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Summary 28 

Source attribution and microbial risk assessment methods have been widely applied for the 29 

control of several foodborne pathogens worldwide by identifying i) the most important pathogen 30 

sources, and ii) the risk represented by specific foods and the critical points in these foods’ 31 

production chain for microbial control. Such evidence has proved crucial for risk managers to 32 

identify and prioritize effective food safety and public health strategies. In the context of 33 

antimicrobial resistance (AMR) from livestock and pets, the utility of these methods is 34 

recognized but a number of challenges have largely prevented their application and routine use. 35 

One key challenge has been to define the hazard in question: is it the antimicrobial drug use in 36 

animals, the antimicrobial resistant bacteria in animals and foods, or the antimicrobial resistant 37 

genes that can be transferred between commensal and pathogenic bacteria in the animal or human 38 

gut or in the environment? Other important limitations include the lack of occurrence and 39 

transmission data, and the lack of evidence to inform dose-response relationships. We present the 40 
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main principles, available methods, strengths and weaknesses of source attribution and risk 41 

assessment methods, discuss their utility to identify sources and estimate risks of AMR from 42 

livestock and pets, and provide an overview of conducted studies. In addition, we discuss 43 

remaining challenges and current and future opportunities to improve methods and knowledge on 44 

the sources and transmission routes of AMR from animals through food, direct contact or the 45 

environment, including due to improvements in surveillance and developments on genotypic 46 

typing methods.    47 

 48 

1. Introduction 49 

Antimicrobial use in humans and animals has been identified as a main driver of AMR, and 50 

bacteria harboring resistance to antimicrobials can be found in humans, animals, foods and the 51 

environment. As a consequence, humans can be exposed to antimicrobial resistantbacteria 52 

through a wide range of sources and transmission pathways. To inform policies aimed at 53 

reducing the burden of AMR from animals and foods, risk managers need evidence on the most 54 

important sources and transmission routes, and the critical points throughout the production chain 55 

for the prevention and control of AMR. While this process is complex and deeply reliant on the 56 

integration of surveillance data from humans, animals and foods, it is supported by scientific 57 

disciplines that have evolved rapidly in the last decades, including source attribution and 58 

quantitative risk assessment. 59 

Source attribution is a relatively new discipline that has been developed to assist risk managers to 60 

identify and prioritize effective food safety intervention measures. It is defined as the partitioning 61 

of the human disease burden of one or more foodborne illnesses to specific sources, where the 62 
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term source includes reservoirs and vehicles (1). A variety of source attribution methods is 63 

available to estimate the relative contribution of different reservoirs or vehicles of foodborne 64 

pathogens, including methods relying on data on the occurrence of the pathogen in sources and 65 

humans, epidemiological studies, intervention studies or expert elicitations. These methods have 66 

been applied to inform food safety policy-making at national or international level, particularly to 67 

inform Salmonella and Campylobacter intervention strategies (see e.g. (2–6)). Source attribution 68 

methods differ in their approaches and data requirements, and as a consequence they attribute 69 

disease at different points along the food chain (points of attribution), i.e. at the point of reservoir 70 

(e.g. animal production stage, environment emissions) or point of exposure (end of the 71 

transmission chain) (Figure 1). The application and utility of each method, therefore, depends on 72 

the risk management question being addressed and on the availability of data.  73 

 74 

Figure 1. Routes of transmission of zoonotic pathogens and points of source attribution. Adapted 75 

from (7). 76 

Microbial risk assessment  is a systematic and science-based approach to estimate the risk of 77 

microbial hazards in the production-to-consumption chain (8, 9). Microbial risk assessment can 78 

be used to detect critical control points along the food chain and for the assessment of control and 79 

intervention strategies. It is a well-established discipline that has been widely applied to estimate 80 

the risk of an extensive variety of pathogen-food commodity pairs, and it is also systematically 81 

applied to inform food safety risk management in many countries and international bodies such 82 

as the European Food Safety Authority (EFSA) (e.g. (10–12)). In coordination with source 83 

attribution studies, it is particularly useful to focus on the production chain of the most important 84 

source(s) of the hazard of interest (as identified in the source attribution step), identify the steps 85 
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in the food chain that are critical for hazard control, and identify and suggest strategies for 86 

reduction of the risk to humans. 87 

While source attribution and risk assessment have been widely used to provide evidence that can 88 

support strategies to reduce the burden of a number of foodborne pathogens, the transmission and 89 

spread of pathogens carrying resistance to antimicrobials adds an extra layer of complexity to this 90 

integrated food safety paradigm. On one hand, virtually any foodborne pathogen can acquire 91 

resistance to antimicrobials, which may lead to prolonged and more severe disease and even be 92 

life-threatening, when antimicrobial therapy is required but fails to succeed due to resistance 93 

towards the prescribed drug(s). On the other hand, the potential transfer of antimicrobial 94 

resistance genes (i.e. the gene(s) carrying the resistance trait) between pathogenic and commensal 95 

bacteria in the human gut can amplify the public health impact of foodborne AMR (13). As a 96 

consequence, it is not only challenging to estimate the direct risk posed by resistant foodborne 97 

pathogens, but also to quantify the relative contribution to risk of the transfer of AMR genes, e.g. 98 

from commensals originating from animal reservoirs to human pathogens.  99 

This chapter describes the overall concepts and methods within source attribution and microbial 100 

risk assessment, provides the state-of-the art of their application in the area of AMR, and 101 

discusses current challenges and future perspectives for the development of methods to inform 102 

policies to reduce the disease burden of AMR in human populations. 103 

2. Source attribution 104 

2.1. Source attribution of antimicrobial resistance 105 

The purpose of applying source attribution methods to antimicrobial resistant pathogens (i.e. a 106 

pathogen that has acquired resistance to at least one antimicrobial drug) or AMR genes is to 107 



6 

 

identify the most important sources and transmission routes for human exposure to AMR. It is 108 

widely recognized that one of the main drivers of resistance in zoonotic bacteria is antimicrobial 109 

use in livestock production (i.e. in the reservoirs) (14). Identifying the most important reservoirs 110 

for human exposure to AMR is hence critical to direct policy making aimed at reducing 111 

antimicrobial use at the primary production level. In addition, knowledge on the transmission 112 

routes from reservoirs to humans is crucial for the prioritization of risk management along the 113 

food chain. 114 

While a range of source attribution methods attributing disease to the original reservoirs or to 115 

exposure routes of foodborne pathogens exists, only a few studies have applied these in the 116 

context of AMR, and the relative importance of transmission pathways of resistance remains a 117 

critical knowledge gap.  118 

Challenges of applying source attribution methods for AMR include the fact that virtually any 119 

pathogen can become resistant to antimicrobials and that most zoonotic pathogens can be 120 

transmitted to humans via a variety of foodborne and non-foodborne routes. Thus far, source 121 

attribution typically focused on a single pathogen (e.g. Salmonella or Escherichia coli), and on 122 

resistance profiles found among that pathogen in different sources (15–17). In addition, 123 

antimicrobial resistance genes  are often located on plasmids, which can be transferred between 124 

bacterial species (plasmid-mediated horizontal gene transfer) and therefore also from commensal 125 

bacteria to human pathogens (e.g. Klebsiella spp.). Focusing on a single bacterial species is 126 

therefore likely to underestimate the overall exposure and thus the risk posed by AMR.   127 

To address this challenge, source attribution of the AMR determinant may be more efficient. 128 

Such studies require knowledge and data on the prevalence, abundance and transmission of 129 

genes, and on horizontal gene transfer rates, which is still being gathered (e.g. in the European 130 
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Union project EFFORT - Ecology from Farm to Fork Of microbial drug Resistance and 131 

Transmission; http://www.effort-against-amr.eu/). 132 

2.2. Existing source attribution approaches 133 

2.2.1. Microbial subtyping 134 

The microbial subtyping approach involves characterization of the hazard by subtyping methods 135 

(e.g., phenotypic or genotypic subtyping of bacterial strains), and the principle is to compare the 136 

subtypes of isolates from different sources (e.g. animals, food) with the subtypes isolated from 137 

humans. The subtyping approach attributes illness at the point of reservoir and is enabled by the 138 

identification of strong associations between some of the dominant subtypes and a specific 139 

reservoir or source, providing a heterogeneous distribution of subtypes among the sources (1).  140 

Microbial subtyping methods for source attribution include frequency matched models and 141 

population genetic models. While the frequency matched methods are based on the comparison 142 

of human strain types and the distribution of those types in the sources, the population genetic 143 

models are based on modelling the organism’s evolutionary history (18). In the frequency-144 

matched models, subtypes exclusively or almost exclusively isolated from one source are 145 

regarded as indicators for the human health impact of that particular source, assuming that all 146 

human cases caused by these subtypes originate only from that source. Human cases of disease 147 

caused by subtypes found in several reservoirs are then distributed relative to the prevalence of 148 

the indicator types (2, 3, 19). Population genetics approaches use genotyping data to infer 149 

evolutionary and clonal relationships among different strains, including the occurrence of novel 150 

(combinations of) alleles in strains from humans that are unobserved in source populations (20). 151 
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All microbial subtyping models require a collection of temporally and spatially related isolates 152 

from various sources, and thus are facilitated by an integrated foodborne disease surveillance 153 

programme providing a collection of isolates from the major animal reservoirs of foodborne 154 

diseases. These models do not require prevalence data, and can rely on the distribution of the 155 

isolates’ subtypes in the different sources and in humans. 156 

Either type of models has been applied to attribute foodborne pathogens to sources in a variety of 157 

countries. Microbial subtyping approaches have been particularly successful to attribute 158 

Salmonella and Campylobacter infections (see e.g. (3, 21–24)). The method has also been 159 

applied to other pathogens (namely Listeria monocytogenes and shiga toxin-producing 160 

Escherichia coli (25, 26)), even though less frequently due to lack of available surveillance data 161 

in most countries.  162 

The microbial subtyping approach has seldom been used to estimate the relative contribution of 163 

sources of antimicrobial resistant pathogens to AMR in humans. To our knowledge, two 164 

frequency-matched studies have been conducted, both using antimicrobial susceptibility patterns 165 

as a typing method for Salmonella (15, 16). Both studies demonstrate that AMR data can be used 166 

to characterize pathogen subtypes in a microbial subtyping source-attribution model, and discuss 167 

its utility in terms of discriminatory power, but do not focus on the source origin of specific AMR 168 

genes.  169 

Microbial subtyping methods are recognized as one of the most robust data-driven methods for 170 

source attribution. They have the advantage of attributing illness to the reservoirs of the 171 

pathogens, thus informing risk-management strategies closest possible to the original sources and 172 

preventing further spread to other routes or sources of transmission (1). Another advantage of this 173 

approach is that it does not require data on the prevalence and concentration of the pathogen in 174 
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the different sources (which is often difficult to obtain), or on the exposure frequency in the 175 

population. Still, these methods are often limited by the requirement of comparable subtyping 176 

data originating from an operative integrated surveillance of human cases and food/animals. In 177 

addition, the methods cannot distinguish between different transmission routes from a specific 178 

animal reservoir to humans.  179 

2.2.2. Comparative exposure assessment  180 

Comparative exposure assessments determine the relative importance of the known transmission 181 

routes by estimating the human exposure to the hazard (e.g. pathogen) via each route. For each 182 

known transmission route, this approach requires information on the prevalence and/or 183 

dose/concentration of the pathogen in the source, of the changes of the prevalence and quantity of 184 

the pathogen throughout the transmission chain, and of the frequency at which humans are 185 

exposed by that route (e.g. consumption data). Exposure doses are then compared, and the 186 

relative contribution of each of the various transmission routes to human exposure in the 187 

population is estimated, proportionally to the size of each exposure dose.  188 

The data requirements of the comparative exposure assessment approach will depend on the 189 

overall transmission groups considered in the model (i.e. foodborne, environmental and/or 190 

contact with animals), as well as on the point in the transmission chain where the “origin” of the 191 

pathogen is set. In general, contamination data for each source, information on the main steps in 192 

the transmission chain and data on the effects of these on contamination, and exposure data are 193 

needed. If transmission via contact with live animals is considered, the exposure model needs to 194 

be expanded and consider different possibilities for direct and indirect contact with a 195 

contaminated animal. 196 
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Exposure assessments have been used with different degrees of success to source attribute disease 197 

by several microbial agents, namely Listeria, Campylobacter, VTEC (and Toxoplasma gondii, 198 

and by chemical hazards - aflatoxins, cadmium and lead(27–34).  199 

In the context of AMR, this approach is particularly useful to address a widely-recognized 200 

knowledge gap, which is understanding the relative contribution of the exposure routes of AMR 201 

from animals to humans. Specifically, it can be used to estimate the relative importance of the 202 

food chain, companion animals and the environment for exposure of the general population to 203 

antimicrobial resistant bacteria or AMR genes. Thus far (and to our knowledge), two comparative 204 

exposure assessments have been applied to estimate the relative contribution of different types of 205 

meat to the exposure of consumers to extended spectrum beta-lactamases (ESBL)/and AmpC 206 

beta-lactamases producing Escherichia coli in the Netherlands(17) and in Denmark (35). 207 

An important drawback of this approach is that, due to data limitations and gaps (e.g. in food 208 

preparation habits and the effect of these in the contamination of foods), exposure estimates for 209 

microbial pathogens are likely to present wide uncertainty intervals. Furthermore, in the context 210 

of AMR, these studies focus on specific antimicrobial resistant pathogens, and do not address all 211 

concomitant transmission routes contributing to overall transmission of resistance to humans (e.g. 212 

same AMR determinant present in other members of the meat bacterial community), which adds 213 

to the uncertainty of the relative exposure estimates. 214 

2.2.3. Epidemiological approaches  215 

Epidemiological approaches for source attribution include analyses of data from outbreak 216 

investigations and studies of sporadic infections; both approaches attribute illness at the point of 217 

exposure.  An outbreak is here defined as (1) the occurrence of two or more cases of a similar 218 
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illness resulting from the exposure to a common source (36), or (2) a situation in which the 219 

observed number of cases exceeds the expected number and where the cases are linked  to the 220 

same food source (37). Sporadic cases represent cases that have not been associated with known 221 

outbreaks (38). Even though outbreak-associated cases are more likely to be captured by public 222 

health surveillance systems, an unknown proportion of cases classified as sporadic may be part of 223 

undetected outbreaks.  224 

Many outbreak investigations are successful in identifying the specific contaminated source or 225 

ingredient causing human infections. A simple descriptive analysis or summary of outbreak 226 

investigations is useful for quantifying the relative contribution of different foods to outbreak 227 

illnesses. However, these implicated foods may be composed of multiple ingredients, and thus 228 

outbreak data does not always allow pinpointing the actual source of infection. Probabilistic 229 

models using outbreak data to estimate the total number of illnesses in the population attributable 230 

to different foods provide a useful way to generalize outbreak data to a broader population of 231 

foodborne illnesses. These models are not only used to generalize the results of outbreak 232 

investigations, but also to estimate the contaminated sources in composite or “complex” foods.  233 

Analyses of data from outbreak investigations benefit from detailed data on each reported 234 

outbreak, and require the adoption of a food categorization scheme for classification of 235 

implicated foods (see e.g.(39)). Composite foods will be assigned to two or more food categories 236 

depending on the number and nature of their ingredients. By assigning a probability to each 237 

ingredient corresponding to the likelihood that it was the source of the outbreak, outbreak data, 238 

including data about both simple and complex foods, can be used to attribute foodborne illnesses 239 

to sources. 240 
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Several analyses of outbreak data for source attribution have been published in recent years, most 241 

of them modelling (40–42) or summarizing (43, 44) data from multiple pathogens. The strength 242 

of this method is that it uses data that is readily available in many countries worldwide, and thus 243 

its use is not restricted to countries with integrated foodborne disease surveillance programmes. 244 

Also, it attributes foodborne illnesses at the point of exposure, which means that it is particularly 245 

useful to identify which foods (including processed foods) most frequently cause disease, as well 246 

as which risk factors contribute more for contamination of foods at the end of the food chain (e.g. 247 

cross contamination). This type of information is valuable to define interventions at the 248 

processing and consumption level, but does not provide evidence to inform risk management 249 

strategies at the origin of the pathogen (reservoirs). 250 

Several outbreaks caused by antimicrobial resistant pathogens have been reported and 251 

investigated in the last decades (see e.g. (45, 46)). A review of outbreak data has also been used 252 

for source attribution of antimicrobial resistant Salmonella in the United States, suggesting that 253 

antimicrobial susceptibility data on isolates from foodborne outbreaks can help determine which 254 

foods are associated with resistant infections (47). Even though few countries or regions are 255 

likely to have sufficient data for a robust source attribution analysis using AMR-related 256 

outbreaks, summarizing available information may provide evidence on the relative contribution 257 

of different foods for infection with antimicrobial resistant pathogens. 258 

Another epidemiological approach that can be used for source attribution of foodborne disease is 259 

the case control study of sporadic cases. Case-control studies are a valuable tool to identify 260 

potential risk factors for human illness, including sources and predisposing, behavioral or 261 

seasonal factors (48). In addition to individual case-control studies, a systematic review  of 262 

published case-control studies of sporadic infections of a given pathogen can provide an 263 
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overview of the relevant exposures and risk factors for that disease, and a summary of the 264 

estimated population attributable fractions for each exposure (49). A systematic review follows a 265 

rigorous search strategy to identify all potentially relevant peer-review case-control studies for a 266 

hazard, studies being conducted in a variety of countries and time periods, designed with 267 

different settings, and potentially focused on specific age groups within the population. A meta-268 

analysis is then performed to compare and combine information from different studies. To do 269 

this, risk factors may be stratified according to source-categorization schemes, location of 270 

exposures and, if appropriate, frequency of exposure. An overall population attributable fraction 271 

derived from a meta-analysis or weighted summary of several case-control studies of a certain 272 

hazard can be combined with estimates of the burden of disease caused by that hazard to estimate 273 

the burden of disease attributed to each exposure. 274 

This method is particularly useful for hazards that do not frequently cause outbreaks but that have 275 

been extensively studied (50). In addition, it is valuable to attribute illness at a regional or global 276 

level when data are scarce in most countries. A number of case-control studies have been 277 

conducted to investigate risk factors for infection with foodborne pathogens resistant to 278 

antimicrobials (see e.g. (51, 52)). However, the utility of a meta-analysis of case-control studies 279 

to investigate the relative contribution of different sources and risk factors for infection with 280 

antimicrobial resistant pathogens may be limited if a low number of case-control studies focused 281 

on specific antimicrobial resistant pathogens  or AMR genes has been conducted.  282 

2.2.4. Other approaches  283 

Other approaches for source attribution of foodborne pathogens include intervention studies and 284 

expert elicitations. Intervention studies are large-scale, well-structured prospective studies that 285 
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are specifically tailored to evaluate direct impacts of a specific intervention on the risk of disease 286 

in a population. While they would be the gold-standard of an attribution study, they have the 287 

disadvantages of being resource-demanding, expensive, and difficult to implement because other 288 

concurrent factors may affect occurrence of disease.  289 

Expert elicitations can be designed as structured methods to gather and analyze knowledge from 290 

experts, which are communicated with a measure of uncertainty. They are particularly useful to 291 

attribute the burden of foodborne diseases to main transmission pathways (i.e. foodborne, 292 

environmental, direct contact), for which data-driven methods are typically insufficient(50). 293 

There are numerous methods used for expert elicitation, including methods that are based upon 294 

iteration and finding consensus among a small group of experts (e.g. the Delphi method). Expert 295 

judgments are subjective by nature and may be biased by the specific background and scientific 296 

expertise of the respondents, and several methods to evaluate the expert’s performance have been 297 

described. Several expert elicitation studies have been conducted for source attribution of 298 

foodborne disease (e.g. Havelaar et al. 2008; Ravel et al. 2010). The World Health Organization’s 299 

Initiative to Estimate the Global Burden of Foodborne Diseases (WHO-FERG) has undertaken a 300 

large-scale and successful expert elicitation to attribute disease by 19 foodborne hazards to main 301 

transmission groups at a global, regional and sub-regional level (55). The study applied 302 

structured expert judgment using Cooke’s Classical Model (56) to obtain estimates for the 303 

relative contributions of different transmission pathways for several foodborne hazards.  304 

2.3. Applications and results 305 

Despite the increased recognition of the importance of source attribution of foodborne pathogens 306 

to direct risk management strategies, and the growing use of these approaches in several countries 307 
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and research groups, source attribution of AMR is still in its infancy. There are few published 308 

examples of the different methods here described, and the identified challenges are still being 309 

addressed. The two microbial subtyping studies published are both frequency-matched studies 310 

that used antimicrobial susceptibility patterns as a typing method for Salmonella (15, 16). These 311 

studies use AMR profiles as a typing method (i.e. to characterize pathogen subtypes) but do not 312 

focus on the source origin of specific AMR genes. Still, they are able to estimate the distribution 313 

of AMR in human cases attributed to different sources, as is done routinely in the Salmonella 314 

source attribution activities in Denmark (57). Similarly, the two comparative exposure 315 

assessments that have been applied to estimate the relative contribution of different types of meat 316 

to the exposure of consumers to AMR have focused on the same causative agent, this time 317 

extended spectrum beta-lactamases (ESBL)/and AmpC beta-lactamases producing Escherichia 318 

coli (17, 35). These studies demonstrate that the method could be extended to other countries and 319 

agents. The recent review of outbreak data for source attribution of antimicrobial resistant 320 

Salmonella in the United States suggests that antimicrobial susceptibility data on isolates from 321 

foodborne outbreaks can help determine which foods are associated with resistant infections (47). 322 

This method could be applied in countries that have sufficient data, or to regional data in an 323 

attempt to gather information from multiple countries. Numerous epidemiological studies of 324 

sporadic infections (case-control or cohort studies) investigating risk factors for of antimicrobial 325 

resistant infections in humans demonstrate these methods usefulness to identify routes of AMR 326 

(e.g. (58–60). While their use focusing on foodborne or direct or indirect contact to animals’ 327 

transmission has been limited, available studies still provide information for food safety risk 328 

management (51, 52). 329 
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2.4. Strengths and weaknesses 330 

Source attribution of AMR genes and of antimicrobial resistant pathogens is a research area 331 

under active development. The application of the methods here described remains a challenge, for 332 

reasons that depend on each method considered.  333 

For the application of subtyping frequency-matched studies, two of the main challenges are the 334 

limited availability of animal, food and human AMR data from established surveillance systems, 335 

and the difficulty to define number of antimicrobial resistance profiles highly specific to a 336 

particular source/transmission route, a cornerstone of this method. Furthermore, the fact that the 337 

method does not determine the actual transmission route from each specific reservoir to humans 338 

represents another limitation for the use of frequency-matched models. Due to the public health 339 

need for understanding the transmission of AMR, population genetics approaches may eventually 340 

be a good complement to frequency-matched models, especially considering the increasing 341 

availability of whole genome sequencing and metagenomics data, which describe occurrence of 342 

AMR genes in populations. For instance, population genetics can help identifying reservoir-343 

specific AMR genes’ patterns that can then be used in frequency-matched models. New 344 

generation sequencing data may also contribute to unravel details that contribute to a more 345 

accurate source-attribution, such as the evolution of AMR patterns over time in different sources, 346 

and resistance in humans that is not transmitted from animals or foods. 347 

While single genomics and metagenomics may support the development of novel subtyping 348 

source-attribution methods, they may hinder the application of comparative exposure assessment. 349 

Information on prevalence and quantity of AMR genes or antimicrobial resistant pathogens in 350 

each source, as well as their changes throughout the transmission chain, are difficult to assess 351 

from those data and impaired by a high degree of uncertainty. 352 
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Epidemiological methods of source-attribution, e.g. based on outbreak investigation, have the 353 

advantage of not relying on a sophisticated, data abundant and integrated surveillance system, 354 

encompassing animal reservoirs, foods and humans. However, they require consistent AMR 355 

investigation on food sources and human cases, based at least on bacterial isolation and 356 

phenotypic susceptibility testing. Eventually, new generation sequencing may overtake 357 

traditional diagnostic methods in outbreak investigation (14, 61), which will also require 358 

modification of the current epidemiological approaches. 359 

Intervention studies have, in the context of AMR, the same limitations as when applied to 360 

bacterial pathogens. It is difficult to evaluate the exact impact of a specific intervention (e.g. 361 

reducing antimicrobial use at the farm level) on the population where disease is attributed (e.g. 362 

AMR occurrence in humans). Control measures that reduced antimicrobial use in primary 363 

production have been successfully implemented with the aim of reducing AMR in animals (e.g. 364 

the antimicrobial growth promoter intervention, the voluntary ban on the use of cephalosporins 365 

and the yellow card antimicrobial scheme in swine herds in Denmark (62–64)). However, to 366 

assess the real success of such measures in terms of public health impact, it is necessary to collect 367 

data prior to and following the intervention (14), at all dimensions of AMR transmission to 368 

humans, i.e. also including other transmission routes such as environment and antimicrobial use 369 

in humans. 370 

   371 
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3. Risk assessment 372 

3.1. Microbial Risk Assessment (MRA) of antimicrobial resistance 373 

Risk assessment is the process of estimating the likelihood that exposure to a biological, chemical 374 

or physical hazard will result in an adverse health effect in exposed individuals. Microbial risk 375 

assessment has been established as a part of the food safety risk analysis paradigm by 376 

international and national bodies in the last decades, with harmonized guidelines being proposed 377 

and widely adopted worldwide (8, 65). In the context of AMR, risk assessments are useful to 378 

inform regulatory decision making for the mitigation of potential health consequences in both 379 

humans and animals (66). While the importance and need for AMR risk assessments have been 380 

recognized for decades (67), its application has been complicated by several knowledge gaps. 381 

Challenges of the development of AMR risk assessment include: 382 

 The nature of the hazard is difficult to identify and will determine the nature of the 383 

adverse consequence of the exposure. In the context of AMR risk assessment, different 384 

hazards can be considered (68, 69). For example, Salisbury et al.(2017) (68)discussed 385 

three interrelated hazards that can be assessed separately: the antimicrobial drug, the 386 

antimicrobial resistantbacteria, and the AMR determinant, leading to three different health 387 

consequences, respectively -   development of resistance, infection and treatment failure 388 

and transference of resistance. Similarly, Manaia (2017)(69) describes that resistome-389 

associated risks have been discussed considering the microbial community, the genome 390 

and transmission of resistance.  391 

 The nature of the risk posed by antimicrobial use and AMR to human health is inherently 392 

complex and logically linked to the nature of the hazard, as mentioned above. In other 393 

words, while the likelihood that humans will be infected by pathogens that are resistant to 394 
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one or several antimicrobials can be estimated, the resulting adverse health consequences 395 

can be one or several of the following:  development of disease due to infection with the 396 

pathogen; failure of treatment of the infection due to resistance to the used drug(s); and 397 

spread of AMR genes to commensal bacteria in the human host (which can amplify the 398 

risk and extend the impact of an isolated exposure in time).  399 

 There are numerous factors in the process of selection and spread of resistance in bacterial 400 

populations, between and within animal species, humans and the environment, and within 401 

different bacterial populations in those same reservoirs. These factors include the several 402 

drivers for the emergence and spread of AMR in the food production, specifically at the 403 

farm. At this level, antimicrobial use is recognized as the most important driver, but not 404 

always necessary (if for example co-resistance and co-selection occur), and not always 405 

sufficient; additional drivers are e.g. poor prevention and control of infectious diseases 406 

leading to increased antimicrobial use and the spread of clones that have established 407 

themselves in the herd/environment, and keep selective pressure, even if antimicrobial use 408 

is interrupted. These factors, among many others, influence the development of exposure 409 

assessment in microbial risk assessment. 410 

 Additionally to the challenges described above, estimating the likelihood of adverse 411 

health effects, given exposure to an antimicrobial resistant pathogen or determinant, is 412 

difficult due to the absence of a well-defined dose-response effect for AMR, and the 413 

existence of various possibilities of adverse effect. 414 

Recognizing the need for AMR risk assessments to identify strategies aimed at preventing and 415 

reducing the disease burden of AMR transmitted through foods, a number of reviews and 416 

scientific articles have proposed frameworks for such risk assessments in the late 90’s and early 417 
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2000’s (67, 68, 70). Even though such proposals were comprehensive and structured to address 418 

the challenges identified at that time, they were not widely adopted, mostly due to remaining 419 

knowledge and data gaps in the AMR transmission and impact. More recent frameworks apply 420 

current available data and either are mostly qualitative or semi-quantitative  (see e.g. (71, 72)), 421 

take a linear approach (e.g. (73)), and/or focus on marketing authorization applications for 422 

antimicrobial veterinary medicinal products for use in food producing species (74). 423 

 424 

3.2. Description of the four steps of microbial risk assessment focusing on AMR 425 

The microbial risk assessment process is, as described by the Codex Alimentarius guidelines (8), 426 

constituted by four main components: hazard identification, hazard characterization, exposure 427 

assessment and risk characterization.  428 

In an AMR risk assessment, the hazard can be the antimicrobial drug, the antimicrobial resistant 429 

pathogen or the AMR determinant. Ultimately, the identification of the hazard of interest will 430 

depend of the risk-assessment question to be addressed. In a traditional microbial risk assessment 431 

(i.e. focused on a pathogen-food pair, without considering resistance to antimicrobial drugs) the 432 

hazard identification step consists of the qualitative description of the hazard, including the 433 

evaluation of the presence of the pathogen in a food product available for consumption in a 434 

population and the host interface (types of disease caused, susceptible populations). In the context 435 

of AMR, this step is complicated by a number of factors: i) selection of resistance in a pathogen 436 

can occur by multiple mechanisms (namely mutation and horizontal gene transfer of mobile 437 

genetic elements containing AMR genes (HGT)) (75); ii) one or more genes may be necessary for 438 

development of AMR; iii) AMR genes can be located in chromosomal or extra-chromossomal 439 
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DNA such as plasmids (75), and iv) several bacterial species or strains can harbor and serve as a 440 

reservoir for resistance.  441 

The hazard characterization step of a risk assessment consists of the review and collection of 442 

information on the relationship between the dose of the hazard and the onset of disease in the 443 

exposed individuals (i.e. infectious dose), and the relationship between different doses and the 444 

probability of occurrence of disease (i.e. dose-response). The response of a human population to 445 

exposure to a foodborne pathogen is highly variable, reflecting the fact that the incidence of 446 

disease is dependent on a variety of factors such as the virulence characteristics of the pathogen, 447 

the numbers of cells ingested, the general health and immune status of the hosts, and the 448 

attributes of the food that alter microbial-host interaction (76). Thus, the likelihood that any 449 

individual becomes ill due to an exposure to a foodborne pathogen is dependent on the 450 

integration of host, pathogen, and food matrix effects. Again, in AMR risk assessment, the 451 

required data to assess a dose-response relationship will depend on the hazard considered; it can 452 

be one of the three: dose level of the antimicrobial for observing resistance usually expressed by 453 

minimum inhibitory concentration (MIC) breakpoint (75), or any other factor that can affect the 454 

development or amplification of resistance, the dose of the pathogen needed to cause disease, or 455 

any factor related to the stability and transfer potential of the AMR gene in a bacterial population 456 

(68). 457 

In the exposure assessment step, the likelihood that an individual or a population will be exposed 458 

to a hazard and the numbers of the microorganism that are likely to be ingested are estimated 459 

(77). The exposure assessment requires data on the prevalence and concentration of the hazard in 460 

the food source(s), as well as information on the potential changes of the pathogen load 461 

throughout the food processing chain (e.g. growth, reduction) (78); in addition, it requires data on 462 
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the frequency and amount of food consumed by individuals of the population. As mentioned 463 

above, numerous factors influence the process of selection and spread of resistance, consequently 464 

influencing the final exposure of the consumer to AMR genes or antimicrobial resistant 465 

pathogens. These factors are either still unknown or there are limited data reporting their 466 

influence on AMR transmission throughout the food chain. 467 

In the last component of a risk assessment, risk characterization, the final risk to the consumer is 468 

estimated by integrating the previous three components. Specifically, the measure of exposure 469 

(i.e. the likely dose an individual is exposed to in a given food consumption/exposure event) is 470 

integrated with the dose-response relationship to estimate the likelihood of adverse health effect. 471 

In the context of AMR microbial risk assessment, even after an appropriate definition of the risk 472 

question and the targeted hazard identification (which determine the adverse effect to be 473 

assessed), and the estimation of the likelihood of exposure to the hazard of interest, 474 

characterizing the risk in the absence of an appropriate and comprehensive hazard 475 

characterization step remains a challenge. A “dose-response” step becomes particularly 476 

demanding when “dose” at exposure is expressed in genotypic terms (by use of genomics or 477 

metagenomics AMR data) and “response” must be expressed in phenotypic terms (e.g. 478 

expression of resistance in a pathogen or horizontal transfer of an AMR gene between 479 

commensal and pathogenic bacteria). 480 

3.3. Applications and results  481 

A number of risk assessments focused on specific antimicrobial resistant pathogens-food/animal 482 

pairs have been conducted since the publication of the different proposed guidelines. These 483 

include qualitative, semi-quantitative and quantitative risk assessments, performed by food 484 
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authorities, academia or industry. Here we provide examples of the three-types of risk assessment 485 

that have been important to highlight the challenges and limitations they still face, the 486 

applications of their results and the need for further studies.   487 

Qualitative risk assessments 488 

One of the first studies published assessed the health impact of residues of antibacterial and anti-489 

parasitic drugs in foods of animal origin and was published over two decades ago (79). It was a 490 

qualitative and comprehensive review that focused on residues of a variety of drugs in multiple 491 

foods, and an important step for the recognition of several of the challenges described in this 492 

chapter. More drug- and pathogen-focused qualitative assessments have been conducted since 493 

then, including in recent years, such as the qualitative risk assessment focused on Methicillin 494 

resistant Staphylococcus aureus (MRSA)  conducted by a multi-sectorial and interdisciplinary 495 

expert group in Denmark (80). This study is a good example of an applied risk assessment, 496 

conducted upon request from the food and veterinary authorities with the aims of 1) assessing the 497 

risk of livestock MRSA based on the existing knowledge and the results of veterinary screening 498 

studies conducted in herds, and 2) providing recommendation for control measures to reduce the 499 

spread of MRSA from the affected herds to the surrounding environment and community. The 500 

method consisted of a comprehensive evaluation of all available data on the prevalence of MRSA 501 

in animals and humans, as well as on the risk factors for infection by livestock MRSA from the 502 

environment, from meat, from occupational activities (e.g. risk for slaughterhouse or farm 503 

workers) and from the community. The risk assessment consisted of a descriptive evaluation of 504 

the risk of these types of transmission in the Danish population. 505 

Another recent study has applied the risk assessment framework developed by the European 506 

Medicines Agency (74) to assess the AMR risk to public health due to use of antimicrobials in 507 
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pigs, using pleuromutilins as an example (81). Livestock-associated methicillin-resistant 508 

Staphylococcus aureus of clonal complex 398 (MRSA CC398) and enterococci were identified as 509 

relevant hazards. This framework followed the International Organization for Animal Health’s 510 

(OIE) approach to risk assessment and consisted of four steps describing the risk pathway, 511 

combined into a risk estimate. The study applied a qualitative approach, where the output of each 512 

step was defined in a scale. Likewise, the level of uncertainty was described qualitatively in the 513 

different steps and the output (as high, medium or low). The authors discuss the value of 514 

mathematical modeling as a tool to simulate pathways and identifying ways of reducing 515 

resistance. Still, they stress that the relationship between reducing consumption of antibiotics and 516 

reducing resistance is not necessarily linear, and defend that this relationship needs to be better 517 

established for modeling to have full value (81). Despite the fact that this study is recent at the 518 

point of writing of this chapter and thus could build on all newly available evidence on AMR 519 

mechanisms, it still dealt with substantial data and knowledge gaps that enhanced uncertainty 520 

around outputs (81). 521 

Another example of a qualitative assessment is the WHO’s list of Critically Important 522 

Antimicrobials (71). The list applies criteria to rank antimicrobials according to their relative 523 

importance in human medicine. The purpose of this assessment is to provide clinicians, 524 

regulatory agencies, policy-makers and other stakeholders’ information to develop risk 525 

management strategies for the use of antimicrobials in food production animals globally. The first 526 

WHO list of Critically Important Antimicrobials was developed in a  WHO expert meeting in 527 

2005, where participants considered the list of all antimicrobial classes used in human medicine 528 

and categorized antimicrobials into three groups of critically important, highly important, and 529 

important based on two criteria that describe first the availability or not of alternatives to the 530 
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antimicrobial for treatment of serious bacterial infections in people, and second if the 531 

antimicrobial is used to treat infections by (1) bacteria that may be transmitted to humans from 532 

nonhuman sources, or (2) bacteria that may acquire resistance genes from nonhuman sources. 533 

The output of the qualitative assessment is a list of classes of drugs that met all three of a set of 534 

defined priorities. Since its original publication, the assessment has been revised several times 535 

and is now in its 5th edition. 536 

Semi-quantitative risk assessments 537 

One example of a semi-quantitative assessment is the study integrating a probabilistic 538 

quantitative risk assessment conducted in Denmark to assess the human health risk of macrolide-539 

resistant Campylobacter infection associated with the use of macrolides in Danish pig production 540 

(82). This model was able to account for exposure through imported and domestic meat (i.e. that 541 

could be a vehicle for antimicrobial resistant bacteria as a consequence of antimicrobial drug use 542 

in animal production in the country) and used evidence available at the time. One important 543 

feature of this study is that, while it measured exposure probabilistically and thus reflected model 544 

and data uncertainty, the final step of the risk assessment –risk characterization – used an ordinal 545 

scale and thus risk was described in a qualitative scale.  546 

Quantitative risk assessments 547 

Several quantitative risk assessments have been published since the early 2000’s. These include 548 

the high profile assessment of fluoroquinolone-resistant Campylobacter from chicken in the 549 

United States (US) (83), which ultimately prompted the Food and Drug Administration to 550 

propose withdrawal of the approval of the new animal drug applications for fluoroquinolone use 551 
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in poultry, an action that would prohibit fluoroquinolone use in chickens and turkeys in the 552 

country (84).  553 

Another early study employed probabilistic methodology to analyze the potential public health 554 

risk from Campylobacter jejuni and fluoroquinolone-resistant C. jejuni due to fresh beef and 555 

ground beef consumption (85). The model focused on the beef product at retail and modelled 556 

consumer handling in the kitchen, processing and consumption. The model estimated first the 557 

risk of Campylobacter infection through consumption of beef, and then the risk of treatment 558 

failure given infection, concluding an increased health impact due to resistance.  559 

In another study, a risk assessment followed the US Food and Drug Administration’s Center for 560 

Veterinary Medicine Guidance (86) and was commissioned by a pharmaceutical company to 561 

estimate the risk of human infection treatment failure associated with the use of an AM drug in 562 

food animals (87). The deterministic model included all uses of two macrolides in poultry, swine, 563 

and beef cattle. The hazard was defined as illness (i) caused by foodborne bacteria with a 564 

resistance determinant, (ii) attributed to a specified animal-derived meat commodity, and (iii) 565 

treated with a human use drug of the same class. Risk was defined as the probability of this 566 

hazard combined with the consequence of treatment failure due to resistant Campylobacter spp. 567 

or Enterococcus faecium. At the time, this microbial risk assessment had the advantage of being 568 

quantitative and thus more transparent when compared to previous assessments focusing on 569 

AMR. Thus, the authors highlighted several limitations, particularly with regards to data gaps on 570 

the probability of treatment failure due to the antimicrobial resistant bacteria and the probability 571 

of resistant determinant development. In contrast to many evidence and risk assessments 572 

conducted elsewhere, the results of this study lead the authors to conclude that current use of 573 
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macrolides in cattle, poultry, and swine create a risk much lower than the potential benefit to food 574 

safety, animal welfare, and public health (87). 575 

The same author published another risk assessment a few years later, applying a similar approach 576 

to estimate the risk of a different combination of antimicrobial-pathogen - fluoroquinolone-577 

resistant Salmonella and Campylobacter in beef in the US (88).  This approach was able to 578 

provide a better measure of uncertainty but was similar in its findings, concluding that the risk of 579 

health consequences in humans was minimal. 580 

The most recent quantitative risk assessment study published is also the more novel and 581 

promising of the AMR studies here reviewed (89). It considered the existence of environmental 582 

compartments resulting from sewage-treatment plants, agriculture production and manufacturing 583 

industries, and assessed their role in the maintenance, emergence and possible dissemination of 584 

antibiotic resistance. This study used probabilistic methods to assess the risks of antibiotic 585 

resistance development and neutralizing antibiotic pressures in hotspot environments. 586 

Importantly, this study presents a modelling approach to assess the selective pressure exerted by 587 

antibiotics in bacterial communities and to calculate antibiotic resistance development risks. 588 

While the described approach was exemplarily used to model antibiotic resistance risks in an 589 

intensive aquaculture production scenario of south-east Asia, it has potential to be applied to 590 

other cases, including other types of animal production, settings and drugs. 591 

3.4. Strength and weaknesses 592 

Microbial risk assessment is a science-based tool with proven benefits in supporting food safety 593 

authorities in policy making. It is hence aspired to continue its use in assessing the consequences 594 

for the consumer of the transmission of AMR genes /pathogens throughput the food chain. The 595 
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fact that it is a well-defined, stepwise-structured method facilitates its adaptation to the food 596 

safety challenge of AMR. However, several limitations have already been identified and require 597 

the joint focus of the scientific community, risk assessors and authorities. Examples of a few 598 

critical challenges are: 599 

    The definition of antimicrobial resistance is critical for the four steps of microbial risk 600 

assessment, and needs therefore to be well-established at the very start of a risk assessment 601 

study. Martínez et al. (2014) (75) explains the existence of several possible definitions of 602 

resistance, (namely clinical, epidemiological and operational), and two definitions of 603 

resistance gene (ecological and operational). The adoption of standard concepts and 604 

terminology is a requisite for the transparency of microbial risk assessment and an important 605 

part of its development. Although transmission of AMR genes and antimicrobial resistant 606 

bacteria may be perceived and have been defined as two separate hazards, it has also been 607 

recently suggested that the risk of AMR transmission to humans cannot be estimated unless 608 

the AMR gene pool and the presence and quantity of antimicrobial resistant bacteria that are 609 

able to colonize and multiply in the human body are both taken into consideration (69).  610 

 Exposure assessment often relies on available knowledge of the changes in the microbial 611 

hazard levels throughout the food chain, due to e.g. growth or inactivation. In the context of 612 

microbiomes and resistomes, it is difficult to model these changes, as the very composition of 613 

the microbial population (and corresponding AMR genes) may significantly change between 614 

“farm” and “fork” (90, 91). Consequently, microbial risk assessment for AMR is highly 615 

dependent on data collected at several points of the transmission pathway, both from the 616 

source(s) of AMR and from exposed human subjects.   617 
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  While new generation sequencing attractively provides a broad characterization of the 618 

presence and abundance of AMR genes in a particular pathogen or in the microbiome from a 619 

particular reservoir, it remains a challenge to determine variability of the resistome and of the 620 

potential to exchange AMR genes (i.e. presence of phage recombination sites, plasmids, 621 

integrons or transposons) between different pathogen strains (69). This knowledge is crucial, 622 

respectively, to assign the AMR genes detected with metagenomics to the corresponding 623 

bacterial hosts, and to account for the occurrence of horizontal gene transfer between 624 

commensal and pathogenic bacteria in a population. 625 

 Furthermore, an important challenge for the integration of metagenomics data in MRA is the 626 

harmonization of languages between the “omics” and the food microbiology communities 627 

(92). 628 

 Risk characterization requires knowledge of the relationship between a “dose”, resulting from 629 

exposure assessment, and a “response”, i.e. the adverse health effect of exposure. However, 630 

the infective dose and the modes of transmission of most of the antimicrobial resistant 631 

bacteria of relevance are still unknown (69), which represents an important knowledge gap 632 

for the development of microbial risk assessment for antimicrobial resistance. 633 

 Finally, a major limitation of the current microbial risk assessment frameworks is that they do 634 

not allow estimating the long-term impact of exposure to AMR. Particularly serious public 635 

health consequences of AMR arise when multiresistant bacteria emerge and become widely 636 

spread. There is therefore the need to develop microbial risk assessment methods that include 637 

a different characterization of the risk of AMR. In addition to immediate consequences to 638 

human health due to a single exposure to a antimicrobial resistant pathogen, it is necessary to 639 

estimate the likelihood that such exposure (eventually together with past and subsequent 640 
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ones, to the same or other types of AMR) will lead to the development of antimicrobial multi-641 

resistance in the future. Also, it is necessary to assess the potential of multi-resistance spread, 642 

to characterize the severity of the consequences of exposure to multi-resistance and to 643 

estimate the time from initial exposure to those consequences.   644 

 645 

4. Discussion and future perspectives 646 

Several position and stakeholder papers have stressed the need for improved quality and 647 

increased amount of data for risk assessment of AMR (see. e.g.(93)). These include e.g. data on 648 

antimicrobial use in animal production, AMR surveillance data in animals, foods and humans, 649 

and gene transfer and spread of AMR genes.  All data requirements apply for most source 650 

attribution studies, and thus are transversal to the methods described in this chapter. Likewise, 651 

many of the challenges to the application of these methods in the context of AMR are common to 652 

source attribution and risk assessment approaches (Table 1). 653 

Table 1. Definition, overview of methods and main challenges of source attribution and microbial 654 

risk assessment approaches. 655 

 Source attribution Microbial risk assessment 

Definition Partitioning of human cases 

of illness to the responsible 

sources (e.g. foods, animal 

reservoirs) 

Systematic and science-based approach 

to estimate the risk of microbial 

hazards in the production-to-

consumption chain 

Methods  Microbial subtyping  Qualitative RA* 
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 Comparative 

exposure assessment 

 Outbreak-data 

analysis 

 Case-control studies 

 Expert elicitations 

 Intervention studies 

 Semi-quantitative RA 

 Quantitative RA 

o Deterministic 

o Probabilistic 

Main challenges in the 

context of AMR 

 Hazard identification, e.g. the antimicrobial drug, the 

antimicrobial resistant pathogen or the AMR determinant 

 Lack of occurrence/prevalence data 

 Definition of the health outcome, i.e. infection with 

antimicrobial resistant agent, treatment failure (in case 

treatment is needed) or spread of resistance determinant 

between commensal and pathogenic organisms 

  Lack of 

epidemiological data 

 Establishment of dose-response 

relationship 

 Determining variability of the 

resistome and of the potential to 

exchange AMR genes between 

different pathogen strains  

*RA: risk assessment 656 

 657 



32 

 

The studies here described all show the importance of knowledge on 1) the most important 658 

sources and routes of transmission of antimicrobial resistant bacteria or AMR genes,  2) the 659 

actual risk for human health, and 3) the points in the transmission chain where interventions 660 

could be effective to reduce this risk. While all findings so far have been crucial to direct policies 661 

and raise awareness to the public health impact of AMR in animals and foods, they are 662 

insufficient for a complete understanding of the underlying transmission mechanisms and the real 663 

impact of AMR. Several challenges have been addressed, including the fact that emergence and 664 

spread of AMR is complex. From an epidemiological point of view, the risk of AMR most 665 

probably follows the “sufficient-component causes” principle (94) . The sufficient-component 666 

causes is an epidemiological causal modeling approach that can be used to explain diseases, or 667 

conditions like AMR, characterized by many causes, none of which alone is necessary or 668 

sufficient. The relations among the causes are described in a way that a sufficient cause is a set of 669 

minimal conditions that will definitely lead to the outcome (e.g. antimicrobial resistant infection), 670 

and a component cause is one of the minimal conditions included in a sufficient cause (94). For 671 

example, a particular resistance gene can be a component cause of an antimicrobial resistant 672 

infection, but the sufficient cause of the latter includes other conditions, such as the bacterial 673 

strain carrying that particular gene, that pathogen causing infection, treatment of the infection 674 

with antimicrobial(s) for which resistance is encoded in the gene, and actual expression of that 675 

resistance gene. The future of microbial risk assessment for antimicrobial resistance may 676 

therefore include defining the components sufficient to cause AMR transmission from 677 

animals/foods/environment to humans followed by treatment failure of infections by 678 

antimicrobial resistant pathogens.  679 
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Recent developments in “omics” technologies (whole genome sequencing and metagenomics, 680 

transcriptomics, proteomics, metabolomics, fluxomics) provide unique opportunities to fill in 681 

some of our knowledge gaps. It is now widely recognized that these “omics” technologies have 682 

advantages compared to traditional phenotypic culture-based methods for characterizing 683 

microorganisms (92, 95).  684 

Brul et al (2012)(92) described in detail how “omics” can be integrated in each step of microbial 685 

risk assessment, contributing to a mechanistic insight into the interaction between 686 

microorganisms and their hosts, new perspectives on strain diversity and variability and 687 

physiological uncertainty, and overall more robust risk assessments. Den Besten et al. (2017)(95) 688 

discussed the utility of “omics” technologies applied by the food industry, to help identify the 689 

influence of different bacterial ecosystems on both pathogen survival and growth – information 690 

that can eventually contribute to the future definition of Food Safety Objectives (FSO).  691 

A particular advantage of metagenomics is that it provides a picture of the whole microbial 692 

community and its resistome, which is key to understanding AMR emergence and spread in a 693 

population. Importantly, these new “typing” techniques have been rapidly followed by new 694 

bioinformatics and new statistics/modelling tools that allow for the analysis and sense-making of 695 

such (big) data (92, 96). For example, machine learning has the potential to be applied on the 696 

analysis of omics data. Combining machine learning approaches with metagenomics and farm 697 

specific data could allow for describing e.g. health, production efficiency, and the relative 698 

abundance of AMR genes, based on the identification of (clusters of) genetic factors in the farm 699 

microbiome. In addition, such techniques could be used to examine the predictive importance of 700 

(clusters of) genetic factors in order to characterize 1) a ‘healthy farm microbiome’ or 2) AMR 701 

genes in a specific animal reservoir. They can also be used to identify (combinations of) specific 702 
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husbandry practices that are associated with e.g. a particular resistome or a ‘healthy farm 703 

microbiome’. The latter could lead to recommendations on how to shift the farm microbiome in 704 

order to improve the overall health of the farm, and consequently on the long term, to reduce the 705 

level of antimicrobial use and antimicrobial resistant bacteria. It is possible that promoting a 706 

‘healthy farm microbiome’ will have a more long-term impact on the overall reduction of AMR, 707 

than focusing exclusively on the farm resistome. Metagenomics and other “omics” technologies 708 

have hence enormous potential for the future development of source attribution and microbial 709 

risk assessment of AMR through foods. To explore their full potential, different technologies 710 

shall be combined. For example, genomics studies should be coupled with proteomics, as gene-711 

expression studies do not always reflect the actual protein levels (92). Also, genomic similarities 712 

may not imply similarities in behavior, as the surrounding environment (food matrix, bacterial 713 

ecosystem, etc) also plays a role (95) . Furthermore, “omics” data are not sufficient without 714 

accompanying epidemiological data that allow for the identification of risk factors for AMR. 715 

5. Concluding remarks 716 

Recent developments in source-attribution and microbial risk assessment of AMR are promising 717 

and have significantly contributed to the evolution of each of these methods. However, the 718 

adaptation to the “omics” big data era is happening at a much slower pace than the speed at 719 

which these data are becoming available. This is due to the many challenges encountered when 720 

interpreting those data.   721 

Antimicrobial resistance at the animal reservoir, food, environment and human levels is 722 

increasingly described by the characterization of the resistomes of single bacteria isolates (by 723 

whole genome sequencing) or the bacterial whole community (by metagenomics) representing 724 

each of those populations. Gradually, AMR surveillance will convert from phenotypic to 725 
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genotypic (e.g. PulseNet International is already on its way to standardize whole genome 726 

sequencing-based subtyping of foodborne disease (96). For a successful transition, it is crucial to 727 

pair genomic data with phenotypic data and relevant explanatory epidemiological data. 728 

This transition will require a parallel adaptation of the existing analysis methods, which will 729 

include the development of new source-attribution and microbial risk assessment modelling 730 

approaches. It is therefore with great expectation that we foresee in the near future a surge of 731 

influencing and inspiring scientific output in both fields. 732 
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