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Abstract:

Accurate estimation of local site conditions, i.e. wind power resources and the turbulence
impacting wind turbines turbines, is an important part of wind farm planning. In complex
terrain, non-linear microscale models that account for atmospheric stability effects are
needed for accurate site assessment, but by themselves they are unable to account for
the changing large-scale weather conditions. Therefore, coupling to a mesoscale model,
which can provide these variations to the microscale models, is required.

This thesis describes, implements and validates with observed tall mast measurements a
novel coupling strategy using the Weather Research and Forecasting (WRF) mesoscale
model and the EllipSys3D URANS microscale model for wind downscaling. The cou-
pling strategy is based on forcing the microscale model with momentum and temperature
source terms extracted from the time-evolving mesoscale model simulation. These terms
are included as source terms instead of the usual lateral boundary conditions. Two cases
are presented for sites in simple and complex terrain.

First, results from simple terrain cases are presented. It is shown that a Single-Column
Model (SCM) version of microscale model forced by tendencies from WRF results in
long-term wind statistics of comparable statistical accuracy to results using the WRF
model itself. Using different Planetary Boundary Layer and Surface Layer schemes in
the WRF model simulations shows that the SCM results tend to follow the WRF model
results, while maintaining a statistically similar response near the surface.

Second, the coupling method was used at the complex double hill site Perdigão. It
was shown that for a simulation using 80 m grid spacing and a first-order accurate
discretisation scheme, the coupled approach results in large improvements in wind
statistics compared to downscaling with the WRF model with an innermost domain of
333 m grid spacing. At four masts situated on top of the two ridge tops, the mean biases
in wind speed for a 32-day period were less than 3% at the top most anemometer on each
mast, compared to mean errors of 8–12% and 17–25% for WRF domains of 1 km and
333 m grid spacing, respectively.

Despite the encouraging results, a clear dependence on grid spacing and numerical
methods was seen in the coupled model results. Uncertainties remain about possible
double-counting of turbulent fluxes, and its impact on the simulated wind speed, when
RANS turbulence closures are used for transient atmospheric modeling at fine resolution.
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Résumé

En vigtig del af planlægning af vindfarme er præcise vindbetingelsesestimater. I komplekst
terræn kræves ikke-linære mikroskalamodeller som tager højde for stabilitetseffekter for at
opnå præcise estimater, men disse modeller kan i sig selv ikke tage højde for storskala vejr
variationer, hvilket kræver kopling til mesoskalamodeller.

Med udgangspunkt i mesoskalamodellen Weather Research and Forecasting (WRF) og
URANS mikroskalamodellen EllipSys3D, præsenterer denne afhandling en meso- til miroskala
koblingsmetode til vind nedskalering, ved at drive mikroskalamodellen med momentum og
temperatur kildeled udtrukket fra mesoskalamodellen.

Metoden bliver i første omgang studeret i terræn med simpelt kompleksitet. Her vises det,
at en Single-Column model (SCM) version af mikroskalamodellen drevet af tendenser fra
WRF resulterer i vindstatistik som er sammenlignelig med WRFs præcision. Resultaterne
viser også, at når forskellige Planetary Boundary Layer og Surface Layer skemaer anvendes
i WRF, følger SCM resultatererne WRF resultater, mens en statistisk ens respons ses i den
nederste del af grænselaget.

Dernæst bliver metoden brugt til at modellere Perdigão, en dobbelt-bakke, i komplekst terræn.
Ved en simulering med 80 m celleafstande og et diskretiseringsskema med lav numerisk
nøjagtighed, viste studiet at metoden resulterede i store vindstatistike forbedringer sammen-
lignet med nedskalering med WRF ned til 333 m celleafstande. På toppen af bakkerne var den
gennemsnitlige afvigelse for vindhastigheder mindre end 3% ved toppen af masterne, mens
de var henholdsvis 8-12% og 17-25% for WRF domæner med 1 km og 333 m celleafstande.

Selvom resultaterne er lovende, ses en klar afhængighed af celleafstande og numeriske
metoder. Der er fortsat usikkerheder omkring mulig double-counting af turbulente fluxe, og
hviken indflydelse det har når RANS closures anvendes til transient modelering af atmos-
færen i høj opløsning.
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Chapter 1

Introduction

1.1 Motivation

Over the last couple of decades, wind energy has become a central part of electricity gen-
eration in large parts of the world. As of 2016 the global installed capacity was 486GW,
with annual growth rates of 17% and 12.6% in 2015 and 2016 (GWEC, 2016), and further
growth is expected. In Europe, the wind energy share of electricity generation is projected
to increase from 11% in 2015 to 16.5% in 2020 (Windeurope, 2017). To accommodate the
demand, wind turbines need to be installed in many types of terrain, including locations
characterized by complex wind flow, including sites near mountains, forests, and coastlines.

An important part of wind farm development is to accurately estimate the local wind
climate for each wind turbine, as this will determine the resource for a specific turbine.
Typically, the wind climate is given by a probabilistic description of the expected inflow
conditions the turbine is exposed to throughout its lifetime. This includes the wind speed
distribution, and flow characteristics such as turbulence and wind shear, which are important
for estimating extreme loads on the turbine.

The estimation of wind climates has relied on measurements at or near the turbine site.
Obtaining measurements from masts entails erecting and instrumenting one, or several,
towers, collecting measurements for several years, monitoring, and maintaining the instru-
ments. Five years of measurements, or more, are recommended to capture yearly variations
(Landberg et al., 2003), making the whole endeavour expensive. Thus, in practice, much
shorter periods are typically used. Point-measurements from masts are further limited by the
fact that variations in the local flow, owing to inhomogeneities in the terrain and obstacles, are
only valid over a limited area, spanning from meters to tens of kilometers or more, depending
on the complexity of the terrain.
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To reduce costs and uncertainties, numerical models are increasingly used in combination
with measurements, for estimating wind climates. Numerical Weather Prediction (NWP)
models are used to extend measurements through long-term correction methods (Vanvyve
et al., 2015), or even to replace measurements entirely (Badger et al., 2014; Hahmann et al.,
2014; Landberg et al., 2003). However, as discussed by Olsen et al. (2017), typical mesoscale
(Orlanski, 1975) NWP models are operated at a grid spacing that render them unable to
capture local effects of orography or surface roughness changes. This fact motivates a model-
chain approach consisting of a sequence of coupled models that can capture the full range of
phenomena that influence the local wind climate, essential for the accurate assessment of
wind resource and site design conditions.

Flow models of varying complexity and computational cost can be used to obtain local
flow corrections from the terrain and obstacles, to measurements or NWP output, generalizing
the local wind climate beyond to other nearby locations in the region. Linear flow models,
based on the work of Jackson and Hunt (1975), were popularized with the publication of
the European Wind Atlas Troen and Petersen (1989) and the development of the Wind Atlas
Analysis and Application Program (WAsP) (Mortensen et al., 2004). More recently, non-
linear Computational Fluid Dynamics (CFD) models have gradually been incorporated in
wind resource applications for steep terrain, where non-linear effects are especially important.
Besides better resolving flow around steep slopes and capturing important features such as
flow-separation, they also allow for a quantification of high shear and turbulence regions.
The term “computational fluid dynamics” originates in engineering, and encompasses dif-
ferent methods of solving the Navier-Stokes equations for solving hydro- and aerodynamic
problems.

The least computationally expensive way of simulating local flow effects using a non-
linear model is to consider neutrally stratified flows and assume that Coriolis effects are small
perturbations to the background flow. Under these assumption, the mean wind speed change
relative to undisturbed flow due to terrain effects is independent of the Reynolds number.
These assumptions allow for steady-state modeling of terrain effects by direction only, e.g.
WAsP-CFD (Troen et al., 2014), wherein Reynolds averaged Navier-Stokes (RANS) type
CFD models are used to solve the equations. RANS models are a subgroup of CFD models,
where the (ensemble) mean part of the flow is solved and the turbulent part is parameterized
in a closure model.

Assuming the Atmospheric Boundary Layer (ABL) to be neutrally stratified is justified
in many cases (Landberg et al., 2003); either because atmospheric stability effects are rare
(they happen at negligible wind speeds) or because neutral stratification represent the mean
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effects of the combination of unstable and stable conditions well at the site. However, in
some cases, capturing the influence of atmospheric stratification on the flow can be very
important. It influences the wind resources by increasing the wind shear, and it interacts with
the topography, steering the flow around hills and through gaps during stable stratification,
and by increasing turbulence levels and favouring flow over hills during unstable conditions
(Wallace and Hobbs, 2006). Both cases can have a large effect on the wind resource and
turbine loads.

To accommodate non-neutral conditions and to resolve transient phenomena in the
ABL, RANS-type CFD models are increasingly extended to include buoyancy and Coriolis
forces used in combination with a transient RANS modeling approach (Koblitz et al., 2015;
Rodrigues et al., 2015). These enhancements allow the models to solve much more of the
ABL dynamics such as nocturnal Low-Level Jets (LLJ), land and sea breezes, and other
transient phenomena.

CFD models used in complex terrain are typically solved on model domains with a
horizontal extend of the order of ten kilometers. As such, these models are unable to account
for the "larger" atmospheric modes associated with the changing weather. Integrating a
transient CFD model forward in time thus requires appropriate boundary conditions that
reflect the actual state of the larger-scale weather patterns. To this end, a NWP model may be
coupled to the CFD model, to provide these boundary conditions.

The most common coupling methodology, i.e. methodology for feeding information
from a coarse-scale model to a fine-scale model, is through Lateral Boundary Conditions
(LBCs), where the governing variables are interpolated from the coarse-scale model onto
the lateral boundaries of the fine-scale grid, constantly updating them in time, to drive the
model forward. An alternative approach, which is explored in this thesis, is to couple the
models via source terms, corresponding to the large-scale geostrophic forcing and advection,
as discussed by e.g. Baas et al. (2010); Bosveld et al. (2014); Sanz Rodrigo et al. (2017b).
The Pressure-Gradient Force (PGF) and advective tendencies are extracted from the NWP
model and added to the CFD model as source terms in the governing equations.

Using transient CFD modeling, as opposed to steady-state modeling, can be exceed-
ingly computationally expensive, because, just as for mast measurements, several years of
simulation are required to capture the long-term wind climate. However, utilizing statistical-
dynamical downscaling techniques to subset the time-period in question into climatically
representative samples, or cases, can reduce the cost significantly, e.g. (Chávez-Arroyo
et al., 2018; Reyers et al., 2015; Rife et al., 2013). In cases where non-neutral conditions or
transient phenomena are prevalent, the benefit of better representing the wind climate, may
outweigh the additional cost of computations.
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Beyond resource assessment, an additional benefit of transient methodologies is that they
can be used for wind power forecasting also. In this case, instead of generating a reanalysis of
the wind climate, the wind field is simulated for the coming hours or days. Wind forecasting
serve as an important assistance for wind farm and electricity grid operators, and electricity
traders.

1.2 Objectives

The purpose of research described in this thesis was to develop methodologies for improving
the assessment of wind resources in complex terrain. Specifically, it was to develop a model-
chain based on coupling of mesoscale NWP models and microscale CFD models, enabling
downscaling of the wind climate to turbine scales with applicability to a range of weather
conditions, including non-neutral atmospheric stability. A separate objective of the thesis
was to study uncertainties of mesoscale models, to evaluate the need for using a coupled
meso-microscale model-chain for site assessment.

The starting point for the microscale modeling was the EllipSys3D k-ε RANS flow solver
(Michelsen, 1992, 1994; Sørensen, 1995), which has been used for steady-state Atmospheric
Surface Layer (ASL) modeling, known as WAsP-CFD. Recently, this model was modified
to allow for more general atmospheric boundary layer (ABL) flow-conditions by including
buoyancy and Coriolis forces (Koblitz et al., 2015). Buoyancy forces were included by
adding a transport equation for temperature and allowing density variations to impact the
gravitation acceleration term via the Bousinesq approximation. Furthermore, modifications
were made to the k-ε turbulence closure to take non-neutral conditions into consideration (So-
gachev et al., 2012). Previous to the work in this thesis, the model was verified for idealized
transient flow cases, where the model was forced by a constant background pressure gradient
and a varying surface temperature. Validation of the model with more realistic boundary
conditions for modeling of real complex cases, was needed. Koblitz (2013) noted that one of
the main improvements for the model would be to provide realistic boundary conditions, and
pointed to using NWP models to provide them. Additionally, several unanswered questions
lingered, including what methodology to use for estimating the turbulent length-scales in the
turbulent closure, which relies relies on the non-local Mellor and Yamada (1974) length-scale
limitation, and may benefit from using a local method.

The work in this thesis was supported by the New European Wind Atlas (NEWA) ERA-
NET Plus project, which aims to create a next-generation wind atlas covering Europe. It
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succeeds the European wind atlas (Troen and Petersen, 1989), which was itself a landmark
for wind energy at the time it was created, and helped accelerate the methodologies used
for resource assessment in wind energy ever since. To reach its goal, the NEWA project
aims to advance the wind energy science, both in terms of improving models and by creating
invaluable measurement datasets by carrying out large field campaigns in challenging terrain.
The field campaigns in the project includes Perdigão, a double-hill in Portugal, Alaiz a highly
complex site within a valley in northern Spain, and Kassel a forested hill in Germany. In this
thesis it was not possible to include results from all sites, so the focus was on the Perdigão
campaign, which was also the most ambitious one, in terms of instrumentation.

An important part of developing the model-chain, was to investigate coupling methodolo-
gies between the NWP and the CFD models. This involved a literature review of existing
methodologies, choosing a methodology, exploring the technique, and validation at several
sites, in particular complex sites, such as Perdigão.

1.3 Main contributions

Peer-reviewed journal papers

• Olsen, B.T., Hahmann, A.N., Sempreviva, A.M., Badger, J., Jørgensen, H.E. An
intercomparison of mesoscale models at simple sites for wind energy applications,
2017, Wind Energy Science, 2(1):211-228, DOI:10.5194/wes-2-211-2017

• Olsen, B.T, Cavar, D., Hahmann, A.N., Kelly, M., Mesoscale to microscale coupling
via momentum and temperature tendencies: validation in simple terrain, 2018, Wind
Energy Science [IN PREPARATION]

• Olsen, B.T, Cavar, D., Mesoscale to microscale coupling via momentum and tempera-
ture tendencies in complex terrain, 2018, Wind Energy Science [IN PREPARATION]

Conference presentations

• Olsen, B.T., Hahmann, A.N., Sempreviva, A.M., Badger, J., Jørgensen, H.E., Simulat-
ing wind energy resources with mesoscale models: Intercomparison of state-of-the-art
models, European Wind Energy Conference, 2015, November 17 - 20, 2015, Paris
Expo – Porte de Versailles, Paris

• Olsen, B.T., Cavar, D., Hahmann, A.N., Badger, J., Mann, J., Modelling atmospheric
flow over complex terrain using an unsteady-RANS model forced by mesoscale model,
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Wind Energy Science Conference 2017, 26 June - 29 June 2017, Technical University
of Denmark

Workshop/project presentations

• Olsen, B.T., Cavar, D., Hahmann, A.N., Badger, J., Mann, J., Generating large-scale
tendencies from WRF for microscale model forcing, Annual meeting, New European
Wind Atlas project, April 24 – 26, 2017, Pamplona, Riga

• Olsen, B.T., Cavar, D., Hahmann, A.N., Badger, J., Mann, J., Towards seamless
downscaling for AEP in complex terrain, Bi-Annual meeting, New European Wind
Atlas project, October 23 – 25, 2017, Riga, Latvia

Posters

• Olsen, B.T., Badger, J., Hahmann, A.N, Cavar, D., Mann, J., Wind resource assessment
in complex terrain using a one-way coupled meso- and microscale model approach,
17th WRF Users’ Workshop, June 27 – July 1, 2016, Boulder Colorado.

• Olsen, B.T., Badger, J., Hahmann, A.N., Cavar, D., Mann, J., Improving wind climate
estimation using one-way coupled meso- to microscale models, 2015, EAWE PhD
seminar, September 22 – 25, 2015, University of Stuttgart

Numerical code implementation

• EllipSys3D: Implementation of several adjustments and features, such as Rayleigh-
damping, temperature nudging adjustment, and more.

• WRF: modifications to include extraction of momentum and temperature tendencies to
the standard output variables

• wrfinpy: Python package for running WRF in consecutive simulations, postprocessing
and plotting, including treatment of the momentum and temperature tendencies to
accommodate more easy generation of input for the microscale model.

• ellipsual: Python package for running EllipSys3D in consecutive simulations, including
generation of the relevant mesoscale input, and for postprocessing and plotting of the
EllipSys3D output.
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1.4 Outline of the thesis

The thesis is divided into seven chapters. Chapter 1 (current chapter) contains a general
introduction. A short summary of each of the chapters is given here:

Chapter 2 provides background information relevant for understanding the physical
system and the complications related to modeling of ABL flow. Furthermore, a review of the
state of mesoscale and microscale modeling for site assessment, and efforts to couple meso-
and microscale models are given.

In chapter 3, the unsteady RANS microscale model formulation is described, including a
description of a Single-Column model (SCM) version of the 3D model.

Chapter 4 presents a study of forcing the SCM, described in chapter 3, by momentum
and temperature tendencies, as well as surface temperatures, derived from the WRF model,
for a calendar year at two sites characterized by simple terrain. The objective was to validate
the coupling technique for a range of weather conditions, and to study the long-term effects
on the wind climate relative to the mesoscale model results.

Chapter 5 builds on the findings described in Chapter 4, by studying mesoscale to
microscale coupling via momentum and temperature tendencies, and surface temperatures,
in complex terrain at the Perdigão site. The study includes validation for a one month period
with mast measurements, as well as a study of events observed by long-range WindScanner
LIDARs at the site.

Chapter 6 summarizes the thesis and a provides a discussion of the future work that
can further advance the coupled meso-microscale methodology to improve wind climate
estimation at complicated sites.





Chapter 2

Atmospheric modeling and mesoscale to
microscale downscaling

2.1 Atmospheric modeling

A range of atmospheric numerical models are used to solve atmospheric flows at many
different scales. Broadly speaking they can be divided into two categories based on how
they evolved: 1) NWP models historically used by meteorologists for weather and climate
prediction, and 2) CFD models used by engineers to solve complex flow around buildings,
bridges, and other objects. Both types of models are computational fluid dynamics models,
but at this point the name is associated with the engineering lineage. NWP and CFD models
used for atmospheric applications have historically been developed to operate at very different
spatial scales. However, with advances in computing power, NWP models are gradually
used for smaller and smaller scales, while CFD models are able to solve bigger and bigger
problems, with an increased demand for more realistic boundary conditions and physics,
which means that the models are converging at intermediate scales and are gradually solving
overlapping problems. In the following a summary of the physical system, i.e. flow in the
atmosphere and flow in the ABL in particular, is given. This is followed by a description of
mesoscale and microscale models, and their utilization to wind energy applications. Finally
meso- to microscale model coupling is discussed.

2.1.1 Atmospheric flow

The Earth’s atmosphere is a global heat-transporting fluid in motion, seeking equilibrium
from the uneven state caused by differential heating of the planet. This redistribution of heat
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Fig. 2.1 Characteristic time and horizontal scales of different atmospheric phenomena.
The shaded gray areas span the typical range of scales solved by NWP and CFD models,
respectively. The figure is a modified adaption of Fig. 1.1 from (Lauritzen et al., 2011).

ultimately causes motion on a range of characteristic temporal and spatial scales, subdivided
into different phenomena by e.g. Orlanski (1975).

At planetary scales O(∼ 10000 km) potential vorticity conserving Rossby waves govern
the flow. They are associated with the jet stream and atmospheric pressure systems. The
synoptic scales O(∼ 1000 km) include most high-pressure systems and extratropical cyclones,
and their associated warm- and cold fronts. The “medium” scales, called mesoscales, span
approximately from ∼ 200 km to ∼ 1 km and include single cumulus clouds up to large
convective systems and frontal zones. The smallest (turbulent) scales are known as the
microscales, they contain turbulent eddies in the PBL that vary in size from approximately
the size of the depth of the PBL down to millimeters. At smaller scales molecular diffusion
converts kinetic energy to heat.

Figure 2.1 shows the characteristic length and time scales of a range of atmospheric
phenomena. The gray boxes indicate the approximate scales resolved by the NWP and CFD
models. It should be noted that the resolvable scales for CFD models are dependent on the
model formulation. Some formulations, such as RANS, assume a scale-separation and solve
only for the slowly changing steady, or pseudo-steady solution, treating the smallest scales
of motion by a turbulence closure model (see below). Wind turbines are situated in the ABL
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and experience the turbulent flow there, but the nature of the flow depends on the full range
of phenomena, which is why they need to be accounted for by the models.

The distribution of kinetic energy in the atmosphere on different horizontal scales is
illustrated in figure 2.2. It represents the most common interpretation from atmospheric
observations (Kaimal and Finnigan, 1994; Nastrom and Gage, 1985). The presence of the
k−3

w range at the largest scales is subject to ongoing debate. Some interpret the range as
a downscale enstrophy cascade (Lindborg, 1999), while some question the validity of the
k−3

w scaling itself, and argue that it is a result of analysis error (Lovejoy et al., 2009). The
dynamics causing the k−5/3

w scaling at intermediate scales are also a subject of ongoing
debate. Possible explanations for its existence include that it is a 3D forward energy cascade
from interacting gravity waves, or that it is a 2D inverse energy cascade with energy input
from deep cumulus convection. The high wave-number part of the spectrum represents the
3D turbulence range. The dip in energy illustrated by the dotted line in Fig. 2.2 represent a
spectral gap, that has been observed in some studies, under certain conditions (Babic et al.,
2017; Gjerstad et al., 1995; Guo Larsén et al., 2018). The spectral gap represents a range of
scales with low variability in-between the diurnal and semi-diurnal signal and turbulence.
Even though the dynamics behind the observed scaling patterns is not well understood it is
often used to argue for the validity of atmospheric models Skamarock (2004).
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Fig. 2.3 The diurnal cycle of the ABL during fair weather conditions. It shows the growing
well-mixed day-time layer, which is detached from the surface as a stable night-time layer
grows underneath. The dashed red line signify the top of the surface layer. Adapted from Fig.
9.21 from Wallace and Hobbs (2006)

The gray boxes in Fig. 2.1 and 2.2 indicate scales typically solved by NWP and CFD
models, respectively. It illustrates why coupling between the these two types of models
is important, i.e CFD models solve terrain effects well, but lack information about the
large-scale flow, which may be provided by the NWP model.

The atmospheric boundary layer

(ABL) makes up the lowest part of the troposphere. It is the layer between the surface and the
rest of the atmosphere, and is the layer where the influence of the surface is felt most, which is
why the atmosphere above it is some times referred to as the free atmosphere. The thickness
of the layer varies in time, between a few meters up to ∼ 4 km, but typical heights are ∼ 1
km, or 10% of the depth of the troposphere (Stull, 1988). The top of the ABL is associated
with a shallow statically stable layer that separates it from the rest of the atmosphere.

The ABL can be approximately subdivided into three vertical layers: the atmospheric
surface layer (ASL), the ABL core, and the entrainment or capping layer. The ASL make
up the lowest 10% of the ABL. In this layer surface friction dominate, and momentum and
temperature fluxes are approximately constant with height, and Coriolis effects are small. In
the ABL core region momentum and temperature fluxes start to decrease, and surface friction
become less important, while Coriolis effects become more important.

During fair weather conditions, typically associated with high-pressure systems, the
diurnal cycle of the ABL evolves in a predictable way, as illustrated by figure 2.3. During
the day, as the surface heats up, shallow thermals heated by the surface, rise and cause
mixing throughout the ABL, increasing the ABL depth through exchange with the air in the
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free amosphere. This process is known as entrainment. This daytime ABL dominanted by
thermals is also known as the convective boundary layer (CBL). As the sun sets, the emission
of longwave radiation cools the surface, causing a gradually growing stable layer near the
ground, and causing a detachment of the upper well-mixed daytime layer, known as the
residual layer. This, stable boundary layer (SBL), may be further subdivided into the weakly
stable boundary layer (WSBL), and the very stable boundary layer (VSBL) (Grachev et al.,
2005). In the WSBL, turbulence is weak but persistent and mechanical mixing maintain
a heat flux towards the cooling surface. In the VSBL, turbulence is intermittent and weak
mechanical mixing is unable to maintain a heat flux towards the surface, causing runaway
cooling where the surface and upper air become detached from each other (Louis, 1979).
During overcast skies and strong surface winds the boundary layer may be considered
near-neutral.

Atmospheric stability in the ASL is associated with different shapes of the vertical wind
speed profile, illustrated in Fig. 2.4. The turbulence during unstable conditions causes more
mixing of momentum downwards, causing a steep gradient of wind speed just above the
surface and a more homogeneous wind speed with height higher up. During stable conditions,
the friction from the ground is decoupled from the wind above, and mixing is weak, causing
a less homogeneous, steeper gradient of wind speed with height.

Near coastlines, mountains, forested areas, and cities, many additional effects occur. In
mountainous terrain the interplay between the topography and buoyancy forces cause a range
of phenomena that influence the flow. In general, positively buoyant air will tend to rise
above hills, while negatively buoyant air will tend to sink and flow around hills.
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2.1.2 Microscale modeling

Computational fluid dynamics is the common named given to a range of methods used to
solve the Navier-Stokes equation. Many methods exist, but the three main approaches are:
Direct Numerical Simulation (DNS), Large-Eddy Simulation (LES), and Reynolds-Averaged
Navier-Stokes (RANS).

DNS models solve the full range of scales relevant to a turbulent system. From the
largest scales, including the integral length scale of of turbulence, all the way to the dissi-
pative Kolmogorov microscales (Landahl and Mollo-Christensen, 1992). This requires a
very fine-scaled computational mesh, and it is (currently) exceedingly costly for atmospheric
simulations of any significant spatial and temporal extent.

LES models (Deardoff, 1970; Smagorinsky, 1963) use a spatial (low-pass) filtering of the
Navier-Stokes equations to avoid the computational cost of solving the smallest scales of
the flow. The filtering involves splitting the flow into grid-scale and Subgrid-Scale (SGS)
components, and parameterizing the sub-grid stresses via a grid-size-dependent SGS model.
LES models have been used for many atmospheric applications, including: flow in urban
environments (Letzel et al., 2008; Tseng et al., 2006; Walton et al., 2002; Xie and Castro,
2008, 2009; Xie et al., 2008), atmospheric boundary layer studies (Basu and Porté-Agel,
2006; Beare et al., 2006; Kumar et al., 2006; Stoll and Porté-Agel, 2008), flow over terrain
(Bechmann, 2006; Uchida and Ohya, 2003), cumulus cloud studies (Matheou et al., 2011;
Seifert and Heus, 2013; Siebesma et al., 2003), and for flow around wind turbines and wind
farms (Calaf et al., 2010; Lu and Porté-Agel, 2011; Porté-Agel et al., 2013, 2011; Zhang
et al., 2012).

RANS models (Reynolds, 1895) utilize time-filtered equations. They use Reynolds
decomposition to separate the instantaneous flow u field into the mean U and fluctuating
variables u′ = u−U , solving only for the mean part. However, the evolution of the mean flow
depends on the fluctuating (turbulent) part. This is known as the closure problem. In fact, any
order of flow equations depends on higher order terms. To close the equations, the turbulent
fluxes are related to known quantities via a closure model, of which there are many. The most
commonly used ones for ABL flow modeling are based on the eddy viscosity concept, that
relates gradients of the mean flow to turbulent mixing through eddy viscosity. Estimating
the eddy viscosity may be done simply via the mean flow gradients themselves (first-order
closure), or it may be based on higher order quantities. Commonly, a two-equation closure is
used, which, as the name suggests, involves transport equations for two additional variables,
e.g. Turbulent Kinetic Energy (TKE or k) and Dissipation rate of Turbulent Kinetic Energy
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(DTKE or ε) (Launder and Spalding, 1974), known as the k-ε model. RANS models can
be used to solve either steady-state problems, in which case the time-derivative is omitted,
and the flow solution gradually relaxed towards a steady-state, or it may be solved as a
transient solution, keeping the time-derivative. This is known as unsteady RANS, or URANS
(Nakayama and Miyashita, 2001). For URANS problems, scale-separation is assumed to be
maintained because the integral timescale of the mean flow is assumed to be slower than
the integral timescale of the most energetic turbulent eddies. This is discussed further in
section 2.1.4. RANS models have been used for atmospheric flow including: flow over
terrain (Bechmann and Sørensen, 2011; Castro et al., 2003; Huser et al., 1997; Koblitz et al.,
2015; Sørensen, 1995), wind turbine wakes (Cabezón et al., 2011; El Kasmi and Masson,
2008), and around building and urban areas (Blocken et al., 2007, 2012; Franke et al., 2011;
Hanna et al., 2006; Vu et al., 2002; Yang et al., 2008).

While a neutral-atmosphere incompressible fluid approach has been used for CFD mod-
eling of atmospheric applications (Castro et al., 2003; Huser et al., 1997; Sørensen, 1995),
a need for more realistic ABL physics has pushed development of CFD models. For wind
energy applications, one of the top priorities has been to allow for modeling of non-neutral
atmospheric stability conditions (Castro et al., 2008, 2010; Chang et al., 2018; Koblitz et al.,
2015; Meissner et al., 2009; Rodrigues et al., 2015). However, with the addition of tem-
perature transport equations and buoyancy forces, a number of consideration arise, of both
numerical/technical and physical nature, that further complicate ABL modeling, including
consideration of surface coupling (Basu et al., 2008; Holtslag and Svensson, 2013), and
boundary layer depth limitation (Sescu and Meneveau, 2014).

A separate category, and the most simple, of microscale flow models are linearized
flow models. These were the first models widely used for wind resource assessment, and
remain widely used. They are derived from linearising the Navier-Stokes equation, i.e. by
assuming an attached boundary layer flow with small gradients and using scaling analysis to
justify omitting high-order and non-linear terms. This means that influences of orography,
surface roughness changes, obstacles, and stability are treated as small perturbations to the
background flow (Jackson and Hunt, 1975; Troen and Petersen, 1989; Walmsley et al., 1986).
Because the models are linear, their computational cost is negligible on modern computer
hardware. Linear methods lose their validity in steep terrain, but terrain-correction methods
have been developed to attempt to improve the performance in steep terrain with some
success Mortensen et al. (2006).
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2.1.3 Mesoscale models

The first NWP models were used to forecast the patterns of the large-scale high-altitude
Rossby waves, by integrating the 500 hPa pressure surface forward in time (Charney et al.,
1950). Through the years, the range of applications and the complexity of the models have
increased steadily. From coarse-resolution climate models, used to model the past and future
climate (Collins et al., 2006) operated at O(∼ 100 km), to global weather prediction models
(Baldauf et al., 2011; Lin, 2004; Skamarock et al., 2008, 2010) typically operated at O(∼ 10
km) grid spacing, to regional mesoscale models that are operated at O(∼ 1 km). Mesoscale
models resolve phenomena at the mesoscales (described above), e.g. they are convection-
permitting models. They are used for weather forecasting (Baldauf et al., 2011), hindcasting
(Al-Yahyai et al., 2010), atmospheric research (Yair et al., 2010), and more. For wind energy,
mesoscale models have become a key component for resource assessment (Hahmann et al.,
2014; Jimenez et al., 2007), wind power forecasting (Foley et al., 2012; Monteiro et al.,
2009), and planning (Balog et al., 2016). One of the most commonly used mesoscale model
is the Weather Research and Forecasting (WRF) modeling system (Skamarock et al., 2008).
The WRF model is easy to access, has strong community support, and it includes a multitude
of configuration options that allow for vast customization.

Because NWP models are weather models, they do not just integrate the continuous
equations for momentum, heat and moisture, but incorporate important physical processes,
such as the transfer of radiation, surface ocean properties, soil, and land-surface properties.
Also included are cloud and precipitation processes. As such, they are much more general
than most CFD models, but at an additional computational cost.

Mesoscale models are operated at grid-scales O(∼ 1 km) and above, and thus do not
resolve the 3D turbulence in the PBL. Instead, they rely on turbulence parameterization
schemes, commonly called Planetary Boundary Layer (PBL) schemes, that, just like the
RANS-type CFD models discussed below, rely on turbulence closure models that relate
known quantities to turbulent diffusion. A range of closure models exists, but the two most
common types used are: first-order non-local closures (Hong et al., 2006; Pleim, 2007) and
local TKE schemes (Janjić, 1994; Nakanishi and Niino, 2006; Sukoriansky et al., 2005) that
solve a transport equation for turbulent kinetic energy. A review of PBL schemes can be
found in Cohen et al. (2015) and Kleczek et al. (2014) and their sensitivities in different
environments are studied in e.g.: Dimitrova et al. (2016); Draxl et al. (2014); García-Díez
et al. (2013); Hariprasad et al. (2014); Hu et al. (2010); Milovac et al. (2016); Muñoz-Esparza
et al. (2016); Sathyanadh et al. (2017); Shin and Dudhia (2016).

During the last few decades, the WRF NWP model has been gradually enhanced to make
it suitable for solving atmospheric flows at scales below O(∼ 1 km). LES SGS models have
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been implemented that allow for the model to be operated without the RANS-type PBL
schemes that is normally used (Mirocha et al., 2014, 2010; Moeng et al., 2007). WRF-LES
has already been used for a range of applications, including studies of: offshore CBLs
(Muñoz-Esparza et al., 2014a), flow in complex terrain (Munoz-Esparza et al., 2017; Rai
et al., 2017a,b; Talbot et al., 2012), SBL turbulence (Udina et al., 2016; Wang et al., 2013),
cloudy boundary layers (Yamaguchi and Feingold, 2012), and wind energy applications (Liu
et al., 2011; Mirocha et al., 2015).

2.1.4 Atmospheric gray scale modeling

The length scale of the most energetic turbulent eddies in the ABL varies from centimeters
to several kilometers. At grid-scales much larger than the turbulent length scale (mesoscale
range), atmospheric models cannot resolve the eddies, and must rely on turbulence models,
based on the RANS principles of scale separation, that account for effects of turbulent
fluctuations on the mean flow. When several of the largest turbulent eddies fit inside a single
model grid cell, and when the integral model time-step is larger than the integral timescale
of the eddies, it is easy to see that the turbulence model accounts for the ensemble mean
influence of many subgrid/sub-timescale eddies.

When the model grid spacing is much smaller than the characteristic turbulent length
scale (LES range), the model resolves the largest eddies that are responsible for the bulk of
the turbulent flux transport, violating the RANS assumption of a scale-separation between
the resolved (mean) flow, and the turbulent fluxes, which is why LES models use an SGS
model that filter by scale, not by time. At the intermediate scales, where the grid spacing
and the turbulent length scales are of the same order of magnitude, both the RANS and the
LES assumptions are violated. Wyngaard (2004) coined the term terra incognita for these
scales, while others refer to them as the gray scales. These scales are the subject of ongoing
research (Honnert et al., 2011; Poll et al., 2017; Zhou et al., 2014), for the development of
scale-aware model parameterizations that work outside the inertial range of turbulence as
well (Kitamura, 2016).

In the case of wind climate modeling for determining wind farm site conditions, the
gradually increasing computational resources available allow for dynamical climate modeling
at scales below O( 1 km), but using an LES-type model would require using a model grid
spacing guaranteed to resolve scales within the inertial range of turbulence, that for the
WSBL could be smaller than O(∼ 1 m), far exceeding reasonable computational cost for
climate estimation. For climate estimation purposes, using a turbulence closure model that
does not have this restriction remains attractive at the gray scales .
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It has been suggested that RANS closure models at the gray scales runs the risk of
double counting turbulence effects (Baklanov et al., 2011), while others suggest that the
practical implications may be limited because the explicit and modelled turbulence both feed
on the same available energy, causing a competition where the earliest or strongest mixing
mechanics suppress additional mixing from the other (Arnold et al., 2012; Hong and Dudhia,
2012). It remains uncertain at what scales RANS-type closures are appropriate. Arnold et al.
(2012) suggests that it may be appropriate to run WRF with a PBL scheme at scales as low
as 300−500 m grid spacing.

An alternative to spatial-filtered (LES) closures, and time-filtered (RANS) closures, is
TKE-filtered Partially-Averaged Navier-Stokes (PANS) closures (Girimaji, 2006). The PANS
closure filters the equations based on the ratio of the modelled turbulent length scales, and the
grid-scale, reducing the eddy viscosity when turbulent eddies are resolved at the grid-scales,
and defaulting to a RANS-closure when turbulence is subgrid-scale. However, to the authors
knowledge the PANS methodology has not been applied to atmospheric flows as of now.

2.2 Mesoscale-microscale model coupling

For many applications, including wind energy site assessment, the region of interest for
modelling spans only a limited area. CFD model-domains used for atmospheric applications
typically span O(∼ 10 km) in horizontal direction. This means that, for real-time atmospheric
simulations, appropriate boundary conditions that reflect the changing weather patterns must
be provided to the model, e.g. from a mesoscale model. The process of continuously cascad-
ing the instantaneous flow field information from one model to another is sometimes referred
to as dynamical coupling (Warner, 2011), and mesoscale to microscale coupling is understood
as coupling of a mesoscale model with an LES, RANS, or other type of microscale model.
Dynamical model coupling, i.e. exchanging information, may be done in a one-way, with no
feedback from the fine domain to the coarse domain, or it may be two-way, with feedback
and it may be online, where the solutions of both domains are integrated forward in time at
the same time or it may be offline, where the solutions of the first and second domain are
solved separately. The coupling can be done within the same modeling system, such as is
often the case for WRF (Skamarock et al., 2008), or it can be done between different models.

For dynamical model coupling, the most common communication approach between
models is through lateral boundary conditions (LBCs) (Warner, 2011). In this approach
LBCs are continuously provided to the fine-scale domain, i.e. the prognostic variables are
interpolated from the coarse-scale domain onto the lateral boundaries fine-scale domain.
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Inconsistencies in model physics, parameterization, and numerical methods, between the two
domains, means that the flow in the fine-scaled domain requires a spin-up region, a fetch,
where the flow gradually adjusts towards balanced self-consistent state. The model solution
in the fetch-region may be error prone, and should generally not be trusted (Warner, 2011).
This is especially true in mountain regions where differences in resolved topography can
give rise to differences in surface elevation, and where the imput of LBCs can create gravity
waves reflection requiring a lateral damping zone. Another challenge with using LBCs is
related to model coupling across the atmospheric gray scales, where additional consideration
must be made when dealing with the transition from ensemble-averaged (smooth) flow in the
coarse-scale domain to eddy-resolving (turbulent) flow in the fine-scale domain (Mazzaro
et al., 2017; Muñoz-Esparza et al., 2014b, 2015).

Another methodology for dynamical coupling explored in this thesis, is the model
coupling via momentum and temperature tendencies. In this approach, the fine-scale domain
(CFD domain in this case) is forced via source terms, rather than LBCs, consisting of relevant
momentum and temperature tendencies extracted from the large-scale model domain. This
approach was used for Single-Column Model (SCM) evaluation by e.g. (Bosveld et al.,
2014; Sanz Rodrigo et al., 2017b) to investigate turbulence closure models for a diurnal cycle
where geostrophic shear and advection, of both momentum and temperature, played a role in
forming a nocturnal-LLJ at the Cabauw mast in the Netherlands. To the authors knowledge,
coupling via tendencies, has not been used before for non-idealized cases in complex terrain.
The methodology requires the use of periodic boundary conditions, and hence smoothing of
topography near the domain boundaries. The methodology has several desirable properties:
1) the spin-up, or fetch region of LBCs approaches, is replaced by a smoothed region near
the boundary and periodic boundary conditions, resulting in fewer issues related to model-
inconsistencies and no need for Rayleigh damping at the lateral boundaries, 2) Concerns
related to applying a divergent velocity field to the boundaries are avoided, 3) for LES
domains the recirculation of the flow via cyclic boundary conditions reduces the need for
perturbation techniques for turbulence spin-up, 4) a background pressure gradient is often
used to drive CFD models, forcing the flow via body-forces, so this approach also fits well
into the existing methodologies. However, the methodology of extracted tendencies from a
mesoscale model and using them to drive another model is largely unexplored, so its remains
a question whether it can be widely generalized.
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2.3 Wind downscaling

Downscaling of the wind fields has many application within wind energy. Dynamical
downscaling is used for planning, power production forecasting, power system simulation, in-
and outflow characterization, turbine control, and studies of wakes from turbines and terrain.
For complex terrain flow, dynamical downscaling has been done based on mesoscale models
coupled to both URANS-type CFD models (Castro et al., 2010; Duraisamy et al., 2014; Ely
et al., 2012; Gopalan et al., 2014; Rodrigues et al., 2015), and to LES (Horvath et al., 2012;
Lundquist et al., 2010; Muñoz-Esparza et al., 2016, 2017; Rai et al., 2017a,b; Wang et al.,
2013), all utilizing coupling via LBCs. Dynamical downscaling, although computationally
costly, may also be used for wind resource assessment and estimation of fatigue and extreme
loads on turbines. A cheaper alternative though is the use of statistical-dynamical techniques
to reduce the required simulation time (Badger et al., 2014; Chávez-Arroyo et al., 2018;
Frank et al., 2001; Rife et al., 2013).

Statistical downscaling has been used for wind resource assessment for several decades,
Jackson-Hunt type downscaling methodologies (Troen and Petersen, 1989) were originally
used for horizontally extrapolating mast measurements. This methodology has since advanced
to allow the use of model datasets in place of measurements for input. Generally, the
procedure has three steps: 1) obtaining a statistical representation of the wind climate at
a location from a reanalysis dataset or through modeling, 2) generalizing the model wind
climate by removing modelled mesoscale or microscale effects, and finally 3) downscaling
the wind climate to the local site using Jackson-Hunt type models. This approach has been
used for generating wind atlases of Ireland with the KAMM/WAsP method (Frank et al.,
2001), a wind atlas of South-Africa with the WRF/WAsP method (Hahmann et al., 2014),
and even the whole world with the Global Wind Atlas methodology (Badger et al., 2016). A
similar approach, is the use of mass-conserving models (Brower, 1999; Scire et al., 2000)
instead of Jackson-Hunt type models, likewise coupled to NWP models as for example the
SiteWind method (Brower, 1999).

A separate class of downscaling methodologies are long-term correction methods that
use measurements at the site to find empirical relations between a long-term model dataset
and the overlapping measurement period to synthetically extent the measurements into the
full period covered by the model (Vanvyve et al., 2015; Zhang et al., 2015)

For wind climate estimation in complex terrain no clear methodology has emerged as the
clear dominant one, and further development of both mesoscale models, microscale models,
and coupling procedure is needed. However, one promising approach seems to be dynamical
coupling of meso- and microscale models, combined with statistical-dynamical downscaling
methodologies. Further exploration of this is needed.
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Microscale model

3.1 Model description

The microscale model is based on the Reynolds-Averaged Navier-Stokes (RANS) equations
including Bouyancy and Coriolis forces; the turbulence closure is a modified k-ε two-equation
closure. The model has been implemented in the EllipSys3D finite-volume CFD code at the
Technical University of Denmark (DTU). An in-depth description of the modeling system
can be found in Michelsen (1992), Michelsen (1994), and Sørensen (1995). A description of
the modifications that enable non-neutral atmospheric stratification is described in Koblitz
(2013). In the following, a summary is given.

To arrive at the RANS equations, Reynolds decomposition is used to split the instanta-
neous atmospheric motion ui into the mean Ui and the fluctuating part u′i, such that ui =Ui+u′i.
The subscript i refer to spatial indices in Einstein notation, implying xi = (x1,x2,x3) = (x,y,z)
and Ui = (U,V,W ), where x,y,z are Cartesian coordinates and U,V,W are velocities along
those coordinates. The mean part Ui refers to the ensemble mean, i.e., the mean of many
realizations of the same flow. For stationary, or quasi-stationary atmospheric conditions, the
ensemble-average U converges towards the time-average ⟨u⟩ given a long enough averaging
period T,

⟨ui(t)⟩=
1
T

∫ t+T

t
ui(t)dt (3.1)

The length of the characteristic averaging period depends on the integral time-scale (the
time-step) of the model, and the amount of variance in the flow. The underlying assumption
is that the convergence is achieved such that ⟨ui(t)⟩ ≈Ui(t).

RANS models can be solved as a steady state problem, where the time-derivative is
ignored. In that case, a steady-state solution is iteratively found by solving the system of
equations until changes in the field are sufficiently small. Since the model will here be used
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for transient problems, the time-derivative is retained. This is referred to as unsteady-RANS
(URANS) modeling. The scale-separation discussed above is often violated for URANS
simulations of high Reynolds-number flows, like flow in the ABL, with fine-scaled model
grids (Davidson and Peng, 2003).

The governing continuity, momentum, and temperature RANS equations for incompress-
ible flow are given by:

∂

∂xi
(ρUi) = 0 (3.2)

∂ρUi

∂ t
=

∂

∂x j

[
−ρUiU j +(µ +µt)

(
∂Ui

∂x j
+

∂U j

∂xi

)]
− ∂ p̂

∂xi
+gi(ρ −ρ0)+ εi jk fcρUk +ρFU,i

(3.3)
∂

∂ t
(ρΘ)+

∂

∂xi
(ρUiΘ)− ∂

∂xi

[(
µ +

µt

σΘ

)
∂Θ

∂xi

]
= ρFΘ (3.4)

here, Ui and Θ are the mean velocity and the potential temperature. The mean potential
temperature follows similar Reynolds decomposition principles, i.e. Θ is equal to the
fluctuating temperature subtracted from the instantaneous temperature Θ = θ −θ ′.
fc = 2Ωsinλ is the Coriolis parameter, where εT

i jk = (−1,1,0) and Ω and λ are the rotational
rate of Earth 7.272×10−5 rads−1 and the latitude, respectively. µ is the molecular viscosity;
FU,i and FΘ represents additional momentum, and heat source-terms.

Buoyancy forces are implemented via the Boussinesq approximation (Boussinesq, 1897),
which dictates that variations in the air density ρ should only influence the gravitational
acceleration gT

i = (0,0,g) term. The reference air density ρ0 ≈ 1.225 kgm−3. Furthermore,
the Bousinessq approximation requires that density varies linearly with temperature only,
such that the ideal gas law is approximated as

ρ ≈ Mp0

RT
, (3.5)

where p0 = 105 Pa is the standard atmospheric pressure, M = 29 gmol−1 is molar mass of
air, and R = 8.313 JKmol−1 is the universal gas constant. The temperature T is replaced by
the potential temperature,

Θ = T
(

p0

p

)R/CP

, (3.6)

where the specific heat capacity for dry air is CP ≈ 1000 JK−1 kg−1. The pressure p̂, is the
pressure added with the hydrostatic pressure, assuming hydrostatic balance p̂ = p+ρ0gz.

Turbulent mixing is modeled using a turbulent viscosity µt determined by the two-
equation turbulence closure (described below). The closure replaces the Reynolds stress term
ρu′iu

′
j with the turbulent eddy viscosity concept based on the Boussinesq hypothesis (Schmitt,
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Table 3.1 Coefficients for the k-ε model. From Sogachev et al. (2012).

κ Cµ Cε1 Cε2 Cε3 σk σε σΘ

0.4 0.03 1.52 1.83 Eq. (3.17) 2.95 2.95 Eq. (3.19)

2007). This closure relates the turbulent mixing to gradients in the mean flow through a eddy
viscosity µt that acts similar to molecular viscosity; except it is typically much greater than
the molecular viscosity, which is why the molecular viscosity term is often omitted in high
Reynolds-number flows that use this closure:

ρu′iu
′
j =−µt

(
∂Ui

∂x j
+

∂U j

∂xi

)
+

2
3

ρk∂i j. (3.7)

The term 2
3ρk∂i j, where k is turbulent kinetic energy, is absorbed into the pressure term

(Sørensen, 1995). The turbulent eddy viscosity is related to the thermal conductivity µΘ via
the turbulent Prandtl-number, σΘ = µt/µΘ.

3.1.1 Turbulence closure

The turbulence closure is a modified version of the k-ε closure (Launder and Spalding,
1974). The modifications enable turbulence modeling of non-neutral atmospheric stability
conditions by including buoyancy terms. The length scale determining variables are modified
to relate buoyancy constants to existing model constants, and choosing appropriate constants
(Sogachev et al., 2012). A description of the implementation is found in Koblitz (2013).

In kinematic terms, where ν = µ/ρ and νt = µt/ρ , the governing equations for turbulent
kinetic energy, k, and dissipation of turbulent kinetic energy, ε , is given by

∂k
∂ t

+Ui
∂k
∂xi

− ∂

∂xi

[(
ν +

νt

σk

)
∂k
∂xi

]
= P+B− ε + εa (3.8)

∂ε

∂ t
+Ui

∂ε

∂xi
− ∂

∂xi

[(
ν +

νt

σε

)
∂ε

∂xi

]
=

ε

k
(C∗

ε1P+Cε3B−Cε2ε)+Cε2
ε2

a
ka

(3.9)

The turbulent viscosity of k and ε are related to νt through the so-called Schmidt-numbers σk

and σε . They are, along with the other model coefficients C∗
ε1, Cε2, and Cε3, discussed below.

Their chosen values are listed in table 3.1. Minimum (ambient) values of turbulence and
dissipation of turbulence are added via ka and εa to avoid numerical instabilities and runaway
cooling during in VSBL cases. Values of ka = 10−4 m2 s−2 and εa = 7.208×10−8 m2 s−3

are used, following (Koblitz et al., 2015). An additional diffusion term in the ε equation
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suggested by Sogachev et al. (2012) is not included. It was motivated by inconsistencies
observed in Sogachev and Panferov (2006), and proposed to obtain consistent results between
the k-ε closure model and the k-ω closure model (Wilcox, 1998) for simulations of forest
canopies, so to narrow the scope of this thesis it is disregarded. The shear production P and
buoyant production/destruction B terms are given by

P= νt

(
∂Ui

∂x j
+

∂U j

∂xi

)
∂Ui

∂x j
, (3.10)

and
B=− νt

σΘ

gi

Θ

∂Θ

∂xi
. (3.11)

The buoyancy term B couples potential temperature to the turbulence model, causing turbulent
production for negative potential temperature gradients in z (unstable conditions), and
suppresses turbulence for positive gradients (stable conditions). The eddy viscosity is related
to the transported turbulence variables as

νt =Cµ

k2

ε
=C1/4

µ k1/2l, (3.12)

where l is the characteristic turbulent length scale, which is related to k and ε as

l =C3/4
µ

k3/2

ε
. (3.13)

As mentioned above, the closure was modified following Sogachev et al. (2012) to appro-
priately account for buoyancy effects. The classical k-ε closure works well for rough-wall
and shear flows, but in the atmospheric boundary layer (ABL), buoyancy plays an important
role in modulating the turbulent length scale, and the classical k-ε closure is known to be too
diffusive (Apsley and Castro, 1997; Detering and Etling, 1985). In the VSBL the turbulent
length scales can be very small O(∼ 1 cm), or even vanish, while, during free convection in
the CBL it may grow as large as several kilometers deep in a well mixed boundary layer. To
accommodate both extremes, changes in l are needed based on the conditions. Following
(Apsley and Castro, 1997), l is modified by defining a C∗

ε1 that is given by

C∗
ε1 =Cε1 +(Cε2 −Cε1)

l
lmax

, (3.14)

where lmax acts as the limiting turbulent length scale (global maximum). The ε equation
retains the standard behavior of the k-ε when l is much smaller than lmax. When l approaches
lmax, C∗

ε1 becomes Cε2, resulting in a balance between destruction and production, ultimately
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limiting l to lmax. Because ε tend to dominate near the ground, typically resulting in l < lmax,
the model retains log-law behaviour near the ground with the modification.
Sogachev et al. (2012) determines the maximum length scale lmax following Mellor and
Yamada (1974):

lmax = α

∫
∞

0 z
√

kdz∫
∞

0

√
kdz

, (3.15)

where α is a constant, α = 0.075 such that lmax is in balance with the Blackadar scale
(Blackadar, 1962) during neutral conditions lmax = 0.00026G f−1

c , where the geostrophic
wind is G =

√
U2

g +V 2
g .

Model coefficients are adapted to the ABL flow as well. Cµ is typically chosen to be
0.09 for industrial flows (Launder and Spalding, 1974), while a value of 0.03 is often used
for atmospheric flows (Duynkerke, 1988; Katul et al., 2004), and also used here. To ensure
agreement with the constant-stress logarithmic wind profile near the ground, the relation

σε =
k2

C1/2
µ (Cε2 −Cε1)

(3.16)

is also satisfied (Pope, 2001). The value of the coefficients Cε1 = 1.52 and Cε2 = 1.83 from
Kantha et al. (2005) were chosen following Sogachev et al. (2012).

To make the modifications self-consistent, and to reduce the requirement for parameter-
tuning, Sogachev et al. (2012) related Cε3 to the existing model coefficients by

Cε3 = (Cε1 −Cε2)αB+1 (3.17)

and determines αB from the gradient Richardson-number Rig = B/P as

αB =

1− l
lmax

for Rig ≥ 0

1−
[
1+ Cε2−1

Cε2−Cε1

]
l

lmax
for Rig < 0

(3.18)

The turbulent Prandtl-number σΘ, which relates turbulent eddy viscosity to eddy conductivity,
is likewise varied with Rig

σΘ =


0.74 for Rig ≥ 0

0.74
(

1−15
[
B
(
P+ |αB

σΘ
B|
)−1

])−1/4

for Rig < 0
(3.19)

The model coefficients are listed in table 3.1.
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The friction velocity and sensible heat flux are calculated in the model as

u2
∗ =−µt

(
∂Ui

∂x j
+

∂Vj

∂xi

)
(3.20)

and
H =

µt

σΘ

∂Θ

∂ z
. (3.21)

3.1.2 Single column model version

A Single-Column Model (SCM) version of the EllipSys3D model described above was
implemented (see details in van der Laan and Sørensen (2017)). It is refereed to as EllipSys1D
and has been shown to produce results consistent with the the 3D code for simulations of
flow over homogeneous terrain in the Leipzig measurements case Lettau (1950), and the
GEWEX (Global Energy and Water cycle EXperiment) Atmospheric Boundary Layer Study
2 (GABLS2) case (Svensson et al., 2011), but at a substantially lower computational cost.
EllipSys1D provides a fast and easy model for implementing changes, for testing them,
and for idealized simulations. A summary of how its formulation differs from the 3D code
formulation, is given below.

In 1D, only the vertical coordinate z exists, and the vertical advection in z is assumed to
be negligible. These two assumptions mean that all horizontal gradients ∂

∂x and ∂

∂y , including
horizontal advection, drop out. It also means that there is no continuity equation, or vertical
velocity W . The pressure gradient term also drops out and pressure becomes the hydrostatic
pressure, with density variations caused by differences in temperature only. Since no vertical
mean motion is assumed to exist, the buoyancy term is dropped as well, and buoyancy only
impacts the eddy viscosity closure, increasing or decreasing turbulence-induced mixing. The
horizontal momentum, and temperature equations become

∂U
∂ t

=− ∂

∂ z

[
(ν +νt)

∂U
∂ z

]
+ fcV +FU (3.22)

∂V
∂ t

=− ∂

∂ z

[
(ν +νt)

∂V
∂ z

]
− fcU +FV (3.23)

∂Θ

∂ t
=− ∂

∂ z

[(
ν +

νt

σΘ

)
∂Θ

∂ z

]
+FΘ (3.24)

The turbulence closure is also modified, dropping horizontal gradients and advection,

∂k
∂ t

=− ∂

∂ z

[(
ν +

νt

σk

)
∂k
∂ z

]
+P+B− ε + εa (3.25)
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∂ε

∂ t
=− ∂

∂ z

[(
ν +

νt

σε

)
∂ε

∂ z

]
+

ε

k
(C∗

ε1P−Cε2ε +Cε3B)+Cε2
ε2

a
ka

(3.26)

The coefficients and formulation of l, αB, and σΘ remains the same as for the 3D version.

3.2 Temperature relaxation

The temperature in the ABL varies due to many processes. During fair weather (associated
with high pressure systems), surface heating by the sun typically dominates the daytime
temperature evolution, while long-wave radiative cooling dominates the night-time. But
other processes play an important role as well, i.e., large-scale heat advection associated with
cold and warm fronts and phase-changes associated with precipitation.

While the microscale model is able to account for redistribution of heat during convective
conditions, because the process is largely dominated by the heated surface, it lacks the ability
to capture many other physical processes, since it is limited to modifying the temperature
through fluxes from the surface. For example, the model lacks mechanisms to account
for the capping inversion that limits the depth of the convective boundary layer (CBL),
radiative cooling throughout the ABL; an important heat-sink during the night, as well as the
aforementioned large-scale heat advection and phase-change effects. To incorporate these
effects indirectly into the microscale model, temperature nudging is used. The temperature is
gradually related towards a reference temperature Θr(z, t) via the Newtonian cooling method:

Θ
∗(z, t) = Θ(z, t)−∆t

Θ(z, t)−Θr(z, t)
τr

, (3.27)

where Θ∗ is the corrected temperature, ∆t is the model time-step size, and τr is the character-
istic relaxation timescale. The reference temperature profile may be specified either as an
idealized profile for more simple studies, or as is the case in this study, be provided from a
mesoscale model output.

3.3 Rayleigh damping of gravity waves

The introduction of buoyancy into the microscale model permits vertically propagating gravity
waves to form in mountainous terrain. These waves are naturally occurring internal waves
caused by the vertical displacement of air moving over mountains resulting in oscillations
on the lee side. Gravity waves can cause problems inside atmospheric models because they
are reflected by top and lateral boundaries unless explicitly treated (Warner, 2010). In the
microscale model, the well-known Rayleigh damping technique is used, which means a
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gradual damping of the model variables towards predefined reference values in the top of
the model domain. This is also known as a sponge layer. The damping is initialized at
some height and gradually increased towards the top of the domain. It is implemented as an
additional source term in the transport equations as

∂C
∂ t

= τd(z)(C−Cr), (3.28)

where C is a generic variable that represents U , V , W , and Θ. Cr is the reference value, and
τd is the vertical structure of the damping. In the microscale model formulation τd increases
linearly between the height zd,0 and the top of the domain, and zero elsewhere. zd,0 = 1000
m below the top of the domain. Only the vertical velocity component W is damped in the
present study, and it is nudged towards a reference value of 0 ms−1. For more details on
gravity wave damping see Klemp and Durran (1983) and Israeli and Orszag (1981), which
also includes a comparison of different techniques.



Chapter 4

Coupling via tendencies in simple
terrain1

In this study, the Single-Column Model (SCM) described in section 3.1.2 is forced by time-
and height varying momentum and temperature tendencies, as well as a varying surface
temperature, extracted from the WRF mesoscale model. This was suggested and used by
Bosveld et al. (2014) and Sanz Rodrigo et al. (2017b) for the GEWEX Atmospheric Boundary
Layer Studies 3 (GABLS3) test case (Bosveld et al., 2014; Holtslag, 2014; Kleczek et al.,
2014). The case involved the simulation of a nocturnal low level jet (LLJ) in simple terrain
spanning a single diurnal-cycle at the Cabauw meteorological mast in the Netherlands,
originally used to evaluate SCM for mesoscale and climate models. Sanz Rodrigo et al.
(2017b), SR17 henceforth in this Chapter, showed that for the GABLS3 test case the most
appropriate forcing to provide the SCM was the sum forcing of the Pressure-Gradient Force
(PGF) and advective momentum tendency, as well as advective temperature tendencies.

The coupling in this section is evaluated for one full year and validated at two sites in
Northern Europe: Cabauw (land) and FINO3 (offshore). The aim of the research is first to
study whether model coupling via tendencies is applicable in simple flow cases, i.e. whether
the SCM retains the wind characteristics of the mesoscale model used to force it. This also
serves in part as a prerequisite to applying the methodology to more complex flow cases.
The second objective is to highlight the differences between the k-ε closure of the SCM and
the WRF PBL schemes for a range of atmospheric conditions to guide further improvement
of the turbulence closure used for microscale ABL modeling. The evaluation period for the
Cabauw site overlaps the GABLS3 test case (Bosveld et al., 2014; Holtslag, 2014; Kleczek
et al., 2014), which allows for a detailed evaluation of that particular day. The sensitivities

1This chapter consists of results that will be published in the journal paper Olsen et al. (2018)
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of the methodology are tested for a range of parameters, including the influence of adding
different forcing components, such as including momentum and temperature advection, and
geostrophic shear, furthermore the sensitivity of the tendencies to the chosen WRF PBL
scheme is also studied. These simple terrain cases allow for the use of a SCM rather than
using a computationally expensive 3D model, while still allowing for the mesoscale and
microscale model to be evaluated side-by-side in a relatively simple environment.

The study consists of the 3 sections. In section 2 the validation sites and the mesoscale
setup is described, as well as the coupling procedure. The results are presented in section 3
and a summary of the study and the conclusions are presented in section 4.

4.1 Methodology

4.1.1 Validation sites

The methodology is validated for two tall meteorological masts, representing simple sites,
Cabauw (Van Ulden et al., 1996) and Forschungsplattformen in Nord- und Ostsee 3 (FINO3).
The location of these masts is shown in fig 4.2.

Cabauw is a land site located near the city of Cabuaw in the Netherlands. The terrain is
flat and mostly open fields, but with wind breaks and scattered inhomogeneities for southerly
and northerly wind directions. For the prevailing wind direction (southwest), the surface
roughness is characterized as nearly homogeneous open landscape (Verkaik and Holtslag,
2007). The mast is located at 51.970◦N , 4.926◦E with a surface elevation of −0.7 m and
distance of approximately 50 km to the sea (to the northwest). The tower extends to 213 m,
with measurements from 2 to 200 m A.G.L. In addition to the tower measurements, surface
fluxes (u∗ and H) are used in this study, as well as Radio Acoustic Sounding System (RASS)
profiler measurements from the GABLS3 test case Holtslag (2014) that go beyond 200 m.
The year 2016 was chosen as the validation period for Cabauw to allow for comparison with
the GABLS3 test case. The tower and surface measurements are validated and gap-filled, so
availability is 100%.

FINO3 is a 120-m tall mast located in the North sea at 55.195◦N, 7.158◦E. Wind speed
measurements from three levels are used, 50, 70, and 90 m. Each level wind speed is made up
of three anemometers with different boom orientations, allowing for selective combination of
the measurements to minimize shear-distortion due to the mast. A wind vane at 60 m is used
for wind direction. For FINO3, the year 2011 is chosen as the validation period, A wind farm
was constructed and finalized in 2013 south-east of the FINO3 platform, so the year 2011 is
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Fig. 4.1 Vertical distribution of grid levels i the Single-Column Model

chosen to have wake-free measurements. For wind speed the availability for the period is
96–100% per month, and for wind direction it is 98–100%.

4.1.2 Microscale model setup

The microscale model used is the Single-Column Model version of the EllipSys3D URANS
model described in Chapter 3. A computational grid similar to the one used in van der Laan
and Sørensen (2017) is used. It consists of 192 grid cells extending normal to the surface up
to 6000 m. The vertical distribution of grid levels are shown in Fig. 4.1. EllipSys1D uses a
tridiagonal solver to quickly solve the SCM coefficient matrix. A time-step of 1 s, with 8
sub-iterations per step, was used. The surface roughness matches (numerically) that of WRF.

4.1.3 Mesoscale model setup

The WRF model (Skamarock and Klemp, 2008; Skamarock et al., 2008) is the mesoscale
model used in this study. A two-domain setup is used. An outer domain (d01) covers most of
Europe with a horizontal grid spacing of 27 km, and an inner domain (d02), one-way coupled
to d01, is centered on the west coast of Denmark with a horizontal grid spacing of 9 km.
Figure 4.2 shows the two domains and the surface elevation in each. The two validation sites,
Cabauw and FINO3, are marked by red stars.

In Fig. 4.3, the United States Geological Survey (USGS) land-use classes derived from
the CORINE dataset (converted to USGS landuse classes) is shown near the Cabauw site
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Fig. 4.2 Location of the WRF model domains (d01 an d02) and the surface elevation in each
domain. The two sites (marked by a red star) are located at 51.970◦N, 4.926◦E (Cabauw)
and 55.195◦N, 7.158◦E (FINO3).

Fig. 4.3 USGS land-use classification for the WRF domain d02 grid cells near Cabauw (red
star). The nine nearest cells are characterized as dryland, cropland, and pasture.
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Table 4.1 WRF model configuration.

Configuration References:

Model setup
Version ARW-WRF 3.8.1 Skamarock et al. (2008)
Initial, boundary conditions ERA-Interim Simmons et al. (2007)
Elevation USGS
land-use CORINE Bossard et al. (2000)
SST HRSST Gemmill et al. (2007)
Domains d01, d02
∆x and ∆y 27 km, 9 km
Grid size (nx, ny) (140, 120), (100, 100)
Vertical levels (nz) 61 (top at 50hPa)

21 levels below 1 km∗

∆t Adaptive†

Model physics
Land surface model Noah Chen and Dudhia (2001)
Microphysics WSM3 Micro physics Hong et al. (2004)
Cumulus parameterization Kain-Fritcsh Kain (2004)
Shortwave radiation RRTM Dudhia (1989)
Longwave radiation RRTM Mlawer et al. (1997)
Planetary Boundary Layer See table 4.4
Surface Layer See table 4.3
∗The WRF (η) levels listed in Appendix A.1.1 corresponds to ≈ 6,22,57,73,91,114,141,172,207,

246,291,341,399,463,537,620,714,820,940. . . m (cell center) at both sites.
†Target Courant–Friedrichs–Lewy (CFL) conditions:

CFLtotal = 1.15, CFLhorizontal = 0.85
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Table 4.2 Range of adaptive timesteps seen during the WRF simulations.

Name Dom. ∆tmin ∆tmax

W-YSU d01 16.01 99.99
d02 16.01 71.62

W-ACM2 d01 27.0 99.94
d02 21.0 71.62

W-MYJ d01 27.0 99.96
d02 21.0 71.62

W-MYNN2 d01 24.0 99.85
d02 20.66 71.62

W-QNSE d01 21.36 99.99
d02 21.0 72.0

in the 9km (d02) WRF domain. All nine of the nearest grid cells (encircled by a black
line) are characterized as dryland, cropland and pasture, which by default in WRF are given
a seasonally varying roughness-length between 0.05 m during winter and 0.15 m in the
summer. Verkaik and Holtslag (2007) found that the effective roughness lengths for the site
varies not insignificantly for different directions, but mostly within the range 0.04–0.15 m.
Looking beyond the nearest nine grid cells in the model, the site is surrounded by urban and
built-up land (z0 = 0.8 m) and mixed forest (z0 = 0.2−0.5 m) while the sea (z0 ∼ 0.001 m)
is 5–6 grid cells away. Due to this, an effect of the internal boundary layer on the wind field
within WRF model can not be ruled out. Table 4.1 shows the domain setup, the datasets
used for initial and boundary conditions and the physics-parameterization schemes used in
the simulations. The model was run in individual 72 hour chunks overlapping by a 24-hour
spin-up period. Each simulation was initialized at 12:00 UTC, and radiation was updated
every 30 minutes. The range of adaptive time-steps seen during the simulations are shown in
Table 4.2, and were 16.01–99.99 s for domain d01 and 16.01–72.0 for domain d02.

Planetary Boundary Layer (PBL) schemes

Numerical Weather Prediction (NWP) PBL schemes are turbulence closure schemes. How-
ever, unlike the k-ε closure in the microscale model, they also carry out the important role
of estimating the PBL top. Another distinction is that the PBL schemes assume horizontal
homogeneity, disregarding horizontal fluxes. This allows for the simplification that only
vertical gradients are considered. This stands in contrast to typical CFD microscale closure,
that makes no such assumption. But, since a SCM version of the microscale model is used
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Table 4.3 First order PBL schemes used for WRF simulations.

Scheme Used with SL scheme Reference(s)

YSU Revised MM5 Jiménez and Dudhia (2012)
ACM2 Revised MM5 Pleim (2007)

Table 4.4 1.5 order (TKE) PBL schemes used for WRF simulations.

Scheme SL scheme Turbulent length scale l References

MYJ Eta similarity l = le κz
κz+le

le = 0.25
∫ h

0 zqdz∫ h
0 qdz

Janjić (1994)

MYNN2 MYNN 1/l = 1/ls +1/lt +1/lb

ls =


κz/3.7, z/L ≥ 1
κz(1+2.7z/L)−1, 0 ≤ z/L < 1
κ(1−100z/L)0.2, z/L < 0

lt = 0.23
∫

∞
0 zqdz∫
∞
0 qdz

lb


q/N, ∂Θv

∂ z > 0,z/l ≥ 0[
1+5

(
qc
lt N

)1/2
]

q
N ,

∂Θv
∂ z > 0,z/l < 0

∞, ∂Θv
∂ z ≤ 0

Nakanishi and Niino (2004)

QNSE QNSE 1/l = 1/lB +1/lN
lB = κz

158.7κz fc/u∗+1

lN = 0.75 k1/2

N

Sukoriansky et al. (2005)

l turbulent length-scale, κ Von Kármán constant, z height above ground, k turbulent kinetic energy and q2 = 2k
qc turbulent velocity scale, L Obukhov length Θv virtual potential temperature
N Brunt-Väisälä frequency, fc Coriolis parameter, u∗ friction velocity

here, only vertical fluxes are considered for that as well. It should be noted that PBL schemes
that include horizontal fluxes are actively being developed in the NWP community (Kosović
et al., 2017; Muñoz-Esparza et al., 2016).

Five different PBL schemes are tested. Two first order schemes, Yonsei University
(YSU) (Hong et al., 2006) and Asymmetric Convective Model version 2 (ACM2) scheme
Pleim (2007), and three 1.5 order TKE schemes, Mellor-Yamada-Janjic (MYJ) Janjić (1994),
Mellor-Yamada-Nakanishi-Niino level 2.5 scheme (MYNN2) Nakanishi and Niino (2004),
and Quasi-Normal Scale Elimination (QNSE) Sukoriansky et al. (2005). In the following, a
brief description of each scheme is given. For a more detailed comparison of the schemes
refer to Cohen et al. (2015).

The YSU scheme is the default PBL scheme in the WRF model. It is a diffusion scheme
of the form,

∂C
∂ t

=
∂

∂ z

[
νC

(
∂C
∂ z

− γC

)
− (w′c′)h

( z
h

)3
]

(4.1)
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where C is a generic variable representing horizontal velocity components, temperature,
and other scalars. The scheme builds on the ideas of Troen and Mahrt (1986) and is an
extension of medium-range forecast (MRF) scheme Hong and Pan (1996). In contrast to
local schemes, where mixing is influenced only by local gradients, the YSU scheme includes
a counter-gradient term γC that represents the contribution from large-scale eddies to the
local flux. The last term in Eq. (4.1), which separates it from the MRF scheme, represents
entrainment flux from the inversion layer. The ACM2 scheme describes the total mixing as a
sum of local and non-local components depending on the upward convective mixing rate.
The non-local part was the basis of the ACM1 scheme (Pleim and Chang, 1992) and the local
part is eddy diffusion.

The three TKE schemes have transport equation for k of the form

∂k
∂ t

= νt

[(
∂U
∂ z

)2

+

(
∂V
∂ z

)2
]
+

∂

∂ z

(
νt

∂k
∂ z

)
−νh

g
Θ̄v

∂ Θ̄

∂ z
− ε (4.2)

and eddy viscosity defined as
νt = Sclk1/2 (4.3)

where S is a scaling parameter and l is the turbulent length-scale. The differences between the
TKE schemes is their formulation of S and l. Apart from using virtual potential temperature
in the buoyancy term Eq. (4.2) is equal to Eq. (3.25). But unlike the microscale SCM, the
one-equation (TKE) PBL schemes in WRF does not have a transport equation for ε , and
instead use the Kolmogorov relation,

ε =Cε

k3/2

l
(4.4)

which assumes a balance of production and dissipation. The coefficient Cε for the three
schemes are 1/11.878 (MYJ), 1/24 (MYNN2), and 1/6.0105 (QNSE) (Muñoz-Esparza
et al., 2017). The MYJ and MYNN2 schemes define S in terms of k, l, and second order
spatial derivatives of velocity and temperature, while the QNSE scheme defines S from the
gradient Richardson-number Rig. In table 4.4 the definitions of the turbulent length scale for
the three scheme are shown. The QNSE scheme was made for stable and weakly unstable
conditions, and may not perform as well during convective conditions (Sukoriansky et al.,
2005). The MYJ and QNSE schemes use a background value (a value the scheme never goes
below) for TKE of 0.1 and 0.005 m2 s−2, respectively.
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Surface layer schemes

The surface layer schemes used are the revised MM5 Jiménez and Dudhia (2012), Eta
similarity Janjić (1994), MYNN Nakanishi and Niino (2004) and QNSE Sukoriansky et al.
(2005) schemes. The revised MM5 scheme uses stability functions from Cheng and Brutsaert
(2005) (Fairall et al., 1996) for stable (unstable) conditions. Following Beljaars (1994), it
enhances surface velocities by adding a convective velocity, and for domains where the
horizontal grid spacing is larger than 5km a sub-grid velocity enhancement is also added
based on Mahrt and Sun (1995). The MM5 scheme does not parameterize the thermal
roughness length (z0t). In the Eta similarity scheme the stability functions are taken from
Holtslag and De Bruin (1988) (Paulson, 1970) for stable (unstable) conditions. It also uses
the correction from Beljaars (1994), but furthermore include a variable roughness length for
temperature and humidity to account for effects of a viscous sub-layer. The QNSE surface
layer formulation is similar to Eta similarity, but uses different stability functions consistent
with the QNSE PBL scheme (Galperin et al., 2007). The MYNN surface layer scheme uses
stability functions from Dyer and Hicks (1970), a variable roughness length for temperature
and humidity, the Beljaars (1994) correction, and for grid spacing larger than 3 km also the
Mahrt and Sun (1995) correction. See e.g. Liu et al. (2013) for a review of surface-layer
schemes in WRF.

4.1.4 Mesoscale and microscale model coupling

The meso-microscale model coupling procedure is described in the following. It follows the
approach of SR17 of adding momentum and temperature tendencies as source terms into the
governing equations of the microscale model.

The WRF model momentum and temperature tendencies were extracted from the model
using the approach described in Lehner (2012) and used as extra forcing terms in Eq. (3.22),
(3.23), and (3.24). The governing equations for momentum and heat in the WRF model are
made up of many components related to dynamics, physics parameterization, and numerical
stability. Here all but the PGF and advection terms are ignored.

CFD-type microscale models are often forced by a pressure gradient, representing the
background large-scale geostrophic forcing. For steady-state simulations this forcing is
typically constant in time and space. We use instead the forcing derived from WRF, added to
the SCM as body-forces, representing a time-height varying combination of the geostrophic
forcing (from the PGF) as forcing due to advection (as discussed in SR17). The forcing terms
are allowed to vary in both time and height, to capture geostrophic shear, shallow layers of
advection, and other important effects. Examining the tendencies also reveals that advection
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and pressure terms often counter-act each other (shown in the following section), making it
important to include both to avoid excessive forcing when advection is active. The forcing
terms in Eq. 3.22 and 3.23 becomes

FU(t,z) = U̇W
PGF(t,z)+U̇W

ADV(t,z) (4.5)

and,
FV (t,z) = V̇ W

PGF(t,z)+V̇ W
ADV(t,z) (4.6)

for temperature, the advection is added to Eq. (3.24) as

FΘ(t,z) = Θ̇
W
ADV(t,z) (4.7)

where over-dot notation denotes a time-derivative.
WRF variables are linearly interpolated from all 61 WRF model (η) levels to levels of

fixed heights above ground (ΦW in Fig. 4.4). The height of the first 21 (constant height)
levels are shown in the footnotes of Table 4.5. As the SCM levels extend to just 6000 m
above the ground, only the first 33 levels (up to 6427 m) WRF levels are actually used for
interpolation.

Similar to SR17, the WRF tendencies are filtered both in time and in space (horizon-
tally).The tendencies are averaged in the nearest 3×3 grid cells of the 9 km domain surround-
ing the site (corresponding to a 27×27 km averaging box), and 10 minute instantaneous
values are averaged to hourly means. SR17 used tendencies from domain of 3 km wide cells
and an averaging box of 9 km. However, the assumption here is that the difference is minimal
in flat and relative homogeneous terrain. In the microscale model a linear interpolation in
between the hourly tendency values are used. The equations above include both the PGF and
advection terms, for some of the simulations discussed below the some of the these terms
are not included, or they are added as time-varying terms only. The specifics are discussed
below.

The transfer of WRF variables at fixed height levels (ΦW ) and hourly intervals to El-
lipSys1D model levels (ΦE) at specific times are illustrated in Fig. 4.4. WRF forcing (FU ,
FV , and FΘ) and temperature (Θ), are interpolated linearly in time and height to ΦE , while
the nearest neighbour are used below first WRF level for the forcing, and Monin-Obukhov
Similarity theory (MOST) are used for temperature.

As in SR17, surface temperatures, calculated as the potential temperature at the roughness
height z0, are estimated from the diagnosed two-meter temperature in WRF, and extended
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Fig. 4.4 Illustration of transfer of model variables from WRF (ΦW
i ) to EllipSys1D (ΦE

i ) fixed
height levels, where i is the model level index. For WRF fixed height levels are a result of the
original η levels linearly interpolated to average heights above ground for the given period.
Forcing variables (FU , FV , and FΘ) at ΦE are interpolated linearly in both time and height
from ΦW when possible. Nearest neighbours (NN) in height are used below the first WRF
level (gray area). Temperature, used e.g. for nudging, are extrapolated via MOST below ΦW

1
and the ground.
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downwards to z0 using MOST

Θz0 = Θ2 −
Θ∗
κ

[
ln
(

2− z0

z0

)
+ψ

(
2− z0

L

)]
, (4.8)

where the temperature scale Θ∗ is obtained from the turbulent sensible heat flux H of units
Wm−2 and the friction velocity u∗ as

Θ∗ =
H

u∗ρCP
(4.9)

CP is the specific heat capacity for atmospheric air CP = 1005Jkg−1K−1 and ψ is the integral
form of the stability function from MOST. The stability coefficients from Businger et al.
(1971) are used

ψ(z/L) =

−4.7z/L for z/L ≥ 0

2ln
[
1/2

(
1+(1−15z/L)1/2

)]
for z/L < 0

(4.10)

no parameterization of the roughness length for temperature is included.
A temperature relaxation, as described in sec. 3.2, with a relaxation timescale of τr =

10800 s is also used. The temperature is relaxed towards the average vertical temperature
profile in the nearest WRF grid cell, corresponding to the next following hour to the current
model integration time.

4.2 Results

In the following the results are presented. First, results for the SCM are presented alone, to
investigate the impact of forcing it with different combinations of mesoscale terms, by seeing
the impact on the long-term wind statistics for the whole year and for each combination.
The WRF results from the simulations using the YSU PBL scheme are used to generate
the different combinations of forcing for this purpose. After that, a single combination of
mesocale terms are chosen, and studied more in-depth for the GABLS3 test case, and for
the long-terms results for the year, using all five configurations of the WRF model to drive
the SCM. The results for both the WRF model and the SCM are shown in that part, to allow
an overview of both the WRF results and the sensitivity to PBL-SL configuration, and the
sensitivity of the SCM to that choice.
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Table 4.5 WRF simulations. Each simulation was run for one year at each of the two sites.

Name Model PBL scheme SL scheme

W-YSU WRF YSU Revised MM5
W-ACM2 WRF ACM2 Revised MM5
W-MYJ WRF MYJ Eta similarity
W-MYNN2 WRF MYNN2 MYNN
W-QNSE WRF QNSE QNSE

Table 4.6 Single-Column Model (SCM) simulations

Name Model Forced by Forcing terms included

E-YSU-L1 SCM W-YSU U̇(t)PGF

E-YSU-L2 SCM W-YSU U̇(t,z)PGF

E-YSU-L3 SCM W-YSU U̇(t)PGF +U̇(t,z)ADV, Θ̇(t,z)ADV

E-YSU-L4 SCM W-YSU U̇(t,z)PGF +U̇(t,z)ADV

E-YSU-L5 SCM W-YSU U̇(t,z)PGF +U̇(t,z)ADV, Θ̇(t,z)ADV

E-YSU SCM W-YSU U̇(t,z)PGF +U̇(t,z)ADV, Θ̇(t,z)ADV

E-ACM2 SCM W-ACM2 U̇(t,z)PGF +U̇(t,z)ADV, Θ̇(t,z)ADV

E-MYJ SCM W-MYJ U̇(t,z)PGF +U̇(t,z)ADV, Θ̇(t,z)ADV

E-MYNN2 SCM W-MYNN2 U̇(t,z)PGF +U̇(t,z)ADV, Θ̇(t,z)ADV

E-QNSE SCM W-QNSE U̇(t,z)PGF +U̇(t,z)ADV, Θ̇(t,z)ADV



42 Coupling via tendencies in simple terrain

An overview of WRF simulations are shown in table 4.5, and table 4.6 shows the ten
different SCM results, including what forcing was used to generate it. The “W” or “E” in the
names of the SCM simulations refer to the name of the models: “WRF” and “EllipSys”.

In the following sub-sections the long-term wind statistics between the models and the
observations are presented in Taylor diagrams (Taylor, 2001). Taylor diagrams allow for an
easy summary of multiple statistics: correlation, ratio of standard deviations, and mean wind
speed bias. The mean horizontal wind speed is given as

⟨S⟩= 1
n

n

∑
i=1

Si (4.11)

where n and N are individual hourly values and the total number of values (hours) respectively.
The wind speed bias is the difference between the modelled and observed mean ⟨S⟩m −⟨S⟩o.
The standard deviation of the wind speed is given by

σ =
1
n

n

∑
i=1

(Si −⟨S⟩) (4.12)

. In the Taylor diagrams the ratio between the modelled and observed variances σm/σo

is used to show the degree to which the models under- or estimations the variations. The
correlation used is the Pearson correlation. All statistics are calculated on the basis of the
hourly-averaged model output and measurements. The black star in the Taylor diagram
represents the measurements, i.e. the perfect match where the correlation coefficient and
normalized standard deviation equals one. The filled color and width of the edge-lines of the
symbols represents the mean bias and the height above the surface respectively.

4.2.1 Impact of forcing terms

SR17 showed the importance of including both geostrophic shear and momentum and
temperature advection in the forcing for a SCM to accurately capture the Low Level Jet
(LLJ) in the GABLS3 test case (Sanz Rodrigo et al., 2017a,b). In Fig. 4.5, table 4.7 and
table 4.8, the importance of including these effects for capturing the long-term statistics is
shown at Cabauw and FINO3 for the SCM forced by W-YSU. Five different combinations
of forcing are shown. 1) PGF varying only in time (U̇PGF(t)), the lowest level of WRF
is used. 2) PGF varying with time and height (U̇PGF(t,z)). 3) PGF varying only in time,
but temperature and momentum advection included, and varying in both time and height
(U̇PGF(t)+U̇ADV (t,z), Θ̇ADV (t,z)). 4) PGF varying with time and height and momentum
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Table 4.7 Wind speed statistics for mast Cabauw: Mean wind speed (Mean), standard
deviation of wind speed (St.d.), Bias of the mean wind speed (Bias), Mean Absolute Error
(MAE), Root-Mean-Square Error (RMSE), and Pearson correlation coefficient (C.C.). The
best performing SCM results are highlighted in bold text. The five SCM results are: PGF
varying only in time (E-YSU-L1), PGF varying with time and height (E-YSU-L2), PGF
varying only in time, but temperature and momentum advection included, and varying in both
time and height (E-YSU-L3), PGF varying with time and height and momentum advection
included (E-YSU-L4), and PGF varying with time and height, and both momentum and
temperature advection included (E-YSU-L5).

Height Name ⟨S⟩ σS Bias MAE RSME C.C.

200 m Obs 8.66 4.03 - - - -
W-YSU 9.26 4.18 7.0 1.85 2.42 0.84
E-YSU-L1 10.74 4.86 24.1 3.39 4.40 0.63
E-YSU-L2 10.19 4.85 17.7 2.84 3.76 0.71
E-YSU-L3 9.82 4.28 13.4 2.57 3.35 0.72
E-YSU-L4 9.26 4.11 7.0 1.86 2.46 0.83
E-YSU-L5 9.32 4.15 7.7 1.87 2.46 0.83

140 m Obs 8.02 3.55 - - - -
W-YSU 8.66 3.68 7.9 1.71 2.23 0.83
E-YSU-L1 9.78 4.21 22.0 2.87 3.74 0.65
E-YSU-L2 9.38 4.20 16.9 2.46 3.27 0.72
E-YSU-L3 9.00 3.71 12.2 2.21 2.90 0.72
E-YSU-L4 8.57 3.57 6.8 1.69 2.24 0.81
E-YSU-L5 8.63 3.60 7.6 1.70 2.23 0.82

80 m Obs 6.97 3.00 - - - -
W-YSU 7.57 3.02 8.6 1.50 1.95 0.81
E-YSU-L1 8.38 3.51 20.2 2.30 3.04 0.67
E-YSU-L2 8.08 3.44 15.9 2.01 2.69 0.72
E-YSU-L3 7.78 3.05 11.7 1.84 2.43 0.71
E-YSU-L4 7.42 2.90 6.4 1.48 1.95 0.79
E-YSU-L5 7.51 2.92 7.7 1.50 1.96 0.80

[ms−1] [ms−1] [%] [ms−1] [ms−1] [-]
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Table 4.8 Wind speed statistics for mast FINO3: Mean wind speed (Mean), standard deviation
of wind speed (St.d.), Bias of the mean wind speed (Bias), Mean Absolute Error (MAE),
Root-Mean-Square Error (RMSE), and Pearson correlation coefficient (C.C.). The best
performing SCM results are highlighted in bold text. The five SCM results are: PGF varying
only in time (E-YSU-L1), PGF varying with time and height (E-YSU-L2), PGF varying only
in time, but temperature and momentum advection included, and varying in both time and
height (E-YSU-L3), PGF varying with time and height and momentum advection included
(E-YSU-L4), and PGF varying with time and height, and both momentum and temperature
advection included (E-YSU-L5).

Height Name ⟨S⟩ σS Bias MAE RSME C.C.

90 m Obs 10.45 4.73 - - - -
W-YSU 10.05 4.72 -3.8 1.72 2.31 0.88
E-YSU-L1 10.92 5.91 4.5 2.80 3.95 0.75
E-YSU-L2 10.57 5.68 1.1 2.56 3.59 0.78
E-YSU-L3 10.21 4.82 -2.3 2.00 2.72 0.84
E-YSU-L4 9.84 4.49 -5.9 1.76 2.33 0.88
E-YSU-L5 9.92 4.52 -5.1 1.74 2.31 0.88

70 m Obs 10.26 4.59 - - - -
W-YSU 9.81 4.59 -4.3 1.68 2.25 0.88
E-YSU-L1 10.57 5.70 3.0 2.70 3.79 0.75
E-YSU-L2 10.24 5.49 -0.2 2.48 3.47 0.78
E-YSU-L3 9.88 4.65 -3.7 1.95 2.64 0.84
E-YSU-L4 9.52 4.32 -7.2 1.75 2.29 0.88
E-YSU-L5 9.60 4.34 -6.4 1.73 2.27 0.88

50 m Obs 9.93 4.42 - - - -
W-YSU 9.51 4.43 -4.3 1.60 2.13 0.89
E-YSU-L1 10.18 5.48 2.5 2.57 3.62 0.75
E-YSU-L2 9.86 5.27 -0.7 2.37 3.32 0.78
E-YSU-L3 9.51 4.46 -4.2 1.86 2.53 0.84
E-YSU-L4 9.17 4.14 -7.7 1.69 2.20 0.89
E-YSU-L5 9.24 4.16 -7.0 1.67 2.19 0.88

[ms−1] [ms−1] [%] [ms−1] [ms−1] [-]
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Fig. 4.5 Taylor diagram showing wind speed correlation (angle), relative annual wind speed
variance ratio (radii), and annual mean wind speed biases (color) of the (hourly averaged)
results from the SCM forced by the WRF tendencies, using the YSU PBL scheme, for
different combinations of forcing terms included (marker symbols) at different heights
(marked by the thickness of the edge line) relative to the observations (star) at Cabauw (top)
and FINO3 (bottom).
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advection is included (U̇PGF(t,z)+U̇ADV (t,z)). 5) PGF varying with time and height, and
both momentum and temperature advection included (U̇PGF(t,z)+U̇ADV (t,z), Θ̇ADV (t,z)).

It is clear that using just a time-dependant geostrophic wind results in a large overestima-
tion of the mean wind speed at Cabauw (24% at 200 m), while only a small overestimation is
seen at FINO3 (4.5% at 90 m). For both sites, low correlation coefficients and an overestima-
tion of the standard deviation are seen. Adding vertical variations of PGF (akin to geostrophic
shear), substantially improves the results, showing maximum errors of 17.7% at Cabauw,
and 1.1% at FINO3, and an improved correlation and variance. However, the correlation is
still low and the standard deviation of wind speed large relative to the other options. Further
improvements are made by adding advective tendencies, especially momentum advection has
a large impact at Cabauw. At FINO3 it results in an underestimation of the mean wind speed
and standard deviation, but a clear improvement for correlation, MAE, and RMSE is seen.

The reduced overestimation of the wind speed, improved correlation, MAE, and RMSE, at
Cabauw resulting from including the momentum advection term, points to the balancing effect
that often happens between the pressure gradient force and advection, resulting in a smaller
total forcing by including both together. The smallest impact is seen from adding temperature
advection. However, an impact is still seen, e.g. a slightly reduced underestimation of the
mean wind speed at FINO3 when temperature advection is included. At Cabauw, it does
seem to increase the overestimation, but across all metrics the change is minimal. Because
temperature nudging is used, part of the effects of temperature advection are already added
to the model indirectly, which may partly explain the relative low impact, compared to
momentum advection.

4.2.2 GABLS3

Figures 4.6 and 4.7 show time-height plots of horizontal wind speed (S =
√

U2 +V 2), wind
direction (D), potential temperature (Θ), turbulent kinetic energy (k), and dissipation of
turbulent kinetic energy (ε), during the diurnal cycle between 12:00 UTC 1 July 12:00 UTC
2 July 2016, corresponding to the GABLS3 test-case.

Generally, the occurrence of a LLJ is captured by all the models, but some variations in
the timing, intensity and the duration are observed. The results are consistent with Fig. 9
in SR17, which is based on model configurations similar to W-YSU and E-YSU. During
the weakening phase of the jet (lowering of wind speed), there is a strong turning of the
wind, which is not well captured by the models. The SCM results follow the mesoscale
forcing well, but tend to slightly weaken the jet and displace it downwards compared to the
corresponding mesoscale model. All the models overestimate the near-surface wind speeds.
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Fig. 4.6 Hourly-averaged time-height contours of: (top) horizontal wind speeds (S), (middle)
horizontal wind directions (D), and (bottom) potential temperature (Θ), during the GABLS3
test case period for the five WRF model configurations (a-e), the observations (f), and the
SCM runs (g-k).
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Fig. 4.7 Hourly-averaged time-height contours of: (top) turbulent kinetic energy (k), and
(bottom) dissipation of turbulent kinetic energy (ε), during the GABLS3 test case period for
the five WRF model configurations (a-e), the observations (f), and the SCM runs (g-k).
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The best agreement between the meso- and corresponding SCM run is seen for W-QNSE
and E-QNSE, while W-MYNN2 and E-MYNN2 show the largest discrepancies. A negative
temperature bias in the models is observed throughout the diurnal cycle. The mesoscale
models with local PBL schemes (MYJ, MYNN, QNSE) show a larger cold bias of the near-
surface temperature compared to the non-local schemes (YSU, ACM2). This is consistent
with findings in e.g. Hu et al. (2010). The temperatures in the SCM results are tightly
connected to the mesoscale model due to the passing of surface temperatures from WRF to
the SCM and the temperature nudging, but some variations are seen e.g. colder night-time
near-surface temperature and a sharper temperature gradient aloft for E-MYNN2 compared
to W-MYNN2. For the modelled TKE and DTKE (Fig. 4.7), large variations are seen for the
different WRF PBL schemes. W-MYNN2 have the most turbulent kinetic energy and least
dissipation, while W-QNSE have much larger DTKE and lowest TKE values. Interestingly,
W-MYJ show dissipation high above the surface (100+ m) during night-time. The SCM
results have minor variations of TKE for the different forcing model configurations.

Figure 4.8 shows vertical profiles of hourly-averaged values of wind speed, wind direction,
and potential temperature at 18:00, 00:00, 06:00, and 12:00 UTC during the GABLS3 diurnal
cycle.

At all four times a clear underestimation of the temperature, of about 2 K, is seen. During
the night-time transition at 18:00 the surface cooling causes the mesoscale temperature
profiles to adjust more quickly than the SCM, where the surface air cools rapidly, but not
the air further aloft. The wind speed and direction profiles shows good agreement between
W-YSU and E-YSU, W-ACM2 and E-ACM2, and W-MYJ and E-MYJ, but W-QNSE shows
larger wind speeds than E-QNSE and W-MYNN2 shows lower wind speed than E-MYNN2.

At midnight (00:00), the SCM temperature profiles follow well the profile of its forcing
mesoscale model near the surface, but are warmer than it up to ≈ 200 m, where the profiles
convergence again. The peak difference between the SCM and WRF temperatures are at
100–150 m. The jet seen in the wind speed profiles varies by a few m/s between the models.
The SCM results follows the general trends of the forcing model, but the wind speed peak is
located at lover heights. W-MYJ and W-QNSE captures the magnitude of the jet better than
the other mesoscale models.

During the morning transition (06:00), a layer of colder air is seen in the SCM results
compared to the corresponding mesoscale model up to ≈ 125 m, and a layer of air warmer
than the mesoscale model above. All the models overestimate the wind speed above 80 m,
and the inter-model variability is low below ∼ 125 m. The SCM results show more veering
of wind with height up to ≈ 200 m.
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Fig. 4.8 Vertical profiles of wind speed (a-d), wind direction (e-h), and potential temperature
(i-l) for the models and measurements at 18:00, 00:00, 06:00, and 12:00 UTC during the
GABLS3 test case.
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At 12:00, the SCM results and W-QNSE show much lower and steeper sloping wind
speed profiles than the other mesoscale models. Likewise the wind directions show an angle
≈ 15◦ lower for the SCM and W-QNSE results compared to the other WRF results. The
SCM results also show more veering of the wind with altitude. The temperature profiles for
the SCM results show a much greater vertical gradient than the mesoscale results and the
observations, pointing to more sensitivity to the day-time surface heating.

4.2.3 Sensitivity of wind statistics to WRF SL-PBL schemes

In Fig. 4.9 the long-term wind statistics at Cabauw is shown for WRF and for the SCM in
Taylor diagrams. The exact values of the statistics are shown in tables 4.9 and 4.10. The
mean wind speed profiles, wind speed distributions, and wind direction distributions (wind
roses) are shown in 4.11.

At Cabauw, the WRF results overestimate the mean wind by 2.8–23.1%. But interestingly,
the overestimation varies considerably for the different WRF PBL/SL scheme configurations
and for different heights above ground. The W-QNSE overestimates the mean wind speed by
just 2.7% at 20 m, but overestimates by 13.0% at 200 m, while the W-MYNN2 overestimates
the mean wind speed by 23.1% at 20 m, decreasing aloft to 9.4% at 200 m. The W-MYNN2
also overestimates the wind speed variation more than the other configurations (Fig. 4.9).
The W-MYJ and W-YSU have the smallest mean errors across heights: 8.0% at 40 m for
W-MYJ and 8.6% at 80 m for W-YSU. The mean wind speed errors decrease with height for
4 of 5 configurations (W-QNSE excluded) and the correlation increases for all 5.

At Cabauw the best performing configuration is W-ACM2/E-ACM2. The E-ACM2 has
the smallest mean errors, MAE, RMSE, and greatest correlation across heights. At the 140
and 200 m the W-ACM2 performed best for all metrics, and the E-ACM2 largely maintained
these properties, although increased overestimation of the means and standard deviations are
seen. The W-QNSE and E-QNSE are the WRF+SCM pair that deviates the least, while the
W-MYNN2 and E-MYNN2 deviates the most, particularly closer to the surface where the
respective turbulence closures and surface layer schemes have most effect.

In most cases the SCM results are worse than their respective forcing model results for
FINO3 and aloft for Cabauw, although the deterioration is small when compared to the
inter-model variation of results. Closer to the surface at Cabauw no clear pattern can be seen.

At FINO3 all five WRF simulations underestimate the annual mean wind speed by −1.0
to −7.8 % (Table 4.10) across the three heights. The SCM simulations results in lower
annual mean wind speeds showing underestimations from −1.4 to −10.7 %. W-ACM2 has
the lowest MAE and RMSE of the WRF results, and E-ACM2 has the lowest for the SCM
results.
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Fig. 4.9 Taylor diagram showing wind speed correlation (angle), relative annual wind speed
variance ratio (radius), and annual mean wind speed biases (color) of the (hourly averaged)
results from WRF (top) and the SCM (bottom) for the five WRF configurations (marker
symbols) at different heights (marked by the thickness of the edge line) relative to the
observations (star) at Cabauw.
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Fig. 4.10 Taylor diagram showing wind speed correlation (angle), relative annual wind
speed variance ratio (radius), and annual mean wind speed biases (color) of the (hourly
averaged) results from WRF (top) and the SCM (bottom) for the five WRF configurations
(marker symbols) at different heights (marked by the thickness of the edge line) relative to
the observations (star) at FINO3.
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Table 4.9 Wind speed statistics for Cabauw: Mean wind speed (Mean), standard deviation of
wind speed (St.d.), Bias of the mean wind speed (Bias), mean absolute error (MAE), root-
mean-square error (RMSE), and Pearson correlation coefficient (C.C.). The best performing
model is highlighted in bold text.

Height Name ⟨S⟩ σS Bias MAE RSME C.C.

200 m Obs 8.66 4.03 - - - -

W-YSU 9.26 4.18 7.0 1.85 2.42 0.84
E-YSU 9.32 4.15 7.7 1.87 2.46 0.83

W-ACM2 9.02 3.98 4.3 1.68 2.22 0.85
E-ACM2 9.21 4.10 6.4 1.76 2.32 0.85

W-MYJ 9.14 3.96 5.6 1.80 2.37 0.83
E-MYJ 9.39 4.18 8.5 1.90 2.48 0.83

W-MYNN2 9.47 4.50 9.4 1.98 2.58 0.84
E-MYNN2 9.48 4.24 9.5 1.98 2.57 0.83

W-QNSE 9.78 4.40 13.0 2.21 2.84 0.81
E-QNSE 9.74 4.27 12.6 2.11 2.74 0.82

140 m Obs 8.02 3.55 - - - -

W-YSU 8.66 3.68 7.9 1.71 2.23 0.83
E-YSU 8.63 3.60 7.6 1.70 2.23 0.82

W-ACM2 8.42 3.54 5.0 1.54 2.03 0.84
E-ACM2 8.52 3.57 6.2 1.58 2.09 0.84

W-MYJ 8.51 3.47 6.1 1.64 2.18 0.82
E-MYJ 8.70 3.63 8.5 1.71 2.26 0.82

W-MYNN2 8.95 4.05 11.5 1.90 2.45 0.83
E-MYNN2 8.79 3.67 9.6 1.78 2.33 0.81

W-QNSE 9.02 3.77 12.5 1.96 2.53 0.80
E-QNSE 8.97 3.68 11.8 1.85 2.43 0.81

80 m Obs 6.97 3.00 - - - -

W-YSU 7.57 3.02 8.6 1.50 1.95 0.81
E-YSU 7.51 2.92 7.7 1.50 1.96 0.80

W-ACM2 7.49 3.03 7.4 1.39 1.81 0.83
E-ACM2 7.40 2.96 6.2 1.38 1.83 0.82

W-MYJ 7.47 2.90 7.1 1.46 1.92 0.80
E-MYJ 7.58 2.98 8.7 1.52 2.02 0.79

W-MYNN2 8.03 3.44 15.2 1.81 2.30 0.81
E-MYNN2 7.66 3.00 9.9 1.57 2.06 0.79

W-QNSE 7.74 2.99 11.0 1.65 2.12 0.78
E-QNSE 7.73 3.00 10.9 1.56 2.08 0.79

[ms−1] [ms−1] [%] [ms−1] [ms−1] [-]
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Table 4.10 Wind speed statistics for FINO3: Mean wind speed (Mean), standard deviation of
wind speed (St.d.), Bias of the mean wind speed (Bias), mean absolute error (MAE), root-
mean-square error (RMSE), and Pearson correlation coefficient (C.C.). The best performing
model is highlighted in bold text.

Height Name ⟨S⟩ σS Bias MAE RSME C.C.

90 m Obs 10.45 4.73 - - - -

W-YSU 10.05 4.72 -3.8 1.72 2.31 0.88
E-YSU 9.92 4.52 -5.1 1.74 2.31 0.88

W-ACM2 10.17 4.72 -2.7 1.68 2.27 0.89
E-ACM2 10.03 4.59 -4.0 1.70 2.29 0.88

W-MYJ 10.10 4.59 -3.4 1.70 2.32 0.88
E-MYJ 9.99 4.62 -4.4 1.72 2.34 0.88

W-MYNN2 9.74 4.54 -6.8 1.79 2.40 0.88
E-MYNN2 9.63 4.33 -7.8 1.86 2.43 0.88

W-QNSE 10.34 4.73 -1.0 1.80 2.48 0.86
E-QNSE 10.31 4.80 -1.4 1.78 2.44 0.87

70 m Obs 10.26 4.59 - - - -

W-YSU 9.81 4.59 -4.3 1.68 2.25 0.88
E-YSU 9.60 4.34 -6.4 1.73 2.27 0.88

W-ACM2 9.95 4.60 -3.0 1.63 2.21 0.89
E-ACM2 9.72 4.41 -5.3 1.69 2.25 0.88

W-MYJ 9.85 4.45 -4.0 1.66 2.26 0.88
E-MYJ 9.68 4.44 -5.7 1.71 2.30 0.88

W-MYNN2 9.47 4.37 -7.7 1.78 2.36 0.88
E-MYNN2 9.28 4.15 -9.5 1.87 2.42 0.88

W-QNSE 10.03 4.54 -2.3 1.75 2.39 0.86
E-QNSE 9.98 4.62 -2.8 1.74 2.35 0.87

50 m Obs 9.93 4.42 - - - -

W-YSU 9.51 4.43 -4.3 1.60 2.13 0.89
E-YSU 9.24 4.16 -7.0 1.67 2.19 0.88

W-ACM2 9.66 4.46 -2.7 1.55 2.10 0.89
E-ACM2 9.35 4.22 -5.9 1.64 2.17 0.88

W-MYJ 9.51 4.30 -4.3 1.59 2.16 0.88
E-MYJ 9.32 4.25 -6.2 1.66 2.22 0.88

W-MYNN2 9.16 4.19 -7.8 1.73 2.28 0.88
E-MYNN2 8.87 3.95 -10.7 1.85 2.38 0.88

W-QNSE 9.62 4.33 -3.1 1.68 2.29 0.87
E-QNSE 9.60 4.42 -3.4 1.67 2.26 0.87

[ms−1] [ms−1] [%] [ms−1] [ms−1] [-]
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Generally, the SCM errors are very similarly to its forcing (WRF) simulation. At both
sites the average deviation between the WRF simulation and its child SCM simulation was
less than e.g. the inter-model deviation of WRF for different PBL schemes. The W-QNSE and
E-QNSE are the WRF+SCM pair that deviated the least, while W-MYNN2 and E-MYNN2
deviated the most.

At Cabauw, a clear convergence of the SCM results is seen, compared to the mesoscale
(convergence of the markers in Fig. 4.9 compared to Fig. 4.9), pointing to a degree of
forcing-independence of the surface response in the k-ε closure, where “bottom-up” effects
dominate. However, at FINO3 the SCM results seem to diverge.

The wind speed distribution at 80 m at Cabauw (Fig. 4.11 b) confirms that the observed
mean wind speed errors correspond to a shift distributions. The wind direction distributions
(wind roses) at 80 m (Fig. 4.11 c) are quite similar for the different PBL schemes, a
slight misalignment (counter clockwise rotation) exists between the WRF results and the
measurements, possibly resulting from a difference in veering. At FINO3, the wind speed
distribution at 90 m and the wind direction distribution at 60 m are generally both well
captured, but especially the 5–10 ms−1 range seems to be over-represented in the models,
while the larger wind speeds are underrepresented, pointing to an inability to capture periods
of peak wind speed.

4.2.4 Surface layer metrics at Cabauw

To further examine the WRF and SCM results, the surface friction velocity (u∗), surface heat-
flux (H), surface temperature scale (Θ∗), surface Obukhov length, wind shear exponent aloft
(α), and near-surface turbulent kinetic energy (k or TKE) was plotted against the observations
from the Cabauw mast, shown in Fig. 4.12 and 4.13. Because four different surface layer
(SL) schemes are used for the five different WRF configurations it is not obvious if the SL
or PBL scheme contributes most to the results. So, this should be considered a study of
the combined effects of the SL-PBL pairs. The wind shear exponent is calculated between
z1 = 80 and z2 = 140 m using (Kelly et al., 2014)

α =
ln(S2/S1)

ln(z2/z1)
(4.13)

from the wind profile power law
S(z)
Sr

=

(
z
zr

)α

, (4.14)

where Sr is the wind speed at reference height zr.
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Fig. 4.11 Mean horizontal wind speed profiles (a, d) horizontal wind speed distribution (b,
e), and wind direction distribution (c, f) for the models and measurements at Cabauw (top)
and FINO3 (bottom). Distributions are calculated at 80 (80) m at Cabauw and 90 (60) m at
FINO3 for wind speed (direction). WRF are shown in full lines and the lines representing
the SCM results are dashed.
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Figure 4.13 shows scatter-plots of the modelled and observed TKE at 20 m. TKE is
modelled in all three 1.5 order WRF PBL schemes (MYJ, MYNN2, and QNSE), and in the
SCM. The measured TKE is calculated at 20 m above the ground from the standard deviation
of the wind speed (σ ) during 10 min averaging periods, by assuming isotropic turbulence
and using k = 3/2σ2.

The friction velocities are generally overestimated in both the mesoscale and SCM results.
This was also seen in SR17 during GABLS3. All the mesoscale and SCM results have similar
mean errors (ME), mean absolute errors (MAE), and correlation coefficients. The positive
biases indicate a misrepresentation of the surface roughness, overestimating the true friction.

For all WRF results, excess sensible heat fluxes (positive bias) are observed for situations
of surface heating (Fig. 4.12), as well as a tendency for excess negative heat flux (negative
bias) for situations of surface cooling. The SCM results show a similar pattern for surface
heating conditions, but exaggerate the cooling even further during surface cooling conditions.
This indicates a over-sensitivity to the prescribed varying surface temperatures. In each case
the MAE is lower for WRF than the corresponding SCM. The MEs are lower for the SCM
results, but this is caused by a balancing of positive and negative biases, seen by the larger
MAEs. The temperature scale Θ∗ = H/u∗ (Fig. 4.12) shows a similar pattern as heat flux,
the SCM model tend to produce temperature scale values way below the observed during
situations of surface cooling.

The Obukhov lengths generally seems well captured by both the WRF and SCM, for
the bins chosen here (Fig. 4.13), but a weak signal is also seen along the primary diagonal,
associated with negative correlation, especially in the unstable quadrant (upper left). This
may be explained by timing-issues during night-day transition.

The correlation of the modelled and observed wind shear exponent between 80 and 140 m,
shown in Fig. 4.13, shows much lower correlation than for the other metrics. This is expected
because it is a result of many combined effects, including the surface roughness effects,
stability related effects, and unsteadiness. Low shear situations (which are typical for unstable
stability conditions) are well captured by the WRF runs except for the W-QNSE, while high
shear situations show large inter-model (model-to-model) variations; the W-MYNN2 and
W-ACM2 tend to have lower α values. The SCM show a tendency of overestimating the
shear for low shear situations, and have larger MAEs. This will be explored more below.

For TKE (Fig. 4.13), the three WRF configurations that models the TKE tend to underes-
timate it, especially the W-MYJ and W-QNSE, while the SCM results generally capture the
TKE well. The W-MYJ often fall back to the background 10−1 [m2s−2] level of turbulence
(Fig. 4.13 b). The figure indicates that the k-ε closure is able to account for the turbulence
quite well close to the surface.
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Fig. 4.12 Scatter-plots of observations vs model results of friction velocity (u∗) at Cabauw
for each of the WRF configurations (a-e) and SCM results (f-j).
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Fig. 4.13 Scatter-plots of observations vs model results of turbulent kinetic energy (k) at
Cabauw for each of the WRF configurations (a-e) and SCM results (f-j).
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Table 4.11 Stability classes, similar to Draxl et al. (2014)

Stability class Obukhov length [m]

Unstable (U) −500 ≤ L < −50
Neutral (N) |L| > 500
Near stable (NS) 200 < L ≤ 500
Stable (S) 50 < L ≤ 200
Very stable (VS) 10 < L ≤ 50

The surface layer metrics indicate that the k-ε closure is only weakly sensitive to the
PBL and SL scheme used by the forcing mesoscale model, since these SCM results for the
different configurations of WRF only varies to a lesser degree, pointing to bottom-up effects
being the main driver here.

4.2.5 Stability dependence of wind profile

To investigate the response of each model to different atmospheric stability conditions, wind
speed profiles were constructed for five stability regimes, normalized by friction velocities
(Fig. 4.14). See table 4.11) for the range of stabilities for each group. The minimum number
of samples (hours) across both measurements and model results was 758 for W-YSU at
Cabauw, and 299 for W-ACM2 at FINO3, but in most cases 1000+ samples (hours) were
available. Measurements of friction velocity was not available for FINO3, so only model
results are shown there.

At Cabauw, all the models underestimate the normalized wind speed for the unstable (U)
conditions, but the SCM is slightly closer to the measurements than the mesoscale results.
Neutral conditions (N) are well captured by the models, although they do underestimate
the observed normalized profile. For near stable and stable conditions (NS and S) the SCM
results shows lower normalized wind speeds compared to WRF (the same is true for FINO3).
The WRF profiles are closer to the measured. In particular the W-MYNN2 are quite close
to the measured at low heights (20 and 40 m). For very stable (VS) conditions the models
generally do not capture the normalized wind speed profile well. Highly stable conditions is a
well known problem for atmospheric models (Holtslag and Svensson, 2013). The normalized
wind speed for the W-MYNN2 is greater than the rest of the models (also at FINO3), and it
is closer to the observed profile. The E-MYNN2 does not follow the W-MYNN2.
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Fig. 4.14 Horizontal wind speed profiles normalized by friction velocity for five stability
classes defined by Obuhkov lengths (L); (a) unstable (U), (b) neutral (N), (c) near stable
(NS), (d) stable (S), and (e) very stable (VS). The classes are similar to Draxl et al. (2014).
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Fig. 4.15 Mean wind shear exponents at Cabauw by month of year (y axis) and hour of day
(x axis) for the five WRF model configurations (a-e), the observations (f), and the SCM (g-k).
The shear exponent is calculated between 80 and 140 m.

4.2.6 Wind shear by hour and month

As Fig. 4.13 shows, the SCM tends to overestimate wind shear at Cabauw between 80
and 140 m when observations point to a small shear exponent (associated with unstable
conditions). An explanation for this can be partly found in Fig. 4.8 at 12:00, which shows
a larger temperature gradient and weaker wind speeds with a steeper slope (shear) during
convective conditions for the SCM results between 80 and 140 m. Selecting heights at lower
levels, e.g. 20 and 40 m show better agreement between the SCM and WRF results (not
shown). However, for wind energy applications the shear at hub heights are more relevant to
highlight.

To further examine the observed patterns of α , in particular the temporal dependencies,
mean values of shear exponent are shown in Fig. 4.15 for every month of the year and
every hour of the day. The figure shows that the overestimation of wind shear for the SCM
is associated with summertime-daytime conditions where unstable stability conditions are
common. The WRF results generally capture the mean shear better for these conditions,
apart from the W-QNSE that, just as the SCM results, show larger mean shear values. The
figure also shows that during summertime night-time conditions (where rapid surface cooling
is common) the E-MYNN2 tends to underestimate the mean shear.
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4.3 Summary and conclusions

In this study a mesoscale to microscale coupling methodology was evaluated for a LLJ test
case (GABLS3), for long-term surface layer characteristics, and long-term wind statistics.
The coupling methodology involves forcing the microscale model with momentum and
temperature tendencies extracted from a mesoscale model, as discussed by e.g. (Sanz Rodrigo
et al., 2017b). The mesoscale tendencies extracted in this study from the WRF model,
accounts for large-scale flow effects required by the microscale model to accurately capture
the unsteady flow patterns of real-world ABL flow.

The microscale model in this study consists of Single-Column Model, based on the
RANS equations combined with k-ε turbulence closure modified to accommodate non-neutral
stability conditions. It is a simplified 1D version of the in-house CFD code EllipSys3D at
DTU Wind Energy. The SCM was used in this study in order to make year-long simulations
affordable. For this reason the evaluation was done at simple sites; Cabauw, a flat site with
some surface roughness inhomogeneities, and FINO3, an offshore site. The evaluation period
at Cabauw was the year 2006, which allowed for comparison with the GABLS3 test case
(from noon 1 July to noon 2 July UTC). These simple site study cases serve as a prerequisite
to using the methodology for modelling complex terrain flow. Furthermore, to study the
sensitivity of the tendencies to the choice of PBL and SL scheme in WRF, five different
WRF configurations were used, based on the YSU, ACM2, MYJ, MYNN2, and QNSE PBL
schemes.

The results for one PBL scheme (YSU) showed that both the PGF and momentum
advection are important to accurately capture the long-term wind statistics, and to a smaller
degree also temperature advection, although the temperature nudging used capture some of
the same effects. In many situations advection and pressure gradient forces are, to some
degree, in balance. Meaning that the magnitude of the total tendency are much smaller than
each of the two components alone. This means that using just geostrophic forcing leads
to a large overestimation of the wind speed. It was also clear that letting the PGF vary in
height (geostrophic shear) is important, not least to get the correct balance of advection
tendency and pressure-gradient tendency across heights. It was chosen to use a combination
of time and height varying PGF, momentum advection, temperature advection, and varying
surface temperature to investigate results for all the different PBL schemes to further study
the methodology.

The results for GABLS3 showed that all five WRF model simulations capture the LLJ
that appears during the diurnal-cycle. However, they overestimate the strength and duration
of the jet. They also show a negative temperature bias, especially for the local PBL schemes
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(MYJ, MYNN2, and QNSE). The SCM driven by the WRF tendencies also capture the LLJ,
but tend to smoother out the jet and lower its maximum value slightly.

The long-term wind statistic showed that WRF underestimates the mean wind speed at
FINO3 by −1.0 to −7.8 ms−1, depending on height and configuration. Distributions of wind
speeds (Fig. 4.11) indicate that this underestimation is due to an underestimation of strong
wind occurrences. At Cabauw, the WRF simulations overestimated the mean wind speed, for
the W-MYNN2 configuration by as much as 23% at 20 m. But, mostly the overestimation
was in the range 6−8%. The over-estimations are likely due to unresolved terrain effects
coming from a misinterpretation of the surface roughness, and inability to capture internal
boundary-layer effects coming from local-scale roughness-changes. In each case the SCM
results are very similar to the results of its forcing model results. This suggests that the
coupling methodology of forcing the SCM by a sum of PGF and momentum advection, as
well as temperature advection, works well in these simple terrain cases. It also suggests that
the k-ε , in general, adequately captures the turbulent effects for a range of weather conditions,
at a level comparable to the WRF PBL schemes, although a slight deterioration of results
was seen aloft at Cabauw and at FINO3, but this deterioration was less than the inter-model
variation. Surface cooling was overestimated by the SCM by as much as 50% in some cases,
indicating too strong sensitivity to the varying surface temperature derived from WRF. This
should be further investigated. It could possibly be alleviated by directly using heat flux as
the boundary condition for temperature in the SCM. As Rodrigues et al. (2015) remarks, this
would also be better suited to complex terrain where the temperature vary differently with
height depending on location, whereas heat fluxes can be assumed to vary constantly with
height in the surface layer, if one neglects differential heating/cooling effects. However, as
Basu et al. (2008) and others have pointed out, using heat flux carries its own limitations for
highly stable conditions, depending on the implementation .

During convective conditions, both W-QNSE and the five SCM results overestimated
the wind shear at Cabauw. The QNSE scheme was made for stable and weakly unstable
conditions and may be less appropriate for very unstable condition (Sukoriansky et al., 2005).
Likewise, the k-ε model may need further modifications to account for strongly unstable
conditions more accurately.

While this study showed that the coupling methodology works well in simple terrain, it
remains to be determined whether it also works in highly complex terrain. Terrain hetero-
geneities induce larger variance in the momentum and temperature tendency terms in the
mesoscale model, potentially making it difficult to balance several concerns: 1) extracted
tendencies should not contain resolved microscale effects, that the microscale model will
also solve, i.e. double-counting of local flow effects should be avoided, and 2) the tendencies
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should still capture important mesoscale effects, such as large scale channeling, gap-flow,
and sloping effects that are important for steering the inflow, such that the forcing direction
in the terms used in the coupling reflect the correct flow directions. Misalignment of the
tendencies can cause drastically different results in complex terrain.

In summary, this study showed encouraging results that indicate that the tendencies-based
coupling-technique can be used for model coupling for wind downscaling, and that the
tendencies combined with the k-ε closure results in comparable wind statistics to the WRF
results. The coupling methodology was also shown to be a useful tool for testing turbulence
closures without having to implement it in a developmentally and computationally costly 3D
model.



Chapter 5

Coupling via tendencies in complex
terrain2

This study presents results of a coupled mesoscale-microscale model system in complex
terrain. The URANS microscale model described in Chapter 3 is dynamically coupled
via momentum and temperature tendencies to the WRF mesoscale model. The coupling
methodology is studied at the Perdigão site, a forested double hill in Portugal, where an
extensive measurement-campaign was carried out during the New European Wind Atlas
(NEWA) ERA-NET Plus project.

Many considerations were made before using the meso-micro coupling. Those are first
discussed extensively, and sensitivities to grid spacing and numerical methods are shown
and discussed as well. Finally, the methodology is evaluated for a 32-day period at nine
meteorological masts distributed across the double-hill site, in order to show statistically the
performance of the methodology. Several snapshots of the flow behavior during the 32-day
period are studied, comparing vertical light detection and ranging (LIDAR) scans to the
model results, to highlight the qualities and shortcomings of the tendency-driven microscale
model.

5.1 Methodology

5.1.1 Validation site

The validation site is Perdigão (Fig. 5.1), a site in central Portugal named after a nearby
village. It was the subject of an intense measurement campaign in the spring and summer

2This chapter consists of results that will be published in the journal paper Olsen and Cavar (2018)
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Fig. 5.1 The Perdigão site seen from the central valley southeast of the nine masts looking
towards northwest from inside the valley. Picture kindly made available by the NEWA
project.

months of 2017 carried out as a part of several European and American projects, among them
the New European Wind Atlas (NEWA) ERA-NET Plus project. Before and after the intense
campaign, a longer period of continuous measurements was conducted during 2017 and
2018 (Fernando et al., 2018), and a shorter precampaign took place in 2015 (Vasiljevia et al.,
2017). The topography of the site is characterized by two ≈ 4 km long parallel mountain
ridges separated by a valley (Vale Cobrão) with a distance of ≈ 1400 m from ridge-top to
ridge-top. The slopes on each side of the ridges have an inclination of about 35◦ (Vasiljevia
et al., 2017). The bottom of the central valley is located ≈ 200− 250 m below the ridge
tops. The vegetation is characterized by patches of bare land, roads, or very low-height
vegetation, patches of Eucalyptus and Pine trees, as shown in Fig. 5.1. Not far from the
center of the southwest ridge, an Enercon E-82 2MW wind turbine is located and operated
throughout most of the measurement period (Fernando et al., 2018). The site was densely
instrumented with meteorological masts, an array of short-range and scanning-LIDARs,
SODARs, ceilometers, weather balloons carrying radiosondes.
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Measurements from meteorological masts

For this study, only measurements from nine tall masts (Fig. 5.2) are used. The nine
masts consists of three 100 m masts (20, 25, and 29) and six 60 m masts (7, 10, 22, 27,
34, and 37) instrumented with sonic anemometers and thermometers at several heights.
Anemometer measurements were averaged in 10 min averaging periods, checked for obvious
errors/inconsistencies, and filtered based automated error flags, but apart from that, left as is.

Long-range LIDAR measurements

Scans from four long-range WindScanner (LRWS) LIDARs (Vasiljevic, 2014) located on a
single transect perpendicular to the two ridges, going through meteorological mast 20, 22, 25,
27, and 29 as shown in Fig. 5.2. Vertical scan planes from the LRWS are used to compare
with vertical cross sections from the model simulations at concurrent instances. The LIDAR
line-of-sight (LOS) scans were filtered only by carrier-to-noise-ratio (CNR), removing scans
below −24 dB, and then time-averaged in 10 min individual periods. When presented (Fig.
5.17, 5.19, and 5.21), the scan planes from each of the four LRWS are simply layed out as
a composite of the individual scans. No averaging of the scans in the overlap, or anything
similar, is done. However, priority is given to laying lower scan planes on top of elevated
scan planes.

Study period

A 32-day period between 13 April and 15 May 2017, was used as the primary study-
period. During that period, the weather conditions were characterized by mostly fair weather,
scattered clouds, and occasional rain showers. No major frontal passages were observed,
but days of strong synoptic forcing resulting elevated wind speeds occurred. The dominant
wind directions were from the northeast and from the southwest, as it is typical of the site
(Vasiljevia et al., 2017).

5.1.2 Microscale model configuration

Computational grids

Three computational grids were generated for the microscale model, listed in table 5.1. The
only difference between the three is the horizontal spacing between grid cells. The grids span
12×12 km and extend to an elevation of 4 km above sea-level. Periodic boundary conditions
are used, so outflow becomes inflow in the opposite end. In the area of interest (the center),
the grid cells have a fixed width and length, and towards the domain edges they are stretched.
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Fig. 5.2 Locations of the nine tall masts (white crosses), the wind turbine (blue circle), and
the location and approximate transect (pink line) of the scan planes for the four LRWS
systems (pink squares).
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Fig. 5.3 Vertical layout of the G02 grid cells near the Perdigão double ridge region for y = 0.
The y-axis is meters above sea-level. For visual purposes only every second increment,
vertically and horizontally, are shown. The two seemingly random curves are plotting-
artifacts.

Table 5.1 Computational grids for the microscale model: Reference names, horizontal grid
spacing in center and edge regions (∆x,∆y) and number of cells along each coordinate (nx,
ny, nz).

Name ∆x,∆y Center ∆x,∆y Edge nx, ny, nz

G01 40 70 256, 256, 128
G02 80 140 128, 128, 128
G03 120 170 96, 96, 128

Figure 5.5 shows the surface elevation in one of the grids (G02). The surface elevation is
based on a high-resolution elevation dataset constructed from overflight LIDAR-scans. 128
vertically stretched cells are used that increase hyperbolically towards the top of the domain.
Near the surface, the grid cells are orthogonal to the surface and follow the terrain, while
they gradually become rectangular and constant-height towards the top (fig 5.3). Figure 5.4
shows the approximate vertical extend and elevation of each level, revealing the high density
of vertical levels close to the surface. The first cell is placed on top of the surface roughness
length z0. The center of the domains are located at (x,y) = (34200,4500) in the Portuguese
TM06 (EPSG:3763) projection.
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Fig. 5.4 (a) Spacing of each of the 128 levels from bottom to top, (b) approximate height
above terrain for each of the vertical levels. (c) approximate grid size in x (∆x) across the
G02 domain.

Fig. 5.5 Elevation of the surface in the microscale domain G02. Near the edges the elevation
has been relaxed towards a constant height. The coordinates system is relative to (34200,
4500) in the EPSG:3763 projection.
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Numerical methods

A Finite-volume discretization with collocated variable arrangement is used to solve the
transport equations in general curvilinear coordinates. The pressure is solved using the
SIMPLE algorithm (Patankar and Spalding, 1972), with the Rhie-Chow correction method
(Rhie and Chow, 1983). Advection is solved using either the third-order accurate upstream
interpolation for convective kinematics (QUICK) scheme (Leonard, 1979), or the first-order
accurate upwind scheme (Courant et al., 1952) (see section 5.2 for details). The upwind
scheme is highly damping, effectively reducing the resolvable scales due to poorly resolving
sharp gradients. Therefore, a low-order scheme is generally undesirable, and should be
avoided. However, these same characteristics may sometimes be desirable for experimental
purposes. In the context of atmospheric gray scale modeling where turbulence is solved
by a closure model, and explicitly resolved eddy-structures of temporal and spatial scales
similar to atmospheric turbulence, the reduction of effective resolution may maintain scale-
separation at smaller grid-scale than high-accuracy solvers. However, it still involves multiple
negative consequences due to the low order of accuracy, including a suppression of desirable
flow-structures, underestimation of extremes, and excessive numerical mixing.

5.1.3 Mesoscale model configuration

The Weather Research and Forecasting (WRF) model (Skamarock et al., 2008) is used to
provide forcing for the microscale model, and used as a reference in the validation of the
microscale model with observations. The WRF model solves the fully compressible non-
hydrostatic Euler equations in Cartesian horizontal coordinates, and uses terrain-following
vertical coordinates. In this study a third-order Runge-Kutta time-stepping scheme is used,
including a time-step splitting (semi-implicit) scheme for acoustic modes. Third- and
fifth-order differencing is used in the vertical and horizontal directions, respectively. The
prognostic variables are placed on a grid that is horizontally and vertically staggered, using
the Arakawa C grid layout (Aarakawa and Lamb, 1977).

A five-domain setup of one-way coupled zooming grids was used with equal horizontal
grid spacing in x and y of 27, 9, 3, 1, and 1/3 km. The domains are labeled by their index,
from the most course one: d01 to the most fine one: d05. All five domains have 61 vertical
levels, and are made up of 100×100 grid cells in the horizontal, centered on the Perdigão
site at 39.705◦N, 7.731◦W. The ERA-Interim reanalysis dataset (Dee et al., 2011) is used for
initial and lateral boundary conditions (LBCs) for the outermost domain, while LBCs for the
four inner domains are provided by its parent domain. Table 5.2 shows the configuration and
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Table 5.2 WRF model configuration for the five WRF domains. A sample WRF input file
(“namelist.input”) is available in Appendix A.2.1.

Configuration References:

Model setup
Version ARW-WRF 3.8.1 Skamarock et al. (2008)
Init. and LBCs ERA-Interim Simmons et al. (2007)
Elevation Viewfinder⋄

Land use CORINE Bossard et al. (2000)
SST HRSST Gemmill et al. (2007)
Domains d01, d02, d03, d04, d05
∆x and ∆y 27, 9, 3, 1, 1/3 km
Grid size(s) (nx, ny) (100, 100), . . . , (100, 100)
Vertical levels (nz) 61 (top at 50 hPa)

21 levels below 1 km∗

∆t Adaptive†

Model physics
Land surface model Noah Chen and Dudhia (2001)
Microphysics WSM3 Micro physics Hong et al. (2004)
Cumulus parameterization Kain-Fritcsh Kain (2004)
Shortwave radiation Dudhia Dudhia (1989)
Longwave radiation RRTM Mlawer et al. (1997)
Planetary Boundary Layer YSU Hong et al. (2006)
Surface Layer Revised-MM5 Jiménez and Dudhia (2012)
∗The WRF (η) levels listed in Appendix A.2.1 correspond to ≈ 6,22,41,57,73,92,114,141,172,207,

247,292,343,400,466,539,623,718,825,946. . . m (cell centers in d02 at TW20)
†Target Courant–Friedrichs–Lewy (CFL) conditions: CFLtotal = 1.15, CFLhorizontal = 0.85
⋄ Gapfilled SRTM

datasets used for setting up the WRF simulations. The cumulus scheme was only active for
domains d01 and d02.

The simulations use the Yonsei University Planetary Boundary Layer (YSU) scheme
(Hong et al., 2006). The scheme models turbulent diffusion as a vertical (column) process,
with diffusion related to the vertical gradients of the mean flow by an eddy viscosity following
a prescribed normalized vertical profile. As indicated by Olsen et al. (2018), the choice of
PBL scheme in the WRF model only influences the momentum and temperature tendencies
in the model to a relatively small degree in simple terrain. In complex terrain, this may not
be true, but to reduce the scope of the study only a single PBL scheme was tested.

It is common practice to use mesoscale models that utilizes a PBL scheme to model
turbulence, to progressively downscale the atmospheric flow via gradual nesting to grid cell
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widths of about 1–3 km. Beyond that point, extra considerations must be taken of how to
treat turbulence when the model may explicitly resolve the most energetic eddies in the PBL.
Here, domain d05 has a grid spacing of 333×333 m, that is a scale where this consideration
should be made. In this study, no extra care is taken, and the PBL scheme is kept active in
all grids. The results from d05 should be considered experimental, and serve as a reference,
since it has become more common for modelers to use very fine grid spacing (Horvath et al.,
2012), and some have suggested that using PBL schemes may be appropriate even down to
300−500 m (Arnold et al., 2012; Hong and Dudhia, 2012).

The surface layer scheme, which models the vertical structure of the atmosphere below
the lowest model level and provides lower boundary conditions for governing temperature
and momentum equations, is the revised MM5 scheme (Jiménez and Dudhia, 2012). This
scheme uses modified similarity functions relative to the original MM5 scheme (Beljaars,
1994; Dyer, 1974; Grell et al., 1994; Paulson, 1970; Webb, 1970; Zhang and Anthes, 1982)
for highly stable and unstable conditions, replacing them with those of Fairall et al. (1996)
and Cheng and Brutsaert (2005). Furthermore, hard limits on the possible values of the
stability function have been removed with this revision, and the lower limit imposed on
friction velocity has been reduced from 0.1 to 0.001 ms−1. The lower limit is maintained to
avoid runaway cooling (Louis, 1979) where, during rapid radiative cooling and low wind
speeds, the surface may be completely decoupled from the surface, ultimately reducing the
heat flux to zero.

The land use classes were provided by the Coordination of Information on the Envi-
ronment (CORINE) dataset, and the United States Geological Survey (USGS) land use
classification was used to convert them to surface roughness lengths. Figure 5.7 shows the
CORINE land use classification around the site in d05. Most of the land is classified as
“Mixed Shrubland/Grassland” across the ridges and in the central valley, as well as most of
the land just east of the site, but patches of “Cropland/Woodland Mosaic” are also prevalent
in the central valley and on the slopes. The “Mixed Shrubland/Grassland” class is converted
via the classification to a seasonally-varying surface roughness length between 1 and 6 cm,
which is very low when considering the actual vegetation of the site, with many Eucalyptus
and Pine trees. To the west of the site, the land is classified mostly as “Cropland/Woodland
Mosaic” and “Evergreen Needleleaf Forest” that corresponds to higher roughness lengths
between 20 and 50 cm.

The Viewfinder dataset was used to generate topographical heights for the WRF domains.
The dataset consists of mainly SRTM data gap-filled with local elevation maps, and are
provided in a resolution of ≈ 2 arc-seconds. The extent, and surface elevation, of each
domain is shown in figure 5.6.
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Fig. 5.6 The extent and surface elevation in meters of each of the five WRF domains (d01-
d05), with each domains horizontal grid spacing (∆x,∆y; 27-1/3 km) in parenthesis. The
footprint of the inner domains is shown in dashed lines in each domain, and the Perdigão site
is highlighted with a circle in the innermost domain.
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Fig. 5.7 USGS land use classes from the CORINE dataset near the Perdigão site in d05. Black
contour lines show the topographical height at 300, 400, and 500 m revealing the site layout.
Most of the land use classes near the site are characterized as “Mixed Shrubland/Grassland”
and “Cropland/Woodland Mosaic”.

Table 5.3 Grid spacing and range of adaptive time-steps observed during the WRF simulations
for each domain.

Domain ∆x,∆y ∆tmin ∆tmax

d01 27 27.0 68.56
d02 9 27.0 71.62
d03 3 7.5 24.0
d04 1 2.5 8.0
d05 1/3 0.83 3.0

[km] [s] [s]
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The WRF model was run in individual 72 hour chunks, overlapping by 24 hours corre-
sponding to the initial spin-up time that is discarded. Each chunk was initialized anew from
the ERA-Interim analysis (cold start). The maximum and minimum sizes of the adaptive
time-steps seen during the WRF simulations are shown in Table 5.3.

5.1.4 Mesoscale and microscale model coupling

Coupling of the microscale and mesoscale model is done one-way and offline, i.e. the
WRF simulations are completed, then the output is post-processed and used as input for the
microscale model. The coupling is based on the methodology described in Sanz Rodrigo et al.
(2017b), and involves coupling via source terms in the transport equations, i.e. body-forces
across the entire microscale domain, in combination with surface boundary conditions for
temperature provided by the mesoscale model.

The tendencies are extracted at run-time from the WRF model as additional output
variables. They are calculated during the many sub-steps involved in solving the transport
equations in WRF, as was described by Lehner (2012). Additional post-processing and
averaging is done to prepare the tendencies for ingestion into the microscale model. The
momentum variables are solved in a mass-coupled state in WRF, and must be decoupled
from mass to be applicable. Velocity vectors in the WRF model are solved in grid-relative
coordinates and must be turned to earth-relative components. Model levels are sigma-levels
(pressure levels), so linear-interpolation in height is used to get them to fixed heights. The
tendencies, especially the pressure-gradient term, can be quite noisy, so WRF output is
written every 10 minutes and averaged to hourly values.

In idealized terms, the horizontal momentum (exemplified here with U), and temperature
(Θ) tendencies in WRF are given by the sums

U̇W = U̇ADV +U̇W
PGF +U̇W

PHYS +U̇W
COR +U̇W

CURV +U̇W
DIFF +U̇W

RAY (5.1)

Θ̇
W = Θ̇

W
ADV + Θ̇

W
RAD + Θ̇

W
PHYS + Θ̇

W
DIFF + Θ̇

W
RAY (5.2)

where the dot notation denotes time-derivatives. The different terms are: advection (ADV),
Pressure-Gradient Force (PGF), the contribution from physical parameterization, includ-
ing the PBL and micro-physics schemes (PHYS/PBL), Coriolis force (COR), Curvature
correction (CURV), horizontal diffusion (DIFF), and Rayleigh damping (RAY). In WRF
the terms are solved separately, which allows the extraction of each of them as a separate
output variables. Figure 5.8 shows vertical profiles over the Perdigão site of the mean relative
magnitudes of the different momentum tendency-components for the complete year 2017
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Fig. 5.8 Vertical profiles of the magnitude of the momentum tendencies averaged for all
of 2017. The different tendencies are: The total tendency (blue), Advection tendency
(green), Pressure-Gradient-Force (Orange), PBL and micro-physics tendencies combined
(red), Horizontal diffusion (brown), Coriolis force (purple), and the pressure-gradient force
term added with the advection term (pink). The profiles are computed in the grid column
nearest to the Perdigão site at 39.70597◦N, 7.74373◦W (mast 20) for the respective WRF
domain: for d02 (a) and d04 (b).

(ignoring curvature). The relative magnitude of the vector-sum of the pressure-gradient
and advection terms are shown as well. To no great surprise, the largest relative forcing
comes from the pressure tendency. The mean magnitude of all the tendencies peak in the
lower part of the ABL, either at the surface or tens of meters aloft. On average, the total
tendency (sum of everything) is smaller than the pressure and advection tendencies, pointing
to a counter-balancing effect of the terms. This is also clear from the PGF+ADV tendency,
that it is smaller than the pressure-term itself. This would indicate that using the pressure-
gradient term as microscale forcing alone might lead to excessive forcing, except for idealized
situations of perfect geostrophic balance.

Figure 5.9 shows outlines of WRF model grid cells around the site. As Fig. 5.6 also
suggests, the d02 grid cells are too large to resolve the Perdigão double ridge complex, d03
captures a slight bump in the terrain, and d04 resolves the site as a single mountain ridge.
The Perdigão region fits well inside domain d02, without averaging out too much of the
surrounding large-scale terrain features, as for example the large mountain range to the
northwest of Perdigão, which is averaged together with the Perdigão area in WRF domain
d01.

All but the pressure and advection terms relate to effects that are either: 1) not directly
relevant to the microscale model, such as the curvature correction, 2) solved by the microscale
model itself, or 3) corrections and/or filters that are used to maintain numerical stability within
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Fig. 5.9 Surface elevation around the Perdigão site and WRF grid cell-outlines for domains
d02 (thick lines), d03 (medium lines), and d04 (thin lines) overlayed the Perdigão site. Masts
are shown with white crosses. Projection: EPSG:3763.
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Fig. 5.10 Instantaneous U velocities (a-d), advective tendencies of U (e-h), pressure-gradient
tendencies of U (i-l), sum of advective and pressure tendencies of U (m-p), and temperature
tendencies (q-t) at 01:30 UTC 23 April 2017 around the Perdigão site for WRF domains d02
and d04. The two left columns shows horizontal planes at 100 m above the surface, with
topographical height contours in black for every 100 m of elevation. The two columns on the
right shows vertical planes along the dashed line in the horizontal-plane plots. Momentum
tendencies are shown in terms of the Coriolis frequency fc. Horizontal Coordinates are
relative to (34200, 4500) in the EPSG:3763 projection.
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WRF. Therefore, the natural terms to look at for the coupling are the pressure-gradient term
and advection of momentum and heat. These terms carry the main “top-down” information
about the large-scale evolution of the atmospheric state that the microscale model is missing.

Near the surface, and especially in mountainous terrain, the pressure gradient and ad-
vection tendencies vary greatly due to the blocking, counter-circulations and other terrain-
induced flow effects. These local effects will be solved by the microscale model, so it is
desirable that this local signal is absent in the forcing passed on from the mesoscale model.
This begs the questions: “What is the right mesoscale resolution and spatio-temporal filter to
use to generate the microscale model-input?”. For reference, the studies by Sanz Rodrigo
et al. (2017b) and Olsen et al. (2018), where the tendency-approach in used in simple terrain,
both use spatial and temporal averaging of the tendencies. Sanz Rodrigo et al. (2017b)
averages tendencies from a 3 km WRF domain in 9×9 km averaging boxes and re-samples
to hourly averages. Olsen et al. (2018) takes a similar approach, but use a 9 km domain and
27×27 km averaging boxes, and hourly averages.

Figure 5.10 shows snapshots in horizontal and vertical planes at 01:30 UTC on 23
April 2017 for horizontal and vertical planes of U velocity and momentum and temperature
tendencies for WRF domains d02 and d04. The black lines in the horizontal planes indicate
topographical height contours. The figure shows that a low-level jet (LLJ) is present in both
of the domains. The flow direction is from northeast, hence the easterly flow in U . The
impact of the resolved terrain is seen clearly in the pressure-gradient and advection tendencies
(Fig. 5.10 h and i), especially near the Perdigão “hill”. The pressure gradient and advection
terms largely counter-balance each-other near the hill, which is clear in their sum (Fig. 5.10
(p)). The same can be seen in d02, especially in the east side of the terrain, although it is
not as clear as for d04. The pressure tendency shows significant levels of high-frequency
variance that appear as “noise”, especially in d04. This variance are also apparent in the
pressure-advection summed tendency. These high-frequency signals are not the kind of
spatio-temporal variance that is desirable to bring to the microscale mode, so filtering them
out seems appropriate. To no great surprise, the temperature-advection tendencies also show
greater variance in domain d04 than d02. Curiously, the greatest variance is found above the
peak momentum tendencies, and close to the surface.

It seems clear that the mesoscale input passed on to the microscale model should be
well-adjusted to the large-scale topography, i.e. it should force the flow towards the correct
general direction of the flow at the scales of the microscale domain, accounting for the
steering-effect of the topography at larger scale; from mountain-ranges and the like. On the
other hand, it should not include flow features from the local topography that will be captured
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Fig. 5.11 Wind speed and wind direction distributions of the combined pressure-gradient force
and advection momentum tendencies averaged across the first 300 m above the surface for
WRF grid cells centered on 39.70597◦N, 7.74373◦W (mast TW20) and for spatial averages
(Lavg) around that location for different WRF domains.

within the microscale domain. As described above, most of the Perdigão mountain complex
and the surrounding area fit inside one WRF d02 grid cell (Fig. 5.9).

Figure 5.11 shows the distributions of the magnitude and direction of the pressure-plus-
advection tendency scaled by the inverse Coriolis frequency for all of 2017. It indicates that
up-scaling the results from d03 or d04 in a 9×9 kilometer averaging box results in weaker
forcing compared to using results directly from the 9-km domain. It also shows that the
direction distribution is quite different between d01 and d02, indicating steering from more
resolved surrounding topography. It is an open question what the “correct” combination
of domain and filtering is, and should be further investigated. Validating the tendencies
against measured quantities is difficult, especially in highly complex terrain, where no direct
physical equivalent metric exists to the coarse mesoscale tendencies. For now, the mesoscale
tendencies from d02 (∆x,∆y = 9 km) are used in the following. The approach taken in the
following is to force the microscale model by a time- and height-varying forcing, mimicking
the geostrophic wind. But, using the WRF pressure-gradient tendency alone would not work
well when advection is prevalent, so the combined pressure-advection tendency is used as a
pseudo-geostrophic wind. The assumption is that the advection is just a linear correction to
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Fig. 5.12 Transfer of forcing and temperatures: FU , FV , FΘ, and Θ from WRF to EllipSys3D
follows the approach outlined in Fig. 4.4 with both forcing and temperature constant in
constant height above ground (zagl) (a and b).

the geostrophic flow, whether this is a good assumption should be further investigated. The
horizontally homogeneous tendencies from the d02 grid cell are added as additional forcing
terms into equation (3.3) and (3.24) by defining the F terms for U , V , and Θ as

FU(t,x,y,z) = U̇W
PGF(t,z)+U̇W

ADV(t,z), (5.3)

FV (t,x,y,z) = V̇ W
PGF(t,z)+U̇W

ADV(t,z), (5.4)

where z is height above terrain, and

FΘ(t,x,y,z) = Θ̇
W
ADV(t,z). (5.5)

Unlike the approach used in Chapter 4, no spatial averaging was done for the Perdigão
case, but the tendencies were averaged in time to hourly intervals. Linear interpolation in
time was used inside the microscale model in-between each hour to get the appropriate
forcing, as illustrated by Fig. 4.4. The time- and height-dependent tendencies was applied at
the corresponding time and height above terrain in the microscale model, i.e. the forcing is
homogeneous in constant height above terrain, as illustrated in Fig. 5.12. The 61 WRF levels
extend to ≈20 km, but only the first 29 levels (up to 4465 m) are used by the microscale
model (as the top of the grid extends only to 4000 m).

Figure 5.13 shows the time-series of the vertically-averaged momentum and temperature
tendencies for the first 300 m of the atmosphere. The period covers the first 14 days of
the 32-day period used for validation in the section below. Most of the time the pressure
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gradient is driving the total forcing (pressure-advection sum), but in a few instances spikes of
advection-driven forcing also occur. The pressure-gradient and advection compensate each
other during most of the period, and only rarely is the sum of the two larger than both of
them.

Surface roughness

The microscale surface roughness is modelled as a single homogeneous roughness, by assign-
ing the roughness length in the WRF d02 grid cell to the microscale model surface. As Fig.
5.7 shows, most of the land near Perdigão is characterized as “Mixed Shrubland/Grassland”
in the CORINE dataset. As described in section 5.1.3, the dominant land use class is used
to up-scale the land use from the native resolution to the coarse model grid cells. This
results in the d02 grid cell being characterized as “Mixed Shrubland/Grassland” as well. The
corresponding surface roughness for the validation period is ≈ 5 cm, which is therefore used
as the microscale surface roughness.

The Perdigão site and its surroundings are covered with many patches of eucalyptus and
pine trees, which would objectively correspond to much larger surface roughnesses than
5 cm. If, as here, a single roughness is used for the site, it may be more appropriate to
use the USGS “Cropland/Woodland Mosaic” or “Mixed forest” class, which correspond to
roughness lengths of 20–50 cm, or even using higher surface roughnesses. Ultimately, treating
the inhomogeneities and canopy effects of the surface roughness and vegetation by more
sophisticated methods would be more desirable. Unpublished work by Deutsches Zentrum
für Luft- und Raumfahrt (DLR), and the Technical University of Denmark (DTU), indicates
that using the roughness normally associated with the CORINE dataset over Perdigão results
in too low surface roughness, which inhibits the ability of the WRF model from capturing the
observed wavelength of the nocturnal standing lee-wave behind the southwest ridge, showing
that better results are had by adding additional friction.

Despite the indications that the CORINE surface roughness is too low, it is still used in the
microscale model for a number of reasons: 1) to simplify the scope of the study, emphasizing
the impact of better resolving the orography, not the surface roughness, 2) to allow for a more
direct comparison between the meso- and microscale models, 3) to eliminate any sensitivity
to differences in the surface roughness in the effective response to the mesoscale tendencies
used to force the microscale model.
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Fig. 5.13 Time-series of the magnitude and direction of the vertical average momentum-
tendencies (a-b), and temperature advection tendency (c) of the lower 300 m of the atmo-
sphere. (d) derived surface temperature for the microscale model. All of the above are
derived from the WRF domain d02.
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Surface boundary condition for temperature

A varying surface temperature makes up the boundary condition for the temperature equation
of the microscale model (Eq. 3.24). It plays a vital role in modulating the surface fluxes, and
favouring or suppressing vertical motion and turbulent mixing. In the present coupled meso-
microscale system, the surface temperature is calculated from the WRF 2 m temperature and
extrapolated to the surface, defined as the height of the surface roughness length z0. The
extrapolation to the surface is based on Monin-Obukhov Similarity Theory (MOST) (Monin
and Obukhov, 1954) as

Θz0 = Θ2 −
Θ∗
κ

[
ln
(

2− z0

z0

)
+ψ

(
2− z0

L

)]
, (5.6)

where L is the Obukhov length. The stability functions ψ follow the Businger-Dyer relation-
ships (Businger et al., 1971; Dyer and Hicks, 1970). No distinction is made between the
thermal roughness length and the momentum roughness length. Likewise, no distinction is
made between the surface temperature and the surface aerodynamic temperature, even though
the surface aerodynamic temperature is not strictly-speaking equivalent to any observable
surface temperature, due to the breakdown of MOST in the viscous sub-layer near the surface
(Mahrt, 1998).

The derived surface temperature used for the study of Perdigão is shown in Fig. 5.13,
for the first 14 days of the 32 day study-period. The limited number of occurrences of
tooth-saw-like shape of the temperature curve, indicates mostly fair-weather conditions
with few clouds in the d02 domain, resulting in both rapid heating and cooling during the
day-night-day transitions, changing by 15–20 K during the diurnal cycle.

Additional considerations for temperature modeling

As discussed in section 3.2, many physical processes in the ABL cannot be modelled by the
simplified model formulation of the microscale model. Some processes are not driven by
surface interactions (bottom-up processes); such as large-scale advection and subsidence,
and some processes cannot be captured due to the finite vertical resolution of the model, such
as very stable boundary layer flow. To allow the microscale model to either capture these
processes indirectly, or to limit the problems related to its shortcomings, several mechanism
have been implemented: temperature nudging, and (lower) limiters on some variables. Below,
the motivation and some details of the implementation are described below in the context of
the convective boundary layer (CBL) and the stable boundary layer (SBL).
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During free-convection in the PBL (CBL), turbulent eddies (thermals) rise from the heated
surface to the capping inversion, causing a non-symmetrical mixing with the free-atmosphere
air (i.e., entrainment). This results in a deepening of the PBL depth (Wyngaard, 2010). The
PBL growth is limited by the finite length of the day, and large-scale subsidence. To restrain
the PBL growth in a similar way in the microscale model, mechanisms akin to night-time
radiative cooling and subsidence are needed. In this study, the microscale temperature is
nudged towards the temperature profile of WRF (Θr in Eq. 3.27), effectively limiting the
depth of the PBL to the depth in the WRF model. Processes related to radiation, moisture,
phase-changes, and precipitation are ignored in the microscale model, but their influence
may be partly accounted for by the nudging as well. The characteristic relaxation time τr is
chosen to be 3600 s, which is a relatively strong nudging. For reference, Koblitz et al. (2015)
uses τr = 86400 s, and only nudges towards the reference if it is colder than the temperature
in the microscale model, mimicking night-time radiative cooling. The motivation for using
a stronger nudging, and for nudging in all situations, are: 1) to keep the depth of the PBL
relatively close to the WRF level, 2) to allow for effective radiative-like cooling of the ABL,
especially during night-time, 3) to keep the temperature vertical temperature distributions in
sync with WRF, avoiding errors caused by adding the temperature advection tendency to a
mismatched vertical temperature distribution.

The stable boundary layer (SBL), may be roughly divided into two types: the weakly
stable boundary layer (WSBL), and the very stable boundary layer (VSBL) (Mahrt, 1998).
The WSBL is characterized by strong winds, and/or cloudy conditions, resulting in a slowly
cooling surface. In this type of boundary-layer the log-linear form of the MOST Businger-
Dyer stability functions have proven to work well. The VSBL corresponds to situations
with weak winds and clear-sky conditions, resulting in rapid cooling of the surface. This
situation can lead to a negative feedback, where turbulent mixing is inhibited by increasing
stratification, in a process known as runaway cooling (Paulson, 1970). Heat transported
towards the surface, is limited by the mechanical forcing, weak winds results in weak
mechanical heat transport, and gives rise to increased stability, further suppressing the
turbulent heat transport. In effect, this puts a lower limit on the wind speed and/or maximum
heat flux for sustaining turbulence (Van de Wiel et al., 2012). The VSBL is widely regarded
as a major challenge for atmospheric models (Basu et al., 2008; Holtslag and Svensson,
2013; Mahrt, 1998; Malhi, 1995). Taking measurements in the VSBL is very difficult, due
to the long averaging times needed. As a result, no solid theoretical framework exists, and
the validity of the frequently-used MOST log-linear stability functions come into question
Mahrt (1998). Many modelers choose to avoid the complications of the VSBL by limiting
the surface layer variables to predefined bounds; for example the friction velocity, stability
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Table 5.4 EllipSys3D simulations used for modeling of Perdigão. The names refer to the grid
and advection scheme used. ∆t and nsub are the model time-step and number of sub-iterations
used. The same forcing from WRF was used for all of the six setups.

Name Grid Advection scheme ∆t nsub

G01-Q G01 QUICK 1.0 5
G01-U G01 UDS 1.0 5
G02-Q G02 QUICK 2.0 5
G02-U G02 UDS 2.0 5
G03-Q G03 QUICK 3.0 5
G03-U G03 UDS 3.0 5

[s]

functions, and turbulence (Grell et al., 1994; Janjić, 1994; Jiménez et al., 2012). In the
present microscale simulations, limiters are only put on k and ε . Their lower limits are set
to 10−4 m2 s−2 and 7.208×10−8 m2 s−3 following Koblitz et al. (2015), corresponding to a
minimum turbulent length scale of 1 m for Cµ = 0.03 using Eq. (3.13). It is questionable
whether this is enough to avoid runaway cooling in the VSBL, also limiting the friction
velocity may be desirable.

5.2 Results

In the following section the results from the WRF-forced EllipSys3D simulations are pre-
sented. In Table 5.4 the six different model setups used are shown. All six of them receive
exactly the same forcing from WRF, but differ by the grid, advection scheme, and time-step.
Additional information about the model setup is described in Sec. 5.1.2. The level of con-
vergence of the EllipSys3D results (a measure of the stability of the transient solution) are
shown in Appendix A.2.3.

5.2.1 Resolved scales and sensitives

As discussed in Sec. 2.1.4, ABL modeling at intermediate scales between the small, where
the most energetic turbulent eddies are well resolved by the grid, and the large, where many
such eddies are fully contained within a single grid cell, is challenging. The LES assumption
of a well resolved inertial range, and the RANS assumption of complete scale separation
is both violated to some degree and/or at different times throughout the day as the size of
the most energetic eddies evolve. Although the added viscosity of eddy-viscosity based
RANS closures will tend to dampen small scale structures, larger eddies may still evolve if
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grid spacing is fine enough, especially during convective conditions where their formation
is favoured by increased buoyancy. Another consideration related to the grid spacing, is
how the solution changes with increased resolution of the orography; is the flow around
the orography well resolved, or will additional flow features arise due to better resolved
orography as grid spacing is lowered?

In the following two sub-sections, the degree to which the terrain is resolved in the
different model domains, and to what degree scale-dependant eddy-behavior is present in the
uRANS solution for different grid spacing, are explored.

Terrain

For any model to accurately capture the flow-patterns around a complex site, like Perdigão,
the primary features of the terrain must be captured, both the orography and friction from the
surface and vegetation. Three of the meteorological masts used for validation are located on
top of the two ridges, and six are located at different positions within the central valley, so
resolving the sloping ridges and the depth and details of the valley are important for a good
validation for the different masts. Figure 5.14 shows a vertical cross-section through the
point (34200, 4200) in the TM06 projection at a 45◦ angle (northeast across ridges). It shows
that the WRF d05 domain does not resolve the ridges well, and it indicates a misalignment
between the Viewfinder/SRTM topographical map and the one derived from LIDAR scans
of the area (southwesterly shift of the orange lines). WRF domain d04 just sees a single
averaged-out representation of the ridges, and the other coarser domains sees no resemblance
of the site. The microscale domains resolve the features of the site quite well. However,
the most coarse microscale domain (G03), at 120×120 m horizontal grid spacing, barely
captures the plateau at the top of the ridges, and misses some of the fine-scale features of the
central valley.

Capturing the effective drag on the wind, and the impact on mass and heat fluxes, due to
vegetation and surface characteristics are also crucially important for accurately modeling
the flow (Finnigan, 2000). However, in this study, to narrow the scope, all of these effects are
largely ignored, and (crudely) assumed to be captured within the surface friction.

Grid spacing and numerical accuracy

To investigate the differences in the microscale solution due to horizontal grid spacing and
numerical accuracy, six simulations were carried out. Two for each grid in table 5.1, one
using the first-order order accurate upwind discretization scheme (UDS), and one using
the third-order accurate QUICK scheme. The simulations will be referred to by their grid
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Fig. 5.14 Resolved features of the Perdigão double-ridge complex from LIDAR scans of the
area (black line), and in the WRF domains d04 and d05 (blue and orange), and the microscale
domains G01-G03 (brown, purple, red). The transect follows a 45◦ angle (northeastward)
from the central point of the microscale domains at (34200, 4200) in the TM06 projection.

name and the first letter of the discretization scheme: G01-Q for grid G01 and QUICK,
and G03-U for grid G03 and UDS. The motivation for comparing the two discretization
schemes was to study the influence of effective flow resolution on the solution. In general
terms, a combination of the flow-truncation due to the finite grid spacing, and the numerical
dissipation, sets a finite scale of motion that can reasonably represented by the model. For
WRF, Skamarock (2004) estimated the effective resolution to be ≈ 7∆x/∆y. The UDS scheme
is more diffusive than the QUICK scheme, reducing the effective resolution of the model.
It means that the resolved scales may be kept separate (in wavenumber space) from the
turbulent scales, even at fine grid spacing, allowing more orographic features to be resolved,
while maintaining turbulent effects a feature of the closure only. However, the numerical
diffusion impacts a range of scales, so it not clear how exactly the effective resolution is
reduced. Another, and in many respects more appropriate approach to take, would have been
to lower the flow-resolution by increasing the eddy-viscosity, dampening turbulent structures
even more.

Two days, starting at 12:00 UTC 20 April 2017, were chosen as the period for the
sensitivity study. Since differences between the six simulations are expected to be larger
closer to the surface, the flow is evaluated at 30 m above the ground, rather than higher up.
The three 100 m masts were chosen as the subjects of the study. Horizontal wind speed
S =

√
U2 +V 2 and direction D are used to study the overall differences in the flow patterns,

and ten-minute wind speed variance is used to estimate turbulent kinetic energy (TKE)
content by assuming isotropic turbulence k = 3/2σ2, and used as a metric for how much
explicit/resolved turbulence is in the flow during the simulations.
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Fig. 5.15 Hourly average horizontal wind speeds (S =
√

U2 +V 2) and direction (D) 30 m
above the ground for mast 20 (a-b), 25 (c-d), and 29 (e-f) , for the period between 12:00
April 20, and 12:00 April 22, 2017.
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The convergence of the six simulations are shown in the Appendix (A.2.3; Fig. A.1,
A.2, and A.3). The simulations that rely on the UDS advection scheme reaches residuals
of at least one order of magnitude smaller than the corresponding simulation relying on the
QUICK scheme, and in many cases a difference of several orders of magnitude is seen for the
same grid. Likewise, the most course grid reaches residuals much lower than the fine grids,
in some cases of one order of magnitude or more. The smallest residuals are seen during
the night time, while residuals are orders of magnitude larger during convective day-time
conditions. High-frequency variations are seen for both advection schemes. For G01-U this
is especially true during the day-time, while G01-Q show large-amplitude high-frequency
variations throughout the simulation. The residuals for G01-Q remains fairly large throughout
the simulation, and one may question if the results can be considered “converged” for the
used time-step and number of sub-iterations.

Figure 5.15 shows that the general pattern of the evolving wind speed is captured by the
six simulations, but large variations between both the different grids, and especially between
the schemes, are seen. Wind speeds are generally larger for the QUICK scheme, with higher
peaks, which is especially pronounced for grids G01 and G02. The UDS scheme shows less
variance and weaker peaks, but like QUICK the fine-scaled grids G01 and G02 have greater
mean wind speeds and higher peaks. The results for QUICK are closer to the observations,
and seem to catch more of the variance. The spike in wind speed before 12:00 UTC 21 April
is captured by G01-Q and G02-Q, and only barely so in G03-Q and G01-U, and not at all in
the other two.

Figure 5.16 shows the TKE modelled by the closure, the explicitly resolved, and their
sum (total content) at 30 m for mast 25. A clear difference in the amount of explicitly
resolved turbulence in the six simulations is seen; the two extremes being G03-U and G01-Q
as expected. The modelled TKE underestimate the observed TKE; it is unclear though,
how much is due to underestimation of the surface drag. For G03-U the turbulence is
almost exclusively in the turbulence model, apart from a short initial period that should be
considered the model spin-up (simulations start at mid-day UTC time). G01-Q has much
more explicit turbulence than the other simulations, it is even larger than what is modelled by
the closure most of the time. Even during the night, in the absence of the buoyant forcing that
favour eddy generation during the day, explicit turbulence persists. For some of the period
G01-Q also shows more modelled turbulence, with higher variance, which could indicate that
interactions between the explicit and modeled turbulence are taking place. The four other
simulations show some degree of resolved turbulence, in particular during the afternoon
hours. A clear grid-sensitivity of the TKE is seen, which is especially clear for the QUICK
scheme simulations, pointing to grid-dependant structures developing in the flow.
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Fig. 5.16 Modelled and explicit turbulent kinetic energy (TKE) for the six microscale
simulations at 30 m for mast 25.
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The results indicate a clear sensitivity to both grid spacing and numerical accuracy. Using
the UDS scheme seems to lead to lower wind speeds and reduced variance, possible not
capturing or misrepresenting some flow behavior. On the other hand, using the QUICK
scheme results in grid dependent eddy-like structures that seems to cause interactions with
the turbulence model. It is unclear whether the differences observed between the simulations
using the same discretization schemes are primarily caused by resolving additional features
of the orography, or if they are caused by differences in the effective flow resolution, but a
combination of the two is likely. For simulations of the same grid spacing, the impact of the
differences in numerical diffusiveness is more clear. In the following, the G02-U and G03-Q
setup is further investigated in the next section.

5.2.2 Validation of results for one month

While the previous section showed both encouraging and discouraging results, the overall
flow patterns are captured by the tendency-driven microscale model, but on the discouraging
side, grid-dependant behavior is seen. With the grid-dependent behavior comes uncertainties
related to the resolved eddy-structures that interact with the turbulence closure model in
an unknown way, and potentially cause double counting of turbulence. To investigate the
behavior further, three of the six setups investigated above were chosen, and run for 32 days,
to compile enough data to validate the statistical properties of a longer period with the mast
measurements. The 32 days consisted of a consecutive period between 13 April and 15 May
2017, coinciding with the initial part of the 2017 intensive field campaign.

The three setups chosen are: G02-U, G03-U, and G03-Q, described in 5.2.1. G03-Q was
chosen because it is the most coarse domain but with high numerical accuracy. It should
suffer least from double-counting turbulence of the three QUICK based options. G02-U
was chosen for its slighter smaller grid spacing and lower effective resolution, and G03-U
is expected to have the lowest effective resolution, and it also serves as a reference for
G03-Q. The microscale simulations were validated against the different WRF domains, with
an emphasis on the most fine-scaled domains: d04 and d05. They represent the typical
mesoscale model, and serve as a baseline/reference for the microscale model.

To avoid inconsistencies in the mesoscale forcing data arising between individual
mesoscale simulations (chunks), the microscale simulations were performed in chunks
overlapping with the mesoscale. To allow the flow to adjust from the initial horizontally
homogeneous WRF flow to the microscale flow with terrain, two hours of initial spin-up
were used. For consistency, the last two hours of the 24 hour mesoscale spin-up was used.
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To study the observed flow patterns around the Perdigão site in more detail, three
cases/snapshots are highlighted and discussed using LRWS measurements to compare with
the microscale model simulations. Comparing planes of the instantaneous flow field, rather
than time-series in points, allows both quantitatively and qualitative comparison of the
vertical planes across the two Perdigão ridges. The chosen cases are: two nocturnal events
with a pronounced low level jet (LLJ), forming a pronounced lee-side wave down-wind
from the southwest ridge during northeasterly flow conditions, and the last one is a daytime
snapshot around noon, showing how positively buoyant air near the surface impact the flow.
To supplement the vertical planes, horizontal planes at 50 m above the ground from the
microscale model is also presented at the same instances. Only planes for G02-U and G03-Q
are shown, because even though G02-U and G03-U show differences, they are much smaller
than those between G02-U and G03-Q.

01:30 UTC 23 April 2017

On the night of 23 April 2017 at 01:30 (Fig. 5.17), the general flow direction came from
the northeast, and a LLJ with a depth of ≈ 300 m, with a jet core of ≈ 10 m/s was present.
Down slope from the southwest ridge, a standing wave in the LLJ persisted for several hours,
oscillating slightly with varying wave-length and amplitude of the wave. Slower wind speeds
and veering of the flow is observed behind and in front of the northeast ridge, and likewise
below the crest of the lee wave.

Both G02-U and G03-Q captures a LLJ, but it is much deeper than the observed one.
Figure (5.10) shows the U velocity in the WRF d02 domain for the same instance as here. It
shows that the deep LLJ is also present in the mesoscale model, and hence the tendencies
should have this pattern as well. Overestimation of the height, and underestimation of the
speed, of the LLJ core is a well known issue for mesoscale models (Gevorgyan, 2018; Hu
et al., 2013; Storm et al., 2009). Therefore, it seems likely that the ability of the microscale
model to capture many of the features of the LLJ is constrained by the mesoscale tendencies.
G02-U and G03-Q also capture the speed-ups above the two ridges, the slow-down and
veering in front of and behind the ridges, as well as a slight dip of the LLJ on the lee side
of the southwest ridge. It is, however, far from the observed shallowness, wavelength and
amplitude. The G03-Q flow is qualitatively similar to G02-U; LLJ depths and features are
similar, but the wind speeds are much greater, and a greater vertical wind speed gradient
is present. G02-U and G03-Q both show a dip of the LLJ behind the southwest ridge,
corresponding to a wave of much larger wave-length than the observed LLJ wave.

Figure 5.18 shows horizontal planes of the modelled flow 50 m above the ground. It
shows the northeasterly flow across the ridges and the central valley, orographic speed-ups
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Fig. 5.17 01:30 UTC 23 April 2017. (a) Composite of the line-of-sight velocities (ULOS)
observed by the four LRWS (gray squares). (b) G02-U and (c) G03-Q horizontal velocities
in the plane along the scanner transect (Up), as well as negative (dashed) and positive (full)
vertical velocities in contours of 0.3 m/s. The zero vertical velocity contour is not shown.
Horizontal distances (Easting) are in meters along the scanner transect relative to the position
of LRWS 1 (first one from the left).
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Fig. 5.18 01:30 UTC 23 April 2017. Horizontal planes of the modelled flow 50 m above the
surface at the Perdigão site. The LRWS scan-planes are shown by the dashed black line, and
elevation contours is shown in black for every 100 m. (a,c) horizontal wind speed (color)
and streamlines (white lines). (b,d) vertical velocities.
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above the ridges, rising flow before the ridges, and sinking below. It also shows the relative
low wind speeds in front of and behind both ridges, indicating blocking and lee effects.
Similar to the vertical planes, the horizontal planes show that the largest speed-up is at the
southwest ridge, second ridge downstream from the general flow direction, and that G02-U
have lower wind speeds above the ridges than G03-Q. Interestingly, the wind speed in the
central valley is, in some places, lower for G03-Q than G02-U, pointing to more variance in
the simulation using the high-order scheme.

04:00 UTC 7 May 7 2017

Similarly to the event described above, the flow at 04:00 UT 7 May 2017 is characterized
by a nocturnal LLJ in northeasterly flow. However, wind speeds are generally lower and
the LLJ more shallow (≈ 200 m), than the one discussed above. The lee side wave in the
LLJ also has a larger amplitude and shorter wavelength, and in the central valley the LLJ
shows a clear dip into the valley. Interestingly, the jet core, i.e. the location of peak wind
speed intensity, is down-slope from the southwest ridge, not at the top of the ridge. Further
downslope from the peak wind speed, a re-circulation zone is present below the crest of the
vertically swirling LLJ wave.

G02-U has a deep and weak LLJ with a jet core located ≈ 500− 750 m above the
terrain, and as such the shallow and near-surface LLJ observed is not captured, but some
of the general flow patterns are captured, such as the LLJ wave behind the southwest ridge,
including the strong winds on the top part of the downslope, and the re-circulation zone
further down. This is also captured by G03-Q, which also show greater wind speeds in the
LLJ, and greater vertical wind-shear.

The horizontal planes (Fig. 5.20) shows more sinking of the flow below the southwest
ridge than the first case, owing to more pronounced and lower located wave motion of
the LLJ. The general flow characteristics are quite similar to the first one described above:
northeasterly flow across the ridges and central valley, weaker more circulating winds in the
valleys, and wind speed-up on top of the two ridges. Likewise, the wind is stronger with
more spatial variance in G03-Q than G02-U.

12:00 UTC 23 April 2017.

Case three shows a snapshot of the flow during daytime conditions. Generally, wind speeds
were low during the day on 23 April, but increased levels of turbulence intensity in the
measurements during the day reveals the presence of thermally driven turbulent eddies. Just
like the night of 23 April, the main flow direction was from the northeast. The LRWS LIDAR
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Fig. 5.19 04:00 UTC 7 May 2017. (a) Composite of the line-of-sight velocities (ULOS)
observed by the four LRWS (gray squares). (b) G02-U and (c) G03-Q horizontal velocities
in the plane along the scanner transect (Up), as well as negative (dashed) and positive (full)
vertical velocities in contours of 0.3 m/s. The zero vertical velocity contour is not shown.
Horizontal distances (Easting) are in meters along the scanner transect relative to the position
of LRWS 1 (first one from the left).
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Fig. 5.20 04:00 UTC 7 May 2017. Horizontal planes of the modelled flow 50 m above the
surface at the Perdigão site. The LRWS scan-planes are shown by the dashed black line, and
elevation contours is shown in black for every 100 m. (a,c) horizontal wind speed (color)
and streamlines (white lines). (b,d) vertical velocities.
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Fig. 5.21 12:00 UTC 23 April 2017. (a) Composite of the line-of-sight velocities (Ur)
observed by the four LRWS (gray squares). (b) G02-U and (c) G03-Q horizontal velocities
in the plane along the scanner transect (Up), as well as negative (dashed) and positive (full)
vertical velocities in contours of 0.3 m/s. The zero vertical velocity contour is not shown.
Horizontal distances (Easting) are in meters along the scanner transect relative to the position
of LRWS 1 (first one from the left).
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Fig. 5.22 12:00 UTC 23 April 2017. Horizontal planes of the modelled flow 50 m above the
surface at the Perdigão site. The LRWS scan-planes are shown by the dashed black line, and
elevation contours is shown in black for every 100 m. (a,c) horizontal wind speed (color)
and streamlines (white lines). (b,d)
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scans show decreased/reversed wind speeds behind the southwest ridge. In front of, and
behind the northeast ridge, the blocking and lee effects seen during the stable conditions
are less pronounced in the observations. The two model simulations appear qualitatively
quite different. G03-Q shows lower wind speeds and signs of more vertical structures in the
flow. On the other hand, G02-U shows a more stratified flow, especially aloft, and a clearer
lee-side slowdown/re-circulation zone behind both ridges, compared to G03-Q. In front of
the northeast ridge, G02-U show vertical velocities of approximately the same magnitude of
the horizontal velocities, indicating that G02-U too are developing more vertical structures.

The horizontal flow planes (Fig. 5.22) also reveal more cell-like structures in G03-Q than
G02-U. Especially visible in the vertical velocities, showing cells especially along up-slope
regions, but also in the more smoothly sloping terrain. For G02-U, local peaks in wind speed
found mostly around the elevation peaks, while peaks in G03-Q are also seen away from
elevation peaks, e.g. in the middle of the central valley. This is another indication of the
eddy-like structures being more pronounced in G03-Q.

Time-series and statistics

Ultimately for the coupled meso- microscale model-chain to be appropriate for wind resource
assessment, it must improve upon the predicted wind climate, compared to state-of-the-art
methodologies. In the following, the statistical properties of G02-U, G03-U, G03-Q, and the
WRF results, are validated against measurements from the nine masts for the 32 days.

Figures 5.23–5.31 show, for each of the nine masts: time series of the wind speed and
direction at the top of the mast, distributions of wind speeds and wind directions (wind
roses), and vertical wind speed profile. In tables 5.5–5.13 wind speed statistics for each
measurement height are provided, excluding results form the most coarse WRF domain (d01).
The vertical mean wind speed profiles in the figures are consistent across height, meaning
that instances of missing data for any height are removed from the other heights of both the
measurements and model results. In the tables, each height is treated separately so values are
not consistent across heights, so missing values for each height is only removed from the
corresponding model results, not for the other heights. A short summary of the results for
groups of masts with similar type of placement is given below.

It is clear that on the top of the ridges: mast 29 (Fig. 5.29) on the north-east, and mast 20,
34, and 37 (fig 5.25, 5.30, and 5.31) on the south-west, both WRF d05, and EllipSys G03-Q
overestimate the mean wind speed; most of all, G03-Q. Counter to that, G02-U and G03-U
gives similar results, shows much smaller mean wind speed errors, and captures the shape of
the vertical wind speed profiles well, except near the ground where canopy/vegetation has
the most influence. At the top of the ridges, where turning of the flow due to topographic
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Fig. 5.23 Mast 7: (a) Wind speed and (b) wind direction at 60 m. For the wind speed the
mean ten-minute standard-deviation of wind speed is shown as the gray outline. (c) Mean
wind speed profiles. The mean ten-minute standard-deviation of wind speed is shown by the
error bars. Wind direction (d) and wind speed (e) distributions at 60 m.
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Table 5.5 Wind speed statistics for mast 7: Mean wind speed (⟨S⟩), standard deviation of
wind speed (σS), Bias of the mean wind speed (Bias), mean absolute error (MAE), root-mean-
square error (RMSE), and Pearson correlation coefficient (C.C.). The best performing model
is highlighted in bold text. The availability for the period is listed in the Avail. column.

Height Avail. Name ⟨S⟩ σS Bias MAE RSME C.C.

60m 96.0 Obs 2.42 1.73 - - - -
WRF d02 5.99 3.13 147.7 3.70 4.51 0.48
WRF d03 5.59 3.04 131.0 3.29 4.09 0.53
WRF d04 6.11 3.31 152.5 3.75 4.59 0.56
WRF d05 4.91 2.67 103.2 2.66 3.28 0.61
EllipSys G02-U 2.33 1.51 -3.8 1.33 1.80 0.39
EllipSys G03-U 2.25 1.45 -6.8 1.29 1.78 0.38
EllipSys G03-Q 2.71 2.12 12.0 1.36 1.97 0.50

40m 96.1 Obs 2.41 1.65 - - - -
WRF d02 5.55 2.87 130.3 3.26 3.97 0.53
WRF d03 5.17 2.81 114.7 2.88 3.60 0.57
WRF d04 5.78 3.12 139.7 3.42 4.21 0.59
WRF d05 4.42 2.48 83.5 2.28 2.84 0.59
EllipSys G02-U 2.32 1.46 -3.8 1.27 1.71 0.40
EllipSys G03-U 2.13 1.37 -11.6 1.30 1.79 0.32
EllipSys G03-Q 2.79 2.21 15.9 1.44 2.06 0.48

30m 96.0 Obs 2.32 1.51 - - - -
WRF d02 5.22 2.71 125.1 3.01 3.66 0.56
WRF d03 4.86 2.65 109.5 2.66 3.33 0.59
WRF d04 5.51 2.98 137.3 3.24 4.00 0.59
WRF d05 4.10 2.33 76.7 2.10 2.63 0.56
EllipSys G02-U 2.31 1.45 -0.3 1.20 1.60 0.41
EllipSys G03-U 2.11 1.32 -9.3 1.23 1.66 0.33
EllipSys G03-Q 2.81 2.22 21.1 1.45 2.08 0.47

20m 96.0 Obs 2.15 1.38 - - - -
WRF d02 4.83 2.50 124.8 2.77 3.36 0.59
WRF d03 4.48 2.46 108.6 2.43 3.05 0.61
WRF d04 5.17 2.81 140.7 3.07 3.79 0.59
WRF d05 3.77 2.13 75.6 1.93 2.41 0.55
EllipSys G02-U 2.22 1.39 3.5 1.11 1.48 0.43
EllipSys G03-U 1.96 1.18 -8.6 1.07 1.46 0.37
EllipSys G03-Q 2.60 2.04 20.9 1.32 1.88 0.48

[%] [ms−1] [ms−1] [%] [ms−1] [ms−1]
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Fig. 5.24 Mast 10: (a) Wind speed and (b) wind direction at 60 m. For the wind speed the
mean ten-minute standard-deviation of wind speed is shown as the gray outline. (c) Mean
wind speed profiles. The mean ten-minute standard-deviation of wind speed is shown by the
error bars. Wind direction (d) and wind speed (e) distributions at 60 m.
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Table 5.6 Wind speed statistics for mast 10: Mean wind speed (⟨S⟩), standard deviation of
wind speed (σS), Bias of the mean wind speed (Bias), mean absolute error (MAE), root-mean-
square error (RMSE), and Pearson correlation coefficient (C.C.). The best performing model
is highlighted in bold text. The availability for the period is listed in the Avail. column.

Height Avail. Name ⟨S⟩ σS Bias MAE RSME C.C.

60m 94.8 Obs 4.17 2.11 - - - -
WRF d02 5.81 3.03 39.3 2.23 2.91 0.61
WRF d03 5.36 2.95 28.6 1.87 2.48 0.68
WRF d04 5.55 3.16 33.1 1.99 2.70 0.68
WRF d05 5.89 3.41 41.2 2.29 3.03 0.68
EllipSys G02-U 4.37 2.24 4.8 1.47 1.85 0.64
EllipSys G03-U 4.45 2.31 6.7 1.48 1.87 0.65
EllipSys G03-Q 5.06 2.84 21.3 1.81 2.40 0.63

40m 96.5 Obs 3.50 1.75 - - - -
WRF d02 5.45 2.83 56.0 2.46 3.20 0.47
WRF d03 5.05 2.79 44.4 2.12 2.83 0.54
WRF d04 5.30 3.05 51.5 2.30 3.07 0.58
WRF d05 5.66 3.28 61.9 2.64 3.44 0.58
EllipSys G02-U 4.12 2.10 17.7 1.63 2.02 0.51
EllipSys G03-U 4.26 2.20 21.8 1.72 2.14 0.51
EllipSys G03-Q 4.82 2.77 37.9 2.08 2.71 0.53

30m 96.6 Obs 2.98 1.62 - - - -
WRF d02 5.15 2.69 72.8 2.62 3.42 0.33
WRF d03 4.77 2.66 60.0 2.30 3.07 0.40
WRF d04 5.05 2.94 69.3 2.50 3.31 0.48
WRF d05 5.42 3.15 81.9 2.85 3.70 0.47
EllipSys G02-U 3.91 1.97 31.2 1.75 2.19 0.41
EllipSys G03-U 4.11 2.12 37.8 1.89 2.39 0.39
EllipSys G03-Q 4.62 2.66 54.9 2.27 2.92 0.44

20m 97.4 Obs 2.61 1.56 - - - -
WRF d02 4.80 2.52 84.2 2.57 3.33 0.32
WRF d03 4.44 2.49 70.4 2.26 3.01 0.38
WRF d04 4.76 2.79 82.5 2.49 3.28 0.47
WRF d05 5.14 2.99 97.1 2.86 3.67 0.46
EllipSys G02-U 3.64 1.80 39.8 1.69 2.10 0.42
EllipSys G03-U 3.93 2.01 50.6 1.90 2.42 0.38
EllipSys G03-Q 4.36 2.53 67.4 2.24 2.84 0.49

[%] [ms−1] [ms−1] [%] [ms−1] [ms−1]
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Fig. 5.25 Mast 20: (a) Wind speed and (b) wind direction at 100 m. For the wind speed the
mean ten-minute standard-deviation of wind speed is shown as the gray outline. (c) Mean
wind speed profiles. The mean ten-minute standard-deviation of wind speed is shown by the
error bars. Wind direction (d) and wind speed (e) distributions at 100 m.
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Table 5.7 Wind speed statistics for mast 20: Mean wind speed (⟨S⟩), standard deviation of
wind speed (σS), Bias of the mean wind speed (Bias), mean absolute error (MAE), root-mean-
square error (RMSE), and Pearson correlation coefficient (C.C.). The best performing model
is highlighted in bold text. The availability for the period is listed in the Avail. column.

Height Avail. Name ⟨S⟩ σS Bias MAE RSME C.C.

100m 96.1 Obs 5.97 3.45 - - - -
WRF d02 6.50 3.56 8.8 1.96 2.64 0.73
WRF d03 6.12 3.50 2.5 1.78 2.35 0.77
WRF d04 6.71 3.82 12.4 1.93 2.60 0.77
WRF d05 7.46 4.57 25.0 2.41 3.21 0.78
EllipSys G02-U 5.89 3.27 -1.3 1.72 2.19 0.79
EllipSys G03-U 5.74 3.17 -3.9 1.72 2.18 0.79
EllipSys G03-Q 6.86 3.78 14.9 2.04 2.66 0.76

78m 13.8 Obs 6.54 2.99 - - - -
WRF d02 6.18 3.56 -5.5 1.70 2.12 0.81
WRF d03 6.39 3.59 -2.3 1.82 2.29 0.77
WRF d04 7.03 3.89 7.6 1.98 2.56 0.76
WRF d05 8.42 4.73 28.7 2.82 3.63 0.77
EllipSys G02-U 6.92 3.61 5.8 1.88 2.28 0.78
EllipSys G03-U 6.68 3.48 2.2 1.85 2.22 0.78
EllipSys G03-Q 7.64 4.16 16.9 2.36 2.96 0.75

57m 96.6 Obs 5.84 3.30 - - - -
WRF d02 5.88 3.13 0.8 1.85 2.37 0.73
WRF d03 5.53 3.11 -5.2 1.72 2.21 0.77
WRF d04 6.29 3.47 7.8 1.79 2.37 0.76
WRF d05 7.17 4.40 23.0 2.30 3.06 0.78
EllipSys G02-U 5.67 3.07 -2.9 1.70 2.17 0.77
EllipSys G03-U 5.46 2.96 -6.3 1.73 2.17 0.77
EllipSys G03-Q 6.60 3.59 13.2 1.98 2.59 0.74

37m 96.6 Obs 5.71 3.25 - - - -
WRF d02 5.38 2.86 -5.7 1.83 2.28 0.73
WRF d03 5.08 2.85 -11.0 1.74 2.23 0.76
WRF d04 5.94 3.24 4.2 1.72 2.27 0.76
WRF d05 6.90 4.27 21.0 2.19 2.92 0.78
EllipSys G02-U 5.52 2.96 -3.3 1.68 2.14 0.77
EllipSys G03-U 5.29 2.84 -7.3 1.72 2.16 0.77
EllipSys G03-Q 6.41 3.47 12.3 1.93 2.54 0.74

28m 94.1 Obs 5.50 3.17 - - - -
WRF d02 5.03 2.69 -8.5 1.85 2.30 0.72
WRF d03 4.75 2.69 -13.7 1.78 2.28 0.74
WRF d04 5.67 3.08 3.0 1.73 2.26 0.74
WRF d05 6.64 4.16 20.7 2.17 2.89 0.77
EllipSys G02-U 5.35 2.86 -2.8 1.66 2.13 0.76
EllipSys G03-U 5.12 2.76 -6.9 1.69 2.14 0.76
EllipSys G03-Q 6.20 3.36 12.7 1.92 2.54 0.72

[%] [ms−1] [ms−1] [%] [ms−1] [ms−1]
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Fig. 5.26 Mast 22: (a) Wind speed and (b) wind direction at 60 m. For the wind speed the
mean ten-minute standard-deviation of wind speed is shown as the gray outline. (c) Mean
wind speed profiles. The mean ten-minute standard-deviation of wind speed is shown by the
error bars. Wind direction (d) and wind speed (e) distributions at 60 m.
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Table 5.8 Wind speed statistics for mast 22: Mean wind speed (⟨S⟩), standard deviation of
wind speed (σS), Bias of the mean wind speed (Bias), mean absolute error (MAE), root-mean-
square error (RMSE), and Pearson correlation coefficient (C.C.). The best performing model
is highlighted in bold text. The availability for the period is listed in the Avail. column.

Height Avail. Name ⟨S⟩ σS Bias MAE RSME C.C.

60m 87.2 Obs 2.49 1.49 - - - -
WRF d02 5.47 2.82 119.3 3.21 3.89 0.46
WRF d03 5.20 2.89 108.5 2.97 3.74 0.45
WRF d04 5.88 3.20 136.1 3.58 4.43 0.45
WRF d05 5.39 3.20 116.3 3.18 4.04 0.47
EllipSys G02-U 3.01 1.60 21.0 1.24 1.58 0.53
EllipSys G03-U 3.12 1.59 25.3 1.28 1.65 0.51
EllipSys G03-Q 3.21 1.85 29.0 1.44 1.83 0.51

40m 96.1 Obs 2.71 1.86 - - - -
WRF d02 5.50 2.85 102.6 2.99 3.57 0.62
WRF d03 5.27 2.92 94.1 2.79 3.46 0.60
WRF d04 6.08 3.26 124.0 3.51 4.27 0.59
WRF d05 5.47 3.25 101.7 3.00 3.76 0.62
EllipSys G02-U 2.81 1.49 3.5 1.17 1.52 0.61
EllipSys G03-U 2.83 1.46 4.3 1.20 1.55 0.59
EllipSys G03-Q 3.14 1.89 15.7 1.40 1.82 0.55

30m 96.7 Obs 2.56 1.74 - - - -
WRF d02 5.18 2.70 102.2 2.81 3.36 0.63
WRF d03 4.97 2.76 94.2 2.64 3.26 0.61
WRF d04 5.83 3.12 127.5 3.41 4.12 0.60
WRF d05 5.15 3.08 100.9 2.82 3.52 0.63
EllipSys G02-U 2.67 1.42 4.2 1.14 1.49 0.58
EllipSys G03-U 2.63 1.37 2.7 1.15 1.49 0.57
EllipSys G03-Q 3.05 1.89 19.0 1.41 1.87 0.51

20m 96.7 Obs 2.34 1.58 - - - -
WRF d02 4.79 2.50 104.5 2.62 3.12 0.63
WRF d03 4.60 2.56 96.6 2.46 3.04 0.61
WRF d04 5.50 2.93 134.8 3.28 3.94 0.59
WRF d05 4.75 2.88 102.7 2.62 3.27 0.64
EllipSys G02-U 2.54 1.38 8.7 1.12 1.47 0.52
EllipSys G03-U 2.47 1.28 5.4 1.10 1.42 0.53
EllipSys G03-Q 2.95 1.90 26.2 1.41 1.93 0.46

[%] [ms−1] [ms−1] [%] [ms−1] [ms−1]
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Fig. 5.27 Mast 25: (a) Wind speed and (b) wind direction at 60 m. For the wind speed the
mean ten-minute standard-deviation of wind speed is shown as the gray outline. (c) Mean
wind speed profiles. The mean ten-minute standard-deviation of wind speed is shown by the
error bars. Wind direction (d) and wind speed (e) distributions at 60 m.
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Table 5.9 Wind speed statistics for mast 25: Mean wind speed (⟨S⟩), standard deviation of
wind speed (σS), Bias of the mean wind speed (Bias), mean absolute error (MAE), root-mean-
square error (RMSE), and Pearson correlation coefficient (C.C.). The best performing model
is highlighted in bold text. The availability for the period is listed in the Avail. column.

Height Avail. Name ⟨S⟩ σS Bias MAE RSME C.C.

100m 96.4 Obs 2.64 1.75 - - - -
WRF d02 6.51 3.45 146.2 4.04 5.00 0.41
WRF d03 6.25 3.48 136.3 3.75 4.77 0.45
WRF d04 6.61 3.70 150.1 4.08 5.11 0.49
WRF d05 6.02 3.35 127.8 3.56 4.43 0.52
EllipSys G02-U 2.95 1.73 11.7 1.34 1.71 0.53
EllipSys G03-U 3.03 1.69 14.5 1.36 1.73 0.52
EllipSys G03-Q 3.15 2.36 19.2 1.56 2.07 0.56

80m 96.2 Obs 2.50 1.74 - - - -
WRF d02 6.24 3.26 149.3 3.89 4.74 0.45
WRF d03 5.98 3.30 138.8 3.61 4.51 0.49
WRF d04 6.39 3.54 154.9 3.98 4.90 0.54
WRF d05 5.75 3.16 129.7 3.42 4.18 0.56
EllipSys G02-U 2.51 1.69 0.3 1.36 1.72 0.50
EllipSys G03-U 2.62 1.61 4.8 1.32 1.68 0.50
EllipSys G03-Q 2.84 2.27 13.4 1.49 1.99 0.55

60m 96.6 Obs 2.44 1.76 - - - -
WRF d02 5.94 3.07 143.4 3.63 4.37 0.53
WRF d03 5.69 3.13 133.4 3.39 4.16 0.56
WRF d04 6.14 3.40 152.0 3.79 4.61 0.60
WRF d05 5.46 2.98 123.7 3.17 3.84 0.60
EllipSys G02-U 2.24 1.58 -8.2 1.30 1.69 0.50
EllipSys G03-U 2.28 1.51 -6.4 1.31 1.71 0.47
EllipSys G03-Q 2.66 2.16 8.9 1.41 1.90 0.55

40m 96.2 Obs 2.31 1.66 - - - -
WRF d02 5.46 2.82 136.8 3.27 3.90 0.58
WRF d03 5.27 2.89 128.2 3.07 3.75 0.60
WRF d04 5.77 3.19 150.1 3.53 4.27 0.64
WRF d05 4.99 2.71 116.3 2.81 3.43 0.62
EllipSys G02-U 2.12 1.39 -8.1 1.13 1.48 0.55
EllipSys G03-U 2.08 1.33 -10.0 1.19 1.59 0.47
EllipSys G03-Q 2.52 2.01 9.1 1.29 1.76 0.56

30m 96.5 Obs 2.20 1.60 - - - -
WRF d02 5.16 2.68 134.3 3.06 3.63 0.62
WRF d03 4.99 2.75 126.6 2.88 3.51 0.64
WRF d04 5.52 3.07 150.6 3.37 4.05 0.66
WRF d05 4.69 2.55 112.8 2.60 3.18 0.63
EllipSys G02-U 2.07 1.31 -6.2 1.05 1.38 0.57
EllipSys G03-U 1.99 1.23 -9.4 1.11 1.51 0.47
EllipSys G03-Q 2.43 1.89 10.4 1.22 1.69 0.55

[%] [ms−1] [ms−1] [%] [ms−1] [ms−1]
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Fig. 5.28 Mast 27: (a) Wind speed and (b) wind direction at 60 m. For the wind speed the
mean ten-minute standard-deviation of wind speed is shown as the gray outline. (c) Mean
wind speed profiles. The mean ten-minute standard-deviation of wind speed is shown by the
error bars. Wind direction (d) and wind speed (e) distributions at 60 m.
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Table 5.10 Wind speed statistics for mast 27: Mean wind speed (⟨S⟩), standard deviation of
wind speed (σS), Bias of the mean wind speed (Bias), mean absolute error (MAE), root-mean-
square error (RMSE), and Pearson correlation coefficient (C.C.). The best performing model
is highlighted in bold text. The availability for the period is listed in the Avail. column.

Height Avail. Name ⟨S⟩ σS Bias MAE RSME C.C.

60m 96.5 Obs 2.74 1.75 - - - -
WRF d02 5.93 3.06 116.0 3.41 4.25 0.42
WRF d03 5.67 3.13 106.9 3.13 4.02 0.48
WRF d04 5.95 3.37 116.9 3.37 4.27 0.55
WRF d05 5.99 3.40 118.4 3.44 4.32 0.55
EllipSys G02-U 2.91 1.67 5.9 1.27 1.58 0.58
EllipSys G03-U 2.98 1.62 8.7 1.25 1.56 0.58
EllipSys G03-Q 3.19 2.30 16.1 1.47 1.92 0.61

40m 96.6 Obs 2.48 1.63 - - - -
WRF d02 5.49 2.84 120.8 3.18 3.93 0.46
WRF d03 5.28 2.91 112.5 2.97 3.75 0.51
WRF d04 5.60 3.19 125.3 3.24 4.05 0.59
WRF d05 5.65 3.21 127.4 3.32 4.11 0.58
EllipSys G02-U 2.40 1.61 -3.4 1.28 1.62 0.50
EllipSys G03-U 2.46 1.54 -1.1 1.21 1.52 0.54
EllipSys G03-Q 2.76 2.17 11.1 1.39 1.80 0.59

30m 96.6 Obs 2.22 1.46 - - - -
WRF d02 5.17 2.69 132.8 3.10 3.78 0.48
WRF d03 4.99 2.77 124.9 2.91 3.63 0.53
WRF d04 5.32 3.06 139.9 3.20 3.96 0.61
WRF d05 5.39 3.06 142.8 3.28 4.03 0.60
EllipSys G02-U 2.29 1.51 3.1 1.15 1.46 0.52
EllipSys G03-U 2.24 1.48 0.7 1.16 1.46 0.51
EllipSys G03-Q 2.64 2.04 19.1 1.29 1.69 0.61

20m 96.6 Obs 1.76 1.17 - - - -
WRF d02 4.78 2.50 170.9 3.11 3.72 0.49
WRF d03 4.64 2.58 162.7 2.94 3.60 0.54
WRF d04 4.98 2.88 182.0 3.25 3.97 0.63
WRF d05 5.06 2.86 186.5 3.35 4.04 0.61
EllipSys G02-U 2.23 1.37 26.6 1.01 1.28 0.57
EllipSys G03-U 2.10 1.37 19.1 1.02 1.29 0.53
EllipSys G03-Q 2.54 1.87 44.1 1.23 1.63 0.64

[%] [ms−1] [ms−1] [%] [ms−1] [ms−1]
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Fig. 5.29 Mast 29: (a) Wind speed and (b) wind direction at 100 m. For the wind speed the
mean ten-minute standard-deviation of wind speed is shown as the gray outline. (c) Mean
wind speed profiles. The mean ten-minute standard-deviation of wind speed is shown by the
error bars. Wind direction (d) and wind speed (e) distributions at 100 m.
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Table 5.11 Wind speed statistics for mast 29: Mean wind speed (⟨S⟩), standard deviation of
wind speed (σS), Bias of the mean wind speed (Bias), mean absolute error (MAE), root-mean-
square error (RMSE), and Pearson correlation coefficient (C.C.). The best performing model
is highlighted in bold text. The availability for the period is listed in the Avail. column.

Height Avail. Name ⟨S⟩ σS Bias MAE RSME C.C.

100m 97.8 Obs 5.53 2.95 - - - -
WRF d02 6.53 3.54 18.1 1.98 2.69 0.72
WRF d03 6.21 3.48 12.2 1.72 2.34 0.77
WRF d04 6.18 3.57 11.7 1.77 2.39 0.77
WRF d05 6.70 3.97 21.1 2.09 2.80 0.77
EllipSys G02-U 5.48 2.88 -0.9 1.62 2.04 0.76
EllipSys G03-U 5.44 2.84 -1.7 1.59 2.01 0.76
EllipSys G03-Q 6.44 3.40 16.5 1.93 2.53 0.73

80m 98.4 Obs 5.43 2.88 - - - -
WRF d02 6.30 3.35 15.9 1.87 2.54 0.72
WRF d03 5.98 3.31 10.0 1.64 2.21 0.77
WRF d04 5.98 3.46 10.1 1.72 2.30 0.77
WRF d05 6.58 3.92 21.2 2.07 2.76 0.77
EllipSys G02-U 5.37 2.82 -1.1 1.61 2.02 0.75
EllipSys G03-U 5.34 2.77 -1.8 1.59 2.00 0.75
EllipSys G03-Q 6.34 3.37 16.6 1.93 2.55 0.72

60m 98.4 Obs 5.31 2.80 - - - -
WRF d02 5.96 3.13 12.3 1.73 2.33 0.72
WRF d03 5.65 3.12 6.5 1.55 2.06 0.77
WRF d04 5.69 3.31 7.2 1.63 2.16 0.77
WRF d05 6.38 3.83 20.3 2.00 2.67 0.77
EllipSys G02-U 5.22 2.73 -1.6 1.58 1.98 0.74
EllipSys G03-U 5.19 2.69 -2.2 1.56 1.96 0.75
EllipSys G03-Q 6.18 3.34 16.5 1.91 2.54 0.71

40m 99.1 Obs 5.19 2.75 - - - -
WRF d02 5.52 2.88 6.3 1.59 2.11 0.73
WRF d03 5.26 2.90 1.3 1.48 1.93 0.77
WRF d04 5.34 3.14 2.7 1.54 2.02 0.77
WRF d05 6.15 3.73 18.4 1.89 2.53 0.78
EllipSys G02-U 5.07 2.64 -2.4 1.53 1.94 0.74
EllipSys G03-U 5.05 2.62 -2.7 1.52 1.92 0.75
EllipSys G03-Q 6.05 3.36 16.5 1.88 2.53 0.71

30m 98.2 Obs 4.97 2.60 - - - -
WRF d02 5.15 2.69 3.6 1.56 2.02 0.71
WRF d03 4.92 2.71 -1.1 1.46 1.89 0.75
WRF d04 5.00 2.97 0.5 1.53 1.98 0.75
WRF d05 5.87 3.58 18.1 1.86 2.48 0.77
EllipSys G02-U 4.92 2.56 -1.1 1.48 1.88 0.74
EllipSys G03-U 4.92 2.55 -1.1 1.46 1.87 0.74
EllipSys G03-Q 5.90 3.32 18.7 1.90 2.57 0.70

[%] [ms−1] [ms−1] [%] [ms−1] [ms−1]
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Fig. 5.30 Mast 34: (a) Wind speed and (b) wind direction at 60 m. For the wind speed the
mean ten-minute standard-deviation of wind speed is shown as the gray outline. (c) Mean
wind speed profiles. The mean ten-minute standard-deviation of wind speed is shown by the
error bars. Wind direction (d) and wind speed (e) distributions at 60 m.
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Table 5.12 Wind speed statistics for mast 34: Mean wind speed (⟨S⟩), standard deviation of
wind speed (σS), Bias of the mean wind speed (Bias), mean absolute error (MAE), root-mean-
square error (RMSE), and Pearson correlation coefficient (C.C.). The best performing model
is highlighted in bold text. The availability for the period is listed in the Avail. column.

Height Avail. Name ⟨S⟩ σS Bias MAE RSME C.C.

60m 91.4 Obs 5.63 3.08 - - - -
WRF d02 5.83 3.12 3.4 1.84 2.38 0.71
WRF d03 5.51 3.05 -2.2 1.68 2.19 0.75
WRF d04 6.19 3.38 9.9 1.82 2.42 0.74
WRF d05 6.67 3.98 18.4 2.11 2.83 0.75
EllipSys G02-U 5.48 3.06 -2.7 1.70 2.17 0.75
EllipSys G03-U 5.37 2.94 -4.6 1.71 2.16 0.75
EllipSys G03-Q 6.56 3.57 16.5 2.00 2.68 0.72

40m 91.3 Obs 5.54 3.05 - - - -
WRF d02 5.38 2.86 -2.9 1.79 2.25 0.71
WRF d03 5.11 2.83 -7.8 1.67 2.16 0.74
WRF d04 5.88 3.17 6.2 1.75 2.29 0.73
WRF d05 6.38 3.82 15.2 2.00 2.67 0.75
EllipSys G02-U 5.35 2.96 -3.3 1.68 2.14 0.75
EllipSys G03-U 5.24 2.84 -5.4 1.70 2.14 0.74
EllipSys G03-Q 6.43 3.51 16.1 1.98 2.65 0.72

30m 91.4 Obs 5.36 2.98 - - - -
WRF d02 5.06 2.70 -5.6 1.75 2.20 0.71
WRF d03 4.81 2.68 -10.2 1.66 2.16 0.73
WRF d04 5.64 3.02 5.2 1.72 2.24 0.73
WRF d05 6.14 3.69 14.6 1.97 2.61 0.74
EllipSys G02-U 5.28 2.91 -1.5 1.64 2.09 0.75
EllipSys G03-U 5.16 2.78 -3.7 1.65 2.09 0.74
EllipSys G03-Q 6.34 3.47 18.2 1.97 2.65 0.72

20m 90.6 Obs 4.97 2.80 - - - -
WRF d02 4.63 2.46 -6.8 1.67 2.13 0.69
WRF d03 4.41 2.45 -11.2 1.61 2.14 0.70
WRF d04 5.28 2.81 6.3 1.68 2.20 0.70
WRF d05 5.78 3.48 16.3 1.94 2.58 0.72
EllipSys G02-U 5.15 2.85 3.7 1.59 2.06 0.74
EllipSys G03-U 5.04 2.72 1.3 1.58 2.03 0.73
EllipSys G03-Q 6.16 3.39 24.0 2.02 2.72 0.70

[%] [ms−1] [ms−1] [%] [ms−1] [ms−1]
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Fig. 5.31 Mast 37: (a) Wind speed and (b) wind direction at 60 m. For the wind speed the
mean ten-minute standard-deviation of wind speed is shown as the gray outline. (c) Mean
wind speed profiles. The mean ten-minute standard-deviation of wind speed is shown by the
error bars. Wind direction (d) and wind speed (e) distributions at 60 m.
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Table 5.13 Wind speed statistics for mast 37: Mean wind speed (⟨S⟩), standard deviation of
wind speed (σS), Bias of the mean wind speed (Bias), mean absolute error (MAE), root-mean-
square error (RMSE), and Pearson correlation coefficient (C.C.). The best performing model
is highlighted in bold text. The availability for the period is listed in the Avail. column.

Height Avail. Name ⟨S⟩ σS Bias MAE RSME C.C.

60m 89.2 Obs 5.60 3.12 - - - -
WRF d02 5.80 3.12 3.6 1.85 2.42 0.70
WRF d03 5.37 3.03 -4.0 1.67 2.15 0.76
WRF d04 6.03 3.32 7.7 1.74 2.33 0.75
WRF d05 6.56 4.01 17.3 2.06 2.76 0.77
EllipSys G02-U 5.45 2.95 -2.7 1.71 2.17 0.75
EllipSys G03-U 5.47 2.90 -2.2 1.68 2.13 0.75
EllipSys G03-Q 6.55 3.52 17.1 2.00 2.68 0.72

40m 88.8 Obs 5.49 3.05 - - - -
WRF d02 5.35 2.87 -2.5 1.80 2.27 0.71
WRF d03 4.95 2.78 -9.8 1.66 2.11 0.76
WRF d04 5.71 3.10 4.0 1.66 2.19 0.75
WRF d05 6.25 3.84 14.0 1.94 2.58 0.77
EllipSys G02-U 5.31 2.85 -3.3 1.69 2.14 0.74
EllipSys G03-U 5.34 2.81 -2.7 1.66 2.10 0.75
EllipSys G03-Q 6.47 3.51 17.8 2.01 2.68 0.72

30m 89.1 Obs 5.40 3.01 - - - -
WRF d02 5.06 2.71 -6.3 1.76 2.21 0.71
WRF d03 4.68 2.65 -13.4 1.68 2.13 0.76
WRF d04 5.51 2.99 2.0 1.64 2.14 0.75
WRF d05 6.06 3.77 12.2 1.88 2.51 0.77
EllipSys G02-U 5.25 2.82 -2.7 1.66 2.10 0.74
EllipSys G03-U 5.30 2.80 -1.9 1.63 2.06 0.75
EllipSys G03-Q 6.45 3.55 19.6 2.04 2.72 0.72

20m 88.7 Obs 5.17 2.86 - - - -
WRF d02 4.65 2.49 -10.1 1.72 2.17 0.70
WRF d03 4.28 2.43 -17.2 1.67 2.16 0.74
WRF d04 5.18 2.78 0.1 1.60 2.09 0.73
WRF d05 5.72 3.58 10.5 1.82 2.41 0.76
EllipSys G02-U 5.14 2.76 -0.6 1.58 2.02 0.74
EllipSys G03-U 5.19 2.75 0.4 1.56 1.98 0.75
EllipSys G03-Q 6.36 3.53 22.9 2.08 2.75 0.72

[%] [ms−1] [ms−1] [%] [ms−1] [ms−1]
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effects are felt the least, both the instantaneous and the distribution of wind directions are
well captured by the models.

Mast 7 (Fig. 5.23) and 25 (Fig. 5.27), are located deep in the valley (Fig. 5.2). While the
general flow direction above the Perdigão complex show a bi-modal nature of wind across
the ridges from southwest or northeast. In the valley the flow is remarkably perpendicular
to this, showing a turning of the wind along the ridges, mostly in the down-slope direction
(southeasterly flow). This turning of the flow is captured by both of the microscale model
simulations, most clearly seen for mast 7, but also visible closer to the surface for mast
25. The topography in the WRF domains does not resolve the central valley, so it cannot
resolve this phenomena. The mean wind speed is captured well at both mast 07 and 25 by the
microscale runs, but a slight overestimation is made by G03-Q at both locations. Only the
wind speed at the lowest height (10 m) at both masts is overestimated by both simulations,
most likely owning to the unresolved drag from the vegetation.

Mast 10 (Fig. 5.24) are located on the valley-side slope of the northeast ridge close to,
but not at, the top. As the dominant wind direction is from north-east, this is a location where
the lower part of the mast is in the lee of the ridge top, while the top reaches above the top of
the ridge, so effects of recirculating and/or other lee effects is expected at this location. This
is indeed reflected in the wind profile, revealing stronger mean shear than most of the other
locations. This feature is captured by the microscale model, although they overestimate the
mean wind speeds, with G02-U and G03-U again showing the smallest mean errors.

Masts 22 (Fig. 5.26) and 27 (Fig. 5.26) are located near the bottom part of the down-slope
reaching into the central valley from the southwest and the northeast ridge respectively. The
wind roses reveal that the relative turning (veering) of the wind in the central valley, compared
to the wind aloft, is more pronounced closer to the northeast ridge. The observed wind rose
at mast 27 show a dominant wind direction from the south and south-southeast, a turning
that is only to some degree captured by the microscale model at 60 m. The wind rose at
mast 22 is dominated by the northeasterly flow, but also shows that flow from southeast
is prevalent. The mean wind speed is overestimated by the microscale models, but both
simulations capture much of the reduction in wind speed, relative to WRF wherein the central
valley is not resolved.

For wind resource assessment the most relevant measurements for validation are naturally
the top of the four masts on the ridges, closest to where the wind turbines would, in all
likelihood, be positioned. At the top of the four masts on the ridges, the G02-U microscale
simulation show very low mean wind speed biases (−1.3% at 100 m for mast 20, −0.9% at
100 m for mast 29, −2.7% at 60 m for mast 34, and −2.7% at 60 m for mast 37), and the
same is true for G03-U (−3.9% at 100 m for mast 20, −1.7% at 100 m for mast 29, −4.6%
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at 60 m for mast 34, and −2.2% at 60 m for mast 37). These are the lowest mean biases of
any of the models, except for mast 34 where WRF domain d03 has a mean wind speed bias
of −2.2% at 60 m. G03-Q shows an overestimation of ≈ 15−17% in all four cases, while
WRF d04 and d05 overestimate by ≈ 8−12% and ≈ 17−25%. The mean absolute error
(MAE), and root-mean-square error (RMSE) (tables 5.5–5.13), are also lowest for G02-U
and G03-U at the top of each of the nine masts, except for mast 37, where WRF d02 errors
are slightly smaller.

Spectral properties

As seen in Fig. 5.16 and 5.21, clear differences in the amount of eddy-structures and
resulting variance exist between G02-U and G03-Q. This obviously points to different levels
of energy at differences wave-modes in the flow. To visualize that, the time-spectral density
of horizontal wind speed is investigated at 100 m for mast 29 (Fig. 5.32). Each spectra was
computed from the 32-day time-signal FFT at the location and averaged in 50 log-spaced
(geometric progression) averaging bins. An artificial signal is expected near ≈ 2 days due
to the chuncking of individual simulations. The figure shows a near −5/3 slope of the
energy spectral density of the measured wind speed. Curiously, the typical diurnal-cycle
signal is strong in the (coarse) WRF model results, but not pronounced in the measurements.
Increased density is observed at the high-frequency modes with increasing grid spacing
of the WRF domains, pointing to increased effective resolution. The diffusive nature of
G02-U and G03-U is revealed from the lower densities across most scales, compared to
both the measurements and G03-Q. At the sub 20-minute frequencies (spectral tail) a clear
accumulation of variance is seen for G03-Q, much greater than G03-U, with a slope much
more flat than the −5/3 slope.

5.3 Summary and conclusions

To improve modeling capabilities for wind resource assessment in complex terrain, a
mesoscale to microscale coupling methodology for dynamical downscaling was proposed.
The methodology, based on the work of Sanz Rodrigo et al. (2017b) and others, and involves
coupling of mesoscale NWP models with microscale CFD-type models via momentum and
temperature tendencies. Momentum tendencies resulting from a sum of the advection and
pressure gradient forces, as well as temperature advection tendencies, are extracted from a
single grid column from the Weather Research and Forecasting (WRF) mesoscale model, uti-
lizing a horizontal grid spacing that is coarse enough to ensure that the model cannot resolve
local terrain effects resulting from the complex site in question. The resulting tendencies are
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assumed to carry information about the large-scale (synoptic and mesoscale) variations, i.e.
the changing weather patterns, but not the local variations due to orographic forcing. The
tendencies are applied as horizontally homogeneous body-forces to the microscale model
domain, as height- and time-dependent source terms in the momentum equations. Surface
boundary conditions for temperature were extracted from the mesoscale model by extrapolat-
ing the varying 2-m temperature to the microscale model surface. To accommodate the use
of forcing by body-forces, as opposed to the more common approach of forcing via LBCs,
the microscale lateral boundaries used periodic conditions, allowing the flow to recirculate.
The terrain in the microscale domain was thus smoothed along the edges towards a singular
smooth elevation in order to avoid discontinuities near the edges.

The methodology was validated at the Perdigão site using measurements from the
Perdigão field campaign taken during the new European wind atlas (NEWA) project in
the spring months of 2017. The measurements used for this study included vertical radial
wind speed scans taken with LRWS lidars, and wind speed and direction measured from nine
tall meteorological masts placed around the site, reaching from 60 to 100 m into the ABL.
The microscale model validation focused on a 32-day period from 13 April 13 to 15 May
2017, characterized by mostly fair weather, but also periods with stronger synoptic forcing.

It is an open question what is the best way to obtain the most appropriate mesoscale
tendencies to force the microscale model. The two main questions, that remains unanswered
are:

• Based on physical characteristics of the site, What is the most appropriate grid spacing
to use for the mesoscale model?

• How should the mesoscale tendencies be filtered to achieve the most appropriate,
noise-free signals?

In this study, the answer to the first questions was to use the most fine-scaled domain available,
that still does not resolve the characteristic scales of the topography surrounding the site.
For Perdigão, this meant using the WRF domain with a horizontal grid spacing of 9 km to
generate the microscale model input. At that spacing, one mesoscale grid cell covers most of
the footprint of the Perdigão complex, including the two ridges, the central valley, and much
of the surrounding area. As a result, the orographic forcing from the Perdigão site does not
propagate into the tendencies, except for the general sloping of the terrain. The Perdigão site
stands relatively separate from other major mountain-ranges, making the task of choosing the
appropriate mesoscale grid spacing easier. Generalizing the methodology arbitrary complex
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sites may be more challenging when the site in question is connected to topography made up
of a larger range of characteristic scales. The answer to the second question above, in this
study, has been to simply use (instantaneous) hourly averaged values, without any spatial
averaging involved.

The sensitives of the mesoscale tendencies to the mesoscale model configuration in
complex terrain are largely unknown. Olsen et al. (2018) showed only small sensitivities
to planetary boundary layer (PBL) and surface layer (SL) scheme in simple terrain without
further coupling, but further analysis of the impact of different PBL schemes, SL schemes,
and land surface models, is needed.

The tendency-driven microscale simulations were shown to capture the general flow
patterns at the site, but with a clear sensitivity to the grid resolution. The microscale model is
operated at the scales within the terra incognita, which means the model permits development
of energetic ABL eddies, especially during CBL conditions. This can be a problem because
the RANS assumption of scale-separation may be violated and a grid-dependency of the
solution can occur. To study the influence of effective flow-resolution, the first-order accurate
upwind (UDS) discretization scheme was compared to the third-order accurate QUICK
scheme. The UDS scheme has many undesirable properties: it is dampening and much less
numerically accurate than typical methods used, but as a result it has a decreased effective
flow-resolution, i.e. it may maintain scale separation at finer grid resolution than high-order
schemes does, reducing eddy formation. As expected, significant differences were observed
from using the two numerical methods. The simulations using the third-order accurate
scheme was more prone to grid-dependent flow structures, while the first-order scheme
produced less variance and generally lower wind speeds, but resolved less eddy structures,
even when run at finer grid spacing than the high-order scheme (80 m UDS vs 120 m QUICK,
Fig. 5.16).

With the dependencies of the grid and numerical methods in mind, three different
microscale setups were chosen and evaluated qualitatively and quantitatively for a longer
period of 32 days. One setup used a grid of 80×80 m grid spacing and the UDS scheme
(G02-U), one used 120×120 m and UDS (G03-U), and one a grid of 120×120 m grid spacing
and the QUICK scheme (G03-Q). Results for G02-U and G03-U were very similar, while
larger differences were seen for G03-Q compared to the two others.

Qualitatively, the microscale model captured many of the features that characterize the
flow around the Perdigão site, including some of the wave-like features observed in the
nocturnal low level jets (LLJ), such as the lee-side standing wave behind the southwest
ridge during northeasterly flow conditions. However, the fine details of the LLJ were not
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quite captured, probably in large part due to how well, or poorly, the LLJ is resolved in
the mesoscale tendencies. Eddy-structures were observed in all three simulations, but more
variance and a stronger tendency to develop eddy-structures was seen fore G03-Q. Quantita-
tively, G02-U and G03-U was shown to capture the flow around Perdigão quite accurately
both at the ridge tops and in the central valley. For the four masts on the ridge tops (masts
20, 29, 34, 37), the mean wind speed errors of G02-U for the 32 days were less than 3%
and root-mean-square errors were low compared to the WRF domains, and G03-Q. In the
central valley of the site, the mean flow characteristics were also well captured by G02-
U, including the turning of the wind towards southeasterly and northwesterly flow (along
the ridges). G03-Q also captured the valley flow, but showed larger mean wind speeds
for all of the masts, and at the ridge tops the overestimation of the mean wind speed was
larger than the mean error of the mesoscale domains and the two other microscale simulations.

During situations of rapid surface cooling and weak winds, runaway cooling, where the
heat flux and friction velocity dropped to near-zero, was observed causing a detachment of
the flow near surface and the upper air above. Lower limits were put on the turbulent kinetic
energy and its dissipation to reduce this phenomena, but limiting the friction velocity may
prove useful as well, similar to e.g. some SL schemes in WRF (Jiménez and Dudhia, 2012).

The coupling methodology has previously been shown to work well in simple terrain
(Olsen et al., 2018; Sanz Rodrigo et al., 2017b). This study shows promising results, that
indicate that it could work well in complex terrain as well. The microscale model captures
the slowly varying (weather) patterns fed to it by the mesoscale tendencies, while also adding
local orograhic and surface effects. As such, the mesoscale model tendencies seems to
provide the appropriate large-scale forcing. However, the tendencies used for coupling are
difficult to validate, especially in complex terrain. Therefore, it is difficult to judge whether
they represent actual physical tendencies in the atmosphere. Validation of the coupling
technique, and related sensitivity studies, must be done indirectly by, for example, studying
the final microscale model results.

One major disadvantage of the coupling methodology, is that a large jump in spatial scales
is needed. In this study, the 9-km mesoscale domain is coupled directly to microscale grids
with a grid spacing of order ≈ 100 m; an effective grid-refinement ratio of around 100. This
ratio is much greater than what is typically used with LBCs, where small grid-refinement
ratios are desirable. It is also much greater than the ratio of 3 or 5 recommended when
e.g. running WRF Skamarock et al. (2008). It is likely that this spatial jump can result in
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under-resolving important flow features taking place in-between the resolved scales of the
WRF domain and the microscale domain.

Using dynamical downscaling for wind resource assessment is computationally expen-
sive, so one positive side-effect of the needed scale-jump is the reduced cost of computations.
If the mesoscale share of dynamical downscaling can be limited to scales of order 10 km,
rather than order 1 km, a significant reduction in computations is achieved. In fact, it may
not be required to use limited area models (LAMs) at all, instead tendencies and surface
temperatures from global circulation models (GCM) could be used, as they are already
operated at the mesoscales, and higher resolution is gradually achieved. However, these types
of fields are typically not available from reanalysis datasets.

In the microscale domain, the methodology relies on strong temperature nudging towards
the horizontally homogeneous mesoscale temperature of the grid column covering the site.
The influence of nudging is not fully understood, especially not when it comes to the impact
on the flow in complex terrain, where differential heating and advection are prevalent. Be-
cause the temperature in the microscale model is otherwise limited to the heat fluxes from
the surface and temperature advection tendencies from the mesoscale model, to evolve the
state of the temperature nudging is important to account for many physical phenomena that
are otherwise not captured by the microscale model. Additionally, the nudging helps to keep
microscale temperature in line with the mesoscale grid-column, reducing problems that could
arise from adding temperature advection tendencies that are out-of-sync with the microscale
model state. On the other hand, the strong nudging also limits the degrees of freedom of
the microscale model, potentially suppressing the development of desirable/physical states.
Ultimately, a better understanding of the relative magnitudes and interactions of temperature
advection, temperature nudging, and heat-fluxes throughout the microscale domain, and
during the diurnal-cycle, is needed.

A homogeneous surface roughness of ≈ 5 cm was used in the microscale simulations. It
was derived via the USGS vegetation table from the CORINE-derived land-use class in the
WRF grid cell at the site. Up-scaling of the fine-scale CORINE land use classification was
done via the dominant class of the individual CORINE cells inside the larger WRF cell. There
are many indications that 5 cm is a vast underestimation of the true frictions of the terrain in
the area, including LIDAR scans of the vegetation (not shown), and private communication.
The CORINE land use class in the grid cell corresponds to “Mixed Shrubland/Grassland”,
but much of the area is covered by Eucalyptus and Pine trees. Hence, it is very likely that a
major source of the overestimation of the mean wind speed seen for G03-Q is caused by the
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low surface roughness. Likewise, the skillfulness observed for G02-U and G03-U may be due
to a canceling-of-errors scenario, where errors due to low surface roughness are canceled by
errors caused by the diffusive discretization scheme. In addition, large parts of the Perdigão
site are forested, which is ignored in this study. However, treating the forest via adjustment
of the surface roughness, using displacement heights, or via adding roughness elements to
the domain, may improve upon the results, near the surface and in the valley in the particular.
Further analysis of the impact of the surface roughness is needed.

The resolution of the microscale domains is high-enough that the largest turbulent eddies,
of typical length scale ≈ 1 km, are well within the resolved scales, permitting the development
of eddy structures in the modelled ABL. Atmospheric modelling at these scales has been
discussed by Wyngaard (2004), Hong and Dudhia (2012), Zhou et al. (2014), and others,
and remains a range of scales where the RANS assumption of scale separation comes
into question, and hence whether the risk of “double-counting” turbulent-effects should be
considered. However, (Arnold et al., 2012; Hong and Dudhia, 2012) suggests that the double-
counting problem may be negligible because both the explicit and modelled turbulence feed
on the same available energy. If the modelled turbulence is stronger, i.e. mixes more/earlier,
it could suppress explicit mixing. At this point it is not clear whether the combined dynamical
and parameterized turbulence effects are correct in the terra incognita, so further research is
needed to quantify this. The added eddy viscosity resulting from the turbulence closure cause
additional diffusion that helps to suppress small scale (turbulent) structures from developing,
but larger eddy structures did form in the microscale solutions, especially when buoyant
forcing favoured vertical motion. Grid-dependent solutions are obviously undesirable, but it
remains to be determined how much, if at all, it affects the long-term wind climate. If, on the
long-term the grid-dependant solutions converges to correct statistics, it may still be useful
for resource assessment.

The large differences in the simulations using the G03-U and G03-Q configurations,
which differed only by discretization scheme, must be caused by differences in: numeri-
cal diffusion or interactions between explicit and modelled turbulence, or (most likely) a
combination of the two. This should also be investigated further.

Ultimately, using a first-order accurate discretization of the governing equations is unde-
sirable due to its low accuracy and non-parameterized diffusiveness across scales. Instead, if
double-counting of turbulence is deemed a problem, diffusiveness could be increased explic-
itly via increased eddy viscosity, or other similar ways to lower the effective flow-resolution,
while maintaining a high resolution of the topography. Alternatively, novel approaches that
circumvent the potential double-counting issues could be implemented. For example hybrid
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methodologies that filter the governing equations by turbulence-content instead of averaging
across all turbulent scales. One example of such a methodology is the partially-averaged
Navier-Stokes equations (Girimaji and Abdol-Hamid, 2005), which defaults to using the
turbulence closure model when the characteristic turbulent length scales are smaller than the
implicit grid-scale filter, and that gradually reduces the influence of the turbulence closure,
moving towards a DNS solution, when the turbulent length scales are greater than the grid-
scale filter.

All in all, the study shows promising results for flow modeling around complex sites by
coupling CFD-type microscale models with mesoscale tendencies. Future studies can, hope-
fully, generalize the methodology further, study the sensitivities, and expand the validation
to many other complex sites with different characteristics. For wind resource assessment,
another aspect to study is how to best utilize dynamical model-chains, such as this, to, in the
most computationally inexpensive way, capture the long-term, 5+ years, wind climate at the
site.





Chapter 6

Conclusions

6.1 Summary

This thesis presents the development and results of a technique for meso- to microscale model
coupling via momentum and temperature tendencies; a largely untested way of coupling
atmospheric models for downscaling wind. It presents sensitivity studies and validation
against observed tall mast measurements from both simple and complex sites, which cover
long-enough periods to be relevant for wind climate estimation applications.

The coupling technique, based on ideas from e.g. Bosveld et al. (2014) and Sanz Rodrigo
et al. (2017b), adds momentum and temperature tendencies terms extracted from a mesoscale
model as source terms in the governing equations to force the microscale model, rather than
the common approach based on lateral boundary conditions. The tendency terms correspond
to the large-scale pressure and advective tendencies to the flow at the site from scales larger
than the characteristic scales of the microscale model domain. The Weather Research and
Forecasting (WRF) and the EllipSys3D RANS-type CFD model with a k-ε two-equation
turbulence closure is used. EllipSys3D is modified to include buoyancy and Coriolis forces
and was the starting point for the investigation of model coupling for downscaling of the
wind.

The meso-microscale coupling methodology was first studied in simple terrain at the
Cabauw and FINO3 meteorological masts, which are located offshore and inland, respectively.
These sites of relative simple and homogeneous terrain allowed for the use of a Single-Column
Model version of the microscale model at a fraction of the computational costs of the 3D
model. This study showed that a combination of the time- and height-varying sum of the
pressure-gradient force and advection tendencies as a source for the momentum equation
and advective tendencies for temperature as source for the temperature equation gave the
most accurate long-term statistics. The impact of including the temperature advection was
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small in comparison to that of the momentum advection. Similar findings were shown in
Sanz Rodrigo et al. (2017b) for the ability of a similar SCM to capture the flow for a real
single day LLJ test case.

The study at simple sites included an investigation of the impact of using different
planetary boundary layer and surface layer schemes in the WRF model used to generate the
tendencies for the microscale model. The results showed that although the surface response
was statistically similar in the different SCM results, the long-term wind statistics of the
SCM largely followed the results of the mesoscale simulation used to generate forcing.

A separate aim of the study in simple terrain was to study the ability of the k-ε turbulence
closure used in the microscale model to work well in a range of different weather conditions.
Generally the SCM showed comparable results to those of the different WRF simulations,
but the results from the microscale model had a tendency to exaggerate the surface cooling
and overestimate the wind shear at turbine heights. This indicates that further improvements
can be made to the surface boundary condition methodology and the to the treatment of
unstable stability conditions in the turbulence closure itself.

The encouraging results seen for the simple terrain sites led to applying the coupling
methodology at a site with more complex terrain to explore the feasibility of using the tech-
nique for downscaling in a challenging site with highly heterogeneous terrain characteristics.
The Perdigão double hill experiment site was chosen, which was the subject of an intensive
measurement campaign during the spring and summer months of 2017. For that case, the
tendencies extracted from the WRF model were used to force the 3D microscale model.

The computational grids used for the microscale model at Perdigão were of high enough
resolution to permit the formation of eddy structures of turbulent nature to form in the flow
solution, indicating a potential violation of the RANS assumption of scale-separation. Due
to the possibility of double-counting the influence of turbulence, special consideration was
given to the study of the influence of grid-spacing and the numerical discretisations used, the
latter used as a switch to decrease the effective resolution of the flow. The diffusiveness of
low-order advection schemes suppresses more of the small-scale features from developing in
the flow than high-order methods. Using numerical discretisation to increase diffusion is a
crude way of suppressing turbulence. It is perhaps more appropriate to increased diffusion
by increasing the eddy viscosity via the turbulence closure.

The study showed that the solutions are dependant on both grid spacing and numerical
methods, showing more small-scale (turbulent) fluctuations in the fine grid and with a high-
order advection scheme. These findings motivated the use of three different microscale setups
for an extensive 32-day study period. The first setup (G02-U) used 80 m grid spacing near
the area of interest and the upwind (first-order accurate) discretisation scheme and the second
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setup (G03-U) used 120 m grid spacing and the same scheme, the last setup (G03-Q) used
120 m grid spacing and the QUICK (third-order accurate) discretisation scheme. Results for
G02-U and G03-U did differ, but the largest differences were seen between the those two and
G03-Q showing big variations at different times during the simulations. Three snap-shots
of the long simulation highlighted some key differences of the G02-U and G03-Q solutions
and how they compare to the (LIDAR) observed flow pattern around the site. A low level
jet formed on many nights, and regularly this LLJ developed into a wave on the lee side of
the southwest ridge. Both the G02-U and G03-Q setups captured some characteristics of
this LLJ wave, but the modeled LLJ was too deep, owing most likely to limitations imposed
by the structure of the mesoscale tendencies. The results from the WRF model simulations
failed to develop these wave structures, owing probably to the coarse grid spacing.

Generally for the 32-day period, the G03-U, and especially the G02-U simulation showed
very accurate results at all nine of the meteorological masts at the Perdigão site, compared to
both a naive WRF model simulation with an innermost grid of 333 m grid spacing and the
G03-Q simulation. The mean wind speed biases for G02-U were less than 3% for the top
anemometer height of the four masts located on one of the two ridge tops at the site, while it
was less than 5% for G03-U. The G03-Q setup showed an overestimation of 15–17% and the
results from the 1 km and 333 m WRF domains showed overestimation of the wind speed by
8–12% and 17–25%, respectively. Likewise, the results from the G02-U and G03-U setups
had the smallest RMSEs at the four masts.

Strong temperature nudging was used in both the simple and complex terrain cases.
The vertical temperature profile of the microscale model was nudged towards the vertical
temperature profile of WRF at the corresponding time. The motivation for using this
technique was to capture effects in the WRF model, e.g. radiative cooling during the night
and maintenance of the capping inversion, that microscale model can not capture by itself.
Furthermore, it was presumed that inconsistencies between the microscale and WRF models
can cause issues when both nudging and temperature advection are included. It is largely
unknown how these three temperature components interact, requiring further analysis.

In summary, the coupling methodology of using momentum and temperature tendencies
to drive a microscale model for downscaling the wind in complex terrain shows encouraging
results. Tendencies extracted from a WRF domain, using 9 km grid spacing, were shown to
be adequate forcing for the microscale model to achieve a large improvement of estimated
wind statistics in complex terrain. This is promising results that may lead to an accurate
model-chain for statistical-dynamical downscaling of wind climates, and other purposes in
complex terrain. Because the mesoscale domain can be relatively coarse, the method may
also be computationally cheaper than methods that rely on LBCs and a small grid-refinement
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ratio. However, further studies are needed to investigate remaining uncertainties, and how
the method may be generalized to many different sites.

6.2 Implications and future perspectives

One of the major challenges in determining site conditions for wind energy applications is
developing computationally downscaling methodologies that are computationally feasible
and work well in complex terrain. The coupling methodology studied in this thesis illustrates
a possible path towards this end.

The traditional approach of coupling meso- and microscale models via LBCs suffers from
several issues that the use of tendency terms may resolve. There are inconsistencies between
the two coupled models, related to both the grids and the formulation: inconsistencies of
the resolved topography and surface friction, incompressibility versus compressibility, dry
vs. cloud-permitting formulation, treatment of the surface layer, etc. These contribute to
an adjusted flow in the inflow region near the boundary. These inconsistencies require the
addition of a relatively large fetch zone around the area of interest. Using source terms
instead eliminates that problem, although it requires using periodic boundary conditions and a
smoothed-out boundary region. It remains to be shown how the two coupling methodologies
compare, this issue should be further investigated, perhaps with an intercomparison of the
various current methods.

The issue of model coupling across the gray scales, from mesoscale flow with no resolved
turbulence to microscale flow at turbulence-resolving scales, should be better handled by
using tendencies. The tendencies approach avoids the issues related to feeding in a smooth
inflow with no turbulent structures inside, requiring perturbation techniques or similar tech-
niques to spin up the correct turbulent structures. Forcing the flow via source terms and
having cyclic boundaries should cause a more rapid development of, and better maintained,
turbulent structures.

Besides the possible benefits of coupling via tendencies from a scientific standpoint,
there are additional technical benefits of using source terms. For many CFD modelers, a
background pressure gradient is already used to force the flow for idealized simulations, so
adaption to implementing varying tendencies may be simpler than implementing appropriate
LBCs. The coupling methodology used in this study for RANS-type microscale models,
should also work well for LES, or even DNS, simulations.



6.2 Implications and future perspectives 137

Further validation of the coupling methodology should be carried out with the focus on
several different aspects. For the methodology to be widely useful, some degree of generality
of the methodology should exist, so it should be investigated if the method be generalized to
multiple complex sites, by e.g. determining a universal rule/strategy for generating tendencies
from the mesoscale model.

Another concern about the methodology that should be further studied is the need for a
relatively large jump in scales from the parent, mesoscale domain, to the microscale domain,
because of the desire to avoid resolving microscale effects in the parent domain. It may
become an issue for particular sites where phenomena at the intermediate scales are important
for the flow at the site.

Another key aspect to study is how the potential double-counting of turbulence at the gray
scales impact the results, and how it can be avoided without using LES and the limitations
that come with that. For example, it may be that using hybrid filtering techniques, like
Partially-Averaged Navier-Stokes, provide the necessary balance between using a turbulence
closure, and sometimes explicitly solving turbulence.

There is also a need for further improvement of the use of surface boundary conditions,
including the development of techniques to reduce runaway cooling and surface detachment
effects, and the use of more detailed heterogeneous surface roughness in the microscale
model.

For the Perdigão case specially, to improve modelling of the flow additional surface
friction and forest parameterization in the microscale model should be investigated.

While the methodology showed promising results for dynamical downscaling in a (single)
complex terrain case for a one-month period, it remains to be shown the relative benefit
of using the model-chain for long-term wind climate estimation. Future studies focusing
on this particular problem would be highly interesting. Especially, if the studies focus on
the comparison to the state-of-the-art methodologies to highlight benefits and flaws. This
should should also include a study of the relative feasibility of using statistical-dynamical
downscaling techniques, e.g. Rife et al. (2013), to reduce the computational costs, and its
impact on the predicted wind climate.
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Additional resources for thesis chapters

A.1 Chapter 4

A.1.1 WRF namelist.input sample

Listing A.1 namelist.input sample (one chunk) of WRF simulations used in Chapter 4.
&time_control
run_days = 3
run_hours = 0
run_minutes = 0
run_seconds = 0
start_year = 2006, 2006,
start_month = 10, 10,
start_day = 04, 04,
start_hour = 12, 12,
start_minute = 00, 00,
start_second = 00, 00,
end_year = 2006, 2006,
end_month = 10, 10,
end_day = 07, 07,
end_hour = 12, 12,
end_minute = 00, 00,
end_second = 00, 00,
interval_seconds = 21600
input_from_file = .true., .true.,
history_interval = 10, 10
frames_per_outfile = 6, 6
restart = .false.
restart_interval = 5000
io_form_history = 2
io_form_restart = 2
io_form_input = 2
io_form_boundary = 2
debug_level = 0
iofields_filename = ’WAfields.txt’, \
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’WAfields.txt’, \
’WAfields.txt’, \
’WAfields.txt’, \
’WAfields.txt’

ignore_iofields_warning = .true.
/

&domains
time_step = 90
time_step_fract_num = 0
time_step_fract_den = 22
use_adaptive_time_step = .true.
step_to_output_time = .true.
target_cfl = 1.15, 1.15,
target_hcfl = 0.85, 0.85,
max_step_increase_pct = 5, 51,
starting_time_step = 54, -1,
max_time_step = 108, -1,
min_time_step = 27, -1,
adaptation_domain = 1
max_dom = 2
e_we = 124, 142
e_sn = 100, 142
e_vert = 61, 61
p_top_requested = 5000
num_metgrid_levels = 33
num_metgrid_soil_levels = 4
dx = 27000, 9000
dy = 27000, 9000
grid_id = 1, 2,
parent_id = 0, 1,
i_parent_start = 1, 42,
j_parent_start = 1, 33,
parent_grid_ratio = 1, 3,
parent_time_step_ratio = 1, 3,
feedback = 0
smooth_option = 0
eta_levels = 1.000000 , 0.998600 , 0.996000 , 0.994000 , \

0.992000 , 0.990000 , 0.987592 , 0.984486 , \
0.980977 , 0.977016 , 0.972544 , 0.967500 , \
0.961813 , 0.955403 , 0.948185 , 0.940062 , \
0.930929 , 0.920670 , 0.909158 , 0.896257 , \
0.881820 , 0.859633 , 0.830162 , 0.794019 , \
0.751945 , 0.704330 , 0.659043 , 0.615990 , \
0.575078 , 0.536219 , 0.499329 , 0.464324 , \
0.431126 , 0.399657 , 0.369845 , 0.341616 , \
0.314904 , 0.289641 , 0.265763 , 0.243210 , \
0.221922 , 0.201841 , 0.182641 , 0.164410 , \
0.148206 , 0.132526 , 0.117709 , 0.104002 , \
0.091398 , 0.079808 , 0.069150 , 0.059351 , \
0.050340 , 0.042054 , 0.034434 , 0.027428 , \
0.020986 , 0.015062 , 0.009615 , 0.004606 , \
0.000000

/
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&physics
mp_physics = 3, 3,
ra_lw_physics = 1, 1,
ra_sw_physics = 1, 1,
radt = 30, 30,
sf_sfclay_physics = 1, 1
sf_surface_physics = 2, 2
bl_pbl_physics = 1, 1
bldt = 0, 0,
cu_physics = 1, 1,
cudt = 5, 5,
isfflx = 1,
ifsnow = 1,
icloud = 1,
surface_input_source = 3,
num_soil_layers = 4,
num_land_cat = 28
sf_urban_physics = 0, 0,
bl_mynn_edmf = 0, 0,
bl_mynn_edmf_mom = 0, 0,
bl_mynn_edmf_tke = 0, 0,
/

&dynamics
w_damping = 0
diff_opt = 1, 1,
km_opt = 4, 4,
diff_6th_opt = 0, 0,
diff_6th_factor = 0.12, 0.12,
base_temp = 290.0
damp_opt = 0
zdamp = 5000.0 , 5000.0 ,
dampcoef = 0.2, 0.2,
khdif = 0, 0,
kvdif = 0, 0,
non_hydrostatic = .true., .true.,
moist_adv_opt = 1, 1,
scalar_adv_opt = 1, 1,
/

&bdy_control
spec_bdy_width = 5
spec_zone = 1
relax_zone = 4
specified = .true., .false.,
nested = .false.,.true.,
/

A.1.2 EllipSys1D sample input file (input.dat)

Listing A.2 EllipSys1D sample input file (input.dat)
# --------------------------------------------------------------------
# project grid
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# --------------------------------------------------------------------
# solver parameters
# --------------------------------------------------------------------

mstep 187200
subiterations 8 8
reslim 1.d-4

# --------------------------------------------------------------------
# run parameters
# --------------------------------------------------------------------

transient true 1.0
# --------------------------------------------------------------------
# relaxation parameters
# --------------------------------------------------------------------

relaxu .7d0
# --------------------------------------------------------------------
# fluid parameters
# --------------------------------------------------------------------

density 1.225d0
viscosity 1.78406d-5

# --------------------------------------------------------------------
# farfield values
# --------------------------------------------------------------------

ufarfield 9.5
vfarfield 0.0
func -const teini 0.1
func -const edini 0.003 d0
field u value 9.5
field v value 0.0
field w value 0.0
field tke value teini
field dtke value edini

#---------------------------------------------------------------------
# temperature
#---------------------------------------------------------------------

gravitation -9.81
temperature air
prandtl 0.74 0.74
prandtl_var
inlet temp 100 151 file 1 Twall.dat
field temp value 289+(z+0.1)*3.5d-3
field temp min 289+(4000+0.1)*3.5d-3
field temp file 2 Tprof.dat
temp_inlet 276.7810552465451
temp_wall 276.7810552465451
temp_relaxation
temp_farfield 276.7810552465451
relaxtemp 0.6

# --------------------------------------------------------------------
# Turbulence model
# --------------------------------------------------------------------

turbulence kepsilon
ke_version rough -abl
loglaw true
roughness 0.05128924344121879
lmaxmy 0.075



A.2 Chapter 5 143

ambient_ke 1.0d-4 7.208d-8
kappa 0.4
cmu 0.03
ce1 1.52
ce2 1.833
pred_ke 2.95131
prtke_ke 2.95131
relaxturb 6.0d-1
te_inlet 1.0d-1
ed_inlet 0.003d0
te_farfield 1.0d-1
ed_farfield 0.003d0
turb_cori true 0.00011481912944662681
field u file 3 Uprof.dat
field v file 4 Vprof.dat

A.2 Chapter 5

A.2.1 WRF namelist.input sample

Listing A.3 namelist.input sample (one chunk) of WRF simulations used in Chapter 5.
&time_control
run_days = 3
run_hours = 0
run_minutes = 0
run_seconds = 0
start_year = 2017, 2017, 2017, 2017, 2017,
start_month = 04, 04, 04, 04, 04,
start_day = 12, 12, 12, 12, 12,
start_hour = 12, 12, 12, 12, 12,
start_minute = 00, 00, 00, 00, 00,
start_second = 00, 00, 00, 00, 00,
end_year = 2017, 2017, 2017, 2017, 2017,
end_month = 04, 04, 04, 04, 04,
end_day = 15, 15, 15, 15, 15,
end_hour = 12, 12, 12, 12, 12,
end_minute = 00, 00, 00, 00, 00,
end_second = 00, 00, 00, 00, 00,
interval_seconds = 21600
input_from_file = .true., .true., .true., .true., .true.
history_interval = 10, 10, 10, 10, 10,
frames_per_outfile = 6, 6, 6, 6, 6,
restart = .false.
restart_interval = 5000
io_form_history = 2
io_form_restart = 2
io_form_input = 2
io_form_boundary = 2
debug_level = 0
iofields_filename = ’WAfields.txt’, ’WAfields.txt’, \

’WAfields.txt’, ’WAfields.txt’, \
’WAfields.txt’
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ignore_iofields_warning = .true.
/

&domains
time_step = 90
time_step_fract_num = 0
time_step_fract_den = 22
use_adaptive_time_step = .true.
step_to_output_time = .true.
target_cfl = 1.15, 1.15, 1.15, 1.15, 1.15
target_hcfl = 0.85, 0.85, 0.85, 0.85, 0.85
max_step_increase_pct = 5, 51, 51, 51, 51
starting_time_step = 54, -1, -1, -1, -1
max_time_step = 108, -1, -1, -1, -1
min_time_step = 27, -1, -1, -1, -1
adaptation_domain = 1
max_dom = 5
e_we = 100, 100, 100, 100, 100,
e_sn = 100, 100, 100, 100, 100,
e_vert = 61, 61, 61, 61, 61,
p_top_requested = 5000
num_metgrid_levels = 33
num_metgrid_soil_levels = 4
dx = 27000.0000 , 9000.0000 , 3000.0000 , \

1000.0000 , 333.3333
dy = 27000.0000 , 9000.0000 , 3000.0000 , \

1000.0000 , 333.3333
grid_id = 1, 2, 3, 4, 5
parent_id = 0, 1, 2, 3, 4
i_parent_start = 1, 34, 34, 34, 34,
j_parent_start = 1, 34, 34, 34, 34,
parent_grid_ratio = 1, 3, 3, 3, 3
parent_time_step_ratio = 1, 3, 3, 3, 3
feedback = 0
smooth_option = 0
eta_levels = 1.000000 , 0.998600 , 0.996000 , 0.994000 , \

0.992000 , 0.990000 , 0.987592 , 0.984486 , \
0.980977 , 0.977016 , 0.972544 , 0.967500 , \
0.961813 , 0.955403 , 0.948185 , 0.940062 , \
0.930929 , 0.920670 , 0.909158 , 0.896257 , \
0.881820 , 0.859633 , 0.830162 , 0.794019 , \
0.751945 , 0.704330 , 0.659043 , 0.615990 , \
0.575078 , 0.536219 , 0.499329 , 0.464324 , \
0.431126 , 0.399657 , 0.369845 , 0.341616 , \
0.314904 , 0.289641 , 0.265763 , 0.243210 , \
0.221922 , 0.201841 , 0.182641 , 0.164410 , \
0.148206 , 0.132526 , 0.117709 , 0.104002 , \
0.091398 , 0.079808 , 0.069150 , 0.059351 , \
0.050340 , 0.042054 , 0.034434 , 0.027428 , \
0.020986 , 0.015062 , 0.009615 , 0.004606 , \
0.000000

/

&physics
mp_physics = 3, 3, 3, 3, 3,
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ra_lw_physics = 1, 1, 1, 1, 1,
ra_sw_physics = 1, 1, 1, 1, 1,
radt = 30, 30, 30, 30, 30,
sf_sfclay_physics = 1, 1, 1, 1, 1,
sf_surface_physics = 2, 2, 2, 2, 2,
bl_pbl_physics = 1, 1 , 1, 1, 1,
bldt = 0, 0, 0, 0, 0,
cu_physics = 1, 1, 0, 0, 0,
cudt = 5, 5, 5, 5, 5,
isfflx = 1,
ifsnow = 1,
icloud = 1,
surface_input_source = 3,
num_soil_layers = 4,
num_land_cat = 28
sf_urban_physics = 0, 0, 0, 0, 0,
bl_mynn_edmf = 0, 0, 0, 0, 0,
bl_mynn_edmf_mom = 0, 0, 0, 0, 0,
bl_mynn_edmf_tke = 0, 0, 0, 0, 0,
/

&dynamics
w_damping = 0
diff_opt = 1, 1, 1, 1, 1
km_opt = 4, 4, 4, 4, 4
diff_6th_opt = 0, 0, 0, 0, 0
diff_6th_factor = 0.12, 0.12, 0.12, 0.12, 0.12
base_temp = 290.0
damp_opt = 0
zdamp = 5000.0 , 5000.0 , 5000.0 , 5000.0 , 5000.0
dampcoef = 0.2, 0.2, 0.2, 0.2, 0.2
khdif = 0, 0, 0, 0, 0
kvdif = 0, 0, 0, 0, 0
non_hydrostatic = .true., .true., .true., .true., .true.
moist_adv_opt = 1, 1, 1, 1, 1
scalar_adv_opt = 1, 1, 1, 1, 1
/

&bdy_control
spec_bdy_width = 5
spec_zone = 1
relax_zone = 4
specified = .true., .false.,.false., .false., .false.
nested = .false.,.true., .true., .true., .true.
/

&namelist_quilt
nio_tasks_per_group = 0
nio_groups = 1
/

A.2.2 EllipSys3D input file sample (input.dat)

Listing A.4 capt
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# --------------------------------------------------------------------
# project name
# --------------------------------------------------------------------

project grid
# --------------------------------------------------------------------
# solver parameters
# --------------------------------------------------------------------

grid_level 2
mstep 86400 10 10 10 10
mstepp 5
subiterations 5 5
reslim 1.d-4 1.d-4 1.d-4 1.d-4 1.d-3
reslimp 2.d-1
diff_scheme quick
pres_corr simplea 1.0 1.0
pres_levels 5
interpolationorder 2
nrrestart 10800
extension true

# --------------------------------------------------------------------
# run parameters
# --------------------------------------------------------------------

transient true 2.0
# --------------------------------------------------------------------
# relaxation parameters
# --------------------------------------------------------------------

relaxu .7d0
relaxp .2d0

# --------------------------------------------------------------------
# fluid parameters
# --------------------------------------------------------------------

density 1.225d0
viscosity 1.78406d-5

# --------------------------------------------------------------------
# inlet values
# --------------------------------------------------------------------

winlet 0.d0
uinlet 0.4d0

# --------------------------------------------------------------------
# farfield values
# --------------------------------------------------------------------

wfarfield 0.d0
ufarfield 9.5d0
vfarfield 0.0d0

#---------------------------------------------------------------------
# temperature
#---------------------------------------------------------------------

gravitation 0 0 -9.81
temperature air
prandtl 0.74 0.74
prandtl_var
inlet temp 100 151 file 1 Twall.dat
field temp file 2 Tprof.dat
temp_inlet 294.5594099702149
temp_wall 294.5594099702149
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temp_relaxation
temp_farfield 294.5594099702149
relaxtemp 0.6

# --------------------------------------------------------------------
# Turbulence model
# --------------------------------------------------------------------

turbulence kepsilon
ke_version rough -abl
turbcrossterms false
loglaw true
roughness 0.045489024525633255
transient_scalar lmax file 6 lmax.dat
ambient_ke 0.0001 7.208e-08
cmu 0.03
ce1 1.52
ce2 1.833
pred_ke 2.95131
prtke_ke 2.95131
relaxturb 6.0d-1
te_inlet 1.0d-1
ed_inlet 0.003d0
te_farfield 1.0d-1
ed_farfield 0.003d0
forceallocation
turb_cori true 9.316919707069196e-05
field u file 3 Uprof.dat
field v file 4 Vprof.dat
field w file 5 Wprof.dat

A.2.3 Convergence of EllipSys3D results
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Fig. A.1 Residuals during the two-day sensitivity study (12:00 20 April to 12:00 22 April,
2017) for the G01-Q (a) and G01-U (b) simulations.
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Fig. A.2 Residuals during the two-day sensitivity study (12:00 20 April to 12:00 22 April,
2017) for the G02-Q (a) and G02-U (b) simulations.
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Fig. A.3 Residuals during the two-day sensitivity study (12:00 20 April to 12:00 22 April,
2017) for the G03-Q (a) and G03-U (b) simulations.
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Fig. A.4 U , V , and W (a) and p̂, k, ε , and Θ (b) residuals during the first 10 days of the long
simulations (12:00 13 April to 12:00 15 May, 2017) for the G03-Q setup.
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Fig. A.5 U , V , and W (a) and p̂, k, ε , and Θ (b) residuals during the first 10 days of the long
simulations (12:00 13 April to 12:00 15 May, 2017) for the G03-U setup.
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Fig. A.6 U , V , and W (a) and p̂, k, ε , and Θ (b) residuals during the first 10 days of the long
simulations (12:00 13 April to 12:00 15 May, 2017) for the G02-U setup.
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Abstract. Understanding uncertainties in wind resource assessment associated with the use of the output from
numerical weather prediction (NWP) models is important for wind energy applications. A better understanding
of the sources of error reduces risk and lowers costs. Here, an intercomparison of the output from 25 NWP
models is presented for three sites in northern Europe characterized by simple terrain. The models are evaluated
using a number of statistical properties relevant to wind energy and verified with observations. On average the
models have small wind speed biases offshore and aloft (< 4 %) and larger biases closer to the surface over
land (> 7 %). A similar pattern is detected for the inter-model spread. Strongly stable and strongly unstable
atmospheric stability conditions are associated with larger wind speed errors. Strong indications are found that
using a grid spacing larger than 3 km decreases the accuracy of the models, but we found no evidence that using a
grid spacing smaller than 3 km is necessary for these simple sites. Applying the models to a simple wind energy
offshore wind farm highlights the importance of capturing the correct distributions of wind speed and direction.

1 Introduction

Numerical weather prediction (NWP) models are increas-
ingly being used in wind energy applications, e.g., wind
power resource mapping and site assessment, for planning
and developing wind farms, power forecasting, electricity
scheduling, maintenance of wind farms, and energy trading
on electricity markets. In site assessment, NWP models are
commonly part of the model chain used to estimate the an-
nual energy production (AEP) and are responsible for a large
part of the uncertainty of this estimate.

The extensive use of NWP models, and the vast customiza-
tion space of each model, means that a strong demand exists
for quantification of (a) the overall model uncertainties and
(b) the sensitivity of the uncertainties to the choice of sub-
components and parameters. Understanding the sensitivities
and uncertainties of the NWP model output can reduce their
associated risks and improve decision making. Model users
aware of the sensitivity of individual model components will
be able to optimize the model setup for specific applications.

In the following, the NWP models will be referred to as
mesoscale models, signifying that they partly resolve atmo-

spheric phenomena in the mesoscale range, defined as the
range of horizontal length scales from about one to several
hundreds of kilometers (Orlanski, 1975).

A common way to assess NWP model uncertainties is to
use an ensemble approach, where a number of parallel model
runs, referred to as ensemble members, are run with slightly
perturbed initial conditions (Warner, 2010). The magnitude
of the perturbations is typically limited by the uncertainty
associated with the particular perturbed variable in the ex-
pectation that the ensemble of solutions will cover the so-
lution space arising from the uncertainties of the input pa-
rameters. Ensemble-based techniques are used for many me-
teorological applications, including precipitation forecasting
(Gebhardt et al., 2011; Bowler et al., 2006) and wind power
production forecasting (Constantinescu et al., 2011). How-
ever, one would not expect that the ensembles of any par-
ticular modeling system fully represent the uncertainties of
another modeling system. This was also demonstrated in
the DEMETER project (Development of a European multi-
model Ensemble for seasonal to inTERannual climate pre-
diction) (Palmer et al., 2004), where a multi-model ensemble
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approach, consisting of a number of different modeling sys-
tems, each split into a number of ensembles, provided a bet-
ter representation of the overall uncertainties than any single
model ensemble.

Mesoscale model uncertainties in wind speed near the
ground are particularly sensitive to some model components,
e.g., the choice of planetary boundary layer (PBL) scheme,
the spin up and simulation time, and the grid spacing. In the
last couple of decades these sensitivities have been studied
in great detail. Vincent and Hahmann (2015), Draxl et al.
(2014), and Hahmann et al. (2015b) studied the sensitivi-
ties of the Weather Research and Forecasting (WRF) model
(Skamarock et al., 2008) in offshore and coastal areas in
northern Europe. Vincent and Hahmann (2015) studied the
effect of grid nudging, spin-up time, and simulation time
on near-surface and upper-PBL wind speed variance. They
showed that (1) spatial smoothing is observed when nudging
is used, but the impact is small in the lower part of the at-
mosphere, and (2) longer nudged simulation times (11 days)
only have slightly lower variance than short simulations
(36 h), which makes longer simulations appropriate for cli-
matological wind energy studies. Draxl et al. (2014) studied
the ability of the WRF model to represent the wind speed and
wind shear profiles at a coastal site in Denmark using seven
different PBL schemes. They showed that the Yonsei Univer-
sity (YSU) (Hong et al., 2006) scheme represents the profiles
best for unstable atmospheric stability conditions, while the
Asymmetric Convective Model version 2 (ACM2) (Pleim,
2007b), and the Mellor–Yamada–Janjić (MYJ) (Janjić, 1994)
PBL schemes had more realistic profiles for neutral and sta-
ble conditions respectively. Using the WRF model for wind
resource assessment, Hahmann et al. (2015b) showed that the
choice of PBL scheme and spin-up time has the greatest im-
pact on the simulated mean wind speed for a number of off-
shore sites, while the number of vertical levels and the source
of initial conditions had a smaller impact.

Several studies have investigated the WRF model sensi-
tivities in regions of complex terrain. Carvalho et al. (2012)
studied the sensitivities related to the choice of initializa-
tion frequency, grid nudging, suite of surface layer (SL)
scheme, PBL scheme, and land surface model (LSM). They
observe that using grid nudging and frequent starts (every
second day) gives the best agreement for wind speed, with
several masts located in complex terrain in Portugal. Car-
valho et al. (2012) and García-Díez et al. (2013) found a
seasonal dependency of the optimal suite of SL–PBL–LSM
for simulating PBL winds and temperature. Carvalho et al.
(2014b) investigated the sensitivities related to the SL and
PBL schemes in the WRF model at both land and offshore
sites in and near Portugal. They showed that the Pleim-Xiu
SL scheme (Pleim, 2006) combined with the ACM2 PBL
scheme (Pleim, 2007b) gave the smallest errors for wind
speed and wind energy production estimates across the sites,
while the quasi-normal scale elimination (QNSE) SL and
PBL schemes (Sukoriansky et al., 2005) gave smaller errors

for offshore sites. In a similar study, Gómez-Navarro et al.
(2015) analyzed the sensitivities of the WRF model to the
choice of PBL scheme and grid spacing in complex terrain
in Switzerland. They found that using a modified version of
the YSU PBL scheme, which accounts for effects of unre-
solved topography (Jiménez and Dudhia, 2012), in combina-
tion with the smallest grid spacing (2 km) and analysis nudg-
ing gave the best agreements with measurements during a
number of wind storms. Carvalho et al. (2014a) studied the
sensitivities of simulating the local wind resource with the
WRF model at several masts in Portugal to the choice of data
set used for initial and boundary conditions. They show that
using the ERA-Interim reanalysis data set (Simmons et al.,
2007) gave the smallest errors compared to NCEP (National
Centers for Environmental Prediction) R2 (Kanamitsu et al.,
2002), CFSR (Saha et al., 2010), FNL, and GFS data sets, as
well as the NASA MERRA data set (Rienecker et al., 2011).

Sensitivities to the choice of modeling system have also
been studied for wind energy applications. Horvath et al.
(2012) compared the MM5 (Grell et al., 1994) and WRF
models for a site in west–central Nevada characterized by
complex terrain. Both models were run in a grid nesting setup
from 27 km to 333 m grid spacing, and the near surface wind
was compared to wind observations from several 50 m tall
towers. The study showed that the WRF-derived winds were
in better agreement with mean wind speed observations, but
thermally driven flows were overestimated in both intensity
and frequency. Hahmann et al. (2015a) compared two down-
scaling methodologies: the KAMM-WAsP (Badger et al.,
2014) and WRF Wind Atlas (Hahmann et al., 2015b) meth-
ods, both based on a model chain approach between a NWP
model and a linearized flow microscale model, for a num-
ber of mast sites in South Africa. The study showed that the
WRF-based method gave smaller biases than the KAMM-
based approach, which underestimated the wind speeds.

Community-driven model intercomparison projects pro-
vide an opportunity to study both model uncertainties and
sensitivities to model components. In the last decade, sev-
eral intercomparison projects have been successfully carried
out based on model output submitted by modelers from the
wind energy community. The Bolund experiment (Bechmann
et al., 2011) was an intercomparison of flow models, from
simple linearized flow models to computational fluid dynam-
ics (CFD) models. The models were compared to measure-
ments around the small island of Bolund in Denmark. The
Comparison of Resource and Energy Yield Assessment Pro-
cedures (CREYAP; Mortensen et al., 2015) was an inter-
comparison of energy yield assessment procedures based on
four case studies. The study revealed a large spread amongst
the different procedures and highlighted the need for fur-
ther studies into the uncertainties associated with the mod-
els themselves. A similar intercomparison of NWP models is
attractive for a number of reasons. First, it offers an oppor-
tunity for model developers, model users, and stake holders
to get a better understanding of the model uncertainties. Sec-

Wind Energ. Sci., 2, 211–228, 2017 www.wind-energ-sci.net/2/211/2017/



B. T. Olsen et al.: Intercomparison of mesoscale models 213

ondly, a collaborative intercomparison project, which utilizes
model data crowdsourced from the wind energy community,
increases the scalability of the study compared to traditional
sensitivity studies by distributing the workload and compu-
tational cost among participants. Finally, if sufficient meta-
data are collected, they offer a unique insight into the com-
mon practices in mesoscale modeling within the wind energy
community.

In this paper, a blind intercomparison of the output from
25 different NWP simulations is presented for three loca-
tions in northern Europe. The study is based on model output
submitted by the modeling community to an open call for
model data for a benchmarking exercise co-organized by the
European Wind Energy Association (EWEA, now WindEu-
rope) and the European Energy Research Alliance, Joint Pro-
gramme Wind Energy (EERA JP WIND). The three cho-
sen sites represent some of the simplest terrains: offshore,
inland near the coast, and inland in flat terrain, where the
smoothing of the terrain representation is not an issue. The
three sites have quality observations from tall meteorolog-
ical masts with many heights. The main objectives of this
study are (1) to highlight and quantify the uncertainties of the
models and serve as motivation for future analysis of model
uncertainties and (2) to identify model setup decisions that
have an impact on the model performance. The models are
evaluated using simple metrics relevant to wind energy ap-
plications.

The structure of the paper is as follows. In Sect. 2 we
present a detailed description of the methodology used, in-
cluding a description of the three study sites and the models
used by the participants. Section 3 presents the intercompar-
ison results, and finally Sect. 4 contains the summary and
conclusions of the study.

2 Methodology

2.1 Sites and observations

Three sites with quality measurements from tall meteorolog-
ical masts with different terrain characteristics were chosen
for this study: (1) FINO3, an offshore mast in the North Sea,
(2) Høvsøre, a land mast near the Danish west coast, and
(3) Cabauw, a land mast in the Netherlands. The mast loca-
tions are shown in Fig. 1, and the coordinates and character-
istics of each site are provided in Table 1. Long-term mea-
surements are available from each of the masts, but a single
year (2011) was selected as the study period due to its excel-
lent data availability.

FINO3 (Fabre et al., 2014) is a marine platform located
in the North Sea 80 km off the coast of Denmark, with a
meteorological mast reaching 120 m above mean sea level
(a.m.s.l.). We used measurements at 40, 60, and 90 m a.m.s.l.
in this study. The Høvsøre (Peña et al., 2014) mast is located
about 2 km east of the coastline in western Jutland, Denmark.
Apart from the sharp surface roughness change at the coast-

1
2

3

Figure 1. Map of northern Europe with the three site locations
used in the model intercomparison: (1) FINO3, in the North Sea.
(2) Høvsøre, Denmark. (3) Cabauw, the Netherlands.

line and the presence of a small coastal escarpment, the sur-
rounding terrain is homogeneous and flat. We used measure-
ments at 10, 40, 60, 80, 100 m at this site. The Cabauw mast
(Ulden and Wieringa, 1995) is located 40 km inland near the
small towns of Cabauw and Lopik in the Netherlands. The
surroundings are flat and characterized by fairly homoge-
neous agricultural fields, but with patches of forest and build-
ings. Here we used measurements at 10, 20, 40, 80, 140, and
200 m.

Figure 2 shows availability of wind speed observations for
2011 at the three meteorological masts. At Cabauw, the data
were gap-filled by simple interpolation as the missing values
were few (less than 2 % missing data per month) and the gaps
short. The time series from the two other sites were not gap-
filled.

At FINO3, the wind speed measurements at three of the
heights, 50, 70, 90 m, are a combination of the measure-
ments from three anemometers at three separate booms 120◦

apart. This procedure minimizes the effects of the mast flow
distortion. At the other two heights, 40 and 60 m, only one
anemometer is available, and the wind measurements are
therefore susceptible to flow distortion. Thus, instead of us-
ing the single-anemometer data from 40 and 60 m, the mea-
surements from 50 and 70 m were vertically interpolated in
log height to 40 and 60 m. This assumes that the errors due to
interpolation and extrapolation are much smaller than those
caused by mast flow distortion.

2.2 Submission procedure and models

EWEA issued an open call for data and the submission pro-
cedure consisted of a template spreadsheet and a question-
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Table 1. Site description, including latitude and longitude coordinates, classification of the site, the height of the mast zs, and the location
terrain elevation relative to sea-level zasl and prevailing wind direction.

No. Name Latitude (◦) Longitude (◦) Type zs (m) zasl (m) Prev. wind direction

1 FINO3 55.195 7.158 Offshore 120 0 WSW
2 Høvsøre 56.441 8.151 Coastal 116 2 WSW
3 Cabauw 51.970 4.926 Land 213 −1 SW

Figure 2. Availability of wind speed and direction observations for
(a) FINO3, (b) Høvsøre, and (c) Cabauw given as the fraction of
completeness for each month of the year 2011 for each height.

naire available for download from the EWEA website. The
participants filled the spreadsheet with the time series of the
required variables at each location and height. The ques-
tionnaire contained details about the setup of the modeling
system used. The participants returned the spreadsheet to
EWEA, who passed it on to the authors in an anonymous
version.

The requested model variables were hourly wind speed
and direction, air temperature, and atmospheric stability. The
questionnaire asked about the modeling setup, i.e., the model
code and version, the SL and PBL schemes, the LSM, the
grid nest size(s) and spacing(s), the vertical levels, the land
use data, the length of the simulation, the spin-up time, and
the source of the initial and boundary conditions. The partic-
ipants were also asked to comment on any additional modifi-

cations made to the model, including assimilation, ensemble,
or other methods used.

Table 3 lists the various groups participating in the exer-
cise. It includes representatives from private companies, uni-
versities, research centers, and meteorological institutes. Ta-
ble 4 summarizes the models and the different model setup
options used. The WRF model is by far the most commonly
used model in the study, with 18 out of 25 models (Ta-
ble 4). The Noah LSM was the most common LSM used, and
the ERA-Interim reanalysis was the most common source
of boundary and initial conditions. The PBL scheme used
and the source of land cover data were more varied amongst
the participants. Most models used a maximum simulation
length of less than 100 h, including the spin-up time (most
typically 12 h spin-up and 36 h of total simulation). The sim-
ulation and spin-up length ranged from 1 h spin-up and 7 h
simulation to 24 h spin-up and continuously running for the
full year.

For reference, wind time series from the ERA-Interim re-
analysis (Dee et al., 2011) were included in the comparisons
whenever possible. The ERA-Interim reanalysis data set is a
global data set based on extensive assimilation of surface and
upper-air observations. The data are available on a grid spac-
ing of about 80 km in the horizontal with 60 vertical levels,
with values at approximately 10, 34, 69, 118, 187, and 275 m
above the model surface. We used bilinear interpolation to
interpolate to the sites coordinates and linear interpolation in
the vertical. The data set is available in 6 h intervals; thus,
linear interpolation in time was used to obtain hourly sam-
ples.

2.3 Statistical methods

This study is based on direct comparison between the ob-
servations and model output at collocated positions, as well
as intercomparison of the modeled output. The sampling fre-
quency for the study was chosen to be 1 h. For the observa-
tion data this means hourly mean values; for the mesoscale
models the inter-hourly variation is small; thus, instanta-
neous values were used. To ensure temporal consistency be-
tween observations and modeled output, instances of miss-
ing data from the observations were removed from the mod-
eled output. Furthermore, to get consistent vertical profiles,
only instances where all heights for a particular mast with
available data were used. The model output submitted was
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assumed to be quality checked by the submitter, but it was
also checked by the authors for obvious nonphysical or in-
consistent behavior and not used in that case. The number of
models excluded was between two and four at each of the
sites, but no model was excluded from all three sites.

Inter-model mean and inter-model variations

The emphasis of this study is on the wind speed, u, and wind
direction, as they are the most important variables for wind
energy applications. In the following, a subscript “m” signi-
fies the temporal mean of a variable, i.e., um is the temporal
mean wind speed. This is not to be confused with the mean
value of the model ensemble, also referred to as the inter-
model mean, which is denoted with a tilde. For example, the
mean of the model ensemble for the temporal mean wind
speed is denoted as ũm and calculated as

ũm =
1
N

N∑

i

um,i . (1)

Here i is the model index and N is the total number of mod-
els. Likewise, it is useful to define its standard deviation:

σ̃um =

√√√√ 1
N

N∑

i

(
um,i − ũm

)2
, (2)

which is the standard deviation of the inter-model variation
between the temporal model means. Since ũm and σum are
both sensitive to outliers, we used the following procedure:

1. Calculate ũm and σ̃um .

2. Remove models whose mean |um,i − ũm|> 3.5 σ̃um .

3. Recalculate ũm and σ̃um with the new subset of models.

The value of 3.5 σ̃um was chosen somewhat arbitrarily to en-
sure that only extreme outliers were removed. The procedure
included only models with output available at all the heights
to ensure a vertically consistent profile of the mean and its
variation. Typically, only one or two models were removed
by this criteria.

Coefficient of variation

Variations in wind speed often scale with the mean wind
speed. Thus, to allow for intercomparison of wind speed vari-
ation intensity across vertical levels, we define the coefficient
of variation, Cv,u. It is defined as the ratio of the standard
deviation and the mean, σu/um, and is a unit-less measure of
the relative variation at the sampling timescale. At timescales
of seconds it is known as the turbulence intensity, but in this
case, with a sampling frequency of 1 h, it represents the in-
tensity of variations of synoptic- and mesoscale weather phe-
nomena.

Wind speed shear exponent

To diagnose the wind shear in the boundary layer, we use the
wind shear exponent, α, which uses the wind speed u1 and
u2 at two heights z1 and z2, given by the expression

u2 = u1

(
z2

z1

)α
. (3)

In the surface layer, α is strongly influenced by the surface
roughness and the atmospheric stability. By comparing the
modeled to the measured α, it is thus possible to gain insights
into how the model captures these effects.

Error metrics

The RMSE and the normalized RMSE (NRMSE) were used
as error metrics to obtain single-value measures of the error
across heights at a site. The RMSE and NRMSE are defined
as

RMSE=

√√√√1
n

n∑

j=1

(
xMj − x

O
j

)2
(4)

NRMSE=

√√√√√1
n

n∑

j=1

(
xMj − x

O
j

xOj

)2

(5)

for a set of n modeled values xMj and observed values xOj .
The RMSE was used for variables that do not scale with
height in the surface layer, e.g., wind speed shear exponent;
the NRMSE was used for variables that do scale with height,
e.g., wind speed.

2.4 Wind energy application

To investigate the errors associated with the use of each
model in wind energy applications, we performed a simple
wind resource assessment exercise, using both measurements
and modeled time series at FINO3.

A typical approach to resource assessment is to run a
mesoscale model for a number of years, followed by a down-
scaling process where the wind climate statistics obtained
from the mesoscale model are used as input to a microscale
model (Badger et al., 2014; Hahmann et al., 2015a). In sim-
ple terrain, the microscale model usually consists of a flow
model like the one used by the Wind Applications and Anal-
ysis Program (WAsP). WAsP uses a linearized flow model
based on Jackson and Hunt (1975). The procedure in WAsP
consists first of an upscaling, where local effects from vari-
ations in orography, surface roughness, and obstacles are re-
moved from the wind climate statistics. This is referred to
as generalization of the wind climate, which makes it rep-
resentative for a larger area than the site-specific wind cli-
mate. The size of this area depends on the complexity of the
surface roughness and orographic variations in that area. To
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Figure 3. Vertical profiles of mean wind speed (um) at the three sites for the observations (black), the ERA-Interim data set (green), the
mesoscale models MMi (red), and the inter-model mean M̃M (blue line), and its standard deviation ±σ̃ (blue shade).

obtain a site-specific wind climate at a new site in this area,
the generalized wind climate is downscaled by reversing the
generalization process, i.e., by introducing the site-specific
effects of orography, surface roughness, and obstacles of the
new site.

Given the wind climate and the turbine power curve, the
expected power output can be calculated for any site. Since
the participants in this intercomparison were not requested
to submit the model-specific orography and roughness maps
near each site, it is not possible to go through the general-
ization procedure and subsequent downscaling process at the
inland sites. However, for the offshore site FINO3 there are
no effects of orography, and the differences in roughness be-
tween the models can be assumed to be negligible. Therefore,
we can use the raw model output at this site to estimate the
wind resources estimated by each of the models, without the
generalization procedure.

We performed the wind resource exercise at 90 m at
FINO3, assuming first a single Vestas V80 turbine at the site,
and then repeated for the exercise for the wind farm of Horns
Rev, which is an 80-turbine wind farm located near FINO3.
The resource estimations for the wind farm include the sim-
ple wake parametrization present in the WAsP model, which
was used to estimate the power losses.

3 Results

3.1 Mean quantities and distributions

The following subsection is dedicated to the general perfor-
mance of the models and their ability to capture the mean and
the distributions of a number of wind-related quantities. As
previously stated, the goal is to highlight the weaknesses of
the models to encourage further analysis of model sensitivi-
ties.

3.1.1 Annual mean wind speed

Figure 3 shows the vertical profiles of mean wind speed (um)
at the three sites. At FINO3 (Fig. 3a), most mesoscale mod-

els (MMs) underpredict um at all heights. However, the bias
on average is less than 0.27 m s−1 (∼ 2.8 %). This is a small
bias compared to that of the ERA-Interim data, which show
a larger bias than all the mesoscale models. The inter-model
variance σ̃um at FINO3 is 2.7–3.1 % of the inter-model mean,
and decreases with height. That is the lowest combined inter-
model variance of any of the three sites.

At Høvsøre (Fig. 3b), the MMs generally have small wind
speed biases above 10 m. The error of the inter-model mean
of the models is smaller than±0.16 m s−1 (∼ 1.9 %), and the
inter-model variance is 3.0–5.2 %, decreasing with height,
which is low compared to the biases at the other site on
land (Fig. 3c). At 10 m, most MMs overpredict the mean
wind speed. The inter-model mean has a positive bias of
0.54 m s−1 (∼ 8.4 %). The largest inter-model variance is
also seen at 10 m (7.8 %). The ERA-Interim also overpre-
dicts the mean wind speed at 10 m, with a larger bias than ũm.
Above 10 m, ERA-Interim has smaller errors, but the shape
of the profile is not well captured. Signs of a “kink” in both
the observed and modeled profiles are present, which could
indicate the transition from the low surface roughness of the
sea to the higher surface roughness inland.

At Cabauw (Fig. 3c), most of the MMs overpredict um.
Only one of the models and the ERA-Interim reanalysis show
a significant underprediction, and in the case of the reanaly-
sis, this underestimation increases with height. The overpre-
diction by the rest of the MMs varies in magnitude, but the
average of the models, excluding the outliers, is in the range
of 4–9 % across the different heights. The largest relative er-
rors are at the lowest levels. The inter-model variance (̃σum )
at Cabauw varies between 3.3 and 8.1 % across the different
heights and is largest at the lowest levels. The decrease in
wind speed bias with height was also observed by Jiménez
et al. (2016), who associated this with excessive turbulent
mixing, which may be caused by a misrepresentation of the
surface roughness length.
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Figure 4. Wind speed distributions at the three sites (FINO3 at 90 m, Høvsøre at 80 m, and Cabauw at 80 m) for the observations (black),
the ERA-Interim data set (green), the mesoscale models MMi (red), and the inter-model mean (blue line) and its standard deviation M̃M± σ̃
(blue shade).
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Figure 5. Wind direction distributions at the three sites (FINO3 at 90 m, Høvsøre at 80 m, and Cabauw at 80 m), based on 24 sectors, for the
observations (black), the ERA-Interim data set (green), the mesoscale models MMi (red), and the inter-model mean M̃M (blue line) and its
standard deviation ±σ̃ (blue shade).

3.1.2 Frequency distribution of wind speed

Figure 4 shows that, on average, the MMs capture the wind
speed distributions well compared to the observations. The
only exception is a slight shift towards higher wind speeds
at Cabauw, corresponding to the positive bias in mean wind
speed observed in Fig. 3. The ERA-Interim data set captures
the distribution well at Høvsøre, but it has distributions that
are shifted towards lower wind speeds at FINO3 and Cabauw,
corresponding to the bias in Fig. 3.

3.1.3 Distribution of wind direction

Figure 3 shows that the MMs generally capture the mean
wind speed well. This is also true for the wind direction dis-
tributions, commonly called “wind roses”. The distributions
are split into 15◦ sectors at heights of either 80 or 90 m. Fig-
ure 5 also shows that the models are in good agreement. At
all three sites the MMs capture the distribution better than the
reanalysis data. At all sites, but most markedly at Cabauw,
the ERA-Interim distribution is rotated clockwise relative to
the distribution from the observations and MMs. This rota-
tion might result in a different wind farm layout if its power

is optimized according to the wind roses from MMs or the
ERA-Interim.

3.1.4 Annual wind speed cycle

Figure 6a shows the monthly distribution of the mean wind
speed for the MMs and the measurements. Apart from a few
models outside the 3× quartile range, most models capture
the diurnal cycle well. Interestingly, the figure also reveals
that both the overestimation by the models at Cabauw and
the underestimation at FINO3, seen in Fig. 3, are evenly dis-
tributed throughout the year. At Høvsøre, a mix of under- and
overestimations are observed.

Figure 6b shows the monthly distribution of the mean ab-
solute error (MAE) for wind speed for the MMs. Summer
and spring are generally associated with larger deviations be-
tween the modeled and observed wind speeds. It is well es-
tablished that fall and winter weather in northern Europe is
governed by large-scale planetary and synoptic weather phe-
nomena, which is well captured by mesoscale models. Dur-
ing spring and summer, meso- and thermally induced phe-
nomena (e.g., sea breezes and convection) have a larger im-
pact on the flow, which is more difficult for the models to
correctly capture. The lowest MAE is observed at FINO3 in
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Figure 6. (a) Monthly distributions of mean wind speed for the MMs (box plots) and observations (star) at each location (colors). (b) Monthly
distributions of the models for the mean absolute error (MAE) for wind speed at each location (colors). The boxes represent the second and
third quartiles. The whiskers extend to the smallest (bottom) or largest (top) value that is within 1.5 times the inter-quartile range. Samples
outside this range are shown as outliers.

Figure 7. Distribution of mean absolute error (MAE) for wind
speed at the three sites for five stability classes: unstable (U), near-
unstable (NU), neutral (N), near-stable (NS), and stable (S). See def-
initions in Table 2. The boxes represent the second and third quar-
tiles. The whiskers extend to the smallest (bottom) or largest (top)
value that is within 1.5 times the inter-quartile range. Samples out-
side this range are shown as outliers.

February, October, and November, with most MAE values
near 10 %. The largest MAEs are in November at Cabauw
(values in the range of 30–45 %).

3.1.5 Effect of atmospheric stability

It is generally acknowledged that non-neutral atmospheric
stability conditions pose one of the greatest challenges for
MMs (Fernando and Weil, 2010). To study the performance
of the models in different stability regimes, the stability pa-
rameters supplied for each model (inverse Obukhov length or
bulk Richardson number) were used to group the hourly sam-
ples into five stability classes based on Gryning et al. (2007)
and Mohan and Siddiqui (1998), shown in Table 2. Because
the models represent atmospheric stability in different ways,
the number of samples in each stability group varies for the
different models. However, the number of samples in each
group was never below 150 h (out of 8760 h), and it was more
than 400 in most cases. The MAE for wind speed was calcu-
lated for each of groups and for all models. The results are
shown in Fig. 7.

At all three sites, the smallest deviations between mod-
eled and measured wind speeds are found when the mod-
els perceive the surface layer stability from unstable (U) to
stable (S). The MAE in these cases typically range from 10
to 35 %, with just a few models outside of the 3× quartile
range. The largest deviations are found when the models es-
timated very stable conditions (VS) or very unstable condi-
tions (VU) (typical values in the range 15–45 % MAE). The
site where the largest errors are found is Cabauw, and the
smallest is FINO3. This is in agreement with the results in
Sect. 3.1.
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Table 2. Ranges of inverse Obukhov length (1/L) and bulk Richardson number (Rib) used in the stability classification. The 1/L classes
were used in Gryning et al. (2007) and the Rib classes in Mohan and Siddiqui (1998). In both cases the original very unstable and the stable
classes have been combined into the open-ended stable class. The same is true for the original very unstable and unstable classes, which have
been combined into the open-ended unstable class.

Stability class Class name 1/L interval [m−1] Rib

U Unstable 1/L<−0.005 Rib<−0.011
NU Near-unstable −0.005≤ 1/L<−0.002 −0.011≤Rib<−0.0036
N Neutral −0.002≤ 1/L< 0.002 −0.0036≤Rib< 0.0072
NS Near-stable 0.002≤ 1/L< 0.005 0.0072≤Rib< 0.42
S Stable 0.005≤ 1/L 0.42≤Rib
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Figure 8. Vertical profiles of the coefficient of variation for wind speed Cv,u at the three sites for observations (black), ERA-Interim (green),
the mesoscale models MMi (red), and the mesoscale models mean and inter-model variance M̃M± σ̃ (blue).

3.1.6 Coefficient of variation of wind speed

Figure 8 shows the mean coefficient of variation (Cv,u) for
wind speed at the three sites. At FINO3, the average of the
MMs C̃v,u is similar to the observations, with a bias of less
than 1 % at all three heights. Ignoring one outlier, the inter-
model variance ranges between 3.0 and 3.5 % at the three
heights. The outlier, which shows much lower values, is a
consequence of the low variance for that model compared
to the other models. It was removed by the filtering method
described in Sect. 2.3 when calculating the mean of the mod-
els (C̃v,u) and the inter-model variance (̃σCv,u ). The ERA-
Interim data set also captures the magnitude of Cv,u well.

At Høvsøre, Cv,u decreases with height for both the ob-
servations and most of the MMs. The inter-model mean of
the models (C̃v,u) agrees well with the observations, but un-
derestimates it by about 2 %. The ERA-Interim data set does
not capture this behavior, and instead shows an increase with
height. At the highest levels, however, it reaches the aver-
age of the models and the observed values. The spread of the
MMs (σCv,u ) is slightly higher than at FINO3 (3.6–4.4 %) and
is highest at the lowest levels.

At Cabauw, Cv,u at 10 m is the largest value found across
all sites. Above 10 m a sharp drop-off is found up to 80 m,
where is starts to slowly increase up to 200 m. Most of the
MMs capture this behavior, which is reflected in the mean
of the models (C̃v,u). However, the models underestimate the
magnitude and the drop-off of Cv,u at the lowest levels, with

Table 3. Participants in the study in alphabetical order.

Participant Institution Country

3E Company Belgium
Anemos GmbH Company Germany
ATM-PRO Company Belgium
CENER Research center Spain
CIEMAT Research center Spain
DEWI Company Germany
DTU Wind Energy University Denmark
DX Wind Technologies Company China
EMD International Company Denmark
ISAC-CNR Research center Italy
KNMI Meteorological institute The Netherlands
Met Office Meteorological institute United Kingdom
RES Ltd. Company United Kingdom
Statoil ASA Company Norway
University of Oldenburg University Germany
Vestas Company Denmark
Vortex Company Spain

a bias of up to 12 % at 10 and 20 m. Above 80 m the mod-
els agree with the observations. The ERA-Interim data set is
nearly constant with height, underestimatesCv,u below 40 m,
and overestimates it above. The inter-model variance (̃σCv,u )
of the MMs is largest at the lowest levels, 8.0 % at 10 m, and
gradually decreases to less than 4 % at 200 m.
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Figure 9. Coefficient of variation for wind speed Cv,u for westerly (a, c) and easterly (b, d) winds at FINO3 (a, b) and Høvsøre (c, d) for
the observations (black), the ERA-Interim data set (green), the MMs MMi (red), and the mesoscale models mean and inter-model variance
M̃M± σ̃ (blue).

Effect of upstream conditions on the variation
of wind speed

The coastal site Høvsøre and the offshore site FINO3 is used
to investigate whether there is a dependency of the coefficient
of variation for wind speed (shown in Fig. 8) on upstream
surface conditions. With a nearby coastline aligned north–
south, Høvsøre represents the case with anisotropic surface
roughness conditions: westerly winds come from the sea (on-
shore flow) and easterly winds from land (offshore flow). In
contrast, the offshore site FINO3 has isotropic upstream sur-
face roughness. To study the differences, the coefficients of
variation were binned according to four wind direction sec-
tors, each spanning 90◦: north, east, south, and west. The val-
ues for the east and west sectors were then extracted and an-
alyzed. Figure 9 shows the profiles of Cv,u for the two wind
directions at FINO3 and Høvsøre.

At FINO3, the coefficient of variance is almost constant
with height and slightly lower for easterly winds than for
westerly flow. This is true for both models and observa-
tions. The sample size for easterly winds is smaller, about
half, than for westerly flow. However, both sample sizes are
large (N > 1000); thus, the influence from sample sizes is
expected to be small. The average of the MMs captures the
observed behavior well for both westerly and easterly winds,
and the inter-model variance is similar for the two sectors.
The ERA-Interim agrees better with the observations during
easterly flow at FINO3.

At Høvsøre, the coefficient of variation is larger for west-
erly than for easterly winds. Easterly winds show larger co-
efficients of variation at 10 m than higher up. The reduction
of Cv,u with height up to 40 m for easterly flow is under-
estimated by most of the mesoscale models and completely
missed by the ERA-Interim data set. For westerly winds, the
mean of the models and the observations agree but is under-
estimated by ERA-Interim.

The dependence on height of Cv,u is only present at
Høvsøre for easterly winds and points to the influence of up-
stream surface conditions on the variation. The observed pat-
tern is captured by the MMs, but the models show a more
smoother vertical transition than the observations do. The
ERA-Interim reanalysis does not capture the pattern.

3.1.7 Distribution of wind speed shear exponent

Figure 10 shows the distributions of wind speed shear expo-
nent (α) for each of the three sites calculated between 40 and
80 or 40 and 90 m. Under neutral atmospheric stability con-
ditions and isotropic surface roughness, a sharp distribution
centered around a single value is expected. This means that
for offshore sites such as FINO3, the spread in shear expo-
nent comes primarily from variations in atmospheric stabil-
ity. With this in mind, the distributions show that most MMs
capture the stability well at the site. The ERA-Interim data
set does not capture the strongest shear situations well. This
can be easily explained by the low data frequency (6 h).
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Figure 10. Frequency of occurrence of the shear exponent (α) at the three sites for the observations (black), the ERA-Interim data set (green),
the mesoscale models MMi (red), and the inter-model mean (blue line) and standard deviation M̃M± σ̃ (blue shade).

At Høvsøre and Cabauw, the distributions of α reflect the
combined effect of both the nonhomogenous upstream sur-
face roughness and the variations in atmospheric stability. At
the coastal site, the wind speed profile changes depending on
whether the fetch is from land or from the sea, which is also
reflected in the distribution of α (Hahmann et al., 2015b).
Figure 10 also shows that while the shear distributions are
generally also well captured at Høvsøre and Cabauw, a slight
shift towards lower values is observed at both sites. This
points to an underestimation of the surface roughness, a mis-
representation of the atmospheric stability, or a combination
of the two. Just like at FINO3, the ERA-Interim data set does
not capture the weak and strong shear cases at Høvsøre and
Cabauw.

3.2 Relating performance to model setup

To identify what model setup choices lead to better model
performance, the statistics of each model across all heights
are reduced to just two values at each site: NRMSE for wind
speed (NRMSEu) and RMSE for wind speed shear exponent
(RMSEα). The shear exponent was calculated between pairs
of nearby levels, e.g., at FINO3 two values were calculated,
one between 40 and 70 m, and one between 70 and 90 m. The
RMSEα was then calculated as described in Sect. 4 between
modeled and observed values of the shear exponent across
all height pairs.

Figure 11 shows NRMSEu and RMSEα for all MMs at
all three sites. It shows, similar to Sect. 3.1, that the models
generally have smaller mean wind speed and mean shear ex-
ponent errors at the offshore site FINO3. However, as previ-
ously shown, errors are larger near the surface, and the three
levels used at FINO3 are at 40 m and above, unlike Høvsøre
and Cabauw where levels below 40 m are included.

The models were then grouped according to specific model
components. Given the range of setup choices that influ-
ence the model performance, large groups were needed to
obtain useful statistics. With this in mind, three setup op-
tions were chosen for analysis: PBL scheme, grid spacing,
and simulation lead time; statistics of NRMSEu and RMSEα

Figure 11. RMSE for wind speed shear exponent (RMSEα) versus
normalized RMSE for wind speed (NRMSEu) at the three sites.

were also computed for each group. The choice of group-
ings was based mainly on two criteria: (1) it was possible
to form groups with at least six members in each group and
(2) each of the options was highlighted in the literature as
being important for model performance (Hahmann et al.,
2015b; Gómez-Navarro et al., 2015; Carvalho et al., 2012;
Draxl et al., 2014). Several other setup options were con-
sidered: MM, LSM, land cover, spin-up time, and data set
used for initial and boundary conditions, but either it was not
possible to group them in a meaningful way, or they were
deemed of too little importance based on previous studies.
Models missing information about particular setup options,
or missing output at some heights, were excluded from this
analysis.

3.2.1 PBL scheme

The PBL scheme in a MM ensures an accurate representation
of thermodynamic and kinematic structures of the lower tro-
posphere (Cohen et al., 2015). Two important characteristics
of the PBL schemes are their order of closure and whether
mixing happens through a local or a nonlocal process. Equa-
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Table 4. Setup description of the 25 model setups ranked by horizontal grid spacing of the finest grid. The columns are the model name and
version (model), the PBL scheme (PBL), the land surface model (LSM), whether nesting was used (Nest.), the horizontal grid spacing (1),
the land cover source, simulation and spin-up time (Sim. time), and initial and boundary condition data (B.C.).

No. Model PBL LSM Nest. 1 (km) Land cover Sim. time (h) B.C.

1 WRF V3.6.1a Custom – yes 1 CORINEb 48–24 Era-Ic

2 MAESTRO V15.01 – – no 1 CORINE – Era-I
3 WRF V3.6.1 MYJd Noahe yes 2 USGSf 78–6 Era-I
4 WRF V3.3.1 MYJ – yes 2 GlobCoverg 11 064–24 Era-I
5 WRF V3.5.1 YSUh Noah yes 2 CORINE 30–6 Era-I
6 WRF V3.5.1 YSU Noah yes 2 – 264–24 Era-I
7 HARMONIE V37h1.1i SURFEXj ISBAk yes 2.5 ECOCLIMAPl 7–1 Era-I
8 WRF V3.6 ACM2m Noah yes 3 USGS-MODIS 84–12 FNLn

9 WRF V3.4 MYJ Noah no 3 USGS 28–4 Era-I
10 WRF V3.6.1 YSU Noah yes 3 CORINE 672–96 CFSRo

11 WRF V3.0.1 MYJ Noah yes 3 GlobCover 36–6 CFSR
12 WRF V3.6.1 MYNNp Noah yes 3 USGS 816–72 Era-I
13 WRF V3.0.1 MYJ Noah yes 3 GlobCover 36–12 MERRAq

14 WRF V3.0.1 MYJ Noah yes 3 GlobCover 36–12 Era-I
15 WRF V3.1 MYJ Noah yes 3 MODISr 54–6 FNL
16 WRF V3.6.1 YSU Noah yes 3 CORINE 336–96 CFSR
17 WRF V3.5.1 MYJ Noah yes 4 IGBP-MODISs 264–24 Era-I
18 UM V8.4t Locku JULESv yes 4 IGBP-MODIS 36–6 Era-I
19 WRF V3.5.1 YSU Noah yes 5 USGS 2424–24 Era-I
20 SKIRON V6.9w MYNN OSUx no 5 USGS 51–3 GFSy

21 WRF V3.5.1 YSU Noah yes 5 USGS 2424–24 Era-I
22 WRF V3.5.1 YSU Noah yes 6 IGBP-MODIS 264–24 Era-I
23 HIRLAM V6.4.2z CBRaa ISBA no 11 USGS 9–3 IFSab

24 RAMS V6.0ac MYNN LEAFad no 12 CORINE 36–12 IFS
25 MM5 V3ae YSU – no 20 CORINE 744–24 MERRA

a Skamarock et al. (2008). b Bossard et al. (2000). c Dee et al. (2011). d Janjić (2002). e Niu et al. (2011). f Garbarino et al. (2002). g Arino et al. (2008). h Hong
et al. (2006). i Seity et al. (2011). j Masson et al. (2013) (Supplement). k Noilhan and Mahfouf (1996). l Champeaux et al. (2005). m Pleim (2007a). n NCEP final
analysis. o Saha et al. (2010). p Nakanishi and Niino (2006). q Rienecker et al. (2011). r Friedl et al. (2010). s Loveland and Belward (1997). t Lean et al. (2008).
u Lock et al. (2000). v Cox et al. (1999). w Kallos et al. (1997). x Pan and Mahrt (1987). y Global Forecast System. z Kallberg (1989). aa Cuxart et al. (2000).
ab Integrated Forecasting System. ac Pielke et al. (1992). ad Walko and Tremback (2005). ae Grell et al. (1994).

tions describing turbulent motion of order n contain terms of
order n+ 1. The order of closure describes the highest order
of equations included; higher orders are parametrized. In lo-
cal schemes, variables are only affected by adjacent cells,
while nonlocal schemes relate changes to gradients in the
whole PBL column (Cohen et al., 2015).

To study the influence of the PBL schemes used, the
MMs were split into three groups: YSU, MYJ, and Other.
The statistics of NRMSEu and RMSEα for these groups are
shown in Table 5. The YSU group consists of six models
that used the YSU PBL scheme (Hong et al., 2006), which
is a first-order nonlocal scheme. The models in this group
span a range of grid spacings and lead times, but mod-
els with larger-than-average grid spacing and longer-than-
average lead times dominate the group. The MYJ group con-
tains six models that used the MYJ PBL scheme (Janjić,
1994), which is a 1.5 order local scheme. Most of the models
use a short lead-time limit and a grid spacing that is close to
the average for the MMs in this study. The last group, labeled
Other, contains nine models that use a mix of different PBL

schemes (see Table 4), with different orders of closure and a
mix of local and nonlocal formulations. These models have a
wide representation of different grid spacings and lead times.

At FINO3, the group consisting of models not using either
the YSU or MYJ PBL schemes generally has smaller wind
speed errors; even though the group also contains the model
with the largest NRMSEu. The models using the MYJ PBL
scheme have smaller wind shear exponent errors, and also on
average smaller wind speed errors than YSU. However, the
median model in the YSU and MYJ groups has similar wind
speed errors.

At Høvsøre, the three groups have very similar mean
wind speed error statistics, with YSU showing only slightly
smaller errors. However, for wind shear exponent, the models
in the YSU group have the smallest errors, both on average
and for the median model. Draxl et al. (2014) studied sim-
ilar error statistics at Høvsøre for the WRF model run with
a number of different PBL schemes during October 2009.
They, unlike this study, found that MYJ gave slightly smaller
errors than YSU. However, Draxl et al. (2014) used a version
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Table 5. Statistics of NRMSE for wind speed (NRMSEu) and
RMSE for wind speed shear exponent (RMSEα) associated with
the groups of PBL schemes across all heights at each site. There are
six models in the YSU group, six in the MYJ group, and nine in the
Other group. The smallest value for each metric is in bold.

FINO3

Metric PBL Mean Median SD Min Max

YSU 0.047 0.029 0.028 0.018 0.091
NRMSEu MYJ 0.032 0.029 0.011 0.020 0.055

Other 0.028 0.014 0.045 0.001 0.154

YSU 0.029 0.019 0.034 0.004 0.116
RMSEα MYJ 0.010 0.010 0.007 0.004 0.025

Other 0.057 0.019 0.120 0.003 0.396

Høvsøre

Metric PBL Mean Median SD Min Max

YSU 0.061 0.058 0.037 0.024 0.144
NRMSEu MYJ 0.063 0.064 0.013 0.045 0.090

Other 0.062 0.059 0.026 0.027 0.100

YSU 0.035 0.018 0.029 0.005 0.087
RMSEα MYJ 0.049 0.044 0.011 0.030 0.061

Other 0.086 0.051 0.100 0.027 0.365

Cabauw

Metric PBL Mean Median SD Min Max

YSU 0.058 0.049 0.033 0.021 0.127
NRMSEu MYJ 0.066 0.053 0.037 0.038 0.146

Other 0.124 0.086 0.106 0.007 0.389

YSU 0.025 0.022 0.007 0.018 0.036
RMSEα MYJ 0.045 0.023 0.036 0.020 0.117

Other 0.064 0.075 0.036 0.015 0.113

of the YSU scheme with a bug that was corrected in WRF
version 3.4.1 (Hahmann et al., 2015b).

At Cabauw, the YSU group has smaller errors than the
other groups for both wind speed and wind shear exponent,
but the errors for the median model in the YSU and MYJ
groups are quite similar. The single most accurate model is
found in the Other group, but that group as a whole has larger
errors.

3.2.2 Grid spacing

A mesoscale model should be able to explicitly resolve
smaller and smaller phenomena as the grid spacing is de-
creased. Skamarock (2004) illustrated that the effective res-
olution of the WRF model is approximately 7 times the grid
spacing used. However, mesoscale models, as the name sug-
gests, have been developed to simulate the mesoscale, and
they are often not capable of simulating weather at scales
that lie between the micro- and mesoscales, i.e., between ap-
proximately 100 and 2000 m. To study the importance of the
grid spacing, the models were ranked by grid spacing, simi-
lar to Table 4. The models were then split into three groups:

Table 6. Statistics of NRMSE for wind speed (NRMSEu) and
RMSE for wind speed shear exponent (RMSEα) associated with the
group model grid spacing across all heights at each site. There are
seven models in the fine group, eight in the moderate group, and six
in the coarse group. The smallest value for each metric is in bold.

FINO3

Metric Grid spacing Mean Median SD Min Max

Fine 0.024 0.020 0.015 0.001 0.055
NRMSEu Moderate 0.037 0.027 0.025 0.007 0.080

Coarse 0.044 0.025 0.046 0.002 0.154

Fine 0.013 0.013 0.008 0.005 0.025
RMSEα Moderate 0.015 0.011 0.008 0.004 0.028

Coarse 0.067 0.019 0.121 0.003 0.396

Høvsøre

Metric Grid spacing Mean Median SD Min Max

Fine 0.057 0.057 0.026 0.024 0.093
NRMSEu Moderate 0.054 0.057 0.012 0.027 0.064

Coarse 0.075 0.068 0.034 0.028 0.144

Fine 0.040 0.040 0.021 0.015 0.076
RMSEα Moderate 0.047 0.048 0.010 0.030 0.060

Coarse 0.088 0.055 0.109 0.005 0.365

Cabauw

Metric Grid spacing Mean Median SD Min Max

Fine 0.086 0.064 0.056 0.007 0.178
NRMSEu Moderate 0.048 0.046 0.015 0.021 0.078

Coarse 0.146 0.107 0.115 0.049 0.389

Fine 0.052 0.030 0.036 0.016 0.117
RMSEα Moderate 0.031 0.021 0.017 0.020 0.066

Coarse 0.063 0.060 0.041 0.015 0.113

fine, moderate, and coarse. The fine group consists of seven
models that all have a grid spacing below 3 km. The moder-
ate group consists of eight models at exactly 3 km, and the
coarse group consists of six models above 3 km. The fine
group contains models that are well distributed in terms of
PBL schemes and simulation lead time. The moderate mod-
els also have a good representation of different PBL schemes
and lead-time limits, but the MYJ PBL scheme and short lead
times are most common. The coarse group contains no mod-
els using the MYJ PBL scheme, and half of the models use a
short lead time.

Table 6 shows the statistics for NRMSEu and RMSEα .
At FINO3, the fine group has the smallest wind speed er-
rors. For the wind shear exponent, the smallest error is found
in the coarse group, but on average the fine and moderate
groups have smaller errors. At Høvsøre, the fine and moder-
ate groups have similar errors for both wind speed and shear
exponent. However, the model with the smallest shear ex-
ponent error is found in the coarse group. At Cabauw, the
moderate group shows the smallest errors for both metrics,
followed by the fine group. However, just as for Høvsøre, the
model with the smallest RMSEα is found in the coarse group.
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Table 7. Statistics of NRMSE for wind speed (NRMSEu) and
RMSE for wind speed shear exponent (RMSEα) associated with
each group of simulation lead time across all heights at each site.
There are nine models in the short group, eight in the medium
group, and seven in the long group. The smallest value for each
metric is in bold.

FINO3

Metric Sim. length Mean Median SD Min Max

Short 0.032 0.020 0.044 0.001 0.154
NRMSEu Medium 0.028 0.025 0.014 0.007 0.055

Long 0.051 0.031 0.028 0.025 0.091

Short 0.052 0.010 0.122 0.003 0.396
RMSEα Medium 0.016 0.016 0.006 0.003 0.025

Long 0.029 0.022 0.036 0.004 0.116

Høvsøre

Metric Sim. length Mean Median SD Min Max

Short 0.058 0.059 0.023 0.024 0.100
NRMSEu Medium 0.070 0.068 0.016 0.044 0.093

Long 0.062 0.057 0.039 0.027 0.144

Short 0.081 0.044 0.102 0.018 0.365
RMSEα Medium 0.044 0.056 0.023 0.009 0.076

Long 0.046 0.048 0.025 0.005 0.087

Cabauw

Metric Sim. length Mean Median SD Min Max

Short 0.088 0.058 0.108 0.007 0.389
NRMSEu Medium 0.103 0.097 0.058 0.043 0.178

Long 0.068 0.064 0.035 0.021 0.127

Short 0.046 0.021 0.038 0.015 0.113
RMSEα Medium 0.058 0.054 0.038 0.018 0.117

Long 0.031 0.025 0.012 0.020 0.052

3.2.3 Simulation time

As the solution in mesoscale models is integrated forward in
time, the uncertainties associated with the errors in the initial
conditions increase (Yoden, 2007). This can cause the model
solution to drift away from the true solution. Furthermore,
amplification errors can reduce the variance, which reduces
the accuracy of the model in a statistical sense. To study the
influence of the simulation time on the model performance,
the models were ranked and split into three groups: short,
medium, and long. The short group consists of nine models
with a lead time below 48 h. Four models in the group use
the MYJ scheme, and one uses the YSU scheme. The short
group has a good representation of models with different grid
spacings. The medium group includes eight models with a
lead time between 48 and 335 h. The group has a good rep-
resentation of different PBL schemes and grid spacing. The
long group consists of seven models with a lead-time limit
above 335 h. Five of the models use the YSU PBL scheme,
and most of the models use a larger-than-average grid spac-
ing.
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Figure 12. Distribution of errors from the model’s output at 90 m
at FINO3 for the following errors: (1) the mean wind speed um
(blue), (2) the power density Pm (green), (3) the power density with
an implied power curve Pm,pc (red), and (4) the averaged power
density of a wind farm, including the same implied power curve as
(3) and the wake effects (purple). Outliers are not shown; the most
extreme ones are −25 % for um, −60 % for Pm, −37 % for Pm,wf,
and −35 % for Pm,pc

Table 7 shows the errors statistics for the three simulation-
time groups. At FINO3, the median model from the short
group has the lowest NRMSEu and RMSEα , but because one
model has large errors, the lowest mean errors are found in
the medium group. The medium group has smaller errors
across all metrics compared to the long group.

At Høvsøre, the short and long groups have similar error
statistics for wind speed, and both measures are lower than
those for the medium group. For RMSEα the median model
from the short group has the smallest error, while on average
the errors are smallest in the medium group.

At Cabauw, the smallest errors for both wind speed and
shear exponent are on average found in the long group, while
the median model with the smallest errors is in the short
group. It is worth noting that five of the seven models in
the long group use the YSU PBL scheme, and in Sect. 3.2.1
the models using the YSU PBL scheme were shown to have
smaller errors at Cabauw; thus, it cannot be ruled out that the
small errors in the long group at Cabauw are related to the
overrepresentation of the YSU scheme and not the simula-
tion length.

3.3 Wind energy application

As described in Sect. 2.4, the output from the mesoscale
models was applied to a simple wind energy exercise. The
90 m wind resource of a Horns Rev wind farm was estimated
using the output from the various MMs at FINO3. Figure 12
shows the errors for four metrics: (1) error in mean wind
speed um, (2) error in mean power density Pm, (3) error in
mean power density using a single power curve Pm,pc, and
(4) error in the mean power density of a wind farm of 80
turbines Pm,wf, including wake effects.
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Figure 12 shows that the majority of the models have less
than ±5 % error in mean wind speed. The errors are mostly
underestimations, and in a few cases severe underestimation
of more than 10 % (outside the scale of the figure). For the
mean power density, the spread of the models is, as expected,
much larger due to the third-power dependence on the wind
speed. However, when the power density is calculated us-
ing a turbine power curve, where the highest wind speeds
(> 14 m s−1) are less important, the inter-model variance is
comparable to that for mean wind speed. For the wind farm
case, where the power density depends on the wind direction
distribution, because of the wake losses, the variance is com-
parable in size to that of the mean wind speed and Pm,pc, and
most models have errors smaller than ±2 %. The improve-
ment seen for Pm,wf is caused by the underestimation of the
wake effects by most models, leading to a relative increase
in mean power density, offsetting the underprediction from
the modeled wind speed distribution. However, the relative
effect of over- or underpredicting the wake effects may just
as well enhance the total power density errors, given slightly
different wind direction distributions.

4 Summary and conclusions

The mesoscale models in this study are able to reproduce the
observed mean wind speed profiles and the distributions of
wind speed well. At FINO3 and above 10 m at Høvsøre, the
average of the models has a bias of 3 % or less. The largest
mean wind speed biases (7–9 %) are found at the lowest lev-
els at Høvsøre and Cabauw. Similarly, the MMs were able
to reproduce the relative variations of wind speed well in
most cases (Fig. 8), but they underestimated the relative vari-
ations at the lowest levels at Cabauw. A simple analysis of
the impact of upstream surface roughness conditions on the
relative wind speed variations suggested that the models may
be misrepresenting the surface characteristics (Fig. 9), which
could be a misrepresentation of either the land use classifi-
cation, the conversion of land use classes into surface rough-
ness lengths, or the PBL scheme. This problem highlights the
need for (1) further analysis of the representativeness of the
surface characteristics in mesoscale models and (2) down-
scaling of the mesoscale results using a coupled microscale
model to capture subgrid-scale influence from variations in
orography and surface roughness. The modeled distributions
of the wind direction showed only minor differences com-
pared to the observed ones.

For future benchmarking exercises, our study shows that
the focus should be on the model representation of surface
characteristics, such as orography and land use, and their as-
sociated surface roughness. An attempt was made here to
include these details, but because only a subset of the par-
ticipants supplied this information, it was not feasible. Fur-
ther studies could also benefit from including more land
masts with low to moderate complexity, where capturing the

surface characteristics is important, but still manageable by
mesoscale models.

The impact of choosing specific model subcomponents
was studied in some detail. To allow this, the output from the
models was reduced to two metrics at each site, one related
to the wind speed bias (NRMSE for wind speed) and one re-
lated to the shape of the wind speed profile (RMSE for wind
speed shear exponent). The models were then separated into
large groups according to their model setup for three setup
choices: PBL scheme, grid spacing, and simulation lead time.
At FINO3, the grouping revealed that the models using the
MYJ PBL scheme had smaller wind speed and shear expo-
nent errors than those that use the YSU scheme. At Høvsøre
and Cabauw, the opposite was true. However, the differences
between the two groups were not significant and the median
model from the two groups had similar errors. Grouping the
models according to grid spacing showed that the models
with 3 km grid spacing or smaller had lower errors than the
group with the largest grid spacings. For these sites, no con-
clusive evidence was found that reducing the grid spacing be-
low 3 km results in smaller errors. For simulation lead time,
the median model from the group with short lead times had
the smallest errors at all sites, with the exception of the shear
exponent error at Høvsøre. However, no significant differ-
ence between the mean of the groups was found, which sug-
gests that the PBL scheme and grid spacing may be of greater
importance for the performance at these sites. Future studies
should include many more runs to provide more robust statis-
tics, which can provide a basis for best-practice guidelines
for wind energy applications using NWP models.

Last, we used the observed and modeled time series for
a classical wind energy application, the estimation of power
production at a hypothetical wind farm at FINO3. The power
production, including wake losses, was estimated for both a
single turbine and for a wind farm, using a standard power
curve. The exercise showed that while a large spread exists
between the modeled power density, it is reduced when the
power is calculated using a power curve. It also showed the
importance of accurately estimating the wind direction dis-
tribution since a small deviation in the distributions might
induce large changes in the power production because of its
sensitivity to the wind farm layout.

Data availability. The output data from the mesoscale models
have been submitted to the European Wind Energy Association
(EAWE) for the mesoscale benchmarking study under an agree-
ment that ensures that individual participants are anonymous in the
reported results, and that the model output was not publicly shared.
The measurements from the meteorological masts FINO3, Høvsøre,
and Cabauw are provided by the data owners under an agreement of
not sharing the data with any third party.
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