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A B S T R A C T

The annealing behavior of thin tungsten plates of four different thicknesses achieved by warm- and (in two cases)
cold-rolling is investigated. Isothermal experiments at five different temperatures between 1300 °C to 1400 °C
were performed. Hardness testing of annealed specimens allowed tracking the degradation of the mechanical
properties and, indirectly, the microstructural evolution. Supplementary microscopical investigations of the
microstructure in the as-received state as well as after annealing were performed to characterize the initial
condition and to support the identification of the involved restoration processes. All four tungsten plates undergo
microstructural restoration by recovery and recrystallization. The observed differences in their behavior were
rationalized in terms of the identified differences in the microstructure in the as-received state, rather than their
different initial thickness.

1. Introduction

One of the most critical components of future fusion reactors are the
plasma-facing components of the blanket and the divertor. They will be
exposed to high particle and high heat fluxes, requiring superior per-
formance in terms of thermal stability and mechanical resistance.
Tungsten meets many of the requirements for plasma-facing compo-
nents [1]: a high thermal conductivity (164W/mK), high strength, high
yield point and creep resistance at high temperatures, highest melting
point of all metals (3422 °C), and a low sputtering yield due to a high
sputtering threshold energy [2,3]. In an annealed state, tungsten shows
an intrinsic brittleness at room temperature [4–7] and a rather high
ductile-to-brittle transition temperature [8–10]. After plastic deforma-
tion, tungsten behaves ductile even at room temperature. Operation of
plastically deformed tungsten parts at higher temperatures is never-
theless limited by the occurrence of recrystallization replacing the
ductile, deformed microstructure by an intrinsically brittle one. Fol-
lowing earlier studies on rolled foils [11–13] and plates [14–16], the
annealing behavior of thin tungsten plates is characterized with focus
on recrystallization; the main interest being whether a reduced thick-
ness can lead to an improved performance in view of the thermal ac-
tivated processes occurring during annealing.

2. Materials and methods

Four plates with four different thicknesses (2 mm, 1mm, 0.5 mm

and 0.2mm) of 99.97% technically pure tungsten [17], produced via
conventional powder metallurgical route were acquired from Plansee
SE (Reutte, Austria). The interstitial impurity content of the plates is
below 5 ppm for Hydrogen and Nitrogen, below 20 ppm for Oxygen and
below 30 ppm for Carbon, as guaranteed by the manufacturer. The thin
plates (TP) with sizes 100mm × 250mm × thickness were cut from
larger pieces not specified in any more detail by the manufacturer.
According to the specifications of the manufacturer, the two plates with
larger thicknesses (2mm (TP2) and 1mm (TP1)) were obtained by
warm-rolling, whereas the two plates with smaller thicknesses (0.5 mm
(TP0.5) and 0.2mm (TP0.2)) were achieved by final cold-rolling steps.
From the thin plates, rectangular samples of 3mm × 4mm × plate
thickness were cut for annealing, with their long side corresponding to
the long direction of the as-received plates, so that the different di-
rections can be identified later. To prevent high temperature oxidation
during annealing, the specimens were encapsulated in glass ampoules.
Each ampoule contained four different specimens, one from each of the
TPs, in an argon atmosphere.

Isothermal annealing of the small specimens was performed in a
general-purpose tube furnace NaberTherm RHTC 80-230/15 between
1300 °C and 1400 °C at five specific temperatures for times up to 67 h.
Although rolling reduces porosity and homogenises the microstructure
within the plates compared to the as-sintered condition, heterogeneities
within the rolled plates are expected. Therefore, a large number of
isothermal annealings for different time periods are performed for each
annealing temperature to ensure the validity of the results.
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The microstructure of the material was assessed by Light Optical
Microscopy (LOM), Electron Back-Scatter Diffraction (EBSD) and
Vickers hardness testing. For light optical microscopy, conventional
metallographic preparation by mechanical grinding and polishing was
performed. In a final step, the specimens were etched with Murakami's
etchant (10 g NaOH, 10 g K3Fe(CN)6 in 100ml distilled water). Rolling
direction (RD) and transverse direction (TD) of each plate were iden-
tified through LOM on different sections: while three of the rectangular
plates were cut by the manufacturer with their long direction along RD,
TP2 was cut with the long side along TD. This difference between the
cuts was taken into account when investigating the microstructure in
specific individual sections.

After conventional metallographic preparation, cross sections con-
taining RD and the normal direction (ND) were prepared for EBSD by
electropolishing using an aqueous solution containing 3 wt% NaOH at
RT with an applied voltage of 12 V and a current of approximately 2 A
for times ranging from 15 s to 75 s for the thinnest and the thickest
plates, respectively. EBSD investigations were performed with a Bruker
NOVA NanoSEM with an applied voltage of 20 kV and a step size of
100 nm. For each plate orientation maps of 100.8 µm × 86.9 µm
(100.8 µm × 86.5 µm in case of TP0.2) were acquired.

Hardness testing was performed with a Vickers indenter and a load
of 0.5 kg on the outer surface of the plates parallel to the rolling plane,
i.e. containing RD and TD, in the as-received as well as the annealed
condition to track the changes of the mechanical properties during
annealing. For each condition, at least 10 indents were analyzed, the
smallest and the largest of which were discarded and the average
hardness values obtained from the remaining are reported together
with the standard deviation of the average.

3. Results

3.1. Thin plates in as-received

The hardness values of the as-received plates are summarized in
Table 1. In general, the thin plates showed an increased hardness with
reduced thickness, from 550 ± 3 HV0.5 for TP2 to 642 ± 2 HV0.5 for
TP0.2, as expected from an increased thickness reduction by rolling.
The plate TP1, however, did not follow this trend and showed an ex-
ceptionally low hardness of 541 ± 2 HV0.5 which must have been
caused by a difference in manufacturing of the plate (cf. Section 4).

Large orientation maps were obtained by EBSD on the longitudinal
section (containing RD and ND) and shown in Fig. 1. The maps reveal
the typical microstructural features after thickness reduction by rolling.
The grains are elongated along the rolling direction with an aspect ratio
increasing, in general, with decreasing plate thickness. Where the as-
pect ratio of the grains in the two thicker plates, TP2 and TP1, appear
quite similar, a much higher aspect ratio is observed in TP0.5 and TP0.2
due to the (additional) cold-rolling. As a measure of the grain size, the
average chord length between high angle boundaries (with dis-
orientation angles above 15°) was determined along ND by the line
intercept method. As obvious from Table 2, a smaller average chord
length is observed in general for the plates with smaller thicknesses.
The cold-rolled plates TP0.5 and TP0.2 show a much smaller chord

length compared to the values of the thicker plates TP2 and TP1 which
have been warm-rolled only. The slightly larger chord length of TP1
(564 ± 12 nm) compared to TP2 (538 ± 17 nm) supports the suspi-
cion that TP1 has a different manufacturing history.

From the orientation data collected by EBSD, the 100 pole figure is
derived for each TP and shown in Fig. 1(e)–(h). The pole figures reveal
the existence of a single, preferential texture component, the rotated
cube component {100}〈011〉, for all four plates. As summarized in
Table 2, the strength of the texture as quantified by either the maximum
100 pole density or the volume fraction of the {100}〈011〉 component
(allowing a deviation of 15° from the ideal orientation) increases with
decreasing plate thickness from 35% to 57%, with exception of TP1
showing not only a much weaker texture (with maximum pole density
of 4.2), but also a much lower volume fraction (13%) of the {100}
〈011〉 component than all other plates.

3.2. Thin plates after isothermal annealing

Isothermal annealing was performed at five temperatures (1300 °C,
1325 °C, 1350 °C, 1375 °C, and 1400 °C) for times up to 67 h. The
hardness values determined on the rolling planes are summarized in
Fig. 2 for all four thin plates.

In general, the hardness decreases with the progress of annealing in
a characteristic manner involving two different stages. These are in-
dicated in Fig. 3 on the example of the behavior of all four plates during
annealing at 1325 °C. Both stages are characterized by an initial hard-
ness drop followed by a stagnation period leading to an apparently
constant hardness value. The first, rapid initial drop in hardness from
the as-received state is related to recovery processes in the deformed
microstructure reducing its stored energy. Caused by this reduction in
the driving force for recovery, the progress of recovery slows down
leading to an apparent stagnation period, corresponding to a very late
phase of recovery. The second hardness reduction occurring in a
slightly milder manner is caused by recrystallization and leads to a
second stagnation stage of constant hardness, attributed to complete
recrystallization. Table 1 compares the hardness values of both stag-
nation stages obtained after annealing at 1325 °C, i.e. in the late phase
of recovery and after complete recrystallization. The hardness values
for the first apparent stagnation stage (attributed to severe recovery)
are slightly lower for the two cold-rolled, thinner plates than for the two
warm-rolled, thicker plates. In general, the average hardness loss due to
recovery (HVdef − HVrec) increases with decreasing plate thickness,
except for TP1 which shows the smallest hardness loss due to recovery
of all plates (see Table 1). Similar trends are observed for the hardness
values of the second stagnation stage corresponding to complete re-
crystallization.

Comparing the hardness evolution at all different temperatures in
Fig. 2, the stagnation values for the hardness after severe recovery seem
not to be largely different, while rather different hardness values for the
fully recrystallized states are observed for the different annealing
temperatures. Peculiar behaviors at both, the lowest and highest an-
nealing temperature are observed: for isothermal annealing at 1300 °C,
only a single restoration stage is clearly identified; after 2 h the hard-
ness has already dropped to a low value due to recovery and stays ra-
ther unaltered up to the largest annealing time of 67 h indicating con-
tuation of recovery. For all four thin plates,the occurrence of
recrystallization may still be questioned. On the other, for isothermal
annealing at 1400 °C, a further decrease in hardness is observed after
16 h. This third stage of hardness reduction is attributed to grain growth
occurring after completion of recrystallization.

Such an assignment of the dominant microstructural processes to
the different annealing stages in the hardness evolution is confirmed by
metallographical observations. Fig. 4 presents light optical micrographs
from TP2 after different periods of annealing at 1325 °C. Fig. 4(a) shows
the elongated grain structure after warm-rolling and resembles closely
the orientation map of the same condition in Fig. 1(a). With increasing

Table 1
Vickers hardness values (HV0.5) for four thin tungsten plates in the as-received,
severely recovered and fully recrystallized condition after isothermal annealing
at 1325 °C. The hardness values obtained with 0.5 kgf are reported as average
values with the standard deviation of the average value.

HVdef HVrec HVrex HVdef - HVrec

TP2 550 ± 3 492 ± 2 449 ± 2 58
TP1 541 ± 2 507 ± 2 449 ± 1 38
TP0.5 595 ± 3 475 ± 2 414 ± 1 120
TP0.2 642 ± 2 479 ± 2 415 ± 3 163
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Fig. 1. Orientation maps of the as-received condition obtained by EBSD on the RD/ND section (with RD being horizontally) in the center of the specimen (a) TP2, (b)
TP1, (c) TP0.5 and (d) TP0.2. The colors represent the crystallographic direction along RD according to the inverse pole figure in the insert. (e), (f), (g) and (h) show
the corresponding 100 pole figures with the pole density given in terms of multiple random.
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annealing time, the elongated grain structure is progressively replaced
by an equiaxed grain structure due to recrystallization. Fig. 4(b) and (c)
represent partially recrystallized conditions after 4 h and 16 h, respec-
tively, whereas Fig. 4(d) represents the fully recrystallized state
achieved after 24 h.

Additionally, a microstructural heterogeneity throughout the plate
is revealed by LOM in Fig. 4. The lower part of the images, corre-
sponding to the region close to the open surface which during rolling
has been in contact with the rolls, shows a different stage of the mi-
crostructural evolution where recrystallization has been retarded. For
instance, the outer layer in Fig. 4(b) resembles more the as-received
condition and elongated grains can still be traced after 4 h of annealing.
This explains why the observed hardness values after 4 h of annealing at
1325 °C as measured by indenting the rolling surface, did not show
evidence for recrystallization, but rather indicate a late stage of re-
covery (cf. Fig. 3). The central part of the plate recrystallizes earlier
than the outer parts. From Fig. 4(d), on the other hand, complete re-
crystallization of the entire plate can be concluded. This is confirmed by
Fig. 5(a) revealing the microstructure of TP2 after annealing at 1325 °C
for 24 h with larger magnification.

Comparing the fully recrystallized microstructure with a hardness of
449 ± 2 HV0.5 in Fig. 5(a) with the microstructure of TP2 after an-
nealing at 1400 °C for 48 h having a hardness of 428 ± 1 HV0.5 shown
in Fig. 5(b), a larger grain size can be recognized in the latter. The
difference of about 30 HV0.5 is attributed to grain growth lastly

occurring in the outer layer after complete recrystallization.
The microstructural heterogeneity imposed by the rolling conditions

and inherited to the annealed microstructures was assessed for TP2 by
hardness profiles along ND. The microhardness profiles shown in Fig. 6
were obtained by indenting with a Vickers indenter and a small load of
50 gf on the RD/ND section at different distances from the open surface
which have been in contact with the rolls. Care was taken to displace
the different indents more than 2.5 times their diagonal from each
other. The obtained profiles after annealing (Fig. 6(a) and (b)) reveal an
exponential decrease in hardness with increasing distance from the
outer rolling surface:

= + − −HV x HV HV HV x λ( ) ( )exp( / ).center surface center

The hardness is significantly higher (up to 60 HV0.05) in a surface
layer of about 150 nm than in the recrystallized center of the plate (cf.
Table 3). With increasing annealing time, the size of the outer layer is
reduced due to the progress of recrystallization there.

As seen from the microhardness profile through the entire plate TP2

Table 2
Quantitative characterisation of the microstructure in the as-received thin
plates as obtained by EBSD. The volume fraction of the rotated cube component
is determined allowing a maximal deviation of 15° from the ideal orientation.

Average chord
length along ND
(nm)

Maximal (100) pole
density (times
multiple random)

Volume fraction of
rotated cube {100}〈011〉
component

TP2 538 ± 17 8.5 35%
TP1 564 ± 12 4.2 13%
TP0.5 327 ± 3 9.7 48%
TP0.2 229 ± 4 11.0 57%

Fig. 2. Hardness evolution of the thin plates after isothermal annealing up to 67 h at five different temperatures between 1300 °C and 1400 °C as obtained on the
rolling plane. (a) TP2, (b) TP1, (c) TP0.5 and (d) TP0.2. (The standard deviations of the average values are in all cases smaller than the markers.).

Fig. 3. Hardness evolution of all four thin plates during isothermal annealing at
1325 °C indicating the different stages of recovery and recrystallization. (The
standard deviations of the average values are in all cases smaller than the
markers.).
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in the as-received condition shown in Fig. 6(c), the initial variation in
hardness across the plate is less pronounced (40 HV0.05) with a slightly
asymmetrical distribution. Despite the higher hardness in the outer
layers of the plate in the as-received condition and hence a higher
stored energy there, recrystallization of the outer layers occurs last.

4. Discussion

The hardness of the thin plates in their as-received condition should
reflect the plastic work put into the material during rolling with a larger
thickness reduction (and hence,presuming the same initial height, a
smaller thickness) corresponding to a higher hardness value. This ex-
pectation is satisfied in general, disrupted though by the too low
hardness of TP1 only. The deviating behavior of TP1 is further sub-
stantiated by inspecting the microstructure of the as-received state
using EBSD. For TP1, the average chord length along ND, is slightly
larger than that of TP2 (instead of smaller as expected from presumed

further rolling). The strength of the deformation texture and the volume
fraction of the characteristic rotated cube texture component {100}
〈011〉 are both lower than for all other plates. Finally, the hardness loss
during recovery is smaller for TP1 than for all the other plates in-
dicating that the driving force for recovery has been lower for this plate
as confirmed by the lower initial hardness. All findings can be ratio-
nalized by presuming that TP1 may have been manufactured in a de-
viating manner than the other plates. Unfortunately, details of the
processing of the plates were not revealed by the manufacturer and the
received cuts might originate from different batches. Even if the same
rolling sequence was applied on material from the same batch, TP1 may
have recrystallized either dynamically during one of the passes of
warm-rolling or statically during an intermediate annealing between
some of the warm-rolling passes. Nevertheless, TP1 in its as-received
state shows a typical deformed microstructure after warm-rolling
without any indication for partial recrystallization; no evidence for any
recrystallized volume fraction is gained from the orientation data in

Fig. 4. Light optical micrographs of warm-rolled TP2 in the as-received condition (a) and after isothermal annealing at 1325 °C for (b) 4 h, (c) 16 h and (d) 24 h.
Rolling and normal direction are indicated; the lower part of the images is close to the outer rolling surface of the plate.

Fig. 5. Light optical micrographs of warm-rolled TP2 after isothermal annealing (a) at 1325 °C for 24 h and (b) at 1400 °C for 48 h. Rolling and normal direction are
indicated; the lower part of the images is close to the outer rolling surface of the plate.
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Fig. 1(b) ruling out that recrystallization has happened during the last
rolling pass. Consequently, the thickness of the plates is not decisive for
their annealing behavior. Yet, if the plates are ordered with respect to
their initial hardness (as indicator of the stored energy in the de-
formation structure) instead of the plate thickness, all observations
follow a common trend between the four plates revealing a systematic
dependence on the initial hardness.

5. Conclusions

The annealing behavior of four rolled plates of pure tungsten with
different thicknesses has been characterized in terms of their combined
microstructural and hardness evolution. Different stages in the hardness
evolution have been attributed to different microstructural restoration
processes and confirmed by microstructural investigations. A sys-
tematic dependence of the annealing behavior on the initial hardness,
but not on the initial plate thickness has been identified and discussed.
The comprehensive data set for isothermal annealing at five different
temperatures can form an indispensible basis for a quantitive analysis of
the restoration kinetics of these thin tungsten plates, in particular for
quantification of the recrystallization kinetics.
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