli et al., 2017)
in Salmonella and E. coli from pigs in Italy, Spain and
Belgium, and mcr-5 (Borowiak et al., 2017) in Salmonella
Paratyphi B from poultry and environmental sources from
Germany.

At present, eleven mcr-1 variants (KP347127, KX236309,
KU934208, KY041856, KY283125, KY352406, KY488488,
KY683842, KY964067, KY853650, and LC337668), one
mcr-2 variant (LT598652), six mcr-3 variants (KY924928,
NPZH01000177, FLXA01000011, MF463699, MG214533, and
MG489958), three mcr-4 variants (MF543359, MG581979, and
ERS1801979) and mcr-5 (KY807921) have been described in
Enterobacteriaceae according to GenBank records (last accessed
21st February 2018).

It is clear that the epidemiology of transferable mcr-mediated
colistin resistance is evolving rapidly and timely information on
prevalence and molecular epidemiology of mcr-positive isolates
is needed to enhance surveillance, and implement measures to
prevention and to control further spread of colistin resistance.
In the European Union (EU), the harmonized antimicrobial
resistance (AMR) monitoring and reporting in poultry and
livestock, which includes colistin susceptibility testing in E. coli

and Salmonella, ensures that prevalence of colistin-resistant
bacteria in a representative proportion of the food-animal
population is reported from each Member State (MS) (Decision
2013/652/EU). However, the lack of molecular data limits the
epidemiologic monitoring of colistin resistance (Schrijver et al.,
2017).

The aim of this study is to determine the prevalence of
colistin resistance, and the molecular epidemiology of mcr-
mediated colistin resistance genes and their genetic environment
in commensal E. coli, Extended Spectrum Beta-Lactamase
(ESBL)/AmpC-producing E. coli, and Salmonella spp. in food-
animals in Italy in 2014-2015.

MATERIALS AND METHODS

Study Design, Sample Collection,
Isolation, and Identification of Bacterial
Cultures
Study design and sampling were performed according to
Decision 2013/652/EU1, which mandates each EU Member
State (MS) to collect caecal content samples from different
epidemiological units of poultry flocks (broiler chickens,
fattening turkeys), fattening pigs and bovines < 12 months at
slaughter.

Samples were collected from broiler chickens (n = 300) and
fattening turkeys (n = 300) in 2014, and from fattening pigs
(n = 304) and bovines < 12 months (n = 223) in 2015 (Table 1).
The regional stratification of samples represented at least 90
and 80% of the Italian poultry (broiler chickens and turkeys)
and livestock (pigs and bovines < 12 months) production,
respectively.

In addition, 558 and 709 samples from fattening turkey
and broiler chicken flocks, respectively, were collected within
the voluntary national Salmonella monitoring framework
(Decision 2013/652/EU) in 2014 (Table 1). In compliance with
Decision 2013/652/EU, E. coli isolation and identification, were
performed according to the EURL-AR protocols2, whereas
Salmonella spp., isolation, identification and serotyping were
performed according to the ISO 6579:2002/Amd 1:2017
protocols.

1http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:
32013D0652&from=IT
2https://www.eurl-ar.eu/CustomerData/Files/Folders/21-protocols/276_esbl-
ampc-cpeprotocol-version-caecal-january2017-version4.pdf
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TABLE 1 | Colistin-resistance and mcr genes in Escherichia coli and Salmonella sp. from caecal samples in animal primary productions, Italy, 2014–2015.

Animal
production

Bacterial species Year Samples
(n)

Isolates
tested

(n)

Colistin R
(n; %)

MIC range
mg/L

(mode)

mcr-1
pos.
(n)

mcr-2
pos.
(n)

mcr-3
pos.
(n)

mcr-4
pos.
(n)

mcr-5
pos.
(n)

Fattening
turkeys

Indicator E. coli 2014 300 170 39 (22.9%) 4− 16 (8) 38 0 0 0 0

ESBL/AmpC E. coli 2014 300 224 58 (25.9%) 4− 16 (4) 58 0 0 0 0

Salmonella spp. 2014 558 146 12 (8.3%) 4− 16 (4) 3 0 0 0 0

Broiler chickens Indicator E. coli 2014 300 170 9 (5.9%) 4− 8 (4) 8 0 0 0 0

ESBL/AmpC E. coli 2014 300 244 13 (5.3%) 4− 16 (4) 11 0 0 0 0

Salmonella spp. 2014 709 90 0 – – – – 0 0

Fattening pigs Indicator E. coli 2015 304 168 1 (0.6%) 4 (4) 1 0 0 0 0

ESBL/AmpC E. coli 2015 304 214 14 (6.5%) 4− 8 (4) 13 0 0 1 0

Bovine animals
<12 months

Indicator E. coli 2015 223 170 8 (4.7%) 4− 8 (4) 5 0 0 1 0

ESBL/AmpC E. coli 2015 223 179 7 (3.9%) 4− 8 (4) 4 0 4 0 0

Antimicrobial Susceptibility Testing
Antimicrobial susceptibility was tested by minimum
inhibitory concentration (MIC) determination using the
broth microdilution method, and consensus 96-well microtiter
plates (TREK Diagnostic Systems, Westlake, OH, United States).
Antimicrobials tested, dilution ranges and interpretation of MIC
values were in accordance with Decision 2013/652/EU.

mcr and ESBL/AmpC Genes Screening
The presence of mcr was investigated in all isolates displaying
colistin MIC above the epidemiological cut-off (i.e., > 2 mg/L).
A multiple PCR was used to detect mcr-1, mcr-2, mcr-3, mcr-4,
and mcr-5 (Rebelo et al., 2018).

ESBL/AmpC-producing E. coli positive for mcr were further
screened for blaCTX−M, blaSHV, blaTEM, blaOXA, blaCMY−1,
and blaCMY−2 using primers and PCR conditions previously
described (Donati et al., 2014; Franco et al., 2015). Obtained
amplicons were Sanger sequenced and analyzed as previously
described (Donati et al., 2014; Franco et al., 2015).

Conjugation Experiments
Four representative E. coli and three Salmonella sp. isolates from
turkeys were selected as donors. Conjugation experiments were
performed as previously described (Franco et al., 2015), with the
only modification regarding the MacConkey agar plates selective
for transconjugants which contained 2 mg/L colistin sulfate and
100 mg/L rifampicin in this study.

Whole Genome Sequencing (WGS) and
Bioinformatics Analysis
A total 42 isolates which tested mcr-positive by PCR, (28 E. coli
and three Salmonella enterica isolates from turkeys, five E. coli
from pigs and six E. coli from cattle), and the seven E. coli K-
12 isolates result of the conjugation experiments were Whole
Genome Sequenced. Genomic DNA was extracted using the
QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) following
the manufacturer’s protocol. Libraries were prepared for Illumina
pair-end sequencing using the Illumina (Illumina, Inc., San
Diego, CA, United States) NexteraXT R© Guide 150319425031942.
Sequencing was performed using an Illumina platform (MiSeq or

HiSeq2000). Raw sequence data were submitted to the European
Nucleotide Archive3 under study accession no.: PRJEB23728,
PRJEB23778, PRJEB21546, and PRJEB26479.

Raw reads were assembled and analyzed using the pipeline
from the Center for Genomic Epidemiology (CGE4, Thomsen
et al., 2016), with default settings. This pipeline performed
de novo assembly (Velvet based), species identification
(KmerFinder 2.1), Multilocus Sequence Typing (MLST
1.6), identification of virulence (VirulenceFinder 1.2) and
antimicrobial resistance genes (ResFinder 2.1), identification of
plasmid incompatibility groups (PlasmidFinder 1.2) and plasmid
MLST (pMLST 1.4). When identity values for mcr were less than
100% in the ResFinder output, the sequence was submitted to
online BLAST5 (Zhang et al., 2000) to identify the exact mcr
variant.

Manual annotation of the contigs containing selected mcr
variants was performed using RAST (Aziz et al., 2008), BLAST
(Zhang et al., 2000) and ISfinder (Siguier et al., 2006). The contigs
harboring the new mcr variants were compared with reference
sequences using BLAST and EasyFig (Sullivan et al., 2011).
The references sequences used for comparison were CP016034,
KP347127 and KY924928.

RESULTS

Colistin Resistance and mcr in E. coli
and Salmonella From Turkeys and
Broilers in 2014
In 2014, colistin resistance was detected in 25.9% (58/224)
and 5.3% (13/244) of the ESBL/AmpC-producing E. coli
from fattening turkeys and broilers, respectively. In turkey
flocks, all but two colistin-resistant E. coli were multidrug-
resistant (MDR) isolates, (i.e., resistant to three antimicrobial
classes). In MDR ESBL/AmpC-producing E. coli population of
turkey flocks, colistin resistance was associated with concurrent

3http://www.ebi.ac.uk/ena
4http://www.genomicepidemiology.org/
5https://blast.ncbi.nlm.nih.gov/Blast.cgi
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fluoroquinolone microbiological resistance (ciprofloxacin MIC
>0.064 mg/L) in 51 of 58 isolates (87.9%), with 35/58 (60.3%)
displaying fluoroquinolone clinical resistance (MIC >1 mg/L,
mode 8 mg/L) (Supplementary Table 1).

A similar prevalence was observed among the indicator
commensal E. coli, with colistin resistance occurring in 22.9%
(39/170) and 5.9% (9/170) of isolates from turkeys and broilers,
respectively (Table 1). Nearly all colistin-resistant E. coli from
turkey and broilers tested PCR-positive for mcr-1 independent of
colistin MIC (Table 1).

In 2014, colistin resistance was detected in 8.3% (12/146)
and 0% (0/90) of Salmonella spp. isolates from fattening turkeys
and broiler chickens, respectively. mcr-1 was detected only in
three of twelve isolates, which displayed colistin MIC = 8 mg/L.
The remaining isolates (n = 9) did not yield any mcr amplicon
(Table 1).

Colistin Resistance and mcr in E. coli
From Fattening Pigs and Bovines <12
Months in 2015
In 2015, colistin resistance occurred in 6.5% (14/214) and 3.9%
(7/179) of ESBL/AmpC-producing E. coli from fattening pigs and
bovines <12 months, respectively. Among the indicator E. coli
population, colistin resistance occurred in 0.6% (1/168) and 4.7%
(8/170) of isolates from fattening pigs and bovines <12 months,
respectively (Table 1). All colistin-resistant E. coli from pigs
tested positive for mcr genes, 14 out of 15 harbored mcr-1 and one
ESBL-producing isolate tested positive for mcr-4 (Table 1). Only
five out of eight colistin-resistant indicator E. coli from bovines
yielded mcr-1 and one out of eight presented mcr-4 (Table 1).
All seven ESBL/AmpC-producing E. coli from bovines yielded
mcr genes (Table 1). Thus, mcr-1 was detected in three isolates,
mcr-3 in three isolates and both mcr-1 and mcr-3 in one isolate
(Supplementary Table 1).

Genomic Characterisation
High diversity of Sequences Types (STs) was evident when
studying the genome of the 28 E. coli and three Salmonella
enterica isolates from turkeys, five E. coli from pigs and six E. coli
from bovine <12 months selected for WGS. In E. coli from
turkeys, 20 STs were identified. The most represented STs were
ST-155 and ST-156 with four isolates each, followed by ST-744
with three isolates and ST-101 with two isolates (Supplementary
Table 1). The five E. coli from pigs and six E. coli from cattle
isolates presented different ST. The serotype and the STs of the
three S. enterica were also different: S. Typhimurium ST-3515, S.
Blockley ST-52 and S. Newport ST-45 (Supplementary Table 1).

mcr-1.1 (NG_050417.1) was present in 24 isolates: 18 E. coli
and two Salmonella isolates from turkeys, three E. coli from pigs
and one from bovines. mcr-1.2 (KX236309.1) was detected in
eight E. coli and one Salmonella from turkeys. In addition, one
E. coli isolate from turkey presented a silent mutation, C801T, and
two E. coli isolates, one from turkey and one from fattening pigs
showed a new variant (hereafter termed mcr-1.13) of mcr-1.1 with
two non-synonymous mutations: M2V and S14G. Four E. coli
from bovines <12 months presented a mcr-3 variant, identified as

mcr-3.2 (NG_055523.1), and one of them presented both mcr-1.1
and mcr-3.2 (Supplementary Table 1). Also, one ESBL(CTX-M-
1)-producing E. coli isolate from pigs and one indicator E. coli
from bovines presented mcr-4.2 and mcr-4.3, respectively.

The two E. coli isolates harboring mcr-1.13 allele, ID:14077295
from turkey and ID:15056414 from fattening pig, were
genetically different, as shown by MLST (ST-69; ST-5995)
and different resistance gene content (Supplementary Table 1).
The virulence gene gad was detected in both isolates, but
it was the only virulence-associated gene found in the pig
isolate (Supplementary Table 1). Both isolates harbored the
IncF replicon plasmid, but with different plasmid MLST: IncF
[F1:A1:B20] and IncF [F46:A-:B42], for the turkey and the pig
isolate, respectively (Supplementary Table 1).

All the nine isolates presenting mcr-1.2 (IDs:14087995,
14069546, 14062120, 14044802, 14091902, 14045775,
14047606, 14083136, and 14085183) were isolated from
turkey. These isolates were one S. Blockley, and eight
E. coli isolates with different STs (Supplementary Table 1).
The resistance and virulence genes were variable among
those isolates (Supplementary Table 1). For example, one
of them (ID:14044802) was only resistant to colistin and
only presented the accessory gene mcr-1.2, while all other
isolates were MDR and ESC-R, and presented ESBL genes
such as blaCTX−M−1 or blaTEM−52 or other different beta-
lactamase genes (Supplementary Table 1). A variety of plasmid
incompatibility groups was observed including the plasmids
IncFII, IncFI, IncHI2, IncI, IncN in different proportions, but all
the nine isolates presented the plasmid IncX4 (Supplementary
Table 1). In the isolate ID:14065450, the contig containing
mcr-1.2 also contained the replicon plasmid IncX4 (contig 35).

The four WGS sequenced isolates harboring mcr-3.2
(IDs:15054212, 15038100, 15056874, and 15078696), all of them
E. coli from bovines <12 months, had different STs and serotype
(Supplementary Table 1). All four were MDR and presented the
ESBL gene blaCTX−M−55, although always found in contigs other
than those containing mcr-3.2. The four isolates also shared
other resistance accessory genes as sul3, aac(3)-Iid, aadA2, or
floR. A number of different plasmids were detected in all four
isolates, with only IncF (F46:A-:B20), IncX1 and IncR detected
in all of them. The contigs harboring mcr-3.2 did not contain any
plasmid replicon type (Supplementary Table 1).

One of the mcr-3.2-positive E. coli (ID:15054212), presented
also mcr-1.1. This isolate was ST-744 and contained the following
plasmids: IncFIB, IncX4, IncFIC(FII), IncX1, Col156, IncR. mcr-
1.1 was located in a 32,823 bp contig that included also the
replicon sequence of IncX4 (Supplementary Table 1).

The mcr-4.2 variant was isolated from an E. coli from
fattening pig (ID: 15057173-5). This isolate, ST-410, presented
the following accessory resistance genes: blaCTX−M−1, tet(B)-
like, sul1,sul2, aadA1, aadB, aph(3′)-Ic-like, strA, strB, mph(A),
floR-like and qnrB42-like (Supplementary Table 1). mcr-4.2 and
ColE10 replicon sequence were located in the same contig (contig
105; length 7699 bp). In addition to the ColE10 plasmid replicon,
this isolate presented other plasmids (Supplementary Table 1).

The mcr-4.3 variant was harbored in a E. coli (ST-399)
isolated from a bovine <12 months (ID: 15050011-1) that also
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presented other accessory resistance genes as blaTEM−1B, tet(B),
sul1-like, sul3, dfrA1, aac(3)-IIa, aadA1, aph(3′)-Ic-like, strA, strB
and catA1-like (Supplementary Table 1). A variety of plasmids
was found, including IncFIA, IncHI1A, IncHI1B(R27), ColE10,
IncQ1, ColRNAI, p0111, and Col(MG828), but none in the same
contig containing mcr-4.3.

Description of the Contig Harboring
mcr-1.13
mcr-1.13 was identified in E. coli strain 14077295 (contig 564;
10,310 bp lenght) from turkeys and in E. coli strain 15056414
(contig 27; 50,840 bp lenght) from pigs. The BLAST alignment
of the two contigs showed 99% identity across the entire length
of the shortest contig (10,310 bp). No plasmid replicon was
detected in any of the two contigs. mcr-1.13 (from nt 33,836 to
nt 35,462 in contig 27,) was upstream to a PAP2 superfamily
hypothetical protein (from nt 35,509 to nt 36,256). Insertion
sequences (IS) were detected flanking the mcr cassette: upstream
mcr-1.13 a truncated IS66 (from nt 33,335 to 33,413 bp and from
33,455 to 33,651 bp) and downstream a small fragment of IS66
(from nt 36,261 to nt 36,392) and IS110 (from nt 36,449 to nt
36,816). Upstream the cassette, there was the gene coding for 50S
ribosome-binding GTPase family protein (from nt 15,712 to nt
16,627) and downsteam the cassette, there was the coding gene of
the subunit YeeA of the methylase (from nt 37,032 to nt 39,849)
(Figure 1). In BLAST results, contig sequences showed 93–99%
identity to E. coli chromosome sequence CP016034 except for

the region flanked by ISs and containing mcr-1.13 and PAP2
superfamily coding genes that had 99 and 100% identity with
the same region of the mcr plasmid pHNSHP45(KP347127), for
the mcr gene and the PAP2 superfamily coding gene, respectively
(Figure 1).

Description of the Contig Harboring
mcr-3.2
mcr-3.2 was detected in E. coli isolates 15054212 (contig 77),
15038100 (contig 128), 15056874 (contig 52), and 15078696
(contig 197) measuring 3,346, 9,285, 5,921, and 5.279 bp,
respectively. All contigs were 100% identical to the shortest one.
Upstream and downstream mcr-3.2 (from 766 to 2,392 bp in
contig 77) a diacylglycerol kinase gene (from 268 to 249 bp)
and a gene coding for a NimC/NimA putative family protein
(from 2,436 to 2,696 bp) were detected, respectively. These three
genes were flanked by IS3 (from 1 to 127 bp) and Tn3 (from
2,943 to 3,346 bp) (Figure 2). The shortest contig harboring these
genes (contig number 77) showed a 99% identity with the pWJ1
plasmid containing mcr-3.1 (KY924928) region from 160,180 to
163,525 bp. The genes surrounding the cassette in our strains
were not found in the pWJ1 plasmid (KY924928).

Plasmid Transferability
E. coli harboring mcr-1.1 (IDs:14043377 and 14065450), mcr-
1.2 (ID:14047606) and mcr-1.13 (ID:14077295), S. Typhimurium
harboring mcr-1.1 (ID:14043372), S. Newport harboring mcr-1.1

FIGURE 1 | Graphical representation of the mcr-1.13 contig. Graphical representation of the BLAST analysis between the contig harboring mcr-1.13 from the
pig-origin E. coli isolate (contig27; 15056414) and the mcr plasmid pHNSHP45 (KP347127; region 21000bp- 26000bp) and genomic DNA of E. coli Co6114
(CP016034; region 91844bp – 99527bp). ∗ Indicated that the gene was manually annotated. The gray area represents the blast identities, the percentage of identity
is indicated in the legend. Gene colors: red, mcr-1; blue, transposases or IS elements.
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FIGURE 2 | Graphical representation of the mcr-3.2 contig. Graphical representation of the BLAST analysis between the contig harboring mcr-3.2 in the
bovine-origin E. coli (contig77; 15054212) and the mcr plasmid pWJ1 (KY924928; region 160180 to 163525 bp). ∗ Indicated that the gene was manually annotated.
The gray area represents the blast identities, the percentage of identity is indicated in the legend. Gene colors: red, mcr-1; blue, transposases or IS elements.

(ID:14038647) and S. Blockley harboring mcr-1.2 (ID:14085183)
were used as donors for conjugation experiments (Table 2
and Supplementary Table 1). All donors, except the mcr-1.13-
harboring E. coli, transferred mcr by conjugation to the E. coli
K-12 recipient strain. mcr-1.1 and mcr-1.2 were carried by IncX4
plasmids that transferred either alone or in combination with
additional plasmids (Table 2 and Supplementary Table 1). One
isolate (ID: 14065450) displayed in the same contig both mcr-1.1
and the replicon of the IncX4 plasmid (contig 68).

DISCUSSION

The high diversity of transferable colistin resistance mediated
by mcr genes and alleles, quickly spreading across pathogenic
enterobacteria globally (Kluytmans, 2017), is an emerging
challenge for treatment of Gram-negative infections
due to increased occurrence of Healthcare-Associated
Extremely Drug Resistant bacterial pathogens (EARS-Net,
2015).

In the present study, we found high prevalence (∼25%)
of colistin resistance in both indicator commensal E. coli and
ESBL/AmpC-producing E. coli in turkeys in Italy. In other Italian
primary productions such as broilers, fattening pigs and bovines
<12 months, colistin-resistant E. coli occurred at relatively lower,
though still relevant levels.

From a (Veterinary) Public Health perspective, the spread
of colistin resistance across production types is of major
concern also considering that it was often associated with
resistance to multiple drugs and notably also to fluoroquinolones.
For instance, MDR E. coli exhibiting co-resistance to three
Critically Important Antimicrobials for humans were detected in
approximately 23% of turkey flocks investigated.

By using WGS, the vast diversity of mcr types and variants was
evident within and across the major production types. At least
three mcr-1 alleles were identified in turkeys, pigs and bovines
<12 months in a 2-year-period, one of which has not been
previously described. The majority of isolates harbored mcr-1.1,

but mcr-1.2, mcr-1.13, mcr-3.2, mcr-4.2 and mcr-4.3 were also
detected.

The core genomes of the E. coli and Salmonella isolates
harboring mcr-1 were quite variable as shown by diversity of
MLST types, in agreement with what has been observed in
different contexts previously (Hasman et al., 2015; Bernasconi
et al., 2016; Cannatelli et al., 2016; Zhao et al., 2017).

Conjugation experiments and WGS data analysis confirmed
that mcr-1.1 and mcr-1.2 were located on IncX4 plasmids in E. coli
and Salmonella spp. from turkey. In Europe, IncX4 plasmids have
been described in association with mcr-1 in isolates of animal
origin in Belgium (Xavier et al., 2016; Garcia-Graells et al., 2017)
and from humans in Italy (Di Pilato et al., 2016).

The mcr-1.2 gene was first described on an IncX4 plasmid in
a Klebsiella pneumoniae isolated from a human sample in the
Tuscany Region (Italy) (Di Pilato et al., 2016). In our study, this
variant was found on IncX4 plasmids in intestinal Salmonella and
E. coli spread throughout the Italian fattening turkey production.
Our observations suggest the transmission of mcr-positive IncX4
plasmids between different bacterial species, with the possibility
of transmission from animals to humans, or vice versa.

The mcr-3 gene was first described on an IncHI plasmid (Yin
et al., 2017), whereas the mcr-3.2 variant has been described from
the whole genome shotgun sequence of a Shigella sonnei strain
(NG_055523; NPZH01000177) isolated in the United States, but
to our understanding, no formal description has been published
to date. In our study, four ESBL/AmpC-producing E. coli isolates
from bovines <12 months presented mcr-3.2. The WGS data
analysis performed on these isolates did not allow us to determine
the genomic location of mcr-3.2. However, only one of these
isolates harbored an IncHI plasmid. A ST heterogeneity of
E. coli isolates harboring the mcr-3.2 gene was evident. Further
conjugation or transformation experiments are needed in order
to elucidate if the mcr-3.2 found in E. coli in Italian cattle is
plasmid-borne and transferable.

One E. coli from cattle was simultaneously positive for mcr-
3.2 and mcr-1.1. In this isolate, mcr-1.1, was located on an
IncX4 plasmid. An E. coli carrying both mcr-1.1 and mcr-3.2
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TABLE 2 | Genotypic traits of donors and transconjugants.

Strain ID Species Donors Transconjugants (E. coli K12)

AMR genes1 Plasmid content1 AMR genes1 Plasmid content1

14043377 E. coli mcr-1.1, blaTEM−52C, tet(A),
aadA1, dfrA1

IncFII, IncI1, IncFIB, p0111,
IncX4

mcr-1.1 IncX4

14065450 E. coli mcr-1.1, blaSHV−12, sul2, sul3,
aadA1, aadA2, strA, strB,
aph(3’)-Ia, cmlA1

IncFIB, IncFII, IncI1, IncFIC,
IncY, IncQ1, IncX4, Col(MG828)

mcr-1.1 IncX4

14047606 E. coli mcr-1.2, blaCTX−M−1, tet(B),
catA1

IncN, IncX4, Col(MG828) mcr-1.2, blaCTX−M−1 IncN, IncX4

14077295 E. coli mcr-1.13, blaTEM−1B,
blaCTX−M−14, tet(B), sul2, strA,
strB, dfrA14, mph(A)

IncFII, IncFIA, IncFIB, Col156 - -

14043372 Salmonella
Typhimurium

mcr-1.1, blaTEM−1B, tet(A),
aadA1, aac(3)-IId

IncI1, IncX4, ColRNAI, Col156,
ColpV

mcr-1.1, blaTEM−1B, tet(A),
aadA1, aac(3)-IId

IncI1, ColRNAI, Col156,
ColpVC, IncX4

14085183 Salmonella
Blockley

mcr-1.2, aph(3’)-Ic, strA, strB,
mph(A)

IncN, IncX4, Col156, ColRNAI mcr-1.2 IncX4

14038647 Salmonella
Newport

mcr-1.1, blaTEM−1B, tet(A), sul2,
strA-like, strB, dfrA14

IncN, IncX4,ColpVC mcr-1.1 IncX4

1Antimicrobial resistance (AMR) genes and plasmid replicons were detected using ResFinder and PlasmidFinder at http://www.genomicepidemiology.org/.

and also isolated from cattle has been recently described in Spain
(Hernández et al., 2017). Interestingly, all four mcr-3.2-positive
E. coli isolated detected in bovines <12 months in Italy carried
the ESBL blaCTX−M−55 gene, apparently an emerging variant in
veal calves in Italy. The same observation has been made by other
authors (Hernández et al., 2017; Roer et al., 2017). Taken together,
these features could be suggestive of a genetic linkage between
the two genes. Our study, however, provides preliminary data
that the mcr-3.2 and the blaCTX−M−55 genes may not be linked
on the same genetic element, and that this aspect needs further
investigation.

The mcr-4.2 gene was described recently from two S. enterica
Typhimurium (monophasic variant) isolated from human
samples in Italy (Carretto et al., 2018). So far, this variant has not
been associated to any plasmid. In our study, the mcr-4.2 gene
identified in a ESBL(CTX-M-1)-producing E. coli isolated from
a fattening pig, was located on a ColE plasmid, exactly the same
type of plasmid in which mcr-4.1 was described by Carattoli et al.,
2017. The mcr-4.3 variant was first described from a Salmonella
Kedougou isolated from pigs in Spain (Rebelo et al., 2018). In our
study, mcr-4.3 was harbored by an indicator E. coli from a bovine
caecal sample. All the mcr-4 variants described so far have been
found in Salmonella or E. coli from animals and from humans,
despite their localisation on non-conjugative plasmids, similarly
to what has been found with mcr-4.1 by Carattoli et al. (2017).

The mcr-1.13 gene was located on a mobile genetic element
inserted in the chromosome. The mcr cassette found is different
from the chromosomal mcr cassettes described so far, because of
the presence of ISs other than ISplA (Snesrud et al., 2016; Li et al.,
2017). By considering the high rate of self-transferability of the
IncX plasmids (Sun et al., 2017) and that IncX4 is dominant in
the Italian primary productions surveyed, this finding suggests
that the mcr cassette may have been acquired from an IncX4
plasmid which lacks ISplA insertion sequence (Bernasconi et al.,
2016; Matamoros et al., 2017; Sun et al., 2017). It is likely

that the insertion occurred in different moments, since the two
E. coli isolates derived from two different animal productions
and presented different genome content. The ability of the mcr
cassette to jump into several types of plasmids (IncI2, IncX4,
IncHI2, and IncP) or into the chromosome is highly concerning
also in view of the possibility of insertion into plasmids already
present in MDR isolates, or even of the creation of a new mega-
plasmid as occurred in Salmonella Infantis (Franco et al., 2015).
This would imply that colistin resistance could be co-selected by
the use of others antimicrobials. Indeed, multidrug resistance in
colistin-resistant, mcr-positive isolates is a constant feature we
have observed in these population-based studies. These findings
highlight how rapidly mobile genetic elements can be acquired by
Enterobacteriaceae and how genes can mutate in environments
with high selective pressure as that occurring in the intensive
farming systems. In this respect, the selection pressure exerted
by the use of colistin and the complex co-selection mechanisms
triggered by the overall high use of several antibiotic classes in the
meat-producing industry is likely to have played a major role. For
instance, the overall exposure to antibiotics in food-producing
animals in Italy in 2014 was estimated around 360 mg/Population
Correction Unit (PCU, i.e., mg per kilogram of biomass of farmed
animals), and the exposure to colistin only was estimated around
29 mg/PCU (ESVAC, 2016). The mean, median and range of total
sales in Europe (29 countries) were 108, 66, and 3 – 419 mg/PCU,
respectively, while 22 out of 29 countries reported sales of colistin
≤5 mg/PCU (range of the 29 EU countries: 0.06–36.10 mg/PCU).
It is well known that the intensively farmed, meat-producing
animals (turkeys, broilers, pigs, bovines <12 months) are the
population categories at risk of exposure to higher amounts
of colistin in modern farming systems, and the results of this
study strongly support the general concept that the spread of
mcr-mediated colistin resistance has been favored by the semi-
continuous and high exposure to colistin in these production
chains.

Frontiers in Microbiology | www.frontiersin.org 7 June 2018 | Volume 9 | Article 1217

http://www.genomicepidemiology.org/
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01217 June 8, 2018 Time: 15:37 # 8

Alba et al. Epidemiology of mcr-Mediated Colistin Resistance

Whether animals are an important source for human
extraintestinal pathogenic E. coli (ExPEC) infections in humans is
still a matter of debate (Bélanger et al., 2011). Few studies provide
information and comparison on STs and plasmids harboring
ESBLs or transferable AmpCs (Leverstein-van Hall et al., 2011)
for both human and food-producing animal isolates. Although
conclusive epidemiological evidence is still lacking, it has been
proposed that some human ExPEC infections could arise from
poultry and pig ExPEC reservoirs (Jakobsen et al., 2010). That
being said, it is interesting to notice that at least one-fourth of
E. coli isolates described in our study belong to the same STs
as isolates associated with human ExPEC infections in Europe.
In some cases (Leverstein-van Hall et al., 2011; Mavroidi et al.,
2012; Brolund et al., 2014) they also share the same ESBL (e.g.,
ST69 and CTX-M-14, ST410 and CTX-M-1). As for colistin-
resistant E. coli, one of the mcr-1.1 positive isolates from turkeys
here described belongs to ST131, although it lacks the virulence
gene markers and ESBL generally associated with the globally
spread human clinical clone. Indeed, a mcr-1-positive, ESBL-
negative ST-131 E. coli was also described in human bloodstream
infections in Italy in 2017 (Corbella et al., 2017). Overall, these
observations should be taken very cautiously, since methods for
genome analysis and parameters for assessing relatedness among
both core genomes and accessory genomes are quickly evolving,
which implies that it may be necessary to re-evaluate any earlier
conclusions on relatedness or source attribution based on partial
molecular characteristics, as previously shown (De Been et al.,
2014).

CONCLUSION

In conclusion, harmonized cross sectional studies at slaughter
like the ones implemented by the EU represent a very important
tool for a deep insight into trends and emergence of antimicrobial
resistance traits and patterns in major food-borne pathogens and
commensal opportunistic bacteria. Especially when occurring at
high prevalence, the spread of transferable colistin resistance in
E. coli (both indicator commensal and ESBL/AmpC-producing
isolates) is to be considered a concern per se. Additionally, as
a general principle, the high spread of resistance increases the
probability of transfer of specific resistance traits also to major
zoonotic pathogens, such as Salmonella spp. The hypothesis that
horizontal transfer, so far, has played a major role in spread
of colistin resistance among bacteria in Italian meat-producing
animals is supported by the observed heterogeneity of mcr-
positive E. coli. Indeed, at least in the Italian turkey productions,

we demonstrated that the same transferable determinant of
colistin-resistance is being carried on the same conjugative
plasmid in both E. coli and major Salmonella serotypes detected
in the same intensive-farming industry.

For the above reasons, quick and thorough action should be
taken by the farming industry and by the Competent Authorities
to drastically reduce the use of colistin in food-producing
animals, especially in turkeys, following the recommendations
of the European Medicines Agency (≤5 mg/PCU). EU Member
States were encouraged to set stricter national targets, ideally
below 1 mg/PCU colistin. We also strongly recommend reducing
the overall use of all other classes of antibiotics at primary
production level, in order to mitigate the effects of the complex
mechanisms behind co-selection and multidrug resistance
toward Critically Important Antimicrobials, in a “Consumer
Protection” and a “One Health” perspective.
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