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Abstract. This paper presents a model calibration investigation using a wide range of
available data. The wind turbine under investigation was the V52 research turbine located
at Denmark Technical University (DTU) Risg campus. The data included drawings and static
and dynamic tests for both the entire wind turbine and the isolated blades. Each set of data was
used to calibrate some aspect of the final model. There are three main parts of this paper. First,
the different data sources are outlined, including an overview of the experimental procedures
and the key results. Second, the model calibration procedure for each set of experimental data
is explained. Third, recommendations for the calibration procedure are presented for future
researchers and the key outcomes of our calibration investigation are discussed.

1. Introduction
The utility of a well-calibrated model® is well-known. A “digital twin”, as it is sometimes called,
allows us to test a device of interest under many different operational conditions much faster
than real time. Moreover, we can subject our digital version of the device to conditions that
might cause catastrophic failure in the real world without concerning ourselves with the waste
of expensive resources, and we can efficiently run extensive batteries of tests to be certain that
design criteria are met. Alternatively, we can use the simulation model to determine which real-
world tests have the lowest cost-to-benefit ratio. In short, the calibration of a computer model
of a system of interest is an essential step in research investigations related to that system.
Many investigations have been made into the calibration of wind turbine models; however, for
brevity, only the most directly relevant works will be discussed in detail here. Of the published
papers, some focus primarily on the generator/drivetrain [2, 3, 4], some focus primarily on the
blades [5, 6, 7], and some consider the entire turbine system [8, 9, 10, 11]. The two publications
that are most relevant to this paper are Griffith et al. [7] and Jonkman [11]. In particular,
Griffith et al. [7] used measurement data from blade static and modal testing to calibrate a
blade model, similar to what was done for the blade calibration in this paper. Jonkman [11]
used a large amount of experimental data from the Unsteady Aerodynamics Experiment (UAE)

! Note the difference between model calibration (i.e., model tuning) and model validation (i.e., testing a model’s
predictivity). For brevity, a full discussion of this distinction is not included here. We instead refer the interested
reader to Trucano et al. [1].
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research turbine and created a calibrated model in FAST_AD, the predecessor to NREL’s open-
source wind turbine simulator FAST [12], which is similar to this paper’s objective of calibrating
a HAWC2 model for a research turbine at DTU Risg campus. However, this paper extends
beyond the existing literature by using a different blade calibration technique than Griffith et
al. [7] and by presenting in detail a recommended calibration procedure for a full-system model
that includes a few key parameters that are missing in Jonkman [11].

The wind turbine of interest in this paper is the Vestas V52 research turbine located at
the Denmark Technical University (DTU) Risp campus. The research turbine features many
different instruments and has its own meteorological mast a few dozen meters west of its location.
Due to its significant utility in future research investigations, several experiments have been
carried out on different parts of the turbine with the goal of creating a HAWC2 [13] model
of the turbine. This model will then be used in future validation studies at Risg campus.
This paper summarizes the procedure that we followed to calibrate the initial HAWC2 model,
including an explanation of the data and drawings that were available as well as a comparison of
the simulations with the experimental data. It is hoped that this paper will be useful to future
researchers who seek to calibrate wind turbine models based on measurements.

The remainder of the paper is as follows. First, an overview of all experimental data, drawings
and other values that were used to calibrate the model is presented in Sec.2. Section 3 contains
the calibration procedure for the HAWC2 model as well as comparisons between the simulations
and measurements. Section 4 summarizes our significant findings and recommendations for wind
turbine model calibration. Finally, the paper is concluded in Sec. 5.

2. Calibration data

This section presents an overview of the measurements, drawings and other parameters that
were available during the model calibration process. In particular, the following quantities were
available to tune the model:

e FLEX4 model: The first iteration of the HAWC2 model included parameters taken from
a FLEX4 model provided by Vestas. These parameters included distributed structural and
aerodynamic properties of the blades as well as lift and drag profiles. These parameters
were later modified using other data (see Sec. 3).

e Tower drawings: The V52 research turbine is installed on a custom tower with a hub
height of 44 m. The original tower drawings were available, and these drawings were used
to calculated the distributed tower properties necessary for a HAWC2 model, assuming a
conical tower with circular cross-sections. Due to paper-length constraints, this step will
not be discussed in detail.

e Blade drawings: One blade schematic was available that showed the thickness, chord and
twist at different stations along the blade. This drawing also indicated the theoretical total
mass of the blade, though this value was superseded by the measured blade mass (see next
bullet).

e Blade mass and center of gravity: A V52 blade was tested at Risg in the early 2000s,
and an accompanying report was published in April of 2003 [14]. A collection of structural
tests were performed, including static strength tests with strain gages. Most importantly,
the report included the measured mass of the blade (1915 kg) and its center of gravity
(7.3 m from the root).

e Static blade deflection: A measurement campaign was conducted in 2016 to produce
blade deflection data that could be used to validate finite-element models of the V52 blades.
Two of the three V52 blades were loaded in multiple configurations, and their resulting
deflected shapes were measured at four stations along the blade. The blades were mounted
on a test rig with an 8° inclination in the DTU Wind Energy Testing Facility, and then three
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Figure 1. Frequency-response function for blade impact-hammer

test

tests were conducted: flapwise, flap-torsion, and edgewise. The blades were each mounted
for the flapwise and flap-torsion tests such that the chordline for the blade tip was parallel
to the ground. The blade was then rotated 90°—so that the leading edge was directed
upwards—for the edgewise test. The loading for all three tests was accomplished by slowly
winching a heavy concrete block onto a yoke 22 m from the root of the blade. The block
was attached to the yoke at the mid-chord. For the flap-torsion test, a smaller load was
used to reduce flapwise deflections and the load was offset approximately one meter from
the shear centre to induce torsional deflections. The loading configurations are summarised
as follows:

— Flapwise: 829 kg along the shear centre
— Flap-torsion: 421 kg offset from the shear centre approximately 1.054 m
— Edgewise: 829 kg along the shear centre

The resulting blade deflections were measured in two directions. First, the deflection in
the vertical direction was measured at the leading edge and trailing edge of the blade using
wire-drawn transducers at four different stations (5.5 m, 11.0 m, 16.5 m and 21.5 m from
the root). These measurements were used to calculate the mid-chord vertical deflection
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Ayme and the rotation at that station « via the following equations:

A — A
AYme = (Ayre + Ayre)/2, o = atan (yLEyTE> (1)

C

where Ayrp and Ayrp are the vertical deflections at the leading edge and trailing edge,
respectively, and c is the chord at the measurement point. Second, the deflection of the
blade in the horizontal direction was measured manually using a ruler and wires hanging
from the ceiling of the testing facility. Thus, the measurement campaign resulted in
the following quantities measured at four stations (5.5 m, 11.0 m, 16.5 m and 21.5 m
from the root) along the blade: flapwise, edgewise and torsional deflection under flapwise
loading; flapwise, edgewise and torsional deflection under torsional loading; and flapwise
and edgewise deflection under edgewise loading.

e Blade modal test: An impact-hammer test was performed on one of the blades when
it was mounted on the test rig in the testing facility. The blade had two accelerometers
measuring the flapwise acceleration at the leading edge and trailing edge and one measuring
the edgewise acceleration at the trailing edge. The resulting frequency-response function is
shown in in Fig. 1 along with the identified frequencies. The blade modal frequencies are
summarized in Table 1.

e 3D blade scan: All three blades were subjected to 3D scans before being mounted on the
wind turbine. The measurements were available in a text file that listed each 3D coordinate
of each scan point. An example scatter plot of 2000 random points is given in Fig. 2.

e Airfoil coefficients: The lift and drag coefficients were updated using the NACA profiles
published in [15] and results from XFOIL [16].

e Standstill test: Full-system natural frequencies were available from a standstill test. The
rotor was locked in a “bunny ears” configuration with the blades pitched in the stop
position for 65 min and then in the run position for 70 min. Time series were recorded
with accelerometers at the tower top and in the nacelle and with strain gages at the tower
base. These time series were then used to calculate power-spectral densities (PSDs) of the
different channels for each 10-minute period. Ranges of the full-system natural frequencies
were identified using these PSDs. An example PSD is given in Fig. 3, and the resulting
ranges of the full-system natural frequencies are given in Table 2.

3. Model calibration

This section describes the calibration procedure for the structural and aerodynamic properties
of the HAWC2 model of the V52 research turbine. An overall schematic of the procedure
is given in Fig. 4. The initial HAWC2 model was created from the FLEX4 model combined
with the distributed tower properties calculated from the design drawings (see Sec. 2). The
subsequent calibration procedure can be separated into four groups: blades (structural), blades
(aerodynamic), drivetrain and foundation. Each of these groups is discussed in detail in a
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Figure 3. Example power-spectral density of locked-rotor test

Table 2. Ranges of full-system, locked-rotor standstill frequencies extracted from PSDs
Freq (Hz) | Mode Freq (Hz) | Mode
[0.615, 0.625] | Tower - FA [2.120, 2.130] | 1st Edgewise Vertical
[1.020, 1.050] | Tower - SS [2.167, 2.187] | 1st Edgewise Horizontal
[1.145, 1.155] | 1st Flapwise Yaw [2.780, 2.810] | 2nd Flapwise Yaw
[ ]
[ ]

[1.170, 1.190] | 1st Flapwise Tilt 2.820, 2.860] | 2nd Flapwise Tilt
[1.360, 1.400] | 1st Flapwise Symmetric | [3.220, 3.300] | 2nd Flapwise Symmetric

FLEX4 + Tower drawings

Foundation
» Locked-rotor standstill

Blades (structural) Blades (aerodynamic) Drivetrain
* Static deflection * 3Dscan » Locked-rotor standstill
¢ Mass and cg * Airfoil coefficients

+ Blade modal
Calibrated Model

Figure 4. Schematic of calibration procedure
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Figure 5. Mass distribution before and after optimisation

dedicated subsection below. Damping was added to the resulting calibrated model by manually
adjusting the damping values until desired log decrements for the tower, towertop, shaft, hub and
blade components were achieved (2%, 2%, 7%, 2% and 1%, respectively, based on the authors’
practical experience with other wind turbine models).

3.1. Blades (structural)

The distributed structural properties of the blades were calibrated in three steps. In the first step,
the mass distribution was optimized such that the total mass and center of gravity of the blade
model matched the measured values given in Sec. 2. In the second step, the distributed edgewise
and flapwise stiffnesses of the blades were manually changed until the simulated static deflected
shapes and blade modal frequencies matched the measured values. In the third step, the blade
torsional stiffness was scaled such that the simulated and measured rotations under torsional
loading matched. The mass and stiffness (flapwise, edgewise and torsional) optimisations are
discussed in respective subsections below.

3.1.1. Mass-distribution optimisation The blade mass distribution was calibrated by solving
the following optimisation problem:

min [m — mmsmt} i + 2 [cg — Cg’msmt] 2 (2)

my Mmsmt Cg,msmt

Here, subscript 4 indicates that we are optimising the mass-per-unit-length value at each of
the stations shown in Fig. 5; subscript msmt indicates the measured value of a parameter; m
indicates the total mass of the blade; and ¢, represents the center of mass of the blade. The
center of gravity of the blade was determined to be more important than the total mass of the
blade, so it was given an increased weight in the cost function.

The optimisation problem was solved in Python using the Sequential Least Squares
Programming solver in SciPy. To speed up the problem and to ensure that the resulting
mass distribution did not vary significantly from the original mass distribution, bounds were
implemented such that the mass distribution did not change more than 20% of its original value
or decrease below 4 kg/m. The resulting mass distribution (shown in Fig. 5) had a total mass
and center of gravity that matched the measured values (i.e., 1915 kg and 7.3 m) out to five
decimal places.



The Science of Making Torque from Wind (TORQUE 2018) IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 1037 (2018) 062026  doi:10.1088/1742-6596/1037/6/062026

3.1.2.  Stiffness-distribution optimisation The tuning of the distributed blade stiffness
properties was by far the most complicated aspect of the model calibration. There were two main
steps: tuning the flapwise and edgewise stiffnesses and tuning the torsional stiffness. Both steps
utilised a HAWC2 model that simulated the static deflection tests, including the test rig. The
torsional stiffness tuning was fairly straightforward: the shear modulus G was scaled equally at
all sections until the simulated flap-torsion rotations overlaid the measured rotations (a decrease
in G from 20 GPa to 18.6 GPa, about 7%). The flapwise/edgewise tuning procedure was more
involved and is therefore discussed in detail below.

The distributed flapwise and edgewise blade stiffnesses were tuned by manually determining
the values of ten design variables, each of which represented a percent scaling of either the
flapwise or edgewise area moment of inertia at one of five possible sections: 0 to 5.5 m, 5.5 to
11 m, 11 to 16.5 m, 16.5 to 21.5 m or 21.5 m to 25.3 m, all measured from the blade root.
These sections correspond to the sections defined by the measurement locations during the
deflection test. Different values of the percent scalings of the edgewise and flapwise stiffnesses in
these sections were tried until the simulated static deflection test and blade modal frequencies
matched the measurements to a sufficient degree of accuracy. In the end, the following scalings
were obtained:

Section ‘ 0-55m 55-11m 11-16.0m 16.5-21.0m 21.5-25.3 m
Flapwise | +4.87% +26.86% +36.34%  +4.87% +25.85%
Edgewise | -25.97% +5.75%  +48.05%  +16.32% +37.47%

The comparison of the simulated and measured static blade deflection and the first four
modal frequencies is shown in Fig. 6. As can be seen in the figure, the deflections in the vertical
direction (top row) match quite closely for all three tests. There is some difference in the
horizontal deflections and in the torsional deflection for the flapwise test. These discrepancies
could possibly due to the less-accurate measuring method in the horizontal direction or due to
the assumption that the shear center coincided with half-chord point. However, we elected to
focus primarily on the vertical deflections and modal frequencies, which also match extremely
well, so this difference in the horizontal deflections is not further addressed. Lastly, the first
four blade eigenfrequencies match the measured blade modal frequencies extremely well, with
a largest discrepancy of 0.10 Hz occurring in the first edgewise mode. Thus, the structural
properties of the simulated blade can be concluded to mimic those of the actual blade to a good
degree of accuracy.

3.2. Blades (aerodynamic)

The aerodynamic properties of the blades were calibrated in two ways. First, the lift and drag
curves were replaced with a combination of measured profiles from [15] and curves calculated
in-house using XFOIL [16]. Second, the distributed values for the thickness, chord, twist and
offset were updated using the 3D scan data. The 3D scan data was separated into different
stations, and at each station the following procedure was applied:

(i) Convert the scan data to polar coordinates

(ii) Identify the leading edge and trailing edge by picking out the two maximal points that are
at least 7/2 rad apart

(iii) Use geometrical relationships to determine the section’s chord, twist and offset (according
to HAWC2’s blade-model formulation) from the leading edge and trailing edge points

(iv) Transform the airfoil such that it is has no twist or offset
(v) Determine the thickness from the maximum and minimum points in this transformed space

A demonstration of this procedure is shown in Fig. 7, and a comparison of a fit airfoil to scan
data is shown in Fig. 8. The resulting curves for the thickness, curve, twist and horizontal
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Figure 6. Schematic of calibration procedure

offset were similar to those from the FLEX4 model except near the root of the blade, but the
vertical offset values differed quite substantially (curves not shown for proprietary reasons). The
overlays of the transformed airfoils with the scan data indicated good agreement between the
obtained curves and the physical blade characteristics.

3.3. Driwetrain
The drivetrain torsional stiffness was tuned by changing the shaft’s polar moment area of inertia
until the simulated frequency for the 1st Edgewise Horizontal mode matched the measured value.

3.4. Foundation

The foundation stiffness was tuned by changing the foundation’s Young’s modulus until the
simulated frequency for the fore-aft tower mode matched the measured value. The foundation
was the last step in the calibration procedure before damping was added (see beginning of
section).

4. Observations and recommendations
Based on our experiences with this calibration procedure, we present the following observations
and recommendations:

e Decouple blade mass/stiffness tuning: The blade mass can be calibrated based on the



The Science of Making Torque from Wind (TORQUE 2018) IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 1037 (2018) 062026  doi:10.1088/1742-6596/1037/6/062026

. Untransformed scan data Untransformed scan data (polar)

0.5 -
0.2 -
0.4 -

0.3 -
0.0

0.2 i '._
3 d % §
3 & A g
-0.2 - N ) & % é
Theta: -16.4 deg 0.1- M e e, ﬁf'
Chord: 0.68 m v ~—
Thickness: 16.3% 00
-0.4 -0.2 0.0 0.2 0.4 0.6 0 1 2 3 4 5 6

Transformed scan data,
0.25

0.2 - 0.4 -

0.20 -
0.1 -

P

—0.1 -

.3 - ‘i
- \

0.1 -

&
0.10 -

-0.2 -

' i i i i
-0.4 -0.2 0.0 0.2 0.4

Figure 7. Demonstration of determining the thickness, chord, twist and offset from the scan
data

—— Theoretical Airfoil « Blade A - Blade B . Blade C

6: -8.0 deg
c:1.85m
t:24.0%
Ax: -0.33
Ay: -0.05

Figure 8. Comparison of airfoil with fit thickness, chord, etc. to scan data

expected total blade mass and center of gravity, as discussed above. Then, the blade
stiffness can be calibrated using static deflection tests, pull tests and/or modal tests.

e Blade stiffness tuning is most involved: The tuning of the blade stiffness to the deflection
test and modal test data was by far the most complicated aspect of the calibration
procedure.

e FEaxtract distributed aerodynamic properties from blade scan data: Our results indicate that
it is quite easy to obtain high-quality estimates of the distributed chord, thickness, etc.,
from 3D scan data. Comparisons of the theoretical airfoils to the blade scan also allowed
us to determine how well the scheduled airfoils matched the actual blade profile.

e Determine drivetrain and foundation stiffness from standstill tests: The foundation stiffness
can be tuned from the first full-system mode during non-operation. The drivetrain stiffness
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requires a locked-rotor test.

e Calibrate blades first: We recommend first calibrating the structural and aerodynamic
properties of the blades before moving onto other aspects of the turbine.

5. Conclusions

This paper presents observations and recommendations based on the calibration of a HAW(C2
model of the V52 research turbine located at DTU Wind Energy Risg campus. The model was
calibrated using a diverse set of data sources that included blade measurements and full-system
measurements, amongst others. The calibration of the structural and aerodynamic properties
of the blades, the drivetrain and the foundation is discussed in detail, and our recommendations
for wind turbine model calibration are summarised. It is hoped that the information presented
in this paper will be useful to other researchers performing similar calibrations in future works.
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